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Abstract

This paper introduces two novel algorithms for learning
behaviors from human-provided rewards. The primary
novelty of these algorithms is that instead of treating the
feedback as a numeric reward signal, they interpret feed-
back as a form of discrete communication that depends
on both the behavior the trainer is trying to teach and the
teaching strategy used by the trainer. For example, some
human trainers use a lack of feedback to indicate whether
actions are correct or incorrect, and interpreting this lack
of feedback accurately can significantly improve learning
speed. Results from user studies show that humans use
a variety of training strategies in practice and both algo-
rithms can learn a contextual bandit task faster than al-
gorithms that treat the feedback as numeric. Additionally,
simulated trainers are employed to evaluate the algorithms
in both contextual bandit and sequential decision-making
tasks with similar results.

Introduction

A significant body of work exists on the problem of
learning from human trainers [12, 7, 3], and specifically
on the problem of learning from trainer-provided feed-
back [6, 9]. Existing work can be grouped into two broad
categories: (1) learning from demonstration, which treats
inputs from human trainers as examples of some target be-
havior; and (2) learning from trainer-provided feedback,
which models the learning problem as a reinforcement-
learning task. While exciting developments have been
made in both these areas, we argue neither is always an
appropriate model for learning in a common paradigm of
human teaching. First, providing examples of behavior is
not always feasible or desirable. Second, the positive or
negative feedback given by humans is not representative
of a numerical reward value.

Feedback is a form of discrete communication between
a trainer and a learning agent. Accordingly, that commu-
nication can be implemented using a few different train-
ing strategies that describe how trainers choose what feed-



back to give. We show how the training strategies em-
ployed by human teachers vary in the relative amount
of positive and negative feedback given. For example,
a trainer may choose to provide positive feedback when
the learner takes a correct action, but provide no response
when the learner takes an incorrect action. When the
trainer employs such a strategy, the learner could inter-
pret the lack of a response as a form of feedback in and of
itself. If only negative feedback is given, then the lack of
feedback is implicitly positive and vice versa. We report
results of user studies that demonstrate human trainers us-
ing a variety of strategies, including those where a lack of
feedback is meaningful.

We derive two Bayesian learning algorithms explicitly
designed to model and leverage discrete feedback strate-
gies. Our algorithms, which we refer to as Strategy-Aware
Bayesian Learning (SABL) and Inferring Strategy-Aware
Bayesian Learning (I-SABL), are designed to learn with
fewer discrete feedbacks than existing techniques, while
taking as few exploratory actions as possible. We first de-
scribe our representation of trainer strategy and the SABL
policy-learning algorithm for contextual bandit domains.
We then extend SABL to I-SABL, an algorithm that can
infer an unknown strategy being followed by the trainer
based on the feedback they have given. Lastly, we extend
these algorithms to sequential domains.

We validate the effectiveness of these algorithms in
both online user studies and experiments with simulated
trainers. Results indicate that, when learning from both
human and simulated trainers, our algorithms learn be-
haviors with fewer actions and fewer feedbacks (and
hence less effort on the part of the trainers) than base-
line algorithms that interpret feedback as numerical re-
ward. We also demonstrate that the I-SABL algorithm is
able to infer trainers’ strategies from the feedback pro-
vided and take advantage of that knowledge to improve
learning performance. Results using simulated trainers in
both the contextual bandit domain and a sequential do-
main demonstrate the generality and robustness of SABL
and I-SABL. These experiments also show that our algo-
rithms can be adapted to sequential domains where train-
ers teach policies to reach goal states.

Related Work

The goal in reinforcement learning is to learn to maxi-
mize an unknown reward function. In bandit domains the
learner selects among possible actions and receives a nu-
merical reward based on the action chosen; the agent’s
goal is to maximize the long-term expected reward, bal-
ancing exploration to better estimate actions’ true payouts
with exploiting the currently estimated best action. While
conceptually a simple problem, studies have shown that
humans behave sub-optimally when learning in such do-
mains [1, 2], suggesting the problem is indeed non-trivial.
In a contextual bandit setting, the reward for the different
actions will depend on the world’s current state, which the
learner can observe. Further, if the agent’s actions deter-
mine the next state, the problem is a sequential decision
problem and is typically addressed using tools from rein-
forcement learning (RL) [11].

In contrast to learning from a numerical reward signal,
our work is part of a growing literature on learning from
human feedback. Thomaz and Brazeal ([12]) treated hu-
man feedback as a form of guidance for an agent trying to
solve a RL problem. Human feedback did not change the
numerical reward from the RL problem, or the optimal
policy, but improved exploration and accelerated learn-
ing. Their results show humans give reward in anticipa-
tion of good actions, instead of rewarding or punishing
the agent’s recent actions.

COBOT [6] was an online chat agent with the abil-
ity to learn from human agents using RL techniques. It
learned how to promote and make useful discussion in
a chat room, combining explicit and implicit feedback
from multiple human users. The TAMER algorithm [9]
has been shown to be effective for learning from human
feedback in a number of task domains common in the
RL research community. This algorithm is modeled after
standard RL methods which learn a value function from
human-delivered numerical rewards. At each time step
the algorithm updates its estimate of the reward function
for a state-action pair using cumulative reward.

On the other hand, there is a growing body of work
that examines how humans can teach agents by provid-
ing demonstrations of a sequential decision task [3], or by
selecting a sequence of data in a classification task [7].
More similar to our work, Knox et al. ([8]) examine how
people want to provide feedback to learning agents: 1)



there is little difference in a trainer’s feedback whether
they think they are providing feedback during learning or
if they think they are critiquing a fixed performance; and
2) humans can reduce the amount of feedback they give
over time, and forcing the learner to make mistakes can in-
crease the rate of feedback. Our work differs because we
focus on designing algorithms that can leverage how hu-
mans naturally provide feedback when teaching, not how
to manipulate that feedback.

Lastly, feedback types other than numeric reward have
also been explored. Heer et al. ([5]) describe a variety
of feedback strategies employed by film directors, golf
instructors, and 911 operators. These experts gave rich
feedback and direction in the form of explaining conse-
quences, querying learner understanding, using assistive
aids, etc. That work stops short of algorithm design.

Motivation: Trainer Strategies

In our training paradigm, the learning agent takes an ac-
tion and then may receive positive or negative feedback
from the trainer. Our hypothesis is that trainers may differ
in the feedback they provide, even when they are trying
to teach the same behavior. For example, even in the ab-
sence of user error, when the learner takes an action that
is correct, one trainer might provide an explicit positive
feedback but another might provide provide no response
at all.

We can classify a trainer’s strategy by the cases in
which they give explicit feedback. Under a balanced feed-
back strategy a trainer typically gives explicit reward for
correct actions and explicit punishment for incorrect ac-
tions. Under a reward-focused strategy, correct actions
typically get an explicit reward and incorrect actions typ-
ically get no response, while a punishment-focused strat-
egy typically provides no response for correct actions and
explicit punishment for incorrect actions, and an inactive
strategy rarely gives explicit feedback of any type. Un-
der a reward-focused strategy, the lack of feedback can
be interpreted as an implicit negative feedback and un-
der a punishment-focused strategy, the lack of a feedback
can be interpreted as implicitly positive. Therefore, to a
strategy-aware learner the lack of feedback can be as in-
formative as explicit feedback.

Table 1 shows the number of participants in our user

Table 1: Breakdown of strategies used in the user studies

Strategy Number of Participants
balanced feedback 93
reward-focused 125
punishment-focused 6
inactive 3

studies who used each of the four possible strategies. Bal-
anced feedback specifically means that the trainer gave
explicit feedback to both correct and incorrect actions
more than half of the time, while inactive means the
trainer gave explicit feedback less than half the time in
both cases. Reward-focused means that correct actions
received explicit feedback more than half the time and in-
correct actions received explicit feedback less than half
the time, while punishment-focused is the opposite case.
There are two things we note about the data in that table:
1) users employed all four strategies to some degree; and
2) a large percentage of users followed a reward-focused
strategy which relied on implicit negative feedback.

Methods

To start, we represent the learning environment as a con-
textual bandit [10]. We can divide the learning process
into episodes in which a discrete observation is generated,
the learning agent takes an action, and the trainer may
provide some response. Our assumption is that the trainer
has an observation- or state-action mapping A, known as a
policy, that they wish to train the learner to follow. Here,
we assume that the trainer can provide discrete feedback
for each action, which can be either positive or negative.
We also assume that each feedback has a fixed magnitude;
that is, there are not different degrees of punishment or re-
ward that can be given.

The SABL Algorithm

Here we present the Strategy-Aware Bayesian Learning
(SABL) algorithm. SABL assumes the trainer chooses
feedback to provide based only on the most recent ob-
servation and action taken. In this model, the trainer first
determines if the action was consistent with the target pol-



icy A\* for the current observation, with some probability
of error e. The trainer then decides whether to give ex-
plicit feedback or simply do nothing. If the trainer inter-
prets the learner’s action as correct, then she will give an
explicit reward with probability 1 — ™, and if she in-
terprets the action as incorrect, will give explicit punish-
ment with probability 1 — p~. Thus, if the learner actually
takes a correct action, then it will receive explicit reward
with probability (1 —¢)(1—pu™), explicit punishment with
probability €(1 — p~), and will receive no feedback with
probability (1 — €)™ + eu™.

The parameters ¢ and g~ encode the trainer’s strat-
egy. For example, =0 and p~=0 correspond to a bal-
anced strategy where explicit feedback is always given in
response to an action, while =0 and y~=1 correspond
to a reward-focused strategy, where only actions that are
interpreted as correct receive explicit feedback. Putting
these elements together, for episode ¢, we have a distri-
bution over the feedback provided f; conditioned on the
observation oy, action a;, and the trainer’s target policy
A¥,

p(fi = fTog, ar, \*) = {(1 —e)(1—pu™),

(
e(L—pu™),  N(or) # ar,

p(fi = [ o, ag, \¥) = {( e(1—p™), )‘*((Ot

1—- 6)(1 - M_)7
(I—eut +eu™,

I-SABL: Inferring unknown strategies

SABL will perform well when it knows the trainer’s u™
and p~ parameters. In practice however, an agent is un-
likely to know the training strategy that a trainer uses. I-
SABL benefits from the ability of the learner to infer the
trainer’s strategy based on partial knowledge of the tar-
get policy (assuming trainer error €). If the learner knows
from explicit feedback the correct action for one observa-
tion, it can infer the training strategy by looking at the
history of feedback given for that observation. If, for
example, more explicit feedback is given for correct ac-
tions than incorrect actions, then it is likely the trainer is
reward-focused.

Under SABL’s probabilistic model we can treat the un-
known p values representing the trainer’s strategy as hid-
den parameters of the model, allowing us to marginalize
over possible strategies to compute the likelihood of each
possible target policy A. Inferring-SABL, or I-SABL,
computes a maximum likelihood estimate of the target
policy, given the training data. Therefore, I-SABL at-
tempts to find

argmax Zp(hl...ta s|AT = A),
sesS

) = @t where S is the set of possible training strategies (u™, u~
N (or) # @t,values), p(s) is uniform for all s € S, and h;_; is the
A\*(0¢) = agdraining history up to the current time ¢.

— f0 *)
p(fe = fTlot, ae, A7) = {Eﬁﬁ + (1 —eu~, (o) # a, Ingeneral, the space of possible policies will be expo-

Here, f7 is an explicit positive feedback, f~ is an explicit
negative feedback, and f° represents a lack of feedback.
Using this model of feedback, SABL computes a maxi-
mum likelihood estimate of the target policy A* given the
feedback that the user has provided. Thus, the policy out-
put by SABL is its estimate of the trainer’s target policy

argmax p(hi. A" = A),
A

where h, is the training history of actions, observations,
and feedback. If a user provides multiple feedback signals
before an episode ends, SABL only considers the most
recent, which gives trainers a chance to correct a mistaken
feedback.

nential in the number of states or observations, and so al-
gorithms for approximate inference may be used to com-
pute the likelihood of each policy. Here, we use the Ex-
pectation Maximization algorithm [4] to compute a maxi-
mum likelihood estimate of the policy the trainer is trying
to teach, and treat the unknown p* and p~ parameters
as continuous, hidden variables ranging from 0 to 1. The
EM update step is then

1,1

/\¢+1:argmaX// p(u™, 11 X)) np(h, wF, p T (N dp dp”,
AEP 0J0

where)\; is the current estimate of the policy and A, is

the new estimate of the policy. This can be simplified to

maximizing the following for a policy’s action for each

observation o (details omitted for space):

Aiy1(0) = argmax [a(égzi —077) + 5923] ,
a€A



where 6% is the number of positive feedbacks received

for observation o, 60 '+ is the number of posmve feed-
backs where the correct action was performed given that

the correct action for o is a, and #°~ and ;' are analo-
gous terms for negative feedbacks. Add1t1onally we define

a=In [@} /1 /1 p(hlpt, ™, Mi)dpTdp”, and
6= // (Bl ™ A)ln[(l_e)“ h e

pt+ (1 —ep-

values of a simplification of the expectation step, which
can be computed once for each EM update.

dp*dp”,

Experiments

We compare SABL and I-SABL with variants of two al-
gorithms from the literature on learning from human feed-
back via maximizing numerical reward. Both algorithms
maintain an estimate of the expected reward associated
with actions for each observation, but differ in their inter-
pretation of no feedback. The first, denoted M_, is simi-
lar to TAMER [9] and ignores episodes without feedback.
The second, denoted M ¢, is similar to COBOT [6] and
includes episodes with zero reward — value estimates for
actions will return to zero after enough episodes with no
feedback. Both algorithms associate +1 with positive and
—1 with negative feedback. Unlike SABL and I-SABL,
M_g and M use the cumulative value of all feedback
given during an episode.

User Studies

To evaluate the algorithm performance when learning
from human trainers, we ran a user study in which partici-
pants trained learning agents using either SABL, I-SABL,
M_g, or M, to perform a contextual bandit task. We re-
cruited two groups of users via email, online forums, and
social networks to participate in our online study: univer-
sity students represented how the average computer-savvy
person might train an agent, and amateur dog trainers
represented participants with experience in training using
discrete feedback.

Participants were asked to train an animated dog to
chase rats away from a corn field. The dog was drawn
at the center of the screen (Figure 1), and rats came one

Figure 1: A screenshot of the study interface

at a time every two seconds from three points along each
of the four edges, resulting in twelve total observations.
The learning algorithms were given no information about
the spatial relationship between observations. The dog
(learner) had four actions available: up, down, left, or
right. The participants were instructed to provide re-
wards and/or punishments (using the keyboard) to teach
the learner to move in the direction the rat is approach-
ing from. Users decided when to terminate experiments.
They were instructed to do so when they felt that the dog
had learned the task sufficiently well, or if they felt that
the dog would not be able to learn further.

We ran two studies with this setup, first with partici-
pants from both the dog-training forums and the univer-
sity, and second with only participants from dog-training
forums. The first study evaluated SABL against the M_
and M learners. The second study compared I-SABL
against SABL. In the first study, 126 users participated,
of which 71 completed training at least one learner and
51 completed training at least two learners. In the second
study, 43 users participated, while 26 completed training
at least one learner, and 18 completed training at least two
learners.

The average number of steps it took each agent to reach
each of a set of four pre-determined criteria was used
as the performance measure. Three of the criteria were
when the learner’s estimate of the policy was 50%, 75%,
and 100% correct. The fourth criterion was the num-
ber of steps before the user terminated the experiment.
Results from the first user study show that learners us-
ing SABL tended to outperform those using M_y and
M. Figure 2 shows the number of steps to reach each
of the four criteria. The bars for SABL are lower than



Comparison of learning rates in the first user study
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Figure 2: The average number of actions required to teach
SABL, M_jy and M a policy that was at least 50%,
75%, or 100% correct, and until the participants decided
to terminate the session (* indicates that differences in
performance were statistically significant for that column)

their counterparts for the other algorithms, showing that
on average the SABL learner took fewer steps to reach
the 75%, 100%, and the user termination criteria. Un-
paired two sample t-tests show that the differences be-
tween the SABL learner and the M_q and M learners,
for the 75%, 100% and termination criteria, were statisti-
cally significant (p < 0.05). In addition, a larger percent-
age of sessions with the SABL learner reached 50%, 75%,
and 100% policy correctness before termination than with
the M_y and M learners. Pearson’s x? tests show that
the differences between the number of times the SABL
learner and the M _( and M learners reached the 100%
criteria were statistically significant (p < 0.01), with the
SABL, M_y and M learners reaching 100% correct-
ness 53%, 17% and 19% of the time respectively.

In the second study, we compared I-SABL against
SABL using the same performance criteria to test whether
inferring trainers’ strategies improves learning perfor-
mance. Figure 3 shows the number of actions used for
each algorithm to reach the criteria. Of interest here are
the very small (statistically insignificant) differences be-
tween SABL and I-SABL for the 50% and 75% policy
correctness criteria. The difference becomes much larger
at the 100% and user-selected termination criteria, where
I-SABL reaches each criteria in significantly fewer steps.
This finding is expected, as improvements in learning per-
formance for I-SABL would be most pronounced when
the agent has received enough feedback for some obser-
vations to be able to infer the trainer’s strategy. Unpaired

Comparison of learning rates in the second user study
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Figure 3: The average number of actions required to teach
SABL and I-SABL a policy that was at least 50%, 75%,
or 100% correct, and until the participants decided to ter-
minate the session (* indicates that the difference in per-
formance was statistically significant for that column)

t-tests show these performance differences are statistically
significant, with p = 0.01 for the 100% and p < 0.05 for
the termination criteria. A larger percentage of sessions
with the I-SABL learner reached 50%, 75%, and 100%
policy correctness before termination than with the SABL
learners. Pearson’s x2 tests show that the differences be-
tween the number of times the I-SABL learner and the
SABL learner reached the 100% criteria were significant
(p < 0.01), with the I-SABL learner reaching 100% pol-
icy correctness 50% of the time, and the SABL learner
reaching it 23% of the time, respectively.

Simulated Trainer Experiments

To better understand how strategy inference allows I-
SABL to outperform SABL, we ran a series of experi-
ments, with simulated trainers in contextual bandit do-
mains, comparing I-SABL against SABL with pt =
1~ = 0.1 — an assumed balanced feedback strategy. The
simulated trainer chose a target policy at random, and gen-
erated feedback using the same probabilistic model under-
lying SABL and I-SABL.

We tested each learning agent on tasks consisting of
two, five, 10, 15 and 20 observations and two, three,
or four actions. These experiments were conducted for
a range of pairs of pu* and p~ values for the simu-
lated trainer. Each p parameter was varied from 0.0
to 0.8, though we restricted experiments to cases where
1~ 4 pt < 1. The trainer’s error rate ¢ = (.2, matching



SABL and I-SABL, simulated trainers, 15 observations, 4 actions
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Figure 4: Plot shows the performance of I-SABL and
SABL (u~ = ™ =0.1) with simulated trainers on a task
with 15 observations and 4 actions. The bottom x-axis is
the trainer’s i+, the top x-axis is p1~, and the y-axis is the
number of steps taken to find the target policy.

SABL and I-SABL’s assumed value. Learners in these
studies took actions at random but kept an estimate of the
most likely policy (given the feedback).

The results show that I-SABL is able to take advan-
tage of information from episodes where no explicit feed-
back is given. Figure 4 shows two curves representing
the number of steps it took the SABL and I-SABL agents
to find the correct policy, for varying i parameters. The
difference in performance between I-SABL and SABL
increases (in favor of I-SABL) as the trainer’s y param-
eters diverge from the balanced strategy that SABL as-
sumes. Moreover, [-SABL remains competitive (relative
to SABL) even when the trainer’s y parameters represent
a balanced strategy.

Sequential Tasks

Experiments presented thus far apply SABL and I-SABL
to contextual bandit domains. However, we can also apply
these algorithms to sequential decision making domains.
For efficiency, we can restrict the set of policies consid-
ered by assuming that the trainer is trying to teach a policy
that is represented by a reward function from a class of re-
ward functions defined over the domain. In this case, we
can limit SABL/I-SABL to reason over optimal policies
for each of those reward functions. In a grid world, for
example, we can assume that the trainer is trying to teach
the agent to navigate to a goal location. The use of reward
functions here is a syntactic convenience, not a require-

Figure 5: The sequential domain. Blue squares represent
possible goal states, black squares represent obstacles of
type one and grainy green squares represent obstacles of
type two.

ment.

We tested SABL and I-SABL for sequential domains
in a 15 by 15 grid world with a simulated trainer. The
algorithm considered 48 possible goal states, as well as
two special kinds of “obstacles” in the world — states
the agent could move in or out of but was meant to avoid
— depending on the reward function. Each of the pos-
sible reward functions returned a value of one when the
agent reached the goal location, —100 when the agent en-
tered an obstacle type that was to be avoided, and zero
otherwise. There were four different obstacles conditions
(no obstacles, avoid type one, avoid type two, avoid both
types), resulting in 48 x 4 = 192 possible policies. Fig-
ure 5 shows the grid world used. Prior to applying SABL
and I-SABL, these reward functions were converted to
policies by solving the associated Markov Decision Pro-
cess.

In this case SABL and I-SABL only considered a small,
finite set of possible p parameter combinations, represent-
ing balanced, reward-focused, and punishment-focused
trainer strategies. Additionally, to leverage this simpli-
fication rather than use EM on the entire feedback history
at each step, we adapted I-SABL to update its prior be-
lief in each strategy and policy to the posterior probabil-
ity distribution given by the most recent feedback and the
current distribution over trainer strategies. Trainer strate-
gies were defined by {u*, u~} = {0.1,0.1} for the bal-
anced feedback strategy, {u™, =} = {0.1,0.9} for the
reward-focused strategy, and {u™, =} = {0.9,0.1} for
the punishment-focused strategy. We did not consider the
inactive strategy, as it was uncommon in the user study.



Trainer’s Learning Identify | 95% Conf. | #Explicit | 95% Conf.
Strategy Algorithm Policy Int. Feedbacks Interval
I-SABL 444 +11.7 39.1 +10.4
balanced SABL - balanced feedback 46.7 9.3 40.5 +8.1
SABL - reward-focused 67.3 +21.1 60.0 +19.3
SABL - punishment-focused 65.6 +20.6 58.1 +18.5
I-SABL 68.7 +20.5 54.1 +17.7
reward-focused SABL - balanced feedback 152.8 +27.9 71.4 +18.2
SABL - reward-focused 65 +23.8 50.8 +20.4
SABL - punishment-focused N/A N/A N/A N/A
I-SABL 76.2 +25.4 14.8 +3.9
punishment-focused SABL - balanced feedback 190.9 +27.3 37.4 +4.5
SABL - reward-focused N/A N/A N/A N/A
SABL - punishment-focused 51.3 +17.9 11.1 +2.8

Table 2: For all algorithm and simulated trainer pairs tested, the average number of steps before the agent correctly
identified the intended policy as the most likely and the average number of explicit feedbacks that were provided
before the intended task was identified as the most likely. “N/A” indicates that the algorithm was unable to learn the

correct policy in the majority of training runs

For all strategies, € = 0.05.

Table 2 summarizes the results for all algorithm and
trainer strategy pairs. For all simulated trainers, -SABL
and SABL using the correct feedback strategy identified
the intended policy the fastest, again demonstrating that
I-SABL does not suffer significantly from initial uncer-
tainty about the trainer strategy. When the simulated
trainer used a balanced-strategy, SABL using incorrect
strategy assumptions performed worse, but not signifi-
cantly worse. This lack of significant difference likely
results from the fact that in this experiment the simulated
trainer rarely failed to give explicit feedback. Regardless
of their strategy assumption, SABL learners always inter-
pret explicit feedback in the same way. However, when
the trainer does not employ a balanced strategy, incor-
rect SABL assumptions were be more problematic. If
SABL assumes a balanced feedback strategy while the
trainer follows a reward-focused strategy, the policy can
be learned, but more steps are needed to do so because
many steps do not receive explicit feedback and are thus
ignored. If SABL assumes the opposite focused feed-
back strategy (e.g., assuming punishment-focused when
it was actually reward-focused), then the agent may never
be able to learn the correct policy. Assuming the opposite
focused feedback strategy likely performs so poorly be-
cause it misinterprets what a lack of feedback means. For
instance, if SABL assumes a punishment-focused strat-
egy when it’s actually a reward focused strategy, it will

interpret the lack of feedback when it’s doing the incor-
rect thing as evidence that it’s doing the correct thing.

An interesting fact to note in these results is how few
explicit feedbacks are required for I-SABL and SABL
(with the correct strategy assumption) to learn the task
when the trainer employs a punishment-focused feedback
strategy. This result occurs because, as the agent narrows
in on the correct task, most of the actions the agent is
taking are correct, which results in a lack of explicit feed-
back; since I-SABL (and SABL assuming a punishment-
focused strategy) correctly interprets this lack of feedback
as support, the lack of explicit feedback does not hinder
learning.

Conclusion

Initially we argued that existing work on learning from
humans which considers human input as either a demon-
stration or a numerical reward is not always sufficient
for describing the ways in which human trainers pro-
vide feedback. We presented empirical data indicating
that humans deliver discrete feedback and follow different
training strategies when teaching agents — an insight at
odds with existing approaches to learning from humans.
To leverage the information about feedback when those
strategies are modeled, we have developed two variants of
a Bayesian learning algorithm, SABL and I-SABL. SABL



encodes assumptions about trainer strategies using param-
eters describing the probability of explicit feedback given
the correctness of actions, and I-SABL uses expectation
maximization to infer those parameters online.

The results of our user studies and simulation experi-
ments demonstrate effectively that the SABL and I-SABL
algorithms learn in substantially fewer episodes, and with
fewer feedbacks, than algorithms modeled after existing
numerical-reward-maximizing algorithms from the litera-
ture. We have demonstrated this advantage even in cases
where the trainer’s strategy is initially unknown. Further,
we have shown this approach can be applied effectively
both in contextual bandit and sequential decision making
domains.
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