
Building and Scaling Virtual Clusters with Residual
Resources from Interactive Clouds

R. Benjamin Clay*, Zhiming Shen*, Xiaosong Ma*†

*Dept. of Computer Science, North Carolina State University.
† Computer Science and Mathematics Division, Oak Ridge National Laboratory

{rbclay,zshen5}@ncsu.edu, ma@csc.ncsu.edu

ABSTRACT
The popularity of cloud-based interactive computing services (e.g.,
virtual desktops) brings new management challenges. Each inter-
active user leaves abundant but fluctuating residual resources while
being intolerant to latency, precluding the use of aggressive VM
consolidation. In this paper, we present the Resource Harvester
for Interactive Clouds (RHIC), an autonomous management frame-
work that harnesses dynamic residual resources aggressively with-
out slowing the harvested interactive services. RHIC builds ad-
hoc clusters for running throughput-oriented “background” work-
loads using a hybrid of residual and dedicated resources. These
hybrid clusters offer significant gains over normal dedicated clus-
ters: 20-40% cost and 20-29% energy in our testbed. For a given
background job, RHIC intelligently discovers/maintains the ideal
cluster size and composition, to meet user-specified goals such as
cost/energy minimization or deadlines. RHIC employs black-box
workload performance modeling, requiring only system-level met-
rics and incorporating techniques to improve modeling accuracy
under bursty and heterogeneous residual resources. We demon-
strate the effectiveness and adaptivity of our RHIC prototype with
two parallel data analytics frameworks, Hadoop and HBase. Our
results show that RHIC finds near-ideal cluster sizes/compositions
across 28 workload/goal combinations, with 5% average error
for cost minimization and 3% for energy, relative to exhaustive
searches, and runtimes 2% under deadlines. Further, RHIC sig-
nificantly outperforms alternative approaches, tolerateshigh insta-
bility in the harvested interactive cloud, works with heterogeneous
hardware and imposes only 0.5% overhead.

1. INTRODUCTION
Interactive cloud offerings are expanding, providing virtual com-

puting laboratories, remote desktop environments and online col-
laboration tools. For example, North Carolina State University’s
Virtual Computing Laboratory (VCL) [31] is a production cloud
system hosting virtual desktops with a variety of applications for
more than 13,000 students at NCSU and other nearby schools.
These new platforms bring individual users easy access to popular
applications/tools with low management overhead. Such systems
also yield significantresidual, or unused, resources, due to overpro-
visioning and the bursty, unpredictable nature of interactive work-
loads. Traditional techniques such as virtual machine (VM)pack-
ing are unlikely to be performed aggressively in this environment,
due to users’ bursty resource consumption patterns combined with
response time requirements. Conservative workload consolidation,
on the other hand, will likely leave significant amounts of resid-
ual resources idle, as we show in §3.1. By aggressively harnessing
such resources, cloud providers will benefit from higher cloud uti-
lization as well as considerable energy savings, as theincremental

energy cost of running additional applications using residual CPU
is low [22].

Harvesting residual resources in this context requires a
well-designed infrastructure that considers performance, cost-
effectiveness and system reliability. In particular, using interac-
tive nodes alone will suffer from performance and stability issues.
Prior studies [9, 21, 25] have proposed a hybrid batch cluster design
wherevolunteer nodes supplement a core set of stablededicated
nodes, in some cases using EC2 SPOT instances [3]. As shown
in Fig. 1, a set of transient interactive nodes are “padded” with
volunteer VMs running a background batch job, which consume
residual resources while automatically deferring to the interactive
user via hypervisor prioritization. This co-location of interactive
and batch workloads is advantageous due to orthoganal temporal
characteristics (§4.2), and has been described previously[22, 24].
In preliminary experiments (§3.2), we demonstrate 20-29% energy
and 20-40% cost gains over normal dedicated clusters with only
1% slowdown of interactive workloads.

Shared nothing clouds such as the VCL lack robust shared stor-
age, like Amazon’s Elastic Block Store [2], making migration more
costly for both foregroud and background users. As a result of this
high cost and users’ bursty resource consumption, we employan
I/O asymmetric design for the background cluster, where only the
dedicated nodes provide persistent storage. Thevolunteer VMs use
their local storage for temporary data only, while the foreground
VMs are hosted entirely from local storage, as shown in Fig. 3.
This choice allows volunteers to be lightweight and agile byavoid-
ing data-loss and expensive replication as volunteers joinand leave:
volunteers are only sent data which they will immediately process,
and are not relied upon to host data in the long-term. This approach
is necessary because, in contrast to prior work on passive volun-
teerism for MapReduce [25], interactive nodes are much shorter-
lived and unlikely to return in the near future. Finally, thehybrid
cluster design provides a performance baseline to mitigatestrag-
glers, caused by bursty and unreliable volunteers, via speculative
execution of delayed volunteer tasks by dedicated nodes.

In this setting, the cloud administrator is faced with the follow-
ing question:Given an arbitrary batch job, and limited knowledge
about the interactive workloads, what hybrid cluster size and com-
position will give the best performance for the cost? This problem
can be formulated as a dynamic, virtualized cluster-sizingproblem,
which brings new challenges not studied in prior work. Unlike in
traditional cluster-sizing scenarios, the highly-dynamic nature of
this environment introduces substantial complications when mod-
eling performance, determining an ideal cluster size, and selecting
cluster composition. For example, Fig. 2 shows the diverse range
of monetary costs and energy consumption among different batch
workloads. These results are dependent on the specific batchin-

50%

80%

40%

65%50%

30%40%

60%
Interactive Nodes

Dedicated Nodes

Interactive Utilization

Figure 1: Sample hybrid cloud computing system,
with 8 interactive nodes running interactive ser-
vices. A background job runs on 2 dedicated and 4
volunteer nodes.

Cost ($) Watt Hrs
Workload Min Max Min Max
Wordcount 4.42 6.38 1273 1957
Grep 2.40 5.83 710 894
Pi 9.25 16.63 2963 5461
Co-oc. 7.72 11.41 2230 3987

Figure 2: Cost and energy ranges
for batch workloads on a hybrid
cluster, with 6 dedicated nodes and
0-36 volunteers.

���
���
���
���
���
���

Foreground
VM

Volunteer
VM

���
���
���
���

Local Disk
��
��
��
��

Local Disk

Temp
Low

data
priority

All
High

data
priority

Interactive Node

Dedicated
VM

Dedicated Node

Input
output

and
data

Figure 3: Disk layout in the hybrid
cluster design. The hypervisor is used
to prioritize foreground disk access.

puts, foreground workloads and pricing structure chosen, as well as
cluster hardware, network and energy characteristics. Differences
in these factors yield different ideal cluster sizes.

Existing work has addressed several related problems, including
MapReduce cluster sizing [15, 19, 32, 39], volunteerism/hybrid
clusters for MapReduce [9, 21, 25] and workload consolida-
tion [40]. However, these prior studies were not designed tocon-
sider the unique challenges in harvesting residual resources from
interactive users, particularly (1) the high degree of temporal and
spatial transience in residual resources, and (2) the dedicated node
I/O saturation constraint in our target asymmetric architecture.
More detailed related work discussion is given in §2.

To address such unique challenges in discovering and maintain-
ing the ideal hybrid cluster size for arbitrary batch workloads, ei-
ther white-box or black-box performance modeling can be used,
but each has downsides. Black-box performance modeling using
system-level metrics enables generalization and unobtrusiveness,
but such metrics can be noisy. White-box modeling allows higher
sensitivity to the limitations of a particular platform, and poten-
tially greater accuracy, but limits generalization. Real-world paral-
lel batch workloads are commonly composed of short jobs [20]and
novel jobs [1, 15]. As a result, profiling must be completed quickly
with no a priori knowledge to yield reliable estimates early.

In this paper, we present the Resource Harvester for Interac-
tive Clouds (RHIC), a generic management framework which au-
tonomically optimizes a hybrid cluster running within residual re-
sources. RHIC provides intelligent cluster sizing for a wide range
of throughput-oriented parallel batch workloads. To accomplish
this, RHIC combines profiling with black-box performance model-
ing to make resizing decisions in an iterative, online fashion. We
profile the CPU, memory and I/O consumption of each workload
and build self-tuning models to translate these system-level metrics
into job performance estimates. Finally, we tailor this approach
to the hybrid cluster design, by predicting residual resource avail-
ability at the volunteers and directly managing I/O saturation at the
dedicated nodes. Our multi-faceted approach handles dynamic and
unpredictable behavior from a wide range of sources, aggregating
unstable resources into a reliable batch platform. Throughexten-
sive evaluation, we show that RHIC robustly delivers accurate per-
formance estimates and quickly discovers the best cluster size for
novel workloads. The major contributions of this work are:

• To the best of our knowledge, we are the first to propose batch
cluster sizing as a tool for resource harvesting in interactive
clouds, with the goal of making the background job itself energy
and cost efficient.
• We present an adaptive cluster sizing solution that uses a combi-

nation of online profiling and performance modeling to quickly
discover and maintain efficient hybrid cluster sizes.
• We develop black-box batch job performance models which map

aggregate residual resources to goal performance. RHIC only
relies on system monitoring data and a progress score from the
background job, which allows generalization to a wide rangeof

throughput-oriented workloads.
• We carried out an evaluation of over 400 runs on a hybrid cluster

of 42 nodes, using real traces collected from production inter-
active clouds and representative batch analytics workloads. Our
results show that RHIC achieves high accuracy across 28 work-
load/goal combinations in minimizing cost/energy (5%/3% er-
ror as compared to exhaustive surveys), and enforcing deadlines
(2% under on average). In addition, we demonstrate RHIC’s per-
formance against alternative algorithms, tolerance for increased
instability and hardware heterogeneity, and low overhead.

In the rest of the paper, we give an overview of related work in§2,
provide background motivation in §3, and discuss RHIC’s design
in §4. In §5 we present our evaluation and in §6 we conclude.

2. RELATED WORK
Our work is related to contributions from several other areas:
Volunteer computing. Volunteer computing (VC), known widely
through projects such as Condor [26, 35] and BOINC [4], has a
long history as both a computation paradigm and a method of har-
vesting wasted cycles. While passive VC has traditionally formed
the bulk of interest in this research area, advancing multitasking
technology has made it feasible and attractive to perform active
volunteer computing [18, 22], where the user and harvester coex-
ist temporally. Active and passive VC are similar in spirit,with
active VC posing additional challenges in maintaining interactive
user experience [18, 23] and delivering consistent background per-
formance using unreliable residual resources [6].

The focus of this work is related to the second challenge men-
tioned above: how bursty residual resources can efficientlyprovide
a stable batch execution platform that meets performance and/or
cost goals. RHIC’s novelty is in modeling the relationship between
batch workload progress and resource availability, with techniques
to mitigate burstiness, heterogeneity and other artifactsof our hos-
tile environment. While both passive and active VC are important
prerequisites to RHIC, our design and claims are orthogonal.
Cluster sizing for parallel batch workloads. Several works have
been recently published which perform cluster sizing for parallel
batch workloads [15, 19, 32, 39, 41]. Of these, our efforts are
most-closely related to those which combine modeling with on-
line adjustment and feedback [15, 32, 39]. Jockey [15] is a system
for meeting deadlines in MapReduce clusters using offline pro-
filing/simulation, coupled with an online control loop which can
adapt to cluster availability. Conductor [39] also combines mod-
eling and online adjustment to meet deadlines and minimize cost
for MapReduce, taking into account data upload and migration
overheads. RAS [32] is a MapReduce scheduler that profiles the
resource requirements of Map/Reduce tasks and then attempts to
allocate sufficient slots for each running job to meet soft dead-
lines. Starfish [19] is a system for optimizing cluster size for arbi-
trary MapReduce workloads and hardware, using a combination of
workload profiling and and configuration parameter modeling. Yu
et al. [41] describe a system for modeling batch workload perfor-

mance and allocating masters and workers to avoid resource waste.
Compared to the aforementioned efforts, RHIC addresses a

unique permutation of traditional cluster sizing for parallel batch
workloads. We consider several sub-problems which are specific
to our harvesting theme, including foreground demand predic-
tion, heuristic node selection, I/O saturation awareness,I/O curve
discovery and heterogeneity-tolerant performance modeling. In
summary, the differences between RHIC and the aforementioned
MapReduce cluster-sizing efforts are as follows: (1) the uniquely
unstable environment in which we operate, (2) our support for
novel, short-lived jobs, and (3) the general applicabilityof our mod-
eling approach to a broad class of parallel batch workloads.

Because we rely on the foreground user for dynamic residual
CPU and static residual memory availability, each volunteer node
offers a varying contribution to the job’s completion time.As a
result, node or task-level performance modeling [15, 19, 32, 39,
41] will not adequately capture the performance of a given clus-
ter. Our insight regarding aggregate residual CPU availability and
its direct effect on cluster performance (§4.4) led to RHIC’s CPU-
centric modeling approach. Further, hybrid clusters have signif-
icant I/O restrictions since dedicated nodes provide all persistent
storage. We take a unique approach to discovering and modeling
I/O bottlenecks (§4.3) in response. Wieder et al. [39] do consider
data staging and migration costs in their performance model, but
do not account for the effects of disk contention and I/O loadim-
balance on whole-cluster performance. Yu et al. [41] consider data
transfer time and cluster balance, but not I/O saturation atmaster
nodes or imbalanced demand from heterogeneous workers.

RHIC can optimize novel and short-lived jobs (which are com-
mon [1, 15, 20]) with noa priori knowledge, using a combina-
tion of online profiling and adaptive scaling. All prior efforts re-
quire either previous executions of the target job [15, 19, 32, 41] or
key performance characteristics [39]. While those with online ad-
justment [15, 32, 39] could adapt to some deviation from the pro-
file performance (as Wieder et al. [39] demonstrate), the dynamic
nature of volunteer heterogeneity directly inspired RHIC’s online
learning and reactive approaches to CPU (§4.3) and I/O (§4.4).

Finally, RHIC offers a highly-generic performance modeling in-
terface, which only requires a job progress score and average task
length. The models employed by prior works have various levels of
dependency on the workload, from MapReduce as a concept [32,
39] to specific MR frameworks [15, 19]. Because we envision
RHIC as a harvesting platform which manages throughput-oriented
parallel batch jobs, we built it with to be workload-independent
and evaluate this capability (§5.5). Further, because volunteers
are lightweight and transient, we believe RHIC could be applied
to multi-stage jobs [15] by managing each stage independently.
Hybrid MapReduce, Volunteerism and Cluster Sharing. Prior
works use Amazon EC2 Spot Instances to perform MapReduce
jobs [9, 21, 27], whose transience is similar to interactivecloud
nodes. Two approaches are taken to handle SPOT instance instabil-
ity: (1) using SPOT instances to supplement a core set of dedicated,
non-SPOT nodes [9, 21], and (2) using Amazon’s cloud storage
service to preserve intermediate results [27]. Our approach is most-
similar to the former, in that robust aggregated storage is unavail-
able in our environment and a hybrid cluster design is necessary to
provide stability. Both of these works [9, 21] elect to host data only
on core nodes, but do not consider the performance impact of I/O
in such an offloading scenario. Although Lee et al. [21] highlight
a similar problem space to our work, they have not proposed any
concrete solution for automatically determining ideal cluster size.

MOON [25] enhanced Hadoop to operate under passive volun-
teerism, where a foreground workload and MapReduce are inter-

Table 1: CPU consumption, burst and reservation charac-
teristics collected from NCSU’s VCL. CPU data are collected
from real user session traces (described in more detail in §5.1).
Reservation data covers 750,000 sessions from 2004-2010.

Metric Matlab Photoshop Office C Dev

CPU Consumed (µ) 19.8% 7.0% 2.8% 22.5%
CPU Consumed (σ) 23.2% 16.2% 12.4% 24.3%

CPU burst height (µ) 39.9% 25.8% 31.0% 27.7%
CPU burst length (µ) 6.9 sec 2.0 sec 1.3 sec 47.4 sec

Reservation (µ) 93 min 74 min 70 min 120 min
Reservation (σ) 90 min 79 min 91 min 99 min

leaved temporally but not spatially. Mesos [20] is a framework for
batch framework co-location above a shared distributed filesystem.
Both works do not consider our target scenario, with two workloads
asymmetrically sharing resources, or perform cluster sizing.
Workload Consolidation. Co-locating workloads on the same
physical host is a well-established technique [40] complementary
to our approach. RHIC can transparently harvest whatever resid-
ual resources are available after consolidation, with the expectation
that the user will leave some free during periods of “think time”.

3. BACKGROUND
As mentioned earlier, we leverage ahybrid cluster design [9,

21, 25] to harvest residual resources. In §3.1, we justify our cluster
design choice by showing that it is appropriate for our environment.
Then, in §3.2 we validate assumptions regarding the feasibility and
profitability of adopting this approach.

3.1 Hybrid Cluster Design Rationale
A hybrid cluster is composed of dedicated nodes acceleratedby

lightweight volunteer VMs, providing a large performance boost
limited only by the size of the dedicated cluster and the scalability
of the workload. Volunteer VMs are hosted alongside foreground
VMs in a pairwise fashion, arbitrated by the hypervisor, with vol-
unteers granted minimum priority and foreground VMs granted the
maximum. Volunteers are pre-loaded on foreground nodes, boot-
ing at the same time as foreground VMs and waiting latent until
needed. When in use, volunteers are sent only the data which they
need for immediate computation, returning outputs to the dedicated
nodes as they are completed.

Our hybrid design is motivated by the characteristics of inter-
active cloud workloads observed on the VCL. Table 1 summarizes
statistics information collected from VCL remote desktop sessions.
It shows that while user reservations are fairly long, theirdura-
tions have very high variances, indicating unpredictable session
lengths. Further, CPU bursts are quite short-lived, even for the
more computation-intensive workloads (such as Matlab). The low
average utilization is indicative of the significant residual resource
availability in this cloud, which will go to waste and yield poor
energy efficiency unless they are captured.The sheer volume of
wasted resources in a cloud of this size (over 1000 nodes) justi-
fies examining hybrid cluster design, as a cost-effective alterna-
tive to buying and operating separate batch clusters.

Such highly dynamic behavior renders traditional approaches
such as workload consolidation [36] less appealing. Conserva-
tive consolidation approaches can maintain interactive users’ QoS
requirements but will inevitably waste resources. Aggressive ap-
proaches, on the other hand, may face severe performance penalties
in case of resource conflicts. In particular,shared nothingclouds
have significant migration costs because both the disk imageand
memory contents must be transferred, often requiring minutes even
with high bisection bandwidth. Although live migration is possible

Word
Count

Grep Word
Cooc.

Pi
0

20

40
A

vg
 g

ai
n

(%
)

MapReduce workload

 Energy
 Cost

Figure 4: Energy and cost
savings by using a hybrid
cluster design, over a reg-
ular dedicated-only cluster.
Error bars represent the
range of savings.

OpenOffice C Dev. Web Reader R

0
2
4
6
8

10
12
14

Sl
ow

do
w

n
(%

)

Interactive workload

 Xen 3.4: Cooc KVM 1.2: Iozone
 KVM 0.9: Cooc KVM 1.2: EP
 KVM 1.2: Cooc KVM 1.2: CG

Figure 5: Slowdown of interactive foreground
workloads padded with volunteers. Fore-
ground workloads include members ofbltk
and AT&T’s R benchmark. Background work-
loads include several resource-intensive bench-
marks: Word Cooccurrence (Cooc), Iozone,
and NAS PB (EP, CG), which run on all cores
using node-local MPI.

0 1000 2000 3000 4000
0

50

100

0 600 1200 1800
0

50

100

0 1000 2000 3000 4000
0

5

10

15

0 600 1200 1800
0

10

20

30

0 1000 2000 3000 4000
0

2

4

6

0 600 1200 1800
0

5

10

15
Grep: network receive

Grep: network send

Grep: disk I/O

Wordcount: network receive

Wordcount: network send

Wordcount: disk I/O

U
til

iz
at

io
n

(%
)

Time (s)
 Dedicated alone With 8 volunteers

Time (s)

Figure 6: Disk and network bandwidth utilization
on 2 dedicated nodes, with and without 8 volun-
teers. Disk utilization is measured by the % of
time the CPU spent blocked on I/O.

both with shared and non-shared storage [30], the short CPU bursts
and highly variable session durations seen in interactive workloads
will require frequent migration and may lead to heavy thrashing.

In the hybrid cluster design, the dedicated nodes have node-local
storage capacity, while the volunteer VMs only use their local stor-
age for temporary data, as shown in Fig. 3. This design addresses
the dynamic and unreliable nature of residual resources, unused by
interactive tasks, in several ways. First, it keeps volunteer nodes
lightweight and agile, making it much easier to use/discarda node
due to foreground interactive load shifts and to dynamically scale
the virtual cluster size. Second, expensive tasks performed by the
underlying distributed file system, such as replication anddata re-
balancing, will not be unnecessarily performed on volatilevolun-
teers. Third, through mechanisms such as task replication and re-
liable dedicated nodes, this hybrid design can aggressively harvest
residual resources while preventing stragglers from delaying job
completion. Finally, this approach helpsinsulate foreground VMs
from heavy I/O contention on local disks by offloading most back-
ground disk traffic to the dedicated nodes.

3.2 Validating Key Assumptions
Here we validate three key assumptions used in our design:
1. Savings over dedicated clusters.To verify the energy/cost
benefits of the proposed hybrid cluster approach, we experimented
with 2 dedicated nodes and 2-8 volunteers, priced/metered as dis-
cussed in §5.1. Fig. 4 shows sample monetary and energy savings
when running Hadoop workloads on a hybrid cluster, as compared
to using a regular Hadoop cluster with the same number of nodes
(dedicated+ volunteers). E.g., we directly compare 2 dedicated+
2 volunteers to 4 regular nodes. The foreground workload on vol-
unteer nodes is Photoshop. The hybrid cluster design is shown to
deliver significant savings: 20-29% energy and 20-40% cost.
2. Foreground users can be isolated from volunteers.Mod-
ern hypervisors have been shown to offer effective performance
isolation [12], partially demonstrated by today’s high VDIdensi-
ties [11, 37]. We further verified this with our own experiments
by testing work-conserving schedulers in the Xen and KVM hyper-
visors. These tests co-located foreground and background VMs,
with the foreground given the maximum CPU, disk and network
priority, and the background VM minimum. We tested our most
resource-intensive background workload (Word Cooccurrence) on
three hypervisors, as well as I/O and CPU benchmarks on the latest
version of KVM. Our results (Fig. 5) indicate that the performance
impact is low despite virtual desktop applications’ sensitivity to
I/O latency. Xen is quite effective in performance isolation, with
an average slowdown of 1%. KVM 1.2 delivers< 6% slowdown

��������	

���������	�
��
��

�����

�����	
��

�
�

�����
��

��
�����

��
��

������������

�������
���������
�
���
��������
����������

�������
���������
�
���
������������

����
�����	��

���
������������RHIC

 ��������
���
���

������

��������
����������

��!
	��������

�����

"��
�
���

	��������
���

#����

�������

"��
�
���
���

�����������

���

$�
��

%����������

$�
�����

Figure 7: RHIC components and data flow

with Word Co-occurrence, and does quite well alongside intensive
microbenchmarks with the exception of R paired with CG, due to
CG’s high memory bandwidth demand. To our knowledge, no hy-
pervisor currently arbitrates memory bandwidth usage.
3. Dedicated nodes have sufficient residual disk bandwidth to
offload computation to volunteers. To verify this, we examined
the availability of disk and network bandwidth when runninga
background MapReduce job on 2 dedicated nodes alone and when
supplementing these nodes with 8 volunteers (with no foreground
workloads, to create maximum I/O pressure). Figure 6 plots the
disk and network utilization level (collected with theiostat and
dstat tools respectively) for the two most I/O-intensive work-
loads in our MapReduce background test set: Wordcount and Grep.
It illustrates that (1) substantial disk and network bandwidth is
available on each node executing MapReduce jobs, (2) using vol-
unteers significantly speeds up the job execution while increas-
ing I/O bandwidth utilization, and (3) disk bandwidth consump-
tion is significantly higher than that of network, and therefore more
bottleneck-prone. This reinforces our choice to (1)accelerate a
dedicated cluster with volunteers and (2)identify the appropriate
number of volunteers for a given dedicated cluster. Our later eval-
uation (§5.2) further corroborates this conclusion.

4. FRAMEWORK DESIGN

4.1 Overview
RHIC combines online profiling with periodic job progress and

system resource monitoring to adaptively scale the volunteer node
set throughout abackground (batch) job’s execution. Progress
scores are commonly exported by batch frameworks as a function
of their fixed input sizes, in contrast to streaming or transactional
workloads. Fig. 7 shows RHIC’s major components (and their
interactions), which collaborate to periodically re-evaluate cluster
sizing decisions. RHIC starts a batch job execution with a profil-

ing phase, where the dedicated nodes run alone. This allows us to
seed our I/O model by viewing the background job running with-
out I/O pressure generated by the diskless volunteers, and gather
background job characteristics such as memory requirements.

Throughout the rest of the job execution, RHIC continues to
monitor system status, such as interactive node resource usage,
dedicated node I/O saturation level and job progress. With the ini-
tial profiling and the continuous monitoring, respectively, RHIC
automatically observes and adapts to both the background job’s be-
havior and changes in the foreground workload. The background
job’s execution is partitioned intoevaluation intervals. At the be-
ginning of each interval, a search algorithm generates candidate
volunteer counts to be evaluated. For each volunteer set size, inter-
active nodes are selected to meet this quota by thenode selection
component (§4.2), based on online node resource monitoringdata.
Their predicted resource availability is supplied as inputto the I/O
model, generated by theI/O modeling component (§4.3), which
identifies the I/O saturation point on the dedicated nodes and deter-
mines whether a given set of volunteers will incur dedicated-side
disk bottlenecks. Finally, completion time and goal performance is
predicted for the cluster by theperformance modeling component
(§4.4). The best candidate volunteer pool is used until the end of
the interval, when the process repeats.

In our prototype implementation, we set the initial dedicated-
only profiling phase to be one minute, the continuous resource and
job progress monitoring frequency to be once a second, and the
cluster resizing evaluation interval length to be once a minute. With
our moderate testbed (6 dedicated and 36 interactive nodes), RHIC
can exhaustively evaluate all possible volunteer counts (0-36) in
250ms. However, for scalability, we have also implemented an
alternative search module using simulated annealing.

Throughout this section, we make reference to a synthetic metric
which we callproductivity, which represents a volunteers’ ability to
perform work on behalf of the background workload. Productivity
is measured in units of CPU utilization (%), but through the mod-
eling process is adjusted to account for foreground CPU demand
and memory restrictions, as well as I/O bandwidth restrictions. We
explain how this metric is formulated in §4.2-4.3, and how RHIC
uses it to model workload performance in §4.4.

To handle the dynamic set of interactive nodes, each contributing
varying amount of resources, and to achieve online performance
modeling independent of the actual workload and batch execution
framework, RHIC relies on three key insights derived from our ex-
periments. These insights, as listed below, help us to simplify our
performance model, identify chief performance constraints, and fo-
cus on the behavior of aggregate resources from volunteers:

• Insight 1: Although each foreground interactive workload has
unpredictable resource usage bursts, itsaverage usage over a
longer period of time tends to be more stable.
• Insight 2: In our proposed hybrid execution mode, the disk

I/O bandwidth afforded by the dedicated nodes can be a major
factor limiting theeffective productivity of a volunteer.
• Insight 3: The overall progress of a batch job is determined

by the aggregate productivity from all selected volunteers,
largely independent of the productivity distribution among
these nodes.

In the rest of this section, we discuss in detail the above insights
and the interaction between several major RHIC components.Note
that for simplicity, our initial discussion is based on homogeneous
hardware across the node pool. However, in §4.6, we address this
shortcoming by explaining a thin translation layer that allows RHIC
manage and model different node types.

4.2 Volunteer Selection and Management
Given a desired aggregate volunteer set size, RHIC must select

which specific interactive nodes to use in an efficient and scalable
manner. This selection is based on continuous residual resource
monitoring and prediction, as discussed below. Common inter-
active cloud workloads are highly bursty, making load consolida-
tion [40] backed by VM migration difficult. However, for running
background jobs that yield to the interactive foreground tasks, it is
the sustained CPU resource availability that matters. Fortunately,
we found that although individual CPU usage spikes appear ran-
dom and unpredictable, the average CPU utilization can be effec-
tively estimated using near-term history data (Insight 1).
Residual resource prediction: RHIC employs an online fore-
ground workload CPU demand model using once-a-second CPU
consumption samples from the interactive nodes. We consid-
ered four common prediction methods: moving average, auto-
regression, auto-correlation, plus a hybrid of signature-based Fast
Fourier Transform and Markov chains used in previous work [34].

Moving
Average

Auto-
Reg.

Auto-
Corr.

Hybrid-12
-10
-8
-6
-4
-2
0
2
4
6
8

A
bs

ol
ut

e
E

rr
or

 (A
ve

ra
ge

)

Algorithm

 Over-Prediction
 Under-Prediction

Figure 8: Accuracy of four different
prediction algorithms for the fore-
ground traces which we use. Ab-
solute error is shown, with a value
range of 0-100.

We evaluated all four
under a range of con-
ditions which simulate
our intended environ-
ment: 10, 20, 30 and
60 minutes of history,
and 5 and 10 minutes
of lookahead (prediction
window). These con-
ditions were chosen be-
cause we desire a short
lookahead but simulta-
neously do not expect a
long history to be avail-
able due to interactive
node transience. Fig. 8
shows the accuracy of
these four prediction methods. Moving average yields the most-
accurate predictions, most likely due to the short trainingwindow.
Moving average and auto-correlation show identical performance,
but this occurs because auto-correlation falls back to a moving av-
erage when it is unable to achieve a match. As a result, we havese-
lected moving average as our prediction algorithm and we maintain
a prediction model for each interactive node regardless of whether
it is currently selected as a volunteer.

For memory, we assume that the foreground VMs have pre-
specified memory caps based on their workload, as in the case of
Amazon EC2 and VCL instances. Background memory require-
ments, on the other hand, are estimated during the initial profiling
phase. For MapReduce-like platforms, we adjust the number of si-
multaneous worker processes (such as Map slotsNSlots) on each
volunteer to fit within its residual memory capacity. If thiskind
of performance knob is unavailable, we instead discard any nodes
which do not have the minimum memory required.

Put together, the predicted foreground CPU consumption
(CPUfg) and CPU after considering memory restrictions (100%×
NSlots) indicate the volume of unused residual resources avail-
able for volunteer consumption on an interactive node. In effect,
whichever of these two factors is most-restrictive dictates what
CPU will be available for the volunteer’s workload. We call this
quantitypotential productivity Ppotential (Eq. 1), because it is the
estimated maximum productivity a volunteer, harvesting onthis in-
teractive node, could contribute to the background job. We dis-
tinguish this quantity aspotential because I/O bottlenecks may re-
sult in a loweractual productivity, as we discuss in §4.3. Here

CPUmax represents the maximum CPU available on the interac-
tive node, such as 400% for four cores.

Ppotential = min(CPUmax − CPUfg, (100% ×NSlots)) (1)

Note that we do not consider time-of-day in our predictions as
idle cloud sessions are likely to be terminated by either theuser
or the system for cost/energy saving, as does the VCL. There will
likely be daily or weekly interactive pool size fluctuations, which
can be handled by RHIC as a global constraint when selecting vol-
unteer cluster sizes for multiple concurrently running background
workloads.
Node selection:In selecting specific volunteers from the interac-
tive node pool, we adopt a greedy algorithm for better scalability.
Candidate nodes are sorted according to their potential productiv-
ity level. Then RHIC makes volunteer selections by evaluating dif-
ferent prefix sets of the candidate list toward a given optimization
goal, using the I/O-aware performance model discussed in §4.4. If
the current volunteer set is no longer optimal, adjustment is made
by including nodes with the highest or discarding nodes withthe
lowest predicted CPU contribution.

Intuitively, this approach reduces the number of volunteers used,
contributing to lower overall monetary and energy cost. Further,
this limits the search to a linear rather than exponential space, in re-
gard to the candidate interactive node pool size. In addition, we use
a periodic threshold-based “replacement” process to identify and
replace volunteers that experience a significant decrease in resid-
ual CPU availability. This is necessary because our node selection
algorithm only discards nodes when RHIC chooses to lower the
volunteer count. To do this, we periodically perform checking by
comparing the most-available unused node with the least-available
used one. If the difference in their CPU availability is above a
threshold, we swap the two. This process is repeated until the CPU
availability difference falls under the threshold. Interactive node
churn presents an issue for our search-driven cluster sizing scheme,
because nodes can arrive/leave unexpectedly and change theideal
batch cluster size. In such a situation, a naïve response would be
to perform another round of searching immediately to find thebest
cluster size, in light of the altered interactive pool. However, be-
cause interactive nodes can leaveen masse, i.e. at the end of a
class lab session, there could be significant thrashing caused by the
search process as it tries to react to a series of arrival/departure
events. To avoid this, RHIC takes adeferment strategy: upon an
interactive pool change, it enforces the decision made at the end of
the last evaluation interval, deferring new decisions to the end of
the current interval.

In our shared-nothing cluster, we disable migration because it is
costly and ill-suited (§3.1). However, if foreground migration is en-
abled, RHIC can seamlessly adapt to the post-migration volunteer
with its constant monitoring, periodic volunteer pool assessment
and node selection.

4.3 Modeling Workload I/O Behavior
As verified in §3.2, our proposed method is based on the observa-

tion that, for typical distributed batch workloads, there is available
I/O/network bandwidth for dedicated nodes to support additional
volatile, diskless volunteer nodes. This model applies to back-
ground workloads with non-trivial compute demand, but thiscat-
egory is fairly broad - we find that significant cost/energy gains can
be achieved for Grep, which is substantially I/O-intensive. How-
ever, as the number of volunteers grows, eventually I/O bandwidth
on dedicated nodes is likely to become the chief limiting factor for
performance/scalability (Insight 2), which has not been considered
in prior work [9, 21]. Despite this scalability limitation,we show

in our evaluation (§5.2) that a pool of volunteers can greatly ac-
celerate a dedicated cluster’s performance, making this portion of
RHIC’s modeling especially valuable.

RHIC builds an I/O model at runtime for the target batch job to
identify the existence of I/O bottlenecks. Fig. 9 illustrates the in-
teraction between the volunteer productivity and the I/O contention
at the dedicated nodes for two sample MapReduce workloads. It
shows the aggregateactual productivity from the volunteers at each
level of aggregatepotential productivity, averaged over the Map
phase. The actual productivity is measured from the volunteer VM
usage, while the potential is calculated with Eq. 1. We verified that
the leveling off point in these curves corresponds to the dedicated
node I/O saturation point. This figure also demonstrates that the
onset of the I/O saturation is highly workload-dependent. With a
more I/O-intensive workload (SFASTA in this case), the saturation
comes earlier and results in a lower aggregate actual productivity.
Fig. 9b plots the actual to potential productivity ratio over different
volunteer counts. It illustrates that the MapReduce job consumes a
constantly declining portion of the aggregate potential productivity.
As a result, we base our I/O model on{Ppotential, Pactual} pairs
for the given workload and hardware, derived at runtime.
Saturation Point Estimation: For each background job, RHIC
builds an I/O curve that tracks potential productivity on the X-axis
and actual productivity on the Y-axis, in order to ultimately predict
the actual productivity for a given volunteer set. RHIC usesdata
from the initial profiling, as well as continuous sampling, and ap-
plies regression to build this I/O curve. To avoid inaccuracy caused
by extrapolation or sampling well beyond the I/O saturationpoint,
it is important to estimate an approximate location of the dedicated
node I/O saturation onset. The saturation point also indicates the
upper bound of volunteers needed, regardless of optimization goal,
as beyond this point more volunteers will not return additional per-
formance.

RHIC bases its saturation point estimate on I/O bandwidth con-
sumption data collected in the initial profiling phase. Assuming
a linear relationship between actual productivity and I/O demands
(limitations discussed below in §4.5), it estimates the excess vol-
unteer productivity each dedicated node can support using Eq. 2.
HereBWUtilavg is the average disk bandwidth utilization mea-
sured on the dedicated nodes during the initial profiling phase, and
Pmax is the maximum productivity potential on a node.V ol P supp

is the volunteer productivityeach dedicated node could support, in
addition to its own demand. Next, we calculate the range of po-
tential I/O saturation onset points, using best and worst-case esti-
mates. The best-case estimate represents completely-balanced I/O
load (each dedicated node serving equal volunteer demand) and the
worst-case completely-imbalanced (one dedicated node serving all
volunteer demand). Below we derive the pair of estimates based on
V ol P supp, whereNd is the number of dedicated nodes:

V ol P supp = (
100%

BWUtilAvg

− 1) × Pmax (2)

Sbest = V ol P supp ×Nd (3) Sworst = V ol P supp (4)

Using the best and worst case estimates, RHIC increases the size
of the volunteer pool using Algorithm 1. It samples the worstcase
estimate and halfway between the best and worst case, then uses
linear regression to guess the actual saturation onset point. RHIC
then verifies the occurrence of I/O saturation using the disksensors
on the dedicated nodes, based on the disk bandwidth utilization
metric from theiostat utility. In practice, we have found that this
approach quickly finds the I/O saturation point with satisfactory
accuracy. In addition, this allows us to sample system metrics under
a range of cluster sizes, improving the breadth of our models.

0 1000 2000 3000 4000 5000
0

700

1400

2100

Ac

tu
al

 P
ro

du
ct

iv
ity

 (%
)

Potential Productivity (%)

 Wordcount
 SFASTA I6

(a) Actual

1 2 3 4 5 6 7 8
0.0

0.5

1.0

Ac
tu

al
/P

ot
en

tia
l R

at
io

Volunteer count

 Wordcount
 SFASTA I6

(b) Relative
Figure 9: Impact of I/O bottlenecks on actual
volunteer productivity, using 2 dedicated and 1-
8 volunteers, with a max of 800% CPU on each.

1 2 3 4 5 6 7 8
0

100
200
300
400

 Uniform

V
ol

un
te

er
 C

P
U

 (%
)

1 2 3 4 5 6 7 8
0

100
200
300
400

 Slanted

1 2 3 4 5 6 7 8
0

100
200
300
400

 Normal

Volunteer Host
1 2 3 4 5 6 7 8

0
100
200
300
400

 Random

Volunteer Host

(a) Resource distributions

Wordcount Grep Word Cooc Pi
0

20

40

M
ap

 p
ha

se
 le

ng
th

 (m
in

)

MapReduce workload

 Uniform Normal
 Slanted Random

(b) Completion times
Figure 10: Impact of residual resource distribution on MapReduce job comple-
tion time for 2 dedicated and 8 volunteer nodes. All distributions have the same
total residual CPU.

Algorithm 1 Initial volunteer pool scaling algorithm. The cluster
is pushed to the saturation point using a combination of Eq. 3-4
and first-degree regression (line 18). This approach also accounts
for the effects of diminishing marginal returns (DMR) when I/O
saturation is not the primary limit on scalability, which isoften the
case if the price of volunteers is relatively high.
1: // Perform one profiling period with dedicated nodes alone
2: ProfileData← RunPeriod(∅) , P eriod← 1, V ols← ∅
3: // Calculate saturation range using Eq. 3-4
4: (Sworst, Sbest)← ComputeSaturationPoints(ProfileData)
5: // Predict the max from DMR, ignoring I/O saturation
6: MaxDMR ← PredictIdealIgnoringIO(ProfileData)
7: // Push to the I/O saturation point, accounting for DMR
8: while (IOSaturation()6= True) AND (|V ols| < MaxDMR)

do
9: if Period == 1 then

10: NextSize← min(Sworst,MaxDMR)
11: else ifPeriod == 2 then
12: NextSize← min(Sbest+Sworst

2
,MaxDMR)

13: else ifPeriod == 3 then
14: if MaxDMR < Sbest then
15: NextSize←MaxDMR

16: else
17: // Linear extrapolation
18: V ols← ExtrapolateSaturation()
19: end if
20: else
21: NextSize← |V ols|+ Sworst

22: end if
23: // Find volunteers to satisfy the next size, and run the period
24: V ols← FindVolunteers(NextSize)
25: RunPeriod(V ols) , P eriod += 1
26: end while

Improving I/O Balance: To increase the chance that I/O load is
balanced across dedicated nodes, therefore yielding a saturation
point closer toSbest, RHIC can leverage background framework-
specific cues to assign volunteers to dedicated nodes in a round-
robin fashion. In Hadoop, topology locality cues are used toassign
sets of volunteers to the same logical rack as dedicated nodes, in-
creasing the probability (but not guaranteeing) that mid-job, I/O de-
mand is balanced across dedicated nodes. Since Hadoop allows for
arbitrary rack hierarchy depths, this technique can be usedto incor-
porate real topology data as well, by assigning dedicated and vol-
unteer nodes to the same physical rack, and then subdividingthem
into logical racks per dedicated node. Hadoop will prefer DataN-
odes which are “closer” to the given TaskTracker, resultingin a
volunteer trying its assigned dedicated node, then other rack-local
dedicated nodes, before proceeding to other more-remote dedicated
nodes. Below in §4.6 we discuss how heterogeneous I/O subsys-
tems on dedicated nodes can be factored into this scheme.

I/O Curve Building with Clustering and Curve-fitting: Next,
we complete the I/O curve that maps aggregate potential volunteer
productivity to aggregate actual volunteer productivity.RHIC uses
Mean-Shift clustering [8] to pre-process raw{Ppotential, Pactual}
data points. This allows us to avoid a critical flaw in using curve-
fitting for decision making, where incorrect decisions reinforce
themselves by repeated sampling in the same area, skewing R-
squared summations. Also, clustering allows us to toleratechanges
in the I/O landscape, such as increased Reducer disk I/O loadin
MapReduce, byaging data points. Finally, RHIC performs first-
degree spline fitting on the cluster centers to build the I/O curve.
This approach allows us to deliver interpolated values tightly con-
strained to the observed curve, which is important near the sat-
uration point, because minimization decisions hinge on marginal
cost/gains. Prediction of the aggregate actual productivity on a
given set of volunteers can then be performed with interpolation,
based on the projected aggregate potential productivity onthese
volunteers. This approach assumes that the network bandwidth is
either static or is not a limiting factor, which we believe isrea-
sonable (RDP sessions consume a low 384Kbps on average [10])
but will be relaxed in future work, to incorporate hotspot detection,
topology awareness and bandwidth availability prediction.

4.4 Background Job Performance Modeling
Background job performance modeling is the core of RHIC’s siz-

ing intelligence. As mentioned earlier, RHIC’s performance mod-
eling is based on the observation that the aggregate productivity
from the selected volunteers, largely independent of the distribu-
tion of residual resources on individual volunteer nodes, is the chief
factor determining a job’s completion time on a hybrid cluster (In-
sight 3 - limitations discussed below in §4.5). Fig. 10 showsexper-
imental results demonstrating this performance behavior.In these
tests, we collected the execution time of four MapReduce work-
loads under four different CPU allocation distributions among the
volunteers, simulating different productivity distributions. Accord-
ing to each distribution, a volunteer is allocated 4 cores with a CPU
cap between 50%-350% (with one core= 100%), while the total
CPU allocations from all 8 volunteers are fixed at 1600%. Fig.10a
illustrates the shape of the distributions used.

Fig. 10b shows that the duration of the Map phase is nearly con-
stant across all distribution types, for all MapReduce workloads
tested. In other words, frameworks like Hadoop are quite toler-
ant to heterogeneity in node processing capabilities, possibly due
to the adoption of mechanisms such as speculative executionwith
the well-proven LATE algorithm [42]. In particular, the fact that
dedicated nodes are robust, stable and 100% available results in ag-
gressive, reliable speculative execution, effectively taking over the
job from straggler volunteers.

This observation allows us to build our performance (and conse-
quently cost) modeling on thecollective behavior of the dynamic
interactive nodes. Rather than micro-managing volunteer nodes

according to their foreground resource usage bursts, RHIC bases
its decision on the aggregate potential productivity from candi-
date volunteer node sets, filtered through the I/O model. Although
Fig. 10 only demonstrates static CPU allocation heterogeneity, we
show in our evaluation that this technique can be successfully ap-
plied to dynamic heterogeneity as well.
Completion Time Estimation and Damping: More specifically,
RHIC predicts that “a background job will complete at timey if it
receives a sustained total volunteer productivity ofx”. This sim-
plification is aided by both RHIC’s preference for most-productive
volunteers (§4.2) and speculative execution. For this, we devel-
oped a simple model based on the processing rateRproc, shown
in Eq. 5. HereJcompleted is the current fraction of the job com-
pleted,Telapsed is the time elapsed, andAPactual is the aggregate
actual productivity (dedicated+ volunteer) overTelapsed. Rproc is
re-evaluated periodically during the background job.

By calculating the fraction of remaining workJremaining =
Jtotal − Jcompleted, we can then invert Eq. 5 and produce a Map
completion time estimateTremaining , given a predicted aggregate
actual productivityAPpredicted, as shown in Eq. 6.APpredicted

is calculated by applying RHIC’s I/O model to the volunteers’ pre-
dicted aggregate potential productivity, which together estimates
the aggregate productivity that issustainable by the dedicated
I/O infrastructure. Finally, to tolerate stragglers, we add a small
padding value to our completion time estimate, based on the aver-
age length of background tasks experienced.

Rproc =
Jcompleted

Telapsed × APactual

(5)

Tremaining =
Jremaining

APpredicted ×Rproc

(6)

To avoid oscillation or thrashing, we estimate the transition time
required by a volunteer pool size change. Volunteer additions re-
quire a fixed setup overhead, which we profile. Volunteer removals
are trickier - as we allow deselected volunteers todrain running
tasks when we remove them (discussed in §4.8). We predict the
draining duration based on the observed average volunteer task
length. In both cases, the transition time is accounted for in making
completion time predictions.

Overall, with our experimentation we found this runtime model-
ing approach simple but effective. We view such simplicity as an
asset, in contrast to alternative approaches which rely on highly-
detailed whitebox techniques [19] and therefore cannot be applied
to a broad range of parallel batch frameworks.
Goal Estimation: Based on the completion time estimate, RHIC
generates performance scores (to be minimized) for candidate vol-
unteer sets, given one of the three goals it currently supports:

(1) Deadlines: To satisfy a deadline requirement, RHIC com-
putes the performance score as the difference between the esti-
mated job completion time and the deadline.

(2) Monetary cost: With pay-as-you-go cloud computing,
volatile volunteer nodes are likely to be charged at a lower rate.
Given a certain pricing policy, RHIC calculates the performance
score as the overall cost based on the completion time estimate.

(3) Energy: Energy estimation is more complex and requires the
offline construction of an energy model for the specific hardware
used. In this paper, we focus exclusively on CPU power consump-
tion, considering prior findings that CPU typically dominates en-
ergy consumption in modern systems [13]. Our energy modeling
takes the well-established approach of running a micro-benchmark
that thoroughly enumerates the relationship between CPU utiliza-
tion, frequency and power consumption [13]. We then use multiple
regression to derive a power model that estimates power consump-

tion at an arbitrary utilization and frequency level. This model is
subsequently used by RHIC to compute the performance score as
the predicted power consumption with the given volunteer set, over
the length of the job. We made the simplification of using CPU
alone, as energy modeling is not a major focus of our work and this
naïve approach proved accurate for our testbed. If needed, it could
be replaced with a more sophisticated model without modifications
to other parts of RHIC.

Recall that our hybrid cluster design is partially motivated by
the energy savings enabled by piggybacking background workloads
on interactive foreground tasks. While all power consumption on
dedicated nodes is billed to the background user, he/she is only
responsible for theincremental energy consumption incurred by
the background job on the volunteer nodes, because these nodes
would not be powered on otherwise. Therefore, in modeling the
background job power consumption, we exclude the baseline (idle)
power consumption as well as the predicted foreground poweron
volunteers.

4.5 Limitations of Linearity Assumptions
The aforementioned performance modeling is dependent on

Rproc remaining somewhat static over the lifetime of the job.
While our scheme tolerates noise inRproc calculation resulting
from uneven job progress reporting (shown in §5.3), workloads that
have inherently heterogeneous progress can reduce RHIC’s accu-
racy. For example, biological sequence search algorithms can skip
over large portions of input sequences depending on their similar-
ity. In cases like these, RHIC will only track the averageRproc

of the workload, which makes the accuracy of runtime predictions
dependent on the variance of this metric. The same issue applies
to our assumption of linearity between I/O demand and CPU con-
sumption: heterogeneous job progress per unit CPU is typically in-
dicative of heterogeneous I/O demand per unit CPU. This assump-
tion has also been made in prior works [41], but does hinder RHIC’s
ability to handle certain workload classes.

We believe that this shortcoming can be addressed with offline
profiling, or hints provided by the administrator, which would allow
us to distill how muchRproc varies in the given workload. Since
Rproc is input-dependent, we would need to observe a number of
runs across different inputs in order to form a degree of confidence
in our measurements. These statistics will allow us to formulate
best and worst-case estimates of theRproc of a novel input at the
job’s outset, which can in turn influence how aggressive or conser-
vative RHIC behaves, based on the performance goal. For exam-
ple, to meet deadlines, RHIC would hew closer to the worst-case
estimate early in the job, while for minimization goals, a midpoint
between the best and worst-case may be more appropriate.We leave
examination of this sub-problem as future work.

4.6 Handling Hardware Heterogeneity
Our I/O and runtime modeling techniques center on our synthetic

productivity metricPpotential, described in previous sections. Het-
erogeneous hardware presents a problem with this metric because a
background workload is likely to generate different progress rates
at the same CPU utilization across different hardware, and exert
different I/O pressure as a result. To cope with this disparity, we
use a two-fold scheme which provides a translation layer to calcu-
late equivalencies between different machine classes. This general
approach has been applied in prior works [14, 19] under the as-
sumption of a rather limited set of machine classes or generations,
valid for today’s clouds (like EC2 and VCL).

For different CPU and/or memory bus speeds, we use a transla-
tion metric which we call efficiencyE, which allows us to equate

the processing power of different machine classes to a base class0
(E0 = 1), which we merely set as the most-popular class at cluster
launch. EK for a new machine classK is calculated by compar-
ing the job progressJcompletedK

per unit of actual productivity
PactualK on the new class, to that of the base class, as shown in
Eq. 7. This technique is then applied to calculate the potential pro-
ductivity in common units, as shown in Eq. 8, which can be directly
incorporated with productivity from other classes when calculating
Pactual, Rproc, runtime etc.

EK =
JcompletedK

PactualK

×
Pactual0

Jcompleted0

(7)

Ppotentialcommon
= PpotentialK

×EK (8)

For different disk I/O subsystems on dedicated nodes, producing
a translation metric based purely on online profiling is somewhat
trickier because it must be disintangled from CPU differences. Be-
cause of this, we perform basic offline profiling of disk bandwidth
for each dedicated machine class, deriving a disk bandwidthequiv-
alency metricBK for each machine classK, again relative to a
chosen base class withB0 = 1. BK is then incorporated into our
scheme in two ways: first during saturation point estimationand
second in allocation of volunteers to dedicated nodes usingtopol-
ogy cues, as discussed above in §4.3. For saturation point estima-
tion, we multiply the best and worst case estimates by the average
of BK in the dedicated cluster. For volunteer allocation to dedi-
cated nodes, we perform a similar scaling, assigning proportionally
more volunteers to dedicated nodes with higherB values.

4.7 RHIC Scalability
In our evaluation, we run RHIC on a single management node

with minimal overhead (30% single-core CPU utilization, 2%
multi-core) and quick decision turnaround (250ms) using exhaus-
tive searches on a hybrid cluster of 42 nodes. To handle much larger
clusters of hundreds or thousands of nodes, we believe that signifi-
cant portions of RHIC can be parallelized and pushed out ontothe
volunteers themselves if necessary. Each interactive nodecould use
residual cycles to predict its own near-future CPU availability, and
communicate this to RHIC. Further, each iteration of the search
algorithm evaluates a different volunteer pool independently, and
therefore can be parallelized and computed by volunteers. Amore
sophisticated search algorithm could further reduce decision over-
head. Building the I/O model and calculatingRproc can also be
accelerated in a distributed fashion, by aggregating volunteer pro-
ductivity information before sending it to the management node
using a tree-shaped reduction overlay network [5].

4.8 Integrating RHIC into MapReduce
RHIC uses a generic modeling approach and can manage a

wide class of embarassingly-parallel batch frameworks. Atpresent,
MapReduce is easily the most-popular paradigm within this work-
load class, and below we discuss several issues specific to using
RHIC to manage MapReduce background jobs.
Multi-tenancy: MapReduce clusters are traditionally multi-tenant
with several jobs vying for available slots. Because RHIC tightly
couples cluster size and the performance characteristics of a single
job, we believe greater performance and efficiency can be gained by
running multiple RHIC-guided hybrid clusters, side-by-side within
the same cloud. With this proposed execution model, each job
would be anchored on a set of dedicated nodes and managed by
an independent instance of RHIC, harvesting from a shared pool
of interactive nodes, each used by at most one job at a time. The
RHIC instances would have no knowledge of each other and there-
fore could be co-located using a trivial arbitration layer,requiring

no modification to RHIC. For example, interactive nodes could be
offered to RHIC instances in a round-robin fashion, and rotated if
unused after several periods, similar to Mesos [20].
Volunteer termination: The lifetime of a volunteer is equal to the
lifetime of the interactive node which it resides on. As a result, vol-
unteers can be terminated with little warning, which poses aprob-
lem for Hadoop because the JobTracker assumes that Map tasks
completed by the terminated node are lost. Several fixes for this
issue have been proposed, including task checkpoint-restart [33],
pushing intermediate data to Reducers [28] and placing intermedi-
ate data on a distributed filesystem. Amazon’s Elastic MapReduce
(EMR) takes this third approach, allowing EMR clusters to use un-
stable SPOT instances. Because these features are not implemented
in our version of Hadoop (0.21), we emulate them using a modified
scheduler, which allows us to stop assigning new Map tasks toa
volunteer while preserving its intermediate data.
Reducer placement:The loss of Reduce tasks is particularly dam-
aging to MapReduce job runtimes because intermediate data must
be re-shuffled [9, 38]. As a result, we do not run Reducers on vol-
unteers and focus on the runtime of the Map phase, which for our
workloads dominates the total execution time. This is backed by
findings [7] that Map-only jobs are common, the Map phase dom-
inates MapReduce jobs, and input data is the majority of stored
bytes. We believe that this is a reasonable simplification, given
that hybrid clusters have an abundance of CPU but limited I/Ore-
sources.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate RHIC in six key areas, after giving

an overview of our test platform in §5.1. First, in §5.2, we establish
that RHIC can accurately discover near-ideal cluster sizing deci-
sions, in comparison to an exhaustive search. In §5.3, we compare
the performance, stability, and adaptability of RHIC to an alterna-
tive algorithm based on fuzzy control theory. Next, we validate
RHIC’s performance under increased cloud instability in §5.4, and
demonstrate RHIC’s general applicability to parallel batch frame-
works in §5.5. Finally, we evaluate RHIC’s hardware heterogeneity
tolerance in §5.6, and briefly discuss RHIC’s overhead in §5.7.

Unless otherwise noted, we run each test three times and report
the average, with the goal of evaluating RHIC under a wide range
of scenarios. To this end, we have conducted over 400 real-world
(non-simulated) experiments, each with over 600 worker processes
and in general found the variance to be quite small. Error bars
denoting standard deviation are omitted unless we have at least 5
runs for a given test and the deviation is≥ 2%.

5.1 Test Workloads, Platform, and Settings
Background Workloads: For evaluating RHIC, we use
Hadoop [16] and a thin compute layer running over HBase [17] as
the background job execution frameworks. Hadoop and HBase are
widely used open-source implementations of the Google MapRe-
duce and BigTable systems, respectively.

We used four representative MapReduce workloads: Wordcount
(70GB of input), Grep (70GB of input), Word Co-occurrence
(11GB of input), and Pi (trivial input). Map phase executiontimes
are typically between 20 and 40 minutes, and are the target for our
optimization as mentioned above (§4.8).

We used two representative workloads on top of HBase: Com-
press (offline LZO compression of text cells on 70GB of input
data), which is I/O-intensive, and Raytrace (image generator on
100MB of input data), which is CPU-intensive. Both are likely
to run during off-peak hours against semi-structured data stored in
a production HBase cluster, and hence are suitable for throughput-

0 5 10 15 20 25 30 35
0
2
4
6
8
10

C
os

t (
$)

Volunteers

 Exh. (0.20) Exh. (0.42) Exh. (0.60) Exh. (0.80)
 RHIC (0.20) RHIC (0.42) RHIC (0.60) RHIC (0.80)

0 5 10 15 20 25 30 35
0
2
4
6
8
10

C
os

t (
$)

Volunteers

0 5 10 15 20 25 30 35
0
2
4
6
8
10
12
14
16
18

C
os

t (
$)

Volunteers
0 5 10 15 20 25 30 35

0
2
4
6
8
10
12
14
16

C
os

t (
$)

Volunteers

Wordcount Grep

Pi Word Cooccurrence

Figure 11: RHIC vs exhaustive: Cost minimization. Dedicated nodes
are fixed at Cd = $1.00/hr, with four different volunteer rates: Cv =
{$0.20, $0.42, $0.60, $0.80}/hr, represented as Exh.(Cv) and RHIC(Cv). Volun-
teer count is the time-weighted average over the job.

Grep Pi
0
5

10
15
20
25
30
35
40
45
50

Av
g

C
os

t R
el

. t
o

R
H

IC
 1

x
(%

)

Cost Minimization
 RHIC 1x Fuzzy(4) 1x
 RHIC 2x Fuzzy(4) 2x
 RHIC 8x Fuzzy(4) 8x

Grep Pi
0.5

1.0

1.5

Av
g

N
or

m
al

iz
ed

 R
un

tim
e

Deadline Enforcement
Figure 12: Impact of increased interac-
tive churn on RHIC and Fuzzy(4)

oriented volunteer harvesting. Compress could conceivably be used
on user messages, profile data etc., motivated by compression costs
which cannot be borne by frontend servers during peak hours.Ray-
trace is representative of image/tile generation workloads for mul-
tiplayer games creating randomly-generated worlds.
Foreground Workloads: NCSU’s VCL is an excellent model of an
interactive-user IaaS cloud, and we drew on it for ideas about “typi-
cal” clouds of this nature. To determine what were the most popular
applications used in the VCL, we analyzed a log of 750,000 reser-
vations from 2004-2010 and selected four representative work-
loads: Matlab, Photoshop, OpenOffice, and C Development. We
then instrumented images of these types and collected over 600 re-
source consumption traces of real users, ranging in length from 20
minutes to 4 hours. Finally, we built a replay framework thatcan
generate CPU and memory load using microbenchmarks to match
the consumption in a recorded trace. In addition to trace replay on
individual nodes, we also built support infrastructure to distribute
traces, randomize their start points, and repeatedly replay the same
set of randomized traces across a fleet of foreground VMs. We
use different randomized foreground “mixes” for each groupof ex-
periments. The length andchurn rate of the foreground VM ses-
sions are generated using a normal distribution with the parameters
derived from the 2004-2010 VCL log data. Finally, we set static
memory allocations for foreground VMs using per-workload-type
normal distributions extracted from the VCL logs.
Test Platform: Our main test platform is NCSU’s ARC cluster,
which has 108 nodes interconnected via InfiniBand, each with16
2GHz cores on two processors, 32GB RAM, a SATA disk drive
and the KVM hypervisor. We use IP over Infiniband for our ex-
periments, but due to KVM’s virtualization overhead, we canonly
achieve approximately 500 MBit/sec speeds (VM to VM). We re-
strict dedicated VMs to 16GB of RAM, while foreground and vol-
unteer VMs share 8GB RAM total. ARC is a scientific computing
cluster and therefore istop-heavy in terms of compute to disk I/O
resources, which actually makes this environmentmore challeng-
ing for RHIC. A more-robust I/O subsystem relative to compute
and memory would yield greater scalability, higher I/O saturation
points, and less-flat cost and energy curves (§5.2).

We chose to use ARC because it has both reasonable size and
node-attached power meters. To calculate background powercon-
sumption we replay the foreground workload by itself and calcu-
late the difference. For monetary cost evaluation, unless otherwise

noted, we adopt a sample pricing policy following the costs of EC2
m2.xlarge On-Demand and SPOT Instances at the time of writ-
ing. This sets the per-node rate to $1.00/hour for dedicatednodes
and $0.42/hour for volunteers, although we calculate cluster costs
to the nearest second due to the short duration of our test jobs.

5.2 Exhaustive Evaluation
First, we performed an exhaustive evaluation over the volunteer

cluster size range, for each MapReduce test workload. We then ran
RHIC under identical conditions to verify its ability to quickly find
the ideal cluster size.

Our hybrid cluster is composed of 6 dedicated nodes and 0-
36 volunteers, with over 600 worker processes. We collectedex-
haustive datapoints every 2 volunteers, from{0, 2, . . . , 36}, and
repeated each test twice. For a fair comparison, we ensured that
every run (exhaustive or RHIC) had an identical foreground work-
load “mix”, composed of the same traces starting the same points
in time. This mix is composed of a randomized selection of traces
and start points taken in equal proportion from each of the four
foreground workloads described in §5.1 (25% each). This seeded
mix allowed us to collect foreground-only energy consumption and
subtract it from the total, calculating the background energy curves
shown in Fig. 16. To generate the exhaustive performance survey,
we developed a “targeted” version of our framework which main-
tains a specific number of volunteers using the same volunteer node
selection mechanism (§4.2) as RHIC. This ensures that if RHIC
and the targeted framework chooseX interactive nodes at the same
point in the background job, they will receive the same set.

Fig. 11 and 16 show the performance of RHIC relative to the
exhaustive search for cost and energy minimization, respectively.
It can be clearly seen that (1) supplementing dedicated nodes with
volunteers does bring monetary cost and energy benefits, (2)differ-
ent volunteer cluster sizes yield a large range in executioncosts,
generating72% monetary savings and47% in energy compar-
ing the most and least optimal settings, (3) the behavior of the
cost/energy curves are highly workload-dependent, and (4)RHIC
is able to identify the optimal or near-optimal cluster sizeautomat-
ically. On average, RHIC achieves within 5% of the minimimum
cost and 3% of the minimum energy. The only notable anomaly is
that RHIC undershoots the energy minimum for Co-occurrenceby
approximately 4 volunteers. This is because Co-occurrenceis ul-
timately CPU-bound but has non-trivial I/O demand, which RHIC

Wordcount Grep Pi Word
Cooccurrence

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Av
g

N
or

m
al

iz
ed

 R
un

tim
e

Workload

 RHIC Exhaustive

Figure 13: RHIC vs exhaustive: Deadline en-
forcement. Values just under 1.0 are ideal,
but above 1.0 are missed deadlines.

����

������		
������

��	���

��	���

��	���

��	���

Figure 14: Fuzzy rules. Origi-
nal figure credit to Liu et al. [29].
Dotted lines represent the ob-
served change and solid lines rep-
resent the resulting action.

0 10 20 30 40 50 60
0

10

20

30

V
ol

un
te

er
s

C
ho

se
n

Time (Minutes)
 RHIC Fuzzy(4) S=0.25
 Fuzzy(4) S=0.50 Fuzzy(4) S=0.75

Figure 15: FUZZY’s example choices for
Pi. The vertical black bar shows the
deadline..

0 5 10 15 20 25 30 35
0.0

500.0
1.0k
1.5k
2.0k

VolunteersE
ne

rg
y

(W
at

t H
rs

)

 0.5k

 Exhaustive
 RHIC

0 5 10 15 20 25 30 35
0

200
400
600
800
1k

E
ne

rg
y

(W
at

t H
rs

)

Volunteers

0 5 10 15 20 25 30 35
0
1k
2k
3k
4k
5k

E
ne

rg
y

(W
at

t H
rs

)

Volunteers
0 5 10 15 20 25 30 35

0
1k
2k
3k
4k

E
ne

rg
y

(W
at

t H
rs

)

Volunteers

Wordcount Grep

Pi Word Cooccurrence

Figure 16: RHIC vs exhaustive: Energy minimization. Volun-
teer count is the time-weighted average over the job.

cautiously explores. Unlike Pi’s energy minimization, forwhich
RHIC immediately pushes to 36 volunteers, RHIC takes 3 stepsup
to 36 volunteers with Co-occurrence to ensure that I/O bottlenecks
do not occur. This is exacerbated by the long straggler phasein
Co-occurrence, during which most volunteers sit idle.

Fig. 13 shows soft deadline enforcement results. Three dead-
lines were chosen for each background workload, across the range
of achievable completion times, each tested twice for 6 total dat-
apoints per workload. In Fig. 13, the horizontal black bar marks
the normalized deadline (@1.0). The exhaustive bar represents the
closest setting, identified by the exhaustive tests, which achieves
the deadline. Again, RHIC achieves near-ideal performancein
most cases, enforcing runtimes 2% under the deadline on average.
It misses 5 of 24 deadlines, but by less than 3% on average.

5.3 Optimization Technique Evaluation
Conceptually, RHIC is based on the combination of online pro-

filing and model-guided optimization. Given the highly-volatile
nature of our harvesting environment and the need for continual
adjustment, a control theory approach could be a valid alternative.
In this section, we compare RHIC with an alternative scheme based
on fuzzy control for minimization, as well as a naïve threshold al-
gorithm. Traditional control systems are well-suited for problems
where the goal is clearly defined (i.e. deadlines) but struggle when
it is not (i.e. minimization). To address both cases, we turnto fuzzy
control systems. Fuzzy control has been previously appliedto min-
imization problems in server clusters by Liu et al. [29], which is
used as the basis for our fuzzy controller (FUZZY) design. Its 2-
period historical comparison is similar to hill-climbing.

For Liu et al.’s Rules #1,3 we increment/decrement by a param-
eterp > 1 (shown in Fig. 17 as Fuzzy(p)), which determines the
magnitude of cluster size changes when the controller believes it is
moving in the “correct” direction, while for Rules #2,4 we only in-
crement/decrement by a single volunteer, since FUZZY is near the

minimum. To adapt the minimizing fuzzy controller design toour
scenario, we use the interactive node selection and clustermanage-
ment (§4.2) modules from RHIC. The fuzzy controller’s logicis as
follows:

1. Evaluate the efficiency of the previous evaluation interval
2. Compare the previous evaluation interval to the evaluation in-

terval before it
3. Avoid action if the change in efficiency is below a threshold
4. Otherwise choose an action based on the fuzzy rules

FUZZY requires 2 initial “start points” because it is based on a
historical comparison of two time-steps: the performance and con-
trol decisions of the previous two steps are used as the basisof next
step. We use the same profiling phase as RHIC for the first step,
to allow FUZZY to determine memory demands of the background
workload at runtime. However, the second step must be manually
determined, so we set it to a range of fixed values. For each back-
ground workload, goal andp value, we evaluated FUZZY with 3
different start points:S = 25%, 50%, 75% of the total volunteer
pool (36 volunteers). This was motivated by the observationthat
FUZZY’s performance is heavily influenced byS, which can be
seen in Fig. 15.

In addition, we included a naïve “threshold” algorithm, which
chooses interactive nodes with residual resource availability above
a percentage - i.e., Threshold(0.5) selects all volunteerswith ≥
50% predicted available resources. We evaluated the two alterna-
tive methods plus RHIC with all three goal criteria across our four
background workloads, again using a hybrid cluster of 6 dedicated
and 0-36 volunteers. One deadline was chosen for each background
workload, in the middle of its achievable completion time range.
For FUZZY we variedp = {2, 4, 8}, while for the naïve threshold
algorithm we used thresholds of 25%, 50% and 75%, but 75% is
omitted due to its universally poor performance.

From Fig. 17, we see that alternative schemes yield worse cost
and energy minimization performance relative to RHIC, and RHIC
enforces deadlines much more tightly. While some alternative
schemes deliver near-RHIC minimization results (< 5% additional
cost/energy) for some workloads, none consistently do so across
all background workloads and goals. For example, Fuzzy(8) per-
forms well on Grep and Word Co-occurrence deadlines and most
energy minimization, but delivers poor results on Grep and Pi cost
minimization, Grep energy minimization, and Wordcount andPi
deadline enforcement. RHIC’sadaptability to both the workload
and the desired performance goal clearly offers a broad advantage.
The only place where RHIC underperforms any of the alternative
schemes (by 2% at most) is in energy minimization for Word Co-
occurrence, for the same reason as discussed in §5.2.

Several insights about these results are worth mentioning:
FUZZY’s poor decision-making: this stems from two root causes.

Wordcount Grep Pi Word Cooc
0

10

20

30

40

50

Cost Minimization

92% 82%
Av

g
C

os
t R

el
. t

o
R

H
IC

 (%
)

Wordcount Grep Pi Word Cooc
0

10

20

30

40

50

Deadline EnforcementEnergy Minimization

Av
g

En
er

gy
 R

el
. t

o
R

H
IC

 (%
)

Wordcount Grep Pi Word Cooc
0.50

0.75

1.00

1.25

Av
g

N
or

m
al

iz
ed

 R
un

tim
e

 RHIC Fuzzy(2) Fuzzy(4) Fuzzy(8) Threshold(0.25) Threshold(0.5)

1.94

Figure 17: Performance of alternative schemes to RHIC. For cost and energy, lower values are better, and 0% is RHIC’s performance.
For deadlines, values just below 1.0 are best, and values above 1.0 indicate missed deadlines.

First, Hadoop’s global progress indicator is not smoothly linear,
due to task reporting and I/O delays. RHIC uses repeated sampling
and averaging to address this issue. Second, FUZZY does not ac-
count for changes in the foreground CPU demand. One possible
solution to this would be to use volunteer CPU consumption in-
stead of volunteer count in FUZZY’s fuzzy rules. However, our
experience is that CPU consumption reporting itself is verynoisy
due to task turnover and I/O buffering, which RHIC addressesusing
problem-tailored curve fitting. Therefore, we opted against adding
this capability to FUZZY, under the reasoning that it would simply
shift the unreliability issue to another metric.
Threshold is goal-oblivious: this yields arbitrary performance,
solely dependent on cost, energy and runtime curves (as seenin
Fig. 11). Due to this property, we ran only one batch of Thresh-
old runs and used the performance for all goal settings, because
changing the goal would make no difference in management be-
havior. While this algorithm is much simpler in implementation
than RHIC, it is entirely inflexible and will suffer greatly from un-
friendly performance landscapes, as shown in other work [19].
Alternate schemes finish far before deadlines:simply put, the
administrator has requested a deadline ofX, and runtimes which
are much earlier than this deadline (< X × 90%) allocate too
many volunteers and thus waste resources which could be used
for other background jobs. Avoiding wasting residual resources
a second time (after the foreground workload already neglected to
use them) is a key motivation of our work, which is why RHIC
tightly hugs the deadline whenever possible. Of all alternative
schemes, none deliver tightly-coupled deadline enforcement except
Fuzzy(8), which suffers from large deadline overruns with Pi and
minimization inefficiency elsewhere.

5.4 Impact of Environment Stability
In all preceding experiments, we used the VCL’s natural churn

rate, described in §5.1. In this section, we attempt to quantify the
impact of increased churn on RHIC’s ability to conduct cluster
sizing optimization. In Fig. 12 we show RHIC’s cost minimiza-
tion and deadline enforcement performance under 1×(baseline),
2× and 8× the normal churn rate, for monetary cost minimiza-
tion and deadline enforcement. Here 2× indicates that nodes join
and leave twice as frequently, with half the mean and half thestan-
dard deviation of the baseline. For comparison, we also include the
performance of FUZZY withp = 4, which was the most-accurate
FUZZY parameter found in §5.3. Due to length limits, we show
only the most I/O-intensive (Grep) and the most CPU-intensive (Pi)
background workloads.

Overall RHIC clearly outperforms FUZZY in both minimization
performance and deadlines, largely due to the decision-deferment
technique discussed in §4.2. More specifically, RHIC is resilient to
the high interactive node turn-over rates and achieves near-identical

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

Compress (Cost)

C
os

t (
$)

Volunteers

 Exhaustive
 RHIC

0 2 4 6 8 10 12 14 16 18
0

4

8

12

Raytrace (Cost)
C

os
t (

$)
Volunteers

0 2 4 6 8 10 12 14 16 18
0

500

1000

1500

2000

2500

Compress (Energy)

En
er

gy
 (W

at
t H

rs
)

Volunteers

0 2 4 6 8 10 12 14 16 18
0

1000

2000

3000

4000

Raytrace (Energy)

En
er

gy
 (W

at
t H

rs
)

Volunteers

Figure 18: Minimization performance for HBasePCF. Volun-
teer count is the time-weighted average over the job.

cost minimization performance in all cases but Pi with 8× churn.
This exception is because the volunteer pool is smaller on average
at such high churn rate: we begin all experiments with 100% of
interactive nodes available, and many nodes become absent by the
end of the job. For the CPU-intensive Pi, it is impossible to reach
the cluster size producing the minimum cost.

5.5 Other Background Frameworks
To demonstrate that RHIC is generalizable to non-MapReduce

batch processing systems, we wrote a parallel compute frame-
work (HBasePCF) in 800 lines of Python to perform batch jobs
on top of HBase. In accordance with RHIC’s requirements,
HBasePCF only exports a progress score and average task length,
and HBase runs on top of HDFS hosted on the dedicated nodes. We
used HBasePCF to perform one I/O-intensive and one compute-
intensive job (§5.1). Our hybrid cluster is composed of 3 dedicated
nodes and 0-18 volunteers. For monetary cost, dedicated nodes are
priced at$1.00/hr and volunteers at$0.42/hr. Fig. 18 shows the
cost and energy minimization performance of RHIC alongsidean
exhaustive search with volunteer counts of{0, 2, . . . , 18}. As with
Hadoop, RHIC achieves near-minimum performance for both I/O
and compute-intensive workloads, with 1% average error forcost
and 2% for energy.

5.6 Hardware Heterogeneity
To evaluate RHIC’s approach to handling hardware heterogene-

ity, we ran Pi and Grep on three different clustersC0 . . . C2 with
identical inputs. Each cluster has a different processor generation,
number of cores, foreground CPU consumption and I/O subsystem.
We setC0 as the base class and determined the accuracy of our
equivalency layer as follows: after the first period, we predicted
the runtimeTdirect of each cluster independently using RHIC’s
base methods described in §4.4. Simultaneously, we predicted the
runtimeTequiv of each cluster using its equivalency metricEK

from Eq. 7,C0’s runtime and the ratio between actual productivity

Pactual on the two clusters. IfEK is representative of the differ-
ence between the clusters in processing power per unit ofPactual,
and the difference inPactual is accounted for, we should find that
Tdirect andTequiv are very close. Between these two predictions
we achieved 0.9% error for Pi and 2.0% error for Grep, demon-
strating that our equivalency calculation is sufficient to translate
performance between multiple machine classes.

5.7 Overhead
RHIC’s overhead can be measured in two dimensions: the

amount of resources RHIC itself takes to run, and its latencyin
making a cluster-sizing decision. By instrumenting RHIC’scontrol
VM, which resides on the Hadoop master, we found that it con-
sumes less than30% CPU (on 1 of 16 cores, or 2% overall) on
average and takes less than250ms to make an exhaustive cluster
sizing decision for 36 volunteers. This overhead would be lower for
a more efficient search algorithm (§4.1). Since cluster sizing deci-
sions are made once per evaluation interval (1 minute), all the pe-
riodic resource and job progress monitoring incurs less than 0.5%
overhead on volunteer or candidate interactive nodes.

6. CONCLUSION AND FUTURE WORK
In conclusion, we have outlined RHIC, an autonomic manage-

ment framework for harvesting resources with throughput-oriented
parallel batch workloads. By combining black-box modelingand
online profiling, RHIC is able to quickly discover and maintain
optimal cluster sizes across a range of workloads and goals,with
5% average error for cost minimization and 3% for energy, rela-
tive to exhaustive searches, and delivers runtimes 2% underdead-
lines. With RHIC, we have found that it is possible to tolerate
the high degree of instability in interactive clouds and runjobs
with noa priori knowledge of either the foreground or background
workloads. Finally, RHIC requires only system-level metrics and
a progress score, yielding broad applicability to an entireclass of
embarassingly-parallel analytics workloads.

Our work is only a first step towards a full-featured harvesting
batch platform. We are interested in identifying ideal hybrid cluster
compositions for a given workload and performance goal, scaling
both the dedicated and volunteer nodes with topology awareness.
Further, we plan to extend our system to flexibly harvest morere-
source types, including memory and network bandwidth.

7. REFERENCES
[1] S. Agarwal, S. Kandula, N. Bruno, et al. Re-optimizing data-parallel

computing. InNSDI ’12.
[2] Amazon. Elastic Block Store.aws.amazon.com/ebs/.
[3] Amazon. Elastic Compute Cloud.aws.amazon.com/ec2/.
[4] D. Anderson. Boinc: A system for public-resource computing and

storage. InGrid ’04.
[5] D. Arnold, G. Pack, and B. Miller. Tree-based overlay networks for

scalable applications. InIPDPS ’06.
[6] A. Chandra and J. Weissman. Nebulas: Using distributed voluntary

resources to build clouds. InHotCloud ’09.
[7] Y. Chen, S. Alspaugh, and R. H. Katz. Design insights for mapreduce

from diverse production workloads. T. R. EECS-2012-17, UCB.
[8] Y. Cheng. Mean shift, mode seeking, and clustering.IEEE Trans.

Pattern Anal. Mach. Intell., 1995.
[9] N. Chohan, C. Castillo, M. Spreitzer, et al. See spot run:using spot

instances for mapreduce workflows. InHotCloud’10.
[10] Cisco. Enterprise Virtual Desktop Infrastructure: Design for

Performance and Reliability.
http://cisco.com/en/US/solutions/collateral/ns340/
ns517/ns224/ns377/white_paper_c11-541004_R2_v7.pdf.

[11] Cisco. Solution for Citrix VDI-in-a-Box.http:
//cisco.com/en/US/solutions/collateral/ns340/ns517/

ns224/ns836/ns978/solution_overview_c22-716452.pdf.
[12] T. Deshane, Z. Shepherd, J. N. Matthews, et al. Quantitative

comparison of xen and kvm. InXen Summit ’08.
[13] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a

warehouse-sized computer. InISCA ’07.
[14] B. Farley, A. Juels, V. Varadarajan, et al. More for yourmoney:

exploiting performance heterogeneity in public clouds. InSOCC ’12.
[15] A. D. Ferguson, P. Bodik, S. Kandula, et al. Jockey: Guaranteed job

latency in data parallel clusters. InEuroSys ’12.
[16] A. S. Foundation. Hadoop.http://hadoop.apache.org/.
[17] A. S. Foundation. HBase.http://hbase.apache.org/.
[18] A. Gupta, B. Lin, and P. Dinda. Measuring and understanding user

comfort with resource borrowing. InHPDC ’04.
[19] H. Herodotou, F. Dong, and S. Babu. No one (cluster) sizefits all:

Automatic cluster sizing for data-intensive analytics. InSOCC ’11.
[20] B. Hindman, A. Konwinski, M. Zaharia, et al. Mesos: a platform for

fine-grained resource sharing in the data center. InNSDI’11.
[21] G. Lee, B.-G. Chun, and R. H. Katz. Heterogeneity-awareresource

allocation and scheduling in the cloud. InHotCloud ’11.
[22] J. Li, A. Deshpande, J. Srinivasan, et al. Energy and performance

impact of aggressive volunteer computing with multi-core
computers. InMASCOTS ’09.

[23] B. Lin and P. Dinda. Towards scheduling virtual machines based on
direct user input. InVTDC ’06.

[24] B. Lin and P. Dinda. Vsched: Mixing batch and interactive virtual
machines using periodic real-time scheduling. InSC ’05.

[25] H. Lin, X. Ma, J. Archuleta, et al. Moon: Mapreduce on
opportunistic environments. InHPDC ’10.

[26] M. Litzkow, M. Livny, and M. Mutka. Condor-a hunter of idle
workstations. InDCS ’88.

[27] H. Liu. Cutting mapreduce cost with spot market. InHotCloud ’11.
[28] H. Liu and D. Orban. Cloud MapReduce: A MapReduce

Implementation on Top of a Cloud Operating System. InCCGrid’11.
[29] X. Liu, L. Sha, Y. Diao, et al. Online response time optimization of

apache web server. InIWQoS’03.
[30] A. Mashtizadeh, E. Celebi, T. Garfinkel, et al. The design and

evolution of live storage migration in VMware ESX. InUSENIX ’11.
[31] NCSU. NCSU Virtual Computing Lab.vcl.ncsu.edu/.
[32] J. Polo, C. Castillo, D. Carrera, et al. Resource-awareadaptive

scheduling for mapreduce clusters. InMiddleware ’11.
[33] J.-A. Quiane-Ruiz, C. Pinkel, J. Schad, et al. Rafting mapreduce:

Fast recovery on the raft. InICDE ’11.
[34] Z. Shen, S. Subbiah, X. Gu, et al. Cloudscale: Elastic resource

scaling for multi-tenant cloud systems. InSOCC ’11.
[35] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in

practice: The Condor experience.Concurrency and Computation:
Practice and Experience, 17(2-4):323–356, 2005.

[36] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and
application profiling in shared hosting platforms. InOSDI ’02.

[37] VMware. VDI Server Sizing and Scaling.
http://vmware.com/pdf/vdi_sizing_vi3.pdf.

[38] G. Wang, A. Butt, P. Pandey, et al. A simulation approachto
evaluating design decisions in mapreduce setups. InMASCOTS ’09.

[39] A. Wieder, P. Bhatotia, A. Post, et al. Orchestrating the deployment
of computations in the cloud with conductor. InNSDI ’12.

[40] T. Wood, P. Shenoy, A. Venkataramani, et al. Black-box and
gray-box strategies for virtual machine migration. InNSDI ’07.

[41] L. Yu and D. Thain. Resource management for elastic cloud
workflows. InCCGrid ’12.

[42] M. Zaharia, A. Konwinski, A. D. Joseph, et al. Improvingmapreduce
performance in heterogeneous environments. InOSDI ’08.

