
Generalization of Teacher-Student Network and
CNN Pruning

Hui Guan, Lin Ning, Xipeng Shen
North Carolina State University

Raleigh, NC, USA
{hguan2, lning, xshen5}@ncsu.edu

Seung-Hwan Lim
Oak Ridge National Laboratory

Oak Ridge, TN, USA
lims1@ornl.gov

Timothy Menzies
North Carolina State University

Raleigh, NC, USA
tjmenzie@ncsu.edu

Abstract—Convolutional neural network (CNN) pruning is an
important way to adapt a large CNN model attained on general
datasets to a more specialized task. It is time-consuming, for its
needs for exploring many possible pruned variants and for the
long time needed to train and test each pruned variant. Block-
wise pruning is an idea to accelerate the process: If each block
of layers in a CNN can be pruned and trained well, putting
them together could compose many almost-ready variants of
pruned CNN and hence save much time for training pruned CNN.
Materializing the idea, however, faces a major barrier: how to
effectively train an arbitrary block of CNN layers independently.
This paper proposes to solve the problem through Generalized
Teacher-Student Network (GTSN), a novel technique designed
for flexibly passing the knowledge of a large CNN to a pruned
CNN at an individual layer level. It uncovers a series of insights
on the effects of GTSN on CNN pruning, and integrates them
into a block-wise CNN pruning framework, which speeds up
CNN pruning by up to 202.8X for ResNet-50 and up to 30.2X
for Inception-V3.

Index Terms—CNN, network pruning, teacher-student network

I. INTRODUCTION

Recent years have witnessed some rapid progress in the
development of Convolutional Neural Networks (CNN), and
its successful applications in various data mining tasks.

Large CNN models can achieve high accuracy but at the
cost of immense computation and memory requirements. CNN
pruning [1]–[3] is a popular method to reduce the size and
complexity of a CNN by removing some parameters (e.g.
weights or filters) in the network and then retraining the pruned
network. It is especially useful for adapting a large CNN model
(e.g., a general image classifier) attained on general datasets
to meet the needs of more specialized tasks [4], [5] (e.g.,
recognition of car models, dog breeds, bird species [3], [5]–
[7]). Compared to designing a CNN from scratch for each
specific task, CNN pruning is an easier and more effective
way to achieve a high-quality network [3], [4], [7]–[9]; it is
also an essential method for fitting a CNN model on a device
with limited storage or computing power [10], [11].

CNN pruning is however extremely time-consuming. To
identify the best-pruned network, a practitioner usually needs
to retrain many promising networks pruned with different
configurations and test them out. As training one CNN already
takes hours or days and the configuration space is combinato-
rial, it is a long process, delaying the turnaround time of AI
products development, especially given that the development

Block 1

Block 2

Block 3
Block 3

Block 3

Block 2
Block 2

Block 1
Block 1 Block 1

Block 2

Block 3 Block 3

Block 2

Block 1

(a) (b) (c)

Block 3

Block 2

Block 1

A CNN to Prune Pruned Blocks Pruned CNNs

Fig. 1: Illustration of block-wise CNN Pruning. Different col-
ors of pruned blocks correspond to different pruning options.

of an AI product often involves continuous changes in design
and hence repeated runs of the CNN pruning process.

An idea we propose to accelerate the process is block-wise
CNN pruning. It comes from the following observation. A
CNN can be regarded as a composing result of a set of building
blocks, as Figure 1(a) illustrates. Here, a block is a sequence
of CNN layers. As Figure 1(b,c) depicts, a pruned CNN can
be regarded as the result of assembling some pruned variants
of the blocks together. A variant of a block may appear in
many pruned CNNs. In current CNN pruning, every pruned
CNN is trained from scratch, even though some of its building
blocks may have already been trained as part of another pruned
CNN. The basic idea of block-wise CNN pruning is to train
each pruned block individually such that the pruned networks
can reuse these pre-trained blocks and hence forego a large
part of their training process.

Although the idea is intuitive, it has not been explored in
prior work. A plausible reason is the lack of effective ways
to train an individual block in a CNN. Because a block may
appear at an arbitrary point in a CNN, there is typically no
ground truth for its output (unless the block includes the top
layer of the CNN), which makes standard CNN training hard
to apply. Moreover, as training the building blocks is part of
the whole pruning process, there is a high requirement on the
speed and concurrency (or parallelism) of the training method.

The goal of this work is to remove that key barrier, and
establish block-wise CNN pruning as a fast reliable method to
prune CNN. At the center of our solution is a new concept
called Generalized Teacher-Student Network (GTSN).

GTSN uses the original full network as a teacher to train

… …

…

...

output layer

a block of layers

input layer

A
whole
student
network

Traditional TSN
uses final output
layer of teacher

network
for training an entire

student network.

GTSN
uses activation maps at
each teacher network

block as the guidance to
train each pruned block.

A teacher network

The results of the top layer of a CNN essentially model the logit of the probabilities of
the ground truth; its usefulness for training student networks is hence intuitive. But the
activation maps at intermediate layers of a CNN do not have such a direct connection

with the ground truth; the usefulness for block-wise pruning is yet to be explored.

guidance

a block of layers a pruned block

a pruned block

guidance

guidance

Fig. 2: Illustration of the high-level difference between GTSN
and traditional TSN.

each pruned CNN block. As the right side in Figure 2
illustrates, GTSN runs the teacher network and the training
of CNN blocks together; it forwards the layer-wise input and
output activation maps from the teacher network to the CNN
blocks to concurrently train the many blocks at the same time.

The spirit of leveraging the original network as a teacher
network in GTSN is inspired by Teacher-Student Network
(TSN). GTSN departs from TSN on some important aspects:

(1) As Figure 2 shows, TSN uses the final output layer
results of the teacher network as the guidance for training a
student network, whereas GTSN uses the activation maps at
each teacher network block as the guidance;

(2) TSN passes the guidance to the student networks from
the top to bottom sequentially, whereas GTSN allows the
student network blocks to concurrently leverage the activation
maps of the teacher blocks as soon as they are ready;

(3) TSN trains the entire student network, whereas GTSN
trains each block. The result of a block trained by TSN is
strongly affected by what configurations the other blocks of
the student network have, and is hence hard to be reused in
another pruned network. In contrast, in GTSN, the trainings
of different building blocks are independent, which makes the
trained blocks ready for reuse.

These distinctive features are essential for GTSN to address
the needs of block-wise CNN pruning. They make block
training fast and highly parallelizable, and at the same time,
produce trained blocks amenable for composition and reuse.

But for GTSN to serve as an effective solution for block-
wise CNN pruning, a key question must be answered first:

Can GTSN produce blocks that, when put together,
give a pruned network of good quality?

Even though TSN has shown successes in prior work for
whole network training [12]–[18], the successes do not imme-
diately entail effectiveness of GTSN: The results of the top
layer of a CNN essentially model the logit of the probabilities
of the ground truth; its usefulness for training student networks
is hence intuitive; but the output of intermediate layers of
a CNN does not have such a direct connection with the
ground truth. There are hence open questions how useful such

information can be for training CNN blocks, and how much
time can the trained blocks help save CNN pruning time.

This paper presents two-fold empirical explorations to an-
swer these questions. Through a series of experiments, Sec-
tion III systematically examines the effects of using activation
maps as the guidance for training CNN blocks, the influence
of block sizes on the effects, and the importance of some
conditions (top-layer freezing) for GTSN to work effectively. It
produces four observations, which confirm the positive effects
of GTSN on block training, and reveal several insights on the
properties of GTSN and how it should be used effectively for
block-wise CNN pruning.

Section IV examines the ultimate benefits that GTSN can
bring to CNN pruning. Analytically, it discusses the aspects
on which GTSN helps CNN pruning and presents several
formulas for quantitative speedup analysis. Empirically, it
presents the implementation of a GTSN-based block-wise
CNN pruning system on top of TensorFlow [19] and measures
the actual speedups on ResNet-50 and Inception-V3. The
pruning system first uses GTSN to train each pruned block,
then assembles them together to form some pruned CNNs,
and finally runs a short fine-tuning process on the resulting
CNNs to identify the best-pruned network. GTSN is applied
to train pruned blocks so that all the CNNs that include
those trained blocks could start with a better initialization and
achieve a given accuracy sooner. For ResNet-50 and Inception-
V3, GTSN-based CNN pruning shortens the pruning process
by up to 202.8X and 30.2X respectively.

Overall, this work makes the following major contributions:
• It introduces GTSN as a method for efficiently training

individual CNN blocks.
• It empirically confirms the usefulness of activation maps

of teacher networks for training pruned CNN blocks,
laying the foundation for GTSN.

• It presents the design and implementation of the first
block-wise CNN pruning.

• It provides analytical results on the benefits of GTSN-
based CNN pruning, as well as empirical results confirm-
ing the orders of magnitude speedups the new method
produces for CNN pruning.

II. RELATED WORK

A. Teacher-Student Network

The concept of using TSN for model compression has
been around for a while. The basic idea is to pass some
dark knowledge contained in a teacher network to the student
network often through a certain type of regularization. Early
work done by Bucila et al. [20] shows that one can compress
the information in an ensemble into a single network without
significant loss in performance by training the network on
ensemble-labeled data set. Ba et al. [14] extended this work to
enable training of a shallower student network via regressing
logits with `2 loss. Hinton et al. [12] proposed knowledge
distillation as a more general case of [14], where a student
network is trained by the softmax values of the output from a
teacher network. Besides the output layer results, some work
explores amending them with extra information, such as flow

2

of solution procedure matrix, which is calculated by com-
puting the inner product between activation maps from two
layers [16], attention maps [15], and middle layer results [13].
Chen et al. [18] adapted knowledge distillation [12] and hint
learning [13] to train compact object detection networks.
Ashok et al. [17] proposed a reinforcement learning approach
to identify a compact student architecture, employing a TSN
training method similar to what Ba et al. [14] used.

All these prior studies, including those with amended in-
formation, rely on the usefulness of the output layer results
of teacher networks for training student networks. One earlier
work [13] uses intermediate layer output rather than the output
layer results. However, the focus of that work is pre-training
the bottom part of a deep network rather than systematically
explore the effects of intermediate layer outputs on CNN block
training. The work limits TSN-like training of intermediate
layers only to the first several layers of a CNN, and still resorts
to the output layers of the teacher network for the training of
the student network. So it answers none of the key questions
this current paper attempts to answer for GTSN.

B. Network Pruning

Recent studies on network pruning have focused on filter-
level pruning, which removes a set of unimportant filters from
each convolutional layer. The problem is challenging because
the configuration space is combinatorial in the number of
filters in a CNN model. Most prior work has been focused
on reducing the search space, by designs of heuristic criteria
to effectively determine the importance of a filter [2], [3],
[5], [6], [21], [22], or by reinforcement learning-based search
algorithms to efficiently sample the design space [17], [23].
Although these methods help heuristically narrow the search
space, in practice, to prevent missing good configurations,
practitioners often still end up with training and evaluating
a large remaining configuration space, suffering from a long
exploration process.

III. GTSN FOR CNNS

In this section, we focus on GTSN, its effects on CNN
block training, and its properties. We leave the enabled block-
wise CNN pruning and the yielded large time savings to later
sections.

We start this section with a formal description of the existing
TSN training scheme. It provides the necessary background
knowledge for the rest of the paper. We then describe the series
of experiments we have designed for examining the effects of
GTSN. After that, We report the experimental results, list sev-
eral important observations, and discuss effective deployment
of GTSN for CNN pruning.

A. TSN Background

CNN is a sequence of convolutional layers and every layer
transforms one volume of activation maps to another. Other
kinds of layers such as pooling layer or fully-connected layer
may be also included. The number of activation maps from
a convolutional layer is the same as the number of filters in
that layer. The results from the output layer of a CNN are
called logits, which is un-normalized log probability values.

3x3x64x64

1x1x64x256

1x1x64x64
64-d

+

1x1x64x256

ReLU

ReLU

ReLU

prune
50%

3x3x32x32

1x1x64x32

1x1x32x256

64-d

+

1x1x64x256

ReLU

ReLU

ReLU

256-d 256-d

Fig. 3: Illustration of pruning a residual module with kp = 0.5.
We only prune the first two convolutional layers so that the
block output dimension does not change.

When a CNN is trained, for example, for a classification task,
the logits from the output layer is typically normalized with
softmax function and then used for calculating cross entropy
loss. Some regularizations on CNN parameters are commonly
added to avoid over-fitting and improve training quality.

Previous studies on TSN usually use the dark knowledge-
based loss as a type of regularization during the training of a
student network. Let W be the parameters of a student net-
work, {(xi, yi)}Ni=1 be the training data samples and f(x;W)
be the results of the output layer (i.e. logits) on the training
data. The loss function in TSN is formulated as:

L(W) = Lhard(f(x;W), y) + λ ∗ LKD, (1)

where Lhard is the cross entropy loss function used for training
with hard ground truth labels, λ is a hyper-parameter, and
LKD is the dark knowledge-based loss. The definition of
LKD varies in previous works [12]–[18]. Despite of various
definitions of dark knowledge, the formulation of the loss
function in TSN as Eq. 1 requires the results from the output
layer of both the teacher network and the student network (i.e.
logits and cross entropy).

B. Designed Experiments

As Section I mentions, one of the key questions on GTSN
is whether activation maps at intermediate layers of a teacher
network can serve as effective guidance for training pruned
CNN blocks. we design two experiments to examine it: 1)
training a single convolutional layer in a student network; and
2) training each block in a student network. We first explain
how student networks are created.

Student Networks Creation: In our experiments, we use
well-trained CNN models as teacher networks. We create
student networks through network pruning.

Network pruning reduces the number of parameters in a
CNN by keeping only a subset of parameters. We focus on
filter pruning since it is a popular approach to reduce model
size in a structured way [24]. The goal of filter pruning is
to remove the least important filters of a DNN as many
as possible while keeping the accuracy of the network still
meeting some requirement. Many pruning criteria [2], [3],
[5], [6], [21], [22], [25] have been proposed to evaluate the
importance of a filter. We use the `1 norm of a filter proposed
by [2] for its simplicity and effectiveness. After pruning, the

3

pruned network inherits the value of remaining parameters and
is retrained to recover the accuracy.

When a well-trained CNN is pruned to produce a student
network, each convolution layer in the network is pruned
by keeping only kp fraction of the most important filters,
kp ∈ (0, 1]. kp = 1 means that the layer is not pruned at
all. We call kp the keeping rate. Unless noted otherwise,
the default value of kp is set to 0.5 in the experiments. An
illustration of pruning a residual block with kp = 0.5 is
shown in Figure 3.

We next describe the designs of the two experiments for
examining the usefulness of activation maps of teacher layers
for block training of student networks.

1) Activation-Maps–Based Training on a Single Layer:
This experiment uses activation-maps of a teacher network
to train a single convolution layer in a CNN, and studies its
effects on the quality of the entire network. A positive result
would indicate the usability of activation maps in training an
arbitrary layer of CNNs.

When some filters at an arbitrary layer is pruned, that layer
produces fewer activation maps, causing a mismatch with
the numbers of activation maps by that layer in the teacher
network. To go around the problem for training, we use the
minimization of the `2 loss of the output activation maps from
the next convolutional layer to train this layer.

Mathematically, let Ol+1 and O′l+1 be the vectorized out-
puts activation maps from the l + 1-th convolutional layer
before and after the l-th layer is pruned respectively. Let Wl be
the parameters in the l-th convolutional layer. The layer-wise
activation map reconstruction loss is:

Ll(Wl,Wl+1) =
1

|Ol+1|
‖Ol+1 −O′l+1‖22. (2)

Let Il be the inputs activation maps to the i-th convolutional
layer. The training data samples are {(Iil ,Oi

l+1)}Ni=1. The
difference between Eq. 1 and Eq. 2 is that the former one
trains all the parameters in a student network while the latter
one trains only parameters in the l-th and l+1-th convolutional
layers.

2) Activation-Maps–Based TSN on Every Block: Our sec-
ond experiment studies what happens to the quality of the
pruned network if we train every pruned block in the CNN
independently. We call it block-wise training.

A CNN can be treated as a composing result of a set of
blocks; each block represents a sequence of convolutional
layers. The definition of a block depends on the network struc-
ture. CNN architectures largely fall into two broad groups:
the traditional models represented by AlexNet [26] or VG-
GNet [27], and recent structural variants like GoogLeNet [28]
and ResNet [29]. For the traditional ones, as the basic building
units are mostly convolutional layers, we define a block as a
sequence of two or more convolutional layers. For the struc-
tural variants, as they adopt some novel network structures
like Inception modules in GoogLeNet or residual modules in
ResNet, which naturally form a block, we define a block as a
sequence of one or more modules. The size of a block refers
to the number of basic building units it has. The smallest size

Block 1

Block 2

Block 3

Block 1

Block 2

Block 3

Block 1

Block 2

Block 3

Train Test

Fig. 4: Illustration of block-wise training. Eclipses are pruned
blocks; rectangles are original blocks; diamonds refer to the
activation map reconstruction error to minimize. During train-
ing, each pruned block is trained with the inputs and outputs
activation maps from the original block; during testing, the
network composed of the pruned blocks is tested.

of block for traditional models are two and for the structural
models are one. We use the smallest block size by default in
the experiments unless noted differently.

Experiments on block-wise training prune each block in a
CNN by removing (1 − kp) fraction of filters in the block
and trains each pruned block individually using activation-
maps–based TSN. Figure 4 illustrates the block-wise training
for a student network. This experiment helps examine the
ultimate effects of activation-maps–based TSN if it is used for
searching for the best-pruned network, as every block of such
a network is subject to pruning. In addition, this experiment
further examines how the effects of TSN change when the size
or other configurations (esp. the top layer) of a block changes.

These experiments together give a comprehensive examina-
tion of activation-maps–based block training, and provide four
major observations on its effects, which will be described in
Section III-D.

C. Experiment Settings
Our experiments use five popular CNN models:

VGG-16 [27], ResNet-50/ResNet-101 [29] and Inception-
V2/Inception-V3 [30], [31]. The five models are pre-trained
on ILSVRC 2012 [32], a large comprehensive image dataset
consisting of millions of images.

The goal of CNN pruning is to build more compact CNN
models for fine-grained recognition—that is, to recognize
different subcategories within one kind of objects, such as
different types of cars or birds. Fine-grained recognition is
a typical usage scenario of CNN pruning [3]. The datasets
used for student networks are Flowers102 [33], CUB200 [34],
Cars [35], and Dogs [36]. These datasets are commonly used
in fine-grained recognition [3], [37]–[40]. Table I reports the
statistics of the four datasets, including the size of training
dataset (Train), the size of testing dataset (Test), and the
number of classes (Classes). For all experiments, network
training is performed on the training sets while accuracy
results are reported on the testing sets.

To get well-trained models (i.e. teacher network) on the four
datasets, we trained the five models for 40,000 steps with batch
size 32, learning rate 0.001, weight decay 0.00004 for each of

4

TABLE I: Dataset statistics.

Dataset Size Classes Accuracy
Total Training Testing ResNet-50 ResNet-101 Inception-v2 Inception-V3 VGG-16

Flowers102 8,189 6,149 2,040 102 0.973 0.975 0.972 0.968 0.966
CUB200 11,788 5,994 5,794 200 0.770 0.789 0.746 0.760 0.739
Cars 16,185 8,144 8,041 196 0.822 0.845 0.789 0.801 0.832
Dogs 20,580 12,000 8,580 120 0.850 0.864 0.841 0.835 0.808

the datasets. Additional annotations including bounding boxes
and part labels are not used in the training. The accuracy of
the trained models on the test datasets are listed in the column
Accuracy in Table I. A pruned network is trained for 30,000
steps with batch size 32. The training time for recovering
the accuracy of a pruned network is usually smaller than the
training time for adapting a pre-trained model to new datasets
due to weight inheritance in network pruning, hence the fewer
number of training steps.

All the experiments are performed using TensorFlow 1.3.0
on Titan1. Titan is a Cray XK7 supercomputer located at
the Oak Ridge Leadership Computing Facility. Each compute
node contains a 16-core 2.2GHz AMD Opteron 6274 (Interla-
gos) processor, 32 GB of RAM and an NVIDIA Kepler GPU
with 6 GB of DDR5 memory. In the experiments, one network
is trained using one node with one GPU.

D. Observations

In this part, we report the experimental results. We sum-
marize them into four observations. Observations 1-2 confirm
the positive effects of activation-maps–based block training.
Observations 3-4 unveil the effects of the size of blocks on
block training, and the importance of freezing the top layer in
a block in this context.

Observation 1. Activation maps from teacher networks are
helpful for training an arbitrary convolutional layer in a
pruned network.

We attain this observation through the experiment on ap-
plying activation maps as the guidance to train a single layer
(Section III-B1) in student networks. In the experiment, we
pruned only one convolutional layer by removing 50% of
least important filters and trained the pruned layer (with the
activation map loss function of its next layer as defined in
Eq. 2.) Even though only two convolutional layers are involved
in the training, we observe that the pruned network benefits
from the training process.

Figure 5 shows the accuracy curves of training convolutional
layers in VGG-16 on Flowers102 and CUB200. The curves
in each graph correspond to the experiments in which one
of the CNN layers is pruned and trained with the activation
maps from the teacher network. The accuracies are those of
the entire network after that layer is trained for a number of
steps. The results demonstrate that minimizing the `2 loss of
the output activation maps of a single pruned layer can directly
yield accuracy improvement of the entire student network.

The next question is what happens to the quality of the
pruned network if not one but every block in a CNN is pruned

1https://www.olcf.ornl.gov/titan/

and trained independently. Our second experiment of block-
wise training gives the following observation:

Observation 2. Activation maps of teacher networks are
useful for block-wise training to improve the quality of a
pruned CNN.

The design of the experiment has been described in Sec-
tion III-B2. Three different student networks from each teacher
network are derived through block-wise pruning, with the
keeping rate (kp) being 0.3, 0.5, and 0.7 respectively. Each
pruned block is trained with the corresponding activation maps
in the teacher network; the accuracy of student networks is
measured after training each block for a certain number of
steps (without whole network-fine tuning).

Figure 6 shows the accuracy curves of block-wise training
(shown as block-wise) when the pruning happens to each
basic block (e.g., a single residual module in ResNet). It
indicates that although the rising rates of the curves vary across
kp values and networks, the block-wise training consistently
improves the quality of the pruned student network. Similar
positive results are observed on other models and datasets. It
shows the potential of GTSN using activation maps to guide
block-wise CNN pruning (elaborated in Section IV).

Figure 6 also shows the accuracy curves of training the
pruned networks using the standard cross-entropy loss (shown
as default). Compared with block-wise training, training the
entire pruned networks instead of each pruned block indi-
vidually yields higher accuracies. One of the reasons is that
in block-wise training, the inputs to each pruned block in a
student network come from the original blocks in a teacher
network during training, but during testing, they come from
the pruned blocks in the student network, as shown in Figure
4. Despite such a gap, the results do show that networks
assembled from blocks trained with activation maps consis-
tently show a much better accuracy than before the block-wise
training. Section V will show that the gap disappears quickly
(and even reverses) after a short fine-tuning process.

We further study the influence of block size on the effects
of activation-map–based block-wise training, and get the fol-
lowing observation:

Observation 3. In block-wise activation-map–based training,
a larger block size improves the training quality.

The observation comes from an exploration in which we
vary the size of blocks in the block-wise training experi-
ment. Student networks are derived by pruning 50% of least
important filters from each block. The numbers of basic
building units in ResNet-50 and Inception-V3 are 16 and 11
respectively. Thus we set block size bs ∈ {1, 2, 4, 8, 16} for
ResNet-50 and bs ∈ {1, 2, 4, 8, 11} for Inception-V3. Figure

5

0 1 2 3 4 5
#steps (K)

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

conv1
conv3
conv5
conv7
conv9
vgg_16

4.8 5.0
0.96
0.97

(a) Flowers102

0 1 2 3 4 5
#steps (K)

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

conv1
conv3
conv5
conv7
conv9
vgg_16

4.8 5.0
0.72
0.74

(b) CUB200

Fig. 5: Accuracy curves of training convolutional layers in VGG-16 using layer-wise activation map reconstruction loss on two
datasets. Black dashed lines show the accuracies of the original VGG-16 model.

0 2 4 6 8 10
#steps (K)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ac
cu

ra
cy

kp=0.3 (default)
kp=0.3 (block-wise)
kp=0.5 (default)
kp=0.5 (block-wise)
kp=0.7 (default)
kp=0.7 (block_wise)

(a) ResNet-50

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
#steps (K)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ac
cu

ra
cy

(b) Inception-V3

Fig. 6: Accuracy curves of block-wise training (block-wise) and training using the standard cross-entropy loss (default) on
CUB200.

0 2 4 6 8 10
#steps (K)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ac
cu

ra
cy

bs=1
bs=2
bs=4
bs=8
bs=16

9 10

0.70

0.75

(a) ResNet-50

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
#steps (K)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ac
cu

ra
cy

bs=1
bs=2
bs=4
bs=8
bs=11

19 20
0.600
0.625
0.650
0.675

(b) Inception-V3

Fig. 7: Accuracy curves of block-wise training for student networks on CUB200 with different size of blocks.

6

128x256

128x128

64x128

64x64

64x256

64x64

32x64

64x32

64x64

32x64

64-d

128-d 64-d

32-d

Train

3x64 3x64

Test

Original
Network

Pruned
Block

Test
Network

64/32

128/64

Block1

Block2

... ...

Fig. 8: Illustration of training a pruned block whose last
convolutional layer is pruned. Block size is two. Dotted rect-
angles are blocks while rounded doted ones are pruned blocks;
rectangles are convolutional layers; triangles are selectors to
down-sample the activation maps from the original block;
diamonds refer to the activation map reconstruction error.

7 shows the accuracy curves of two student networks on
CUB200 with different block sizes, indicating the trend that a
larger block size improves the training quality. A similar trend
is observed on other networks and datasets.

In the above experiments, we do not prune the top layer
in a block to ensure that the dimension of output activation
maps from a pruned block is the same as that from the original
block. To check if the constraint can be removed, we prune all
the convolutional layers in a block and check the accuracy of
the network when the block is trained. We get the following
observation:

Observation 4. It is important to freeze the top layer (e.g.,
keep it unpruned) in a block for benefiting from block-wise
activation-map–based training.

Specifically, in this experiment, we derived each student
network by pruning only one block from VGG-16. We define
each block as a sequence of two convolutional layers and
thus have totally eight student networks (VGG-16 contains 16
convolutional/fully-connected layers). In block-wise training,
only the pruned block in each student network needs to be
trained. When the top layer in a block is pruned, the number of
output activation maps from the original block and the pruned
block does not match. To address the problem, we down-
sample the output activation maps from the original block.
As each filter in a convolutional layer produces one activation
map, we remove activation maps that are produced by the least
important filters (per a criterion proposed before [2]). Figure
8 illustrates the training and testing of a pruned block whose
last convolutional layer is also pruned.

Figure 9 shows the accuracy curves of these student net-
works. Compared to Figure 5, the curves rise much slower. The
contrast suggests that the transferred dark knowledge, which is
the down-sampled outputs from a block in a teacher network,
is not as beneficial as activation maps from a block with the
top layer unpruned.

0 1 2 3 4 5
#steps (K)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ac
cu

ra
cy

block1
block2
block3
block4
block5
block6
block7
block8
vgg_16

Fig. 9: Accuracy curves of eight student networks with only
one block pruned. The last layer in the block is also pruned.
The legend blockx represents a student network with the x-
th block pruned with kp = 0.5. Block size is two. Black
dashed lines show the accuracies of the original VGG-16
model.(VGG-16, CUB200).

E. Discussions and GTSN for CNNs
The first two observations confirm the value of teacher

activation maps in training CNNs at two different levels: an
arbitrary layer by the first observation, and every block by
the second observation. Together, they confirm the promise
of GTSN for training blocks in a pruned CNN. The use of
activation maps by GTSN grants it a much larger flexibility
than existing TSN as activation maps are available at every
convolution layer. The third observation provides insights on
the effects of the size of blocks. The fourth observation offers
a guideline for effective use of GTSN at block level. These
observations provide the foundation for GTSN to effectively
support block-wise CNN pruning, as described next.

IV. GTSN-BASED BLOCK-WISE CNN PRUNING

This section presents the implementation of block-wise CNN
pruning, which is powered by GTSN based on the observations
made in the previous section. It then analyzes the speed
benefits of this new way of CNN pruning compared to the
default method.

A. Connections between GTSN and CNN Pruning
CNN pruning is a combinatorial optimization problem.

Given that each block could be pruned with m possible
options, for a CNN with B basic building blocks, there would
be mB candidate pruned CNNs to choose from. Prior studies
have focused on reducing the search space to a set of promis-
ing configurations through various heuristic methods [2], [6],
[23]. Even though they can often reduce the search space
significantly, the assessment of the remaining networks still
takes a long time as it requires the training and testing of
each of those networks; training one CNN often takes hours.

Mathematically, let C be the collection of candidate pruned
CNNs selected using any existing method and Ti be the time
spent on training the i-th pruned network in the collection C.
The total training time required for identifying the best-pruned
network is

T =

|C|∑
i=1

Ti. (3)

7

GTSN provides new opportunities for accelerating the as-
sessment of the remaining network configurations. Specifi-
cally, Observation 2 in the previous section shows that in-
dividually GTSN-trained blocks help improve the quality of
the overall network. So if we use GTSN to train a number of
pruned blocks, we could improve the quality of all networks
containing those blocks. The one-time block-level training
result can benefit many pruned networks. As this process puts
these networks into a good initial state, they would need only a
short fine-tuning to reach a certain accuracy. The total training
time of the candidate pruned CNNs can hence be reduced.

B. Mechanism

We materialize the idea by developing a GTSN-based block-
wise CNN pruning framework. It is based on TensorFlow
version 1.3.0 [19]. It first trains each pruned block, then
assembles them together to form CNNs of each candidate
configuration, runs a short fine-tuning process on the resulting
CNNs, and tests these CNNs to identify the best. The criterion
of the best network is the smallest network that reaches a
predefined accuracy threshold.

In GTSN-based block-wise CNN pruning, the training of
the collection of candidate pruned CNNs contains mainly two
stages: GTSN-based block training and network fine-tuning.
As there are m possible options and B basic building blocks,
the total number of pruned blocks to train is at most K =

m×B. Let T (1)
k be the time spent on training the k-th pruned

block and T (2)
i be the time spent on fine-tuning the i-th pruned

networks, the total training time of the candidate pruned CNNs
becomes:

TGTSN =

K∑
k=1

T
(1)
k +

|C|∑
i=1

T
(2)
i , (4)

where the first item corresponds to the time for GTSN-based
block training and the second item corresponds to the
time for fine-tuning each pruned network. According to the
experiments in Section V, the time for fine-tuning each pruned
network to a given accuracy threshold is largely reduced due
to the GTSN-based block training (i.e., T (2)

i << Ti), resulting
in significant speedups in CNN pruning (i.e., TGTSN << T).
We next describe the two stages in detail.

GTSN-based block training Figure 10 illustrates how the
framework enables GTSN-based training of CNN blocks. It
is an online mechanism; the teacher network and a number
of pruned blocks are put into a single TensorFlow graph.
During GTSN-based block training, the teacher network runs
and its activation maps directly flow into the pruned blocks
to facilitate their training. Such an online mechanism avoids
saving the activation maps which often takes too much space.

In our experiments, we use the basic CNN blocks (i.e. an
Inception/residual module) of ResNet and Inception as the
blocks for GTSN training. Based on Observation 4 in the
previous section, we keep the top layer of a block unpruned.

Network Fine-Tuning The GTSN-based block training stage
outputs a bag of pre-trained pruned blocks. At the beginning of

Block 1

Block 2

Block 3

Block 1

Block 2

Block 3

Block 2

Block 3

Block 1

...

...

...

Fig. 10: The online GTSN-based block training in our CNN
pruning framework. Eclipses are pruned blocks.

the fine-tuning phase is an initialization step that uses the value
of parameters in the pre-trained pruned blocks to initialize the
blocks in each of the candidate pruned networks. We call the
resulting network a block-trained network and the network
before such an initialization step a default network.

After the initialization, the standard CNN training runs on
the block-trained networks. Compared with training a default
pruned network, fine-tuning a block-trained network usually
takes much less training time to reach a predefined accuracy
threshold as the network starts with a much better initializa-
tion. In other words, given the same amount of training time,
a block-trained network could converge to a higher accuracy
compared with a default network.

Figure 11 shows the accuracy curves of two versions of a
ResNet-50 network and an Inception-V3 network on CUB200.
The default network is obtained by pruning each block by
50% and the block-trained network is obtained by training the
default network with GTSN-based training. As block training
improves the initial accuracy of the default network, the fine-
tuning yields a much better accuracy than training the default
network with the same loss function after 30,000 training
steps.

C. Speedup Analysis
In this part, we theoretically analyze the potential speedup

that GTSN-based block-wise CNN pruning may generate. The
next section will provide empirical measurement results.

The discussion uses the following denotations:
C: the set of candidate pruned networks to explore;
m: the number of possible values of kp;
s: the number of training steps;
p: the amount of computations in a training step.

If s, p don’t carry superscripts, they are about the training of
a pruned CNN in the default case. If they carry superscripts,
such as s(1) or p(2), they are about the training in the block-
wise training phase of GTSN (superscript (1)) or the fine-
tuning phase of GTSN (superscript (2)).

Then in Eq 3, the time spent on training the i-th pruned
network in the collection C is proportional to the product of
the number of training steps and the amount of computations,
Ti ∝ si × pi. Similarly, T (2)

i ∝ s(2)i × pi in Eq 4.
GTSN-based block training involves the training of K

pruned blocks. Because all blocks of the same keeping rate
are trained together, the time of the entire block-wise training
phase is proportional to s(1) ×

∑m
j=1 p

(1)
j , where m is the

number of options for the keeping rate kp.

8

The speedup brought by GTSN-based block-wise CNN
pruning can be calculated as follows (E[x]: the average value
of x):

T

TGTSN
=

∑|C|
i=1 Ti∑K

k=1 T
(1)
k +

∑|C|
i=1 T

(2)
i

=

∑|C|
i=1 si × pi

s(1) ×
∑m

j=1 p
(1)
j +

∑|C|
i=1 s

(2)
i × pi

=
|C| × E[s]× E[p]

s(1) ×m× E[p(1)] + |C| × E[s(2)]× E[p]

=
|C| × E[s]

s(1) ×m+ |C| × E[s(2)]

=
E[s]

s(1) × m
|C| + E[s(2)]

. (5)

The two parts of the denominator both tend to be much
smaller than the numerator, hence the speedups. The first
part, s(1) × m

|C| , is small as m << |C|. The second part,
E[s(2)], is typically much smaller than E[s], for two reasons.
First, according to Observation 2 in the previous section, the
block-wise training in GTSN already prepares the networks
with a much better initial accuracy. Second, as we will see in
Section V and Figure 11, the fine tuning phase of GTSN yields
accuracies higher than what the default training of a pruned
CNN gives. Together, they entail that it takes GTSN fine-
tuning phase a much shorter time to reach a target accuracy.

Following Eq. 5, the upper-bound of the speedup can be
calculated as

min{γ |C|
m
,
E[s]

E[s(2)]
}, (6)

where, γ = E[s]
s(1)

. The first bound, γ |C|m , can be reached
if GTSN-based block training is powerful enough to make
pruned networks reach a target accuracy even without fine-
tuning. In this case, a larger number of configurations entails
a larger speedup. The second bound, E[s]

E[s(2)]
, corresponds to

the case where the block training time is negligible. The bound
is the ratio between the expected number of training steps in
the baseline approach and the expected number of fine-tuning
steps in the GTSN-based approach. We next present empirical
measurements on the speedups achieved in practice.

V. EVALUATION OF BLOCK-WISE CNN PRUNING

This section examines the ultimate benefits of block-wise
CNN pruning. A brief summary is that the new training
method, with block training and all other overhead counted,
consistently speeds up the default CNN pruning by a factor of
one or two magnitudes.

Specifically, we evaluate the GTSN-based block-wise CNN
pruning framework in two settings. The first one examines the
basic time savings that the framework brings to the evaluation
of a set of pruned networks. The second one measures the
speedups it brings to end-to-end CNN pruning in a more com-
prehensive manner, with more factors considered, including
the effects of GTSN on the accuracy of the trained networks
and parallel pruning. We first describe the experiment settings

in Section V-A and then report our experiment results in
Sections V-B and V-C.

A. Experiment Settings

In both experiments, we use ResNet-50 and Inception-V3
as the CNN models for pruning. Details on the machines,
datasets, and how to adapt the well-trained models to these
datasets are the same as Section III-C. After adaption, we
have 8 trained full CNN models. The dataset statistics and
accuracy of the trained ResNet-50 and Inception-V3 are listed
in Table I.

Candidate Pruned CNNs: There are many ways to generate
a collection of candidate pruned CNNs. As that is orthogonal
to the focus of this work, to avoid bias from that factor,
our experiments generate a set of promising configurations
through random sampling, which has shown to be an
effective way to provide a strong baseline for hyperparameter
optimization [41]. The set of pruning options for each block
are kp ∈ {0.3, 0.5, 0.7}. The numbers of blocks in ResNet-50
and Inception-V3 are 16 and 11 respectively, making the
search space as large as 316 and 311. When a model is pruned
based on a configuration, a candidate pruned network with
fewer filters is created by inheriting the remaining parameters
of the model, which is the same way as creating student
networks in Section III-B.

Baseline for Comparison and Our Approach: The baseline
approach trains candidate networks pruned according to each
configuration for 30,000 steps with batch size 32, weight
decay 0.00001, and fixed learning rate 0.001 (we tried other
learning rates including the scheme with decays, but found
0.001 overall best for the baseline approach.) GTSN-based
CNN pruning first trains all the pruned blocks, initializes each
candidate pruned network with values of parameters from
trained blocks, and conducts a global fine-tuning on each
block-trained network. The number of pruned blocks to train
for ResNet-50 and Inception-V3 are 48 (i.e., 3 × 16) and 33
(i.e., 3 × 11) respectively. GTSN-based block training takes
10,000 steps for ResNet-50 (batch size=32, learning rate=0.2,
weight decay=0.0001), and takes 20,000 steps for Inception-
V3 (batch size=32, learning rate=0.08, weight decay=0.0001).
The fine-tuning phase uses the same hyper-parameters as the
baseline approach does.

B. Speedup on a set of candidate pruned networks

This experiment compares the time taken by the GTSN-
based CNN pruning framework to train a collection of pruned
networks (TGTSN in Eq. 4) with the time by the default cross-
entropy training on the same set of networks (T in Eq. 3).

We test four sizes of collections, |C| = 4, 16, 64, 256. For
each size, we repeat the experiments five times, with a random
collection of pruned networks created each time. The training
of a pruned network stops once a target accuracy is met. The
target accuracy is set to min(ai), where ai is the accuracy the
i-th network in C reaches at the end of the default training.
Setting such a target ensures that the default trained networks

9

can all hit the target, making the performance comparison
meaningful.

Table II reports the average training times and speedups
achieved by GTSN-based CNN pruning. The time of GTSN-
based CNN pruning includes the pre-training time of blocks,
which is listed in the column block. GTSN helps reduce
the training time up to 20.8X for ResNet-50 and 4.4X for
Inception-V3. The speedups are larger as the collection of
pruned networks increases. It is because the time to train the
blocks weighs less as the total time increases for a larger
collection. Overall, the block-training time is a small portion
of the entire training time in all settings.

C. Speedup in parallel CNN pruning with early stop
This experiment measures the comprehensive effects of

GTSN on end-to-end CNN pruning. Comparing to the basic
measurement reported in the previous subsection, this study
considers two extra factors that are common in CNN pruning.
The first is early stop. Because the objective of the pruning is
to find the smallest network that meets a predefined accuracy
target, a strategy for efficiency is to evaluate the networks
from the smallest to the largest, and stop as soon as it finds a
network that meets the accuracy target. This early stop strategy
can avoid evaluating some large networks and hence save time.
The second factor is parallel pruning. It uses multiple nodes
to evaluate multiple networks in parallel. Both factors apply
to both the default CNN pruning scheme and our GTSN-
based scheme. This experiment compares the end-to-end CNN
pruning times by the two schemes.

We experiment with a spectrum of target accuracy, rep-
resented by accuracy drop rate α, which is defined as the
distance from the accuracy offered by the original well-trained
large network. The value of α goes from -2% to 4%. A
negative drop rate (e.g. −2%) means that the accuracy of the
pruned model should be higher than the original model (e.g.
two percentages higher). We randomly sample 500 configura-
tions from the configuration space and start evaluations from
the smallest models and proceed to larger ones. We run the
experiment in distributed settings with one node evaluating one
network configuration independently. The numbers of workers
are 1, 2, 4, 8, 16. Each worker corresponds to one node with
one GPU.

Table III shows the speedups by GTSN. Speedups are
calculated as the ratio of the end-to-end configuration time
of the baseline approach and that of the GTSN-based CNN
pruning, which includes the time for both block training and
fine-tuning. GTSN shows significant speedups, cutting the end-
to-end time by up to 202.8X for pruning ResNet-50 and up to
30.2X for Inception-V3.

The speedups come from two aspects. Firstly, the second
step fine-tuning takes less training steps and thus less training
time to reach a target accuracy threshold. The block-based
training takes some time, but the time is small, easily offset by
the time savings in the fine-tuning phase. This reason echoes
the result of the basic measurement experiment reported in
Section V-B.

The second aspect is the saving of trial configurations. Our
experiments show that a network trained with the GTSN-based

scheme often reaches a higher accuracy than it gets through
the default training. Figure 11 provides the accuracy curves of
ResNet-50 and Inception-V3 on dataset CUB200. The GTSN-
based training yields a 3-5% higher accuracy than the default
training. The better training results hence allow GTSN-based
CNN pruning to stop the exploration of the configuration space
earlier than the baseline approach does. For example, with a
drop rate α = 0%, the baseline approach needs to evaluate
297 configurations before a satisfying model is found on the
Flowers102 dataset; the process takes 1639.4 hours. However,
by leveraging GTSN, the number of configurations to evaluate
is reduced to three and the overall training time including both
block training and fine-tuning is only 16.9 hours.

When many nodes are used, the speedups become less sig-
nificant; it is because the time of GTSN-based block training
weights more in those cases. Our current implementation of
the GTSN-based block training is largely serial; we expect
even more speedups if parallelism in that part is fully leveraged
in future implementations.

VI. DISCUSSIONS

A. Relations with existing techniques for CNN pruning
The GTSN-based block-wise CNN pruning is a technique

complementary to existing techniques for speeding up CNN
pruning. Most prior work focuses on reducing the enormous
configuration space to a smaller set of promising network
configurations [17], [41]. GTSN-based pruning is useful for
accelerating the evaluations of those remaining promising con-
figurations by effectively leveraging the block-level training
results across those networks. It is not a competitor but a
complementary technique that can be used together with prior
techniques.

B. Possible Extensions
Two possible extensions to GTSN for CNNs and GTSN-

based CNN pruning are discussed here for future work.
First, the proposed GTSN-based block-wise CNN pruning

uses the basic CNN blocks (i.e. an Inception/residual module).
As Observation 3 shows, using larger blocks may lead to even
better block-wise training result. As the main goal of this
work is to confirm the usefulness of GTSN for block-wise
CNN pruning, we leave a systematic exploration of different
sizes of blocks for block-wise CNN pruning to the future. It
is, however, worth noting a trade-off: Even though a pruned
network could benefit more from larger pre-trained blocks
and thus require even fewer fine-tuning steps, there are more
variants of pruned blocks (with a combinatorial growth) to
train, and the time for training each pruned block also becomes
longer.

Second, GTSN improves the accuracy of a student CNN
when the last convolutional layer in each block of the student
network is not changed so that the entire set of activation
maps from each block of a teacher network can be used to
train the corresponding block of the student network (See
Observation 4). In the case of CNN pruning, such restriction
slightly limits the exploration space for pruning. However,
similar restrictions are also applied in prior works [2] [6] as
pruning the last layer in a module could cause more severe

10

TABLE II: Average training time and speedups achieved by GTSN-based CNN pruning given a set of pruned networks.

Dataset #configs

ResNet-50 Inception-V3
time (h) speedup

(X)

time (h) speedup
(X)baseline GTSN-based baseline GTSN-based

block finetune total block finetune total

Flowers102

4
16
64
256

14.7
41.3
134.3
451.1

6.8

1.7
3.2
8.5
27.7

8.5
10.0
15.4
34.6

1.7
4.1
8.7
13.0

16.9
59.7
197.2
696.5

11.0

5.4
17.8
60.7
214.7

16.4
28.8
71.7
225.7

1.0
2.1
2.7
3.1

CUB200

4
16
64
256

12.3
40.0
109.5
331.1

6.8

0.4
1.3
4.5
13.2

7.2
8.1
11.3
20.0

1.7
4.9
9.6
16.5

16.3
57.4
189.8
596.0

10.9

4.2
15.2
51.5
158.9

15.1
26.1
62.4
169.8

1.1
2.2
3.0
3.5

Cars

4
16
64
256

17.5
63.7
205.1
696.4

6.8

3.2
11.7
31.3
87.9

10.1
18.5
38.1
94.7

1.7
3.4
5.5
7.4

20.8
71.8
249.2
868.0

11.0

9.0
30.8
104.2
353.0

20.0
41.8
115.2
364.0

1.0
1.7
2.2
2.4

Dogs

4
16
64
256

9.4
30.1
82.7
290.7

6.8

0.2
0.8
1.7
7.2

7.1
7.6
8.6
14.0

1.3
3.9
9.6
20.8

13.1
40.5
138.5
428.8

10.9

2.8
9.3
31.6
88.0

13.7
20.2
42.5
98.9

1.0
2.0
3.3
4.4

* GTSN-based: GTSN-based CNN pruning approach; block: GTSN-based block training; finetune: the fine-tuning step after block training;

TABLE III: End-to-end time for CNN pruning and speedups achieved by GTSN-based CNN pruning.

Dataset α #workers
ResNet-50 Inception-V3

baseline GTSN-based speedup
(X)

baseline GTSN-based speedup
(X)#configs time (h) #configs time (h) #configs time (h) #configs time (h)

Flowers102 0%
1
4
16

297
300
304

1639.4
412.6
103.3

3
4
16

16.9
5.2
4.7

97.0
79.3
22.0

244
244
256

1428.6
358.2
84.8

10
12
16

47.3
13.9
6.5

30.2
25.8
14.6

0.5%
1
4
16

137
140
144

736.4
186.8
47.5

1
4
16

9.0
3.9
3.4

81.8
47.9
14.0

74
76
80

422.6
106.7
27.5

2
4
16

18.3
6.9
6.1

23.1
15.5
4.5

CUB200 3%
1
4
16

408
408
416

2319.4
578.2
148.2

2
4
16

12.7
3.3
3.3

182.6
175.2
44.9

201
204
208

1163.8
294.7
74.8

24
24
32

100.3
25.9
10.7

11.6
11.4
7.0

3.5%
1
4
16

323
324
336

1804.8
451.5
115.3

1
4
16

8.9
3.0
2.9

202.8
150.5
39.8

120
120
128

688.0
173.0
46.1

4
4
16

25.6
7.3
6.5

26.9
23.7
7.1

Cars -0.5%
1
4
16

500
500
500

2864.9
720.4
185.3

11
12
16

44.6
12.3
5.4

64.2
58.6
34.3

129
132
144

742.0
188.8
51.0

8
8
16

40.2
10.8
7.1

18.5
17.5
7.2

0%
1
4
16

332
332
336

1848.6
461.4
115.9

11
12
16

44.4
12.1
5.2

41.6
38.1
22.3

84
84
96

480.3
120.5
33.8

3
4
16

21.8
7.2
6.7

22.0
16.7
5.0

0 5 10 15 20 25 30
#steps (K)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ac
cu

ra
cy

default
block-trained
resnet_v1_50

(a) ResNet-50

0 5 10 15 20 25 30
#steps (K)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ac
cu

ra
cy

default
block-trained
inception_v3

(b) Inception-V3

Fig. 11: Block-trained networks, after fine-tuning, reaches a higher accuracy than the default training of the networks. Black
dashed lines show the accuracies of the original unpruned CNN models. The X-axis is the number of fine-tuning/training steps.
(dataset CUB200 is used)

11

performance degradation compared with pruning other layers.
We leave a more systematic analysis of the restriction to future
work.

VII. CONCLUSIONS

This work proposes GTSN as a way to overcome the
key barrier for block-wise CNN pruning. Through empirical
studies, it confirms the usefulness of activation maps of teacher
networks for training individual pruned CNN blocks, which
provides the foundation for GTSN to support block-wise CNN
pruning. Based on a series of observations on the properties
of GTSN, we implement the first block-wise CNN pruning
framework and test it in various settings. The framework
consistently shows significant benefits in accelerating CNN
pruning, speeding up pruning of ResNet-50 by up to 202.8X
and Inception-V3 by 30.2X.

ACKNOWLEDGEMENT

This material is based upon work supported by DOE Early
Career Award (DE-SC0013700), the National Science Foun-
dation (NSF) under Grant No. CCF-1455404, CCF-1525609,
CNS-1717425, CCF-1703487. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of DOE or NSF.

REFERENCES

[1] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[2] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv:1608.08710, 2016.

[3] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient transfer learning,”
arXiv:1611.06440, 2016.

[4] Q. Tian, T. Arbel, and J. J. Clark, “Deep lda-pruned nets for efficient
facial gender classification,” in Computer Vision and Pattern Recognition
Workshops (CVPRW), 2017 IEEE Conference on. IEEE, 2017, pp. 512–
521.

[5] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the smaller-norm-
less-informative assumption in channel pruning of convolution layers,”
arXiv:1802.00124, 2018.

[6] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” arXiv:1707.06342, 2017.

[7] J. Liu, Y. Wang, and Y. Qiao, “Sparse deep transfer learning for
convolutional neural network.” in AAAI, 2017, pp. 2245–2251.

[8] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and
E. Choi, “Morphnet: Fast & simple resource-constrained structure learn-
ing of deep networks,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[9] S. O’Keeffe and R. Villing, “Evaluating pruned object detection
networks for real-time robot vision,” in Autonomous Robot Systems
and Competitions (ICARSC), 2018 IEEE International Conference on.
IEEE, 2018, pp. 91–96.

[10] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv:1510.00149, 2015.

[11] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolu-
tional neural networks using energy-aware pruning,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[12] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv:1503.02531, 2015.

[13] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “Fitnets: Hints for thin deep nets,” arXiv:1412.6550, 2014.

[14] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in
Advances in neural information processing systems, 2014, pp. 2654–
2662.

[15] S. Zagoruyko and N. Komodakis, “Paying more attention to attention:
Improving the performance of convolutional neural networks via atten-
tion transfer,” arXiv:1612.03928, 2016.

[16] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning,” in The
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[17] A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani, “N2n learning:
Network to network compression via policy gradient reinforcement
learning,” arXiv:1709.06030, 2017.

[18] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, “Learning efficient
object detection models with knowledge distillation,” in Advances in
Neural Information Processing Systems, 2017, pp. 742–751.

[19] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[20] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2006, pp. 535–541.

[21] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in International Conference on Computer Vision
(ICCV), vol. 2, 2017, p. 6.

[22] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in 2017
IEEE International Conference on Computer Vision (ICCV). IEEE,
2017, pp. 2755–2763.

[23] Y. He and S. Han, “Adc: Automated deep compression and acceleration
with reinforcement learning,” arXiv:1802.03494, 2018.

[24] J. Cheng, P.-s. Wang, G. Li, Q.-h. Hu, and H.-q. Lu, “Recent advances in
efficient computation of deep convolutional neural networks,” Frontiers
of Information Technology & Electronic Engineering, vol. 19, no. 1, pp.
64–77, 2018.

[25] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
arXiv:1607.03250, 2016.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv:1502.03167,
2015.

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2818–2826.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[33] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in Computer Vision, Graphics & Image
Processing, 2008. ICVGIP’08. Sixth Indian Conference on. IEEE, 2008,
pp. 722–729.

[34] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and
P. Perona, “Caltech-ucsd birds 200,” 2010.

[35] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representa-
tions for fine-grained categorization,” in Computer Vision Workshops
(ICCVW), 2013 IEEE International Conference on. IEEE, 2013, pp.
554–561.

[36] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li, “Novel dataset
for fine-grained image categorization: Stanford dogs,” in Proc. CVPR
Workshop on Fine-Grained Visual Categorization, vol. 2, 2011, p. 1.

[37] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features
off-the-shelf: an astounding baseline for recognition,” in Computer
Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Con-
ference on. IEEE, 2014, pp. 512–519.

12

[38] J. Fu, H. Zheng, and T. Mei, “Look closer to see better: Recurrent atten-
tion convolutional neural network for fine-grained image recognition,”
in Conf. on Computer Vision and Pattern Recognition, 2017.

[39] B. Zhao, X. Wu, J. Feng, Q. Peng, and S. Yan, “Diversified visual atten-
tion networks for fine-grained object classification,” IEEE Transactions
on Multimedia, vol. 19, no. 6, pp. 1245–1256, 2017.

[40] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig, J. Philbin,
and L. Fei-Fei, “The unreasonable effectiveness of noisy data for fine-
grained recognition,” in European Conference on Computer Vision.
Springer, 2016, pp. 301–320.

[41] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

13

