Similarities in Neuron Vectors and The Implications
to CNN Inferences

Lin Ning
Department of Computer Science
North Carolina State University
Raleigh, NC, USA
Ining@ncsu.edu

Abstract—This technical report presents deep reuse, a method
for speeding up CNN inferences by detecting and exploiting
deep reusable computations on the fly. It empirically reveals
the massive similarities among neuron vectors in activation
maps, both within CNN inferences on an input and across
inputs. It gives an in-depth study on how to effectively turn
the similarities into beneficial computation reuse to speed up
CNN inferences. The investigation covers various factors, ranging
from the clustering methods for similarity detection, to clustering
scopes, similarity metrics, and neuron vector granularities. The
insights help create deep reuse. As an on-line method, deep reuse
is easy to apply and adaptive to each CNN (compressed or not),
and its input. Using no special hardware support or CNN model
changes, this method speeds up inferences by 1.77-2X (up to 4.3X
layer-wise) on the fly with virtually no (<0.0005) loss in accuracy.

Index Terms—CNN, neuron vector, similarity, training, adap-
tive, deep reuse,

I. INTRODUCTION

Deep Convolutional Neural Networks (CNN) have shown
successes in many machine learning applications. However,
inferences by CNN are compute-intensive. Recent years have
seen numerous efforts in speeding up CNN inferences. Some
propose special hardware accelerators [1]-[4], others build
high performance libraries (e.g., CUDNN I, MKL-DNN 2),
methods to compress models [5]-[7], Tensor graph optimiza-
tions 3, and other software optimizations.

However, despite the many efforts, faster CNN inference
remains a pressing need, especially for many emerging CNN
applications in latency or throughput sensitive domains. Real-
time detection of objects, for instance, is essential for min-
imizing the latency of the autonomous vehicle control loop,
which is crucial for driving safety. Surveillance image analysis
gives relentless demands for higher inference speeds to reduce
the time needed for analyzing millions of images streaming in
from thousands of cameras.

To meet the demands, this work proposes deep reuse, a new
technique for speeding up CNN inferences by discovering and
exploiting deep reusable computations on the fly. Deep reuse
is effective, halving the inference time of CNNs implemented
on state-of-the-art high performance libraries and compression

Thttps://developer.nvidia.com/cudnn
Zhttps://github.com/intel/mkl-dnn
3https://www.tensorflow.org/lite/

Xipeng Shen
Department of Computer Science
North Carolina State University
Raleigh, NC, USA
xshen5 @ncsu.edu

a neuron-vector
in input layer

O0O0O0

a neuron-vector
in activation map

--%OOOO‘OO

Input Layer Activation Map

Figure 1. Illustration of neuron-vectors using a simple 1-D CNN with kernel
size of 4 and one weight filter. Neurons in the same block form a neuron-
vector. Block colors indicate the similarity of the neuron-vector values.

techniques, while causing virtually no (<0.0005) accuracy
loss. It is meanwhile easy to use, requiring no special hardware
support or CNN model changes, ready to be applied on today’s
systems.

Deep reuse centers around similarities among neuron vec-
tors. A neuron vector is made up of values carried by some
consecutive neurons at a CNN layer. As Figure 1 illustrates,
if the layer is an input image layer, a neuron vector contains
the values of a segment of input image pixels; if the layer is
a hidden layer, it contains a segment in its activation map.

The basic idea of deep reuse is to leverage similarities
among neuron vectors, such that computation results attained
on one neuron vector can be effectively reused for some
other neuron vectors in CNN inferences. Figure 2 illustrates
the basic form of such reuses. The eight 3-neuron vectors,
represented by x7;, form four groups. Neuron vectors in a
group are similar to each other. In this example, when the
dot product of one of them is reused for all others in the
group (e.g., 11 - wi1 for x3; - wi; and xy; - wiy), half of the
computations in X x W could be saved.

Although the basic idea is straightforward to understand,
a series of open questions must be answered for it to work
beneficially for CNN:

o Are there strong similarities among neuron vectors in
practice?

« How to effectively detect the similarities and leverage
them?

i Xq2 Wit [w2 X1aWyg+X12Wa1 | X1qWia+X12Wap
| Xo2i X [— BT+ x 1w | RO+ 12
_—
D o R, O
xei el war| wee oy 12|

group 1: Xyq, X34, Xa1
group 2: Xoq

group 3: X2, X2
group 4: X3o, X43

Figure 2. An example of the basic form of computation reuse across neuron
vectors in convolution X x W.

« Because activation maps change with inputs, finding
similar neuron vectors must be done at inference time.
The overhead is hence essential. How to minimize the
overhead while maximizing the reuse benefits?

e Can the reuse bring significant speedups with no or
little accuracy loss? Can it still apply if the CNNs are
compressed?

In this work, we give a systematic exploration to these
questions, and create deep reuse runtime optimization for
CNN. The exploration is five-fold.

First, we conduct a series of measurements and confirm that
a large amount of similarities exist among neuron vectors.
Further, we find that, to fully uncover the similarities, one
needs to consider the relations among neuron vectors not only
inside an activation map, but also across the activation maps
generated in different runs of the CNN.

Second, we experiment with several clustering methods, in-
cluding K-means, Hyper-Cube, and Locality Sensitive Hashing
(LSH), for detecting similarities among neuron vectors to form
groups. The exploration identifies LSH as the most appealing
choice for its low overhead and high clustering quality for
neuron vectors.

Third, we investigate three clustering scopes to find deep
reuse opportunities, including neuron vectors within the ex-
ecution on one input, within the executions of a batch of
inputs, and across executions in different batches. Through the
process, we develop a cluster reuse algorithm to maximize the
benefits of LSH-based clustering for all inputs.

Fourth, we experiment with two kinds of similarity dis-
tances, and a spectrum of neuron vector granularities by ad-
justing the length of neuron-vectors for clustering. We identify
angular cosine distance as a better choice over Euclidean
distance for deep reuse, and unveil the cost-benefit tradeoffs
incurred by different neuron vector granularities.

Finally, we integrate all findings into deep reuse and ap-
ply this method to three popular CNN networks, CifarNet,
AlexNet [8] and VGG-19 [9]. We measure both the end-to-
end performance and accuracy, and provide detailed layer-wise
performance analysis results in various settings. Results show
that, deep reuse gives 3.19-4.32X layer-wise speedups and
1.77-2X whole network speedups with virtually no (<0.0005)
accuracy loss.

To the best of our knowledge, this is the first study on sys-
tematically leveraging neuron vector-level computation reuses
for speeding up CNN inferences. The produced deep reuse has
several appealing properties: (1) All its optimizations happen
at inference time on the fly, adaptive to every input to CNN.
(2) It is compatible with model compression and other existing
CNN optimization techniques. Its reuse across neuron vectors
applies regardless whether the model is pruned or quantized. In
Section V-D, we demonstrate that the method remains effective
on compressed CNN models. (3) It is easy to apply, requiring
no special hardware support or CNN model changes, and
meanwhile, it is compatible with most exiting hardware or
software accelerations, as its optimized CNN still has matrix
multiplications (on smaller matrices) as its core computations.
(4) It offers simple knobs (neuron vector granularity) allowing
users to tune to adjust the tradeoff between accuracy and time
savings. (5) Finally, it brings significant performance benefits
with no or little accuracy loss.

II. BACKGROUND AND NOTATIONS

The convolutional layer of CNN takes an input tensor with
size Ny x I, x I, x I. and outputs a tensor with size N; x
O, X Oy, x M. Here, N, is the batch size. I,,, I}, and I, are the
width, height and channel size of the input to the convolutional
layer. The input could be an input image or an activation map.
Ow, Op and M are the width, height and channel size of the
corresponding output.

Given a stride size of s, a kernel width of k,, and a kernel
height of kj, the input tensor is unfolded into a large input
matrix x with dimension /N x K, where, when the stride s is
I, N=Ny- Iy — ky + 1) (I, — kp, + 1) is the number of
rows for a batch of inputs and K = I - kj, - k,, is the kernel
weight matrix size. The number of rows corresponding to one
input is Nyyg = Nﬂb The weight of the convolutional layer is
represented with a tensor W with size K x M, where M is
the number of weight filters. The output y without adding the
bias is then computed with y = x-W. The main computation
comes from the matrix-matrix multiplication, which has a
complexity of O(N - K - M).

III. DEEP REUSE FOR CNN

This section starts with the basic idea of deep reuse and
the key conditions for the idea to work beneficially for
CNN, then describes our detailed design of deep reuse, and
finally concludes with a discussion on the properties of deep
reuse and its relationship with some other common CNN
optimizations.

A. Basic Idea and Key Conditions

The basic idea of deep reuse is grouping similar neuron
vectors into clusters and using the cluster centroids as the
representatives for computations. For example, as illustrated in
Fig. 3, the original computation is y = x-W. With deep reuse,
we may consider each row of x as a neuron vector denoted
with x;. First, we group the 4 neuron vectors into 3 clusters
and compute the centroid vectors x.. The centroid vectors are

w
X y
@
_ ©
X — 2
®
cluster on construct
neuron-vectors output
3 @
B X — ®
®
3
Cluster Xe Ve
Index w
Figure 3. Illustration of using deep reuse to reduce the computation cost

(whole-vector clustering). Numbers 1,2 and 3 are the cluster IDs.

taken as representatives. In this example, both x5 and x3 are
represented by the value of x. o (the centroid vector of cluster
2). The next step is to do the computation using the centroids
Ye = X - W. The full results are then attained by reusing the
outputs of the centroid vectors for each cluster member; that
iS, Y2 = ¥3 = Y.,2 in this example.

Computation Savings: In a general case, given an input
matrix x, we could group all the neuron vectors into |C|
clusters. The corresponding centroid vectors form a new
matrix x. with size of |C| x K. Since we only need to
compute y. = X. - W, the computation complexity becomes
O(|C]- K - M). If |C] << N, we could save a large number
of computations. In the rest of the technical report, we use
remaining ratio to indicate the fraction of computations left
after the optimization. It is defined as

Remaining ratio: r. = %

The smaller 7. is, the more computations are saved.

Key Conditions: For the idea to actually benefit CNN
inferences, three conditions must hold.

1) There is a substantial amount of strong similarities among

neuron vectors.

2) The time needed by detecting and leveraging the simi-
larities should be much smaller than the time savings it
brings to CNN. It is important to notice that deep reuse is
an on-line process. Because activation maps change with
each input, the detection of similarities among the neuron
vectors in an activation map must happen on the fly at the
inference time. The same is the operations for saving the
dot products of cluster centroids and for retrieving them
for reuse. Therefore, it is essential that the overhead of
these introduced operations is kept much smaller than the
time savings they bring to CNN.

3) The reuses cause no or negligible loss of inference
accuracy.

The first condition needs empirical studies on actually
CNNs to check. A brief summary of our observations is
that on three popular CNNs (CifarNet, AlexNet, VGG-16)
and two datasets (Cifar10, ImageNet), our study consistently

finds strong similarities among neuron vectors across every
convolution layer both within the inference on one input and
across inputs. We put the details into Section V and will
elaborate them later. In this section, we concentrate on our
design of deep reuse for effectively finding the similarities on
the fly and turning them into better inference speed.

B. Design of Deep Reuse

To fully capitalize on neuron vector similarities and at the
same time achieve good trade-off between runtime overhead
and the gains, the design of deep reuse employs a set of
features, including an efficient runtime clustering algorithm,
the capability in harnessing deep reuse opportunities in three
scopes, the flexibility in accommodating various neuron vector
granularities, and the use of a similarity metric that empirically
proves effective. We explain each of the features next.

1) Clustering Method: Choosing an appropriate clustering
method is essential for the effectiveness of deep reuse. First,
the method should be able to give good clustering results for
effectively capturing the similarities between neuron vectors.
Second, it must be lightweight such that it does not introduce
too much overhead at runtime.

In this work, we studied several different methods, and
identified Locality Sensitive Hashing (LSH) as the clustering
method for deep reuse.

LSH is widely used as an algorithm for solving the approx-
imate or exact Nearest Neighbor problem in high dimension
space [10]-[14]. For each input vector x, a hashing function
h is determined by a random vector v in the following way:

{1 if vex>0

hy(x) = ey

0 if v-x<0
Given a series of random vectors, LSH maps an input vector
into a bit vector.

Using LSH, input vectors with smaller distances have a high
probability to be hashed into the same bit vector. Thus, when
applying LSH into our context, we consider each bit vector as
a cluster ID and all the neuron vectors mapped to the same
bit vector form a cluster.

Our experiments (Section V) show that LSH can be applied
to both short and long vectors while achieving good accuracy.
The hashing itself takes some time. With LSH applied, the
operations at a convolution layer now consist of two parts:
hashing and the centroid-weight multiplication. If having | H|
hashing functions, the computation complexity is O(N - K -
|H| + |C| - K - M). Comparing to the original complexity of
O(N - K - M), LSH brings benefit only if |H| << M(1—r.),
where 1, is the remaining ratio N /N.

In addition to LSH, we have explored two other clustering
algorithms: K-means, and Hyper-Cube clustering. As one of
the most classical clustering algorithm, K-means could give
us relatively good clustering results, which makes it a good
choice for studying the similarity between neuron vectors.
However, K-means is not practically useful for reducing com-
putations because of its large clustering overhead. Even though
in some cases, we could recover the accuracy of the original

network with a very small remaining ratio (r. < 0.1), the
computation cost of running K-means itself is even larger than
the original matrix-matrix multiplication. Therefore, we only
use K-means to study the similarity between neuron-vectors
and explore the potential of our approach.

The other alternative method we explored is Hyper-Cube
clustering. It regards the data space as a D-dimension hyper-
cube, and clusters neuron vectors by applying simple linear al-
gebra operations to each of the selected D primary dimensions
of each neuron vector. Let J]EJ) be the j** (j = 1,2,---, D)
element of a neuron vector z;. Hyper-cube clustering derives
a bin number bgj) for it, equaling

b = B (a? — min 7))/ (max il — min 27),
where, B is the total number of bins for each dimension.
The cluster ID of the neuron vector z; is set as Cp =
[bgl),bgz), e ,bl(-D)}. The number of clusters, DZ, could be
large, depending on D and B. Our experiments show that in
practice, often many bins are empty and the total number of
real clusters are much smaller than D5,

Hyper-Cube is lightweight since the cluster assignment is
simple and the complexity of computing the cluster ID for
each neuron-vector is only O(D). However, our experiments
(Section V) show that this method only works well for short
neuron vectors. Reuse on short neuron vectors involves many
adding operations to sum the partial products together. As a
result, computation savings by Hyper-Cube are less significant
than by LSH as our experiments in Section V will report.

LSH has an additional distinctive advantage over the other
two clustering algorithms. It applies seamlessly to all scopes
of similarity detection, as explained next.

2) Clustering Scopes: To detect the full reuse opportunities
among neuron vectors, deep reuse supports the detection of
similarities of neuron vectors in three levels of clustering
scopes: within one input, within a batch of inputs, and across
batches.

For the single-input or single-batch level, the detection can
be done simply by applying the clustering algorithm to all the
neuron-vectors within an input or within a batch directly. There
are extra complexities when the scope expands across batches.
Because inputs from different batches come at different times,
it is often impractical to wait for all the inputs to apply
the clustering. Deep reuse addresses the complexity through
cluster reuse.

Cluster Reuse: The purpose of cluster reuse is to allow
for neuron-vectors from different input batches to share the
computation results of the same cluster centroid. If K-means or
Hyper-Cube clustering are used, it is hard to reuse the clusters
attained on one batch for another batch as they build different
clusters for different batches. But with LSH, it can be achieved
naturally.

With LSH, we can reuse an existing cluster if a new neuron
vector is hashed to a bit vector that has appeared before. No
matter which batches two neuron vectors belong to, if they

Algorithm 1 Cluster Reuse
1: Input: input matrix x with dimension N x K; a set of
cluster ID S;4; the set of outputs O,y corresponding to
Sid~
2: Algorithm:
3: for all row vectors x; do
4: Apply LSH to get the cluster id I.D;
5: end for
6: for:=1to N do
7
8
9

if ID; € S;4 then
reuse O;g=1D,

else
10: insert I D; into S;q
11: Oid:IDi =x;- W
12: insert O;q=rp, into O;q
13: end if
14: end for
w
X y
1 5
1 4 6 —
1@ 6| X -
2 4 7
@ ﬁ sum to get
final output
e 7 2
X, 1 y
3 % - 1 / ;
2 = 2 +
® - 3 ! ¥
@ X T MO T . 1
X output for sub-matrix @
= ?
= 6
2 \ g el
\ z Y,

Figure 4. Illustration of deep reuse with a smaller clustering granularity (sub-
vector clustering).

map to the same bit vector, they are assigned with the same
cluster ID and thus to the same cluster. We need to use the
same family of hash function H to do the hashing for all the
neuron vectors across batches.

Algorithm 1 provides some details on how to reuse the
clusters and the corresponding results with LSH. The algo-
rithm employs a set S;4 to store all previously appeared bit
vectors (the cluster IDs) and an array O;4 to store all the
outputs computed with those cluster centroids. When a new
batch of inputs come, it first maps all the neuron vectors to
bit vectors using LSH. Then for neuron vectors mapped to
the existing clusters, it can reuse the corresponding outputs.
For those mapped to a new cluster, it first computes the
centroid x. and calculates the output of x. - W, which are
used in updating S;; and O;4. Let R be the averaged cluster
reuse rate for a batch. The computation complexity becomes
ON-K-|H|+(1—-R)-|C|-K - M) (if one neuron vector
is a whole row in an activation map.) A larger cluster reuse
rate helps save more computations.

3) Clustering Granularity: In the basic scheme shown in
Figure 3, each row vector in matrix X is taken as a neuron

vector. Our experiments indicate that a smaller clustering
granularity with a shorter neuron-vector length can often
expose more reuse opportunities. We refer to the first case
as the whole-vector clustering and the second case as the sub-
vector clustering. Deep reuse supports both cases, allowing a
flexible adjustment of the granularity, useful for users to attain
a desired cost-benefit tradeoff.

Fig. 4 illustrates the procedures of deep reuse with sub-
vector clustering. The input matrix x is divided into three
sub-matrices x(), x(and x®). The neuron vectors used
for clustering have a length of 2. For each sub-matrix, deep
reuse groups the neuron vectors into clusters, and computes
the centroids matrix xg) and the corresponding output yg),
Then it reconstructs the output y(* for each sub-matrix. In
comparison to the whole-vector clustering (Fig. 3), the sub-
vector clustering has one more step: the result y is computed
by adding the partial results together, as y = y(1) +y(2) +y®),

Since the clustering algorithms usually work better on
low dimension data, we see better clustering results with a
smaller clustering granularity. However, a smaller neuron-
vector length results more neuron vectors, and hence more
adding operations. Hence, it does not always save more
computations. Assuming each input row vector is divided into
N,,, neuron vectors and the size of each neuron vector is L.
We have N,, - L = K; the computation introduced by all
the adding operations is O(N - % - M), where K, M, N are
the length of a weight filter, the number of weights filters
and the number of rows for a batch of inputs. The average
number of clusters when using the sub-vector clustering is
ICnv,avg = N%wzyz”f |Clnv,j- So the remaining ratio is
e = m‘% The computation complexity of using the sub-
vector clustering becomes O((rc,ny + 1)+ N - K - M). With
a smaller clustering granularity, we are more likely to have
a smaller 7., but a larger % A balance between these two
parts is needed to minimize the overall computations.

Deep reuse exposes the clustering granularity as a user
definable parameter. Its default value is the channel size of the
corresponding activation map, but users can set it differently.
One possible way users may use is to simply include it as one
of the hyper-parameters of the CNN to tune during the CNN
model training stage.

4) Similarity Metric: In this work, we experimented with
two different similarity metrics between neuron vectors: the
Euclidean distance and the angular cosine distance. For Eu-
clidean distance, the clustering result is decided by evaluating
|lx; — x| of any two vectors x; and x;. For the angular cosine
distance, the vectors are first normalized (X; = ”}’i—”) before
the distance (||%X; — %;||) is computed. We find that clustering
using angular cosine distance usually performs better than
clustering using Euclidean distance (Section V-C). Deep reuse
hence uses angular cosine distance by default.

C. Properties of Deep Reuse

As an optimization technique, deep reuse features several
appealing properties:

First, because it detects similarities on the fly, it is adaptive
to every CNN and each of its inputs. The clusters are not
built on offline training inputs, but formed continuously as the
CNN processes its inputs. This adaptivity helps deep reuse
effectively discover reuse opportunities in actual inferences.

Second, deep reuse is generally applicable. It works on
CNNss despite their structural differences or compression sta-
tus. As Section V reports, it gives consistent speedups on
compressed and uncompressed CNNss.

Third, it is easy to apply. It does not require special hard-
ware support or CNN model changes, but at the same time,
is compatible with common CNN accelerators—hardware or
software based—as its optimized CNN still has matrix multi-
plications as its core computations.

Fourth, it offers simple knobs, through which users can
easily adjust the tradeoff between accuracy and time savings.
The knobs include the neuron vector granularity and the
strength of the clustering (i.e., the size of the hashing function
family used in LSH). Users can simply include these knobs as
part of the hyperparameters of the CNN to tune in the training
stage.

Finally, it brings significant speedups with no or little
accuracy loss, as Section V will report.

IV. ERROR ANALYSIS

This section analyzes the influence brought to the output
layer by the errors introduced by deep reuse at a hidden or
input layer. Let F(™) be a neural network with n layers. For

a layer ¢, let 37(-i) be the input row vector in row j, W%

be the model parameter matrix and y; 0) be the final output
in the original network. Deep reuse uses the centroid :E() to
(i)

7 Z Hl‘ -
The final output becomes y (") and the corresponding

error is &(y(™) = > Hy(n) §||2 If we only apply the
reuse on a single layer 1, the ﬁnal output error is bounded by

replace x:’. The introduced error 1s ErrC

2.

s(y™) < Ere® T IW;1?)
Jj=t

If the reuse applies to all the layers, the final output error

bound is " "
(") <> B T IW)7? (3)
i=1 j=i

The analysis shows that the influence from the error at
one layer to the output layer is a linear relation to the error
made at that layer. Next section will show that, in practice,
the introduced errors have only marginal influence on CNN
inference accuracy.

V. EXPERIMENTAL RESULTS

To examine the existence of neuron vector similarities and
to evaluate the efficacy of the deep reuse, we experiment with
three different networks: CifarNet, AlexNet [8] and VGG-19
[9]. As shown in Table I and the first four columns of Table II,
these three networks have a range of sizes and complexities.

Table I
BENCHMARK NETWORKS

NETWORK DATASET # CONVLAYERS IMAGE ORDER
CIFARNET CIFAR1O 2 RANDOM
ALEXNET IMAGENET 5 RANDOM
VGG-19 IMAGENET 16 RANDOM

The first network works on small images of size 32 x 32,
the other two work on images of 224 x 224. For all the
experiments, the input images are randomly shuffled before
being fed into the network.

The baseline network implementation we use to measure
the speedups comes from the slim model # in the TensorFlow
framework 3. We implement our optimized CNNs by incorpo-
rating deep reuse into the TensorFlow code. Both the original
and our optimized CNNs automatically leverage the state-of-
the-art GPU DNN library cuDNN ¢ and other libraries that
TensorFlow uses in default. All the experiments are done on
a machine with an Intel(R) Xeon(R) CPU E5-1607 v2 and a
GTX1080 GPU.

For each of the networks, we first apply our approach to
only a single convolutional layer to measure the single layer
speedups and the corresponding accuracy. Then we measure
the end-to-end speedups for the full networks. The neuron-
vector length L and the number of hashing functions H used
in deep reuse are determined for each convolution layer as
part of the hyperparameters tuning process of CNN training.
Sections V-A and V-B presents all the speedup results. In
Section V-C, we use the results of applying K-means clustering
on CifarNet as examples to demonstrate how different scopes,
granularities and similarity distances affect the performance of
the deep reuse in terms of the r.—accuracy relationship. Here
re = |C|/N is the remaining ratio as defined in Section III-A.

Section V-D reports the speedups when deep reuse applies
to CNNs after model compression [5], demonstrating its
complementary relations with model quantization and com-
pression. Section V-E gives a head-to-head comparison with
perforated CNN, the work most closely related to this study.

All timing results are the average of 20 repeated mea-
surements; variances across repeated runs are marginal unless
noted otherwise.

A. Single Layer Speedup

For every single convolutional layer of the three networks,
we run experiments using all the three clustering methods
with a range of different clustering configurations and collect
the r.—accuracy relationship. For the purpose of study, for
both of the Hyper-Cube and LSH clustering methods, we
select the configurations that can recover the accuracy while
reducing the maximum amount of computations according

“https://github.com/tensorflow/models/tree/master/research/slim
Shttps://github.com/tensorflow/tensorflow
Shttps://developer.nvidia.com/cudnn

to the computation complexity analysis. We measure the
speedups of every single layer using these configurations.

For example, when using LSH with sub-vector clustering,
the computation complexity is O(N - K - |H| +r.- N - K -
M+ 1-N-K-M). The number of hashing functions |H| and
the neuron-vector length L are the parameters for clustering
configurations. For each pair of the |H| and L, there is a
corresponding .. Given the r.—accuracy relationship, we find
the |H| and L pairs that can recover the accuracy or give the
highest accuracy if no configurations recover the full accuracy.
Among these configurations, we then use the one that gives the
maximum computations savings (M /(|H|+r.- M + M/L))
to measure the speedup.

a) Speedups from intra-batch reuse: Columns 5 — 11 in
Table II report the speedups that the reuse method produces for
each convolutional layer when the reuse applies within a batch
(i.e., cluster reuse is not used). On average, the method obtains
up to 1.63X speedups with Hyper-Cube clustering and 2.41X
with LSH clustering. The speedups come with no accuracy
loss.

The result shows that on all the layers except the first
convolutional layer of VGG-19, LSH brings larger speedups
than the Hyper-Cube clustering does. Since LSH recovers the
accuracy with longer neuron-vectors as shown in column 9 of
Table II, it introduces less adding operations, making deep
reuse more efficient. Therefore, LSH always has a higher
remaining ratio and gives more speedups.

Extra Benefits from inter-batch Cluster Reuse Column
12 in Table II shows that cluster reuse could bring even more
speedups. Although it introduces small accuracy loss (less than
3% if only quantizing one of the convolutional layers), it is
still attractive to tasks that could tolerate such accuracy loss.

Fig 5 shows the cluster reuse rate (R) for each con-
volutional layer of CifarNet across batches. The reuse rate
(the fraction of neuron-vectors in current batch that falls into
the existing clusters) increases from 0 to around 0.98 after
processing 20 batches. We also observed similar patterns in
the convolutional layers of AlexNet and VGG-19. The reuse
rates all reach over 0.95. This high cluster reuse rate is the
main reason for the large increases of the speedups (from an
average of 2.4X to 3.6X for AlexNet and from an average of
2.3X to 3.4X for VGG-19).

For CifarNet, cluster reuse brings only modest extra
speedups. It is because the remaining ratio of the two con-
volutional layers are already very small (about 0.01). There
are few computations left that can be saved by cluster reuse
in this case.

Based on the previous computational complexity analysis,
the computations being saved by cluster reuse-based LSH is
M/(|H|+R-r.- M+ M/L). Therefore, when r. plays a more
major role than |H| and M/ L in the computational complexity,
cluster reuse increases speedups more. This conclusion is
confirmed by the results in Table II.

Table 1I
SINGLE LAYER SPEEDUPS. K IS THE KERNEL SIZE AND M IS THE NUMBER OF WEIGHT FILTERS. L REFERS TO THE NEURON-VECTOR LENGTH.
re = |C|/N 1S THE REMAINING RATIO.

| NoO CLUSTER REUSE | CLUSTER REUSE
NETWORK CONVLAYER K M | HYPERCUBE | LSH | LSH
| L r. SPEEDUP | H L r. SPEEDUP | SPEEDUP
CIFARNET CONV1 75 64 3 0.03 1.57X 15 5 0.01 1.58X 1.59X
CONV2 1600 64 | 10 0.11 1.68X 10 10 0.01 2.51X 2.58X
AVG | 1.63X | 2.05X | 2.09X
CONV1 363 64 11 0.14 0.94X 15 11 0.13 1.63X 1.96X
CONV2 1600 192 | 5 0.11 2.13X 15 20 0.18 2.84X 4.23X
ALEXNET CONV3 1728 384 | 6 0.11 1.22X 15 12 0.15 2.58X 3.92X
CONV4 3456 384 | 6 0.13 1.14X 15 12 0.17 2.76X 3.99X
CONV5 3456 256 | 6 1.14X 15 24 0.15 2.23X 4.12X
AVG | 131X | 241X | 3.64X
CONV1 27 64 9 0.05 2.89X 15 9 0.08 2.35 2.83
CONV2 576 64 6 0.05 1.37X 15 16 0.11 2.06X 2.59X
CONV3 576 128 | 3 0.03 1.07X 15 16 0.13 1.83X 2.48X
CONV4 1152 128 | 3 0.03 0.91X 15 16 0.11 1.95X 2.49X
CONV5S 1152 256 | 3 0.02 0.88X 10 16 0.09 2.22X 3.39X
CONV6 2304 256 | 3 0.02 0.89X 10 16 0.11 2.03X 3.38X
CONV7 2304 256 | 3 0.02 0.84X 10 16 0.06 2.79X 3.31X
VGG-16 CONV8 2304 256 | 3 0.02 0.85X 10 16 0.09 2.52X 3.40X
CONV9 2304 512 | 3 0.03 0.91X 8 16 0.05 3.19X 4.05X
CONVI10 4068 512 | 3 0.03 0.85X &8 24 0.1 2.85X 4.32X
COoNV1l 4068 512 | 3 0.03 0.92X 8 24 0.11 2.37X 4.16X
CONV12 4068 512 | 3 0.03 0.89X & 24 0.13 2.44X 4.13X
CONV13 4068 512 | 3 0.02 0.88X 8 24 02 1.86X 3.26X
CONV14 4068 512 | 3 0.02 0.91X & 24 0.18 1.81X 3.28X
CONV15 4068 512 | 3 0.02 0.91X 8 24 0.18 1.81X 3.26X
CONV16 4068 512 | 3 0.02 0.85X 8 24 0.16 2.02X 3.31X
AVG | 1.05X | 2.26X | 3.35X
Table 11T
END-TO-END FULL NETWORK SPEEDUPS AND ACCURACY LOSS.
(NEGATIVE ERRORS MEANS IMPROVEMENTS OF ACCURACY) 10
%0.8 i
NETWORK | LSH WITH NO CLUSTER REUSE % os| |
| SPEEDUP ACCURACY ACCURACY LOSS oal |
g 047 |
CIFARNET 1.77X 0.7892 -0.0011 E |
ALEXNET 2.00X 0.5360 -0.0002 021 — convl
VGG-19 1.89X 0.7118 +0.0005 ; conv2
0.0 -
0 20 40 60 80 100
batch id

B. End-to-End Speedup

In measuring the end-to-end speedups of the full network,
for better accuracy, we use LSH-based —em deep reuse with-
out cluster reuse. We determine the clustering configurations
of each convolutional layer in the network by simply adopting
the configurations from the single layer experiments since they
cause no accuracy loss.
As shown in Table III, our approach obtains up to 2X
speedups on the full network. The maximum extra error it smaller than those of a single convolutional layer as there are
brings is 0.0005. The speedups of the full network is relatively other layers (e.g., ReLU, pooling) in a CNN.

Figure 5. Cluster reuse rate in CifarNet

¢ o
o
e S

—+— image+whole-vector+Euclidean
image+whole-vector+angular
image+sub-vector+Euclidean
—8— image+sub-vector+angular
batch+whole-vector+Euclidean
-4~ batch+whole-vector+angular
batch+sub-vector+Euclidean
[-® batch+sub-vector+angular

0.0 0.2 0.4 0.6 0.8 1.0
re (remaining ratio)

accuracy
o o o
w i wn
144

©
N

(a) convl
0.8 v 2 2 — —
e e
0.7
/5
0.6 A
o) i
Qo
S /‘A/ —*— image+whole-vector+Euclidean
8 0.4 ,’,‘(image+whole-vector+angular
© ‘/,’,’ —— image+sub-vector+Euclidean
0.3 i —8— image+sub-vector+angular
-#%- batch+whole-vector+Euclidean
0.2 -4- batch+whole-vector+angular
batch+sub-vector+Euclidean
0.1] B -®- batch+sub-vector+angular
0.0 0.2 0.4 0.6 0.8 1.0
re (remaining ratio)

(b) conv2

Figure 6. Comparison of the r.—accuracy relationships for K-means cluster-
ing with different configurations on CifarNet at different scopes (‘image’,
‘batch’), granularities (sub-vector or whole-vector), distances (angular or
Euclidean). The legend has the patten of scope+granularity+distance.

C. Discussion on Clustering Scope, Granularity and Similar-
ity Distance

Experiments show that we could recover the accuracy with
a small remaining ratio r.. This validates the existence of
substantial neuron vector similarities and their potential for
effective reuse. Besides clustering methods, clustering scope,
granularity and similarity distance also affect the efficacy
of deep reuse in detecting such similarities. This section
discusses these connections, using the r.—accuracy results of
applying K-means based clustering on CifarNet as an example.
Given the same r. value, a higher accuracy means better
identification of the similarities.

Scope: Section V-A has already reported the substantially
more saving opportunities that inter-batch reuse can bring and
the corresponding speedups. In this part, we provide a detailed
study on the effects when the reuse scope expands from the
inference on one image to inferences across images in a batch.

Our discussion draws on the detailed results on the first two
convolution layers of CifarNet, as shown in the two graphs
in Fig. 6, where, "image” is for reuse within the run on each
individual image, while “batch” is for cross images in a batch.
In both graphs, the batch-level clustering gives the highest
accuracy for a given r. (remaining ratio), for the more reuse

opportunities the clustering brings. The curves of the batch-
level clustering are shorter than the image-level ones because
there are no data when r. exceeds 0.05 in the batch-level case.
The reason is that K-means clustering at batch level requires
a large amount of memory, causing memory errors on the
machine.

Granularity: To study how granularity affects the perfor-
mance, we experiment with the whole-vector clustering and
the sub-vector clustering with a neuron-vector size of 25 for
both the convolutional layers of CifarNet. In the first layer
(Fig. 6a), the sub-vector clustering doesn’t perform as well as
the whole-vector clustering when the scope is small. However,
when applying the sub-vector clustering with a larger scope,
it becomes the best. For the second layer (Fig. 6b), clustering
at a smaller granularity always gives better results.

Distance: Fig. 6a shows that on the first layer, clustering
based on angular cosine distance is consistently better in iden-
tifying the similarities compared to clustering on Euclidean
distance. For the second layer (Fig. 6b), the same results
hold for all the experiments except one. When performing the
whole-vector clustering within a single input, using the angular
cosine distance gives a slightly worse results than using the
Euclidean distance. However, the best clustering quality on
the second convolutional layer is still achieved by the angular
cosine distance.

In a nutshell, as indicated in Fig. 6, a combination of
larger scope (batch-level clustering), smaller granularity (sub-
vector clustering) and angular cosine distance gives the best
clustering results, better accuracy and smaller r.. The same
conclusion holds for the convolutional layers of the other two
CNNEs.

D. Results on Compressed Models

Network compression is a common method for minimizing
the size of CNN models. Through quantization, pruning or
compact network designs [5], [6], a CNN model can become
much smaller without much quality loss. Deep reuse is com-
plementary to these techniques in the sense that it tries to min-
imize CNN computations through online computation reuse
rather than model size through offline weights compression.
It can be applied to a compressed model to speed up its
inference, just as how it helps uncompressed models.

Table V reports the speedups when we apply deep reuse to
the compressed AlexNet model from an earlier work [S]. Deep
reuse gives up to 3.64X speedups on the convolutional layers,
quantitatively demonstrating its complementary relationship
with model compression, as well as its general applicability.

E. Comparison with Perforated CNN

The work most closely related to this study is the proposal
of perforated CNN [15]. It proposes to reduce computations by
performing calculations with a small fraction of input patches.
The evaluation of the skipped positions is done via interpo-
lation on the computed results. Even though it may avoid
some computations, it does not capitalize on dynamically

Table IV
COMPARISON WITH PERFORATED CNN (deep reuse NEEDS NO FINE TUNING)

METHOD NETWORK COMPUTATION ACCURACY LOSS
SAVINGS BEFORE FINE-TUNING AFTER FINE-TUNING
PERFORATED CNN | ALEXNET 2.0X 8.5 2
‘ VGG 1.9X 23.1 2.5
DEEP REUSE | ALEXNET 3.3X -0.02 -
‘ VGG 4.5X 0.05 -

Table V
SPEEDUP OF APPLYING deep reuse TO THE COMPRESSED ALEXNET
MODEL GENERATED BY PRUNING AND WEIGHT QUANTIZATION.

NETWORK ‘ SPEEDUPS

CONVI1 1.81X
CONV2 3.29X
CONV3 3.64X
CONV4 3.45X
CONV5 2.71X

discovered similarities of neuron vectors, but uses some pre-
fixed perforation mask to pick the input rows for computations.
The corresponding input rows chosen by their perforation
mask are fixed for all inputs.

Deep reuse offers a more systematic way to identify com-
putations to skip, adaptive to each input and every run. It
enables neuron vector sharing and chooses the shared centroid
vectors based on the similarities of neuron vectors measured at
inference time. These shared vectors vary from input to input,
and from run to run. In addition, it reuses the clusters and
computation results from previous batches to further reduce
the computation cost. Moreover, perforated CNN requires a
fine-tuning process for the quantized model to recover the
prediction accuracy. The use of deep reuse needs no such fine-
tuning process.

We provide a quantitative comparison. As mentioned, perfo-
rated CNN causes significant accuracy loss and hence requires
a fine-tuning process to recover the prediction accuracy. In
our comparison, we use the most accurate cases reported
in the previous work [15]. As Table IV reports, deep reuse
achieves much better accuracies in all the cases. It meanwhile
saves many more computations (3.3X versus 2.0X for AlexNet
and 4.5X versus 1.9X for VGG) compared to the numbers
reported in the previous work [15]. We cannot compare the
execution times with the previous paper because the previous
implementation was on a different DNN framework and their
code is not available to us. However, given that the runtime
overhead of our method is small as the previous subsections
have shown, we expect that our method shall outperform
perforated CNN in a degree similar to the rates in computation
savings. The results confirm the significant benefits from the

more principled approach taken by deep reuse for saving
computations.

VI. RELATED WORK

This section discusses other related work besides the afore-
mentioned Perforated CNN [15].

Network quantization [5], [6], [16], [17] also uses cluster-
ing, but mostly for offline compression of model parameters
rather than online computation reuse on activation maps.
RedCNN [18] is another work trying to reduce the model
size. It does it by applying a transform matrix to the activation
maps of each layer and fine tune the network. It also works
offline, working during the training time. In contrast to these
techniques, deep reuse is an online technique, with a purpose
for speeding up CNN inferences. It is complementary to those
offline model compression techniques, as Section V-D has
empirically shown.

LSH, as a cluster method, has been used in prior CNN
studies [19]-[21]. But their purposes differ from ours. For
example, in the Scalable and Sustainable Deep Learning work
[19], the authors apply LSH to both the weight vector and the
input vector, trying to find collisions between a pair of weight
and input vectors, which are regarded as a weight-input pair
that may give the largest activation. In our work, we use LSH
for efficiently detecting similarities among neuron vectors to
expose reuse opportunities.

VII. CONCLUSION

This technical report has presented deep reuse as a technique
to reduce computation cost of CNN inference. Experiments
show that massive similarities exist among neuron vectors
within and across CNN inferences. Deep reuse is designed
to efficiently discover such similarities on the fly and turn
them into reuse benefits for CNN inferences. It produces up
to 3.19X speedups without accuracy loss at a convolutional
layer, and up to 4.32X speedups when allowing a 3% accuracy
loss. It speeds up the full network by up to 2X with virtually
no (<0.0005) accuracy loss. Deep reuse features the use of
an efficient clustering algorithm, a capability to harness deep
reuse opportunities in three levels of scopes, a flexibility
in accommodating various neuron vector granularities, and
a compatibility with common model compression and other
existing optimizations. It shows the promise to serve as a
ready-to-use general method for accelerating CNN inferences.

VIII. ACKNOWLEDGMENT

This material is based upon work supported by DOE Early
Career Award (DE-SC0013700), the National Science Foun-
dation (NSF) under Grant No. CCF-1455404, CCF-1525609,
CNS-1717425, CCF-1703487. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of DOE or NSF.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, New York, NY, USA, 2015.

N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s.
Seo, and Y. Cao, “Throughput-optimized opencl-based fpga accelerator
for large-scale convolutional neural networks,” in Proceedings of the
2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, New York, NY, USA, 2016.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on, 2016.

L. Du, Y. Du, Y. Li, J. Su, Y. Kuan, C. Liu, and M. F. Chang, “A
reconfigurable streaming deep convolutional neural network accelerator
for internet of things,” IEEE Transactions on Circuits and Systems I:
Regular Papers, 2018.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016.
F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters andj 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1. USA: Curran Associates Inc., 2012, pp. 1097-1105.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, 2015.

P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing, 1998, pp. 604-613.
M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proceedings of the
Twentieth Annual Symposium on Computational Geometry. New York,
NY, USA: ACM, 2004, pp. 253-262.

A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” in Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, 2006, pp.
459-468.

K. Terasawa and Y. Tanaka, “Spherical Ish for approximate nearest
neighbor search on unit hypersphere,” in Workshop on Algorithms and
Data Structures, 2007, pp. 27-38.

A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt,
“Practical and optimal Ish for angular distance,” in Proceedings of
the 28th International Conference on Neural Information Processing
Systems - Volume 1. Cambridge, MA, USA: MIT Press, 2015, pp.
1225-1233.

M. Figurnov, A. Ibraimova, D. P. Vetrov, and P. Kohli, “Perforated-
cnns: Acceleration through elimination of redundant convolutions,” in
Advances in Neural Information Processing Systems, 2016, pp. 947—
955.

Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard,
“Adaptive Quantization for Deep Neural Network,” ArXiv e-prints, dec
2017.

[17]

(18]

[19]

[20]

[21]

Y. Choi, M. El-Khamy, and J. Lee, “Towards the limit of network quan-
tization,” in 5th International Conference on Learning Representations,
2017.

Y. Wang, C. Xu, C. Xu, and D. Tao, “Beyond filters: Compact feature
map for portable deep model,” in Proceedings of the 34th International
Conference on Machine Learning, Sydney, Australia, 2017.

R. Spring and A. Shrivastava, “Scalable and sustainable deep learning
via randomized hashing,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
Halifax, NS, Canada: ACM, 2017, pp. 445-454.

S. Vijayanarasimhan, J. Shlens, R. Monga, and J. Yagnik, “Deep
networks with large output spaces,” arXiv preprint arXiv:1412.7479,
2014.

R. Spring and A. Shrivastava, “A New Unbiased and Efficient Class of
LSH-Based Samplers and Estimators for Partition Function Computation
in Log-Linear Models,” arXiv preprint arXiv:1703.05160, 2017.

