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ABSTRACT

The popularity of cloud-based interactive computing sevi(e.g.,
virtual desktops) brings new management challenges. Euaeh i
active user leaves abundant but fluctuating residual resswrhile
being intolerant to latency, precluding the use of aggvessiM
consolidation. In this paper, we present the Resource ldtave
for Interactive Clouds (RHIC), an autonomous managementér
work that harnesses dynamic residual resources aggrigssiiie-

out slowing the harvested interactive services. RHIC Isudd-
hoc clusters for running throughput-oriented “backgrduwdrk-
loads using a hybrid of residual and dedicated resourcegserh
hybrid clusters offer significant gains over normal dedidatlus-
ters: 20-40% cost and 20-29% energy in our testbed. For a give
background job, RHIC intelligently discovers/maintaihe tdeal
cluster size and composition, to meet user-specified goals as
cost/energy minimization or deadlines. RHIC employs biaok
workload performance modeling, requiring only systeneleaet-
rics and incorporating techniques to improve modeling ey
under bursty and heterogeneous residual resources. Wendemo
strate the effectiveness and adaptivity of our RHIC prgietwith
two parallel data analytics frameworks, Hadoop and HBasa: O
results show that RHIC finds near-ideal cluster sizes/caitipas
across 28 workload/goal combinations, with 5% averagererro
for cost minimization and 3% for energy, relative to exhauast
searches, and runtimes 2% under deadlines. Further, RIGIC si
nificantly outperforms alternative approaches, tolerhigh insta-
bility in the harvested interactive cloud, works with hegeneous
hardware and imposes only 0.5% overhead.

1. INTRODUCTION

Interactive cloud offerings are expanding, providingwéttcom-
puting laboratories, remote desktop environments andherdol-
laboration tools. For example, North Carolina State Ursigis
Virtual Computing Laboratory (VCL) [31] is a production clo
system hosting virtual desktops with a variety of applimasi for

more than 13,000 students at NCSU and other nearby schools.

These new platforms bring individual users easy accessguol@o
applications/tools with low management overhead. Suctesys
also yield significantesidual, or unused, resources, due to overpro-
visioning and the bursty, unpredictable nature of intévactork-
loads. Traditional techniques such as virtual machine (\dstk-
ing are unlikely to be performed aggressively in this envinent,
due to users’ bursty resource consumption patterns comhbiité
response time requirements. Conservative workload cinlaiain,
on the other hand, will likely leave significant amounts dfide
ual resources idle, as we show in 83.1. By aggressively baimg
such resources, cloud providers will benefit from higheuodlati-
lization as well as considerable energy savings, asnitremental

energy cost of running additional applications using resicCPU
is low [22].

Harvesting residual resources in this context requires a
well-designed infrastructure that considers performancest-
effectiveness and system reliability. In particular, gsinterac-
tive nodes alone will suffer from performance and stability issues.
Prior studies [9, 21, 25] have proposed a hybrid batch alatsign
wherevolunteer nodes supplement a core set of statiedicated
nodes, in some cases using EC2 SPOT instances [3]. As shown
in Fig. 1, a set of transient interactive nodes are “paddeih w
volunteer VMs running a background batch job, which consume
residual resources while automatically deferring to therictive
user via hypervisor prioritization. This co-location otéractive
and batch workloads is advantageous due to orthoganal taeimpo
characteristics (84.2), and has been described previ@2@|y24].

In preliminary experiments (83.2), we demonstrate 20-28% @y
and 20-40% cost gains over normal dedicated clusters wilh on
1% slowdown of interactive workloads.

Shared nothing clouds such as the VCL lack robust shared stor-
age, like Amazon’s Elastic Block Store [2], making migratimore
costly for both foregroud and background users. As a restiiti®
high cost and users’ bursty resource consumption, we engioy
1/0 asymmetric design for the background cluster, wherg te
dedicated nodes provide persistent storage.vbhetteer VMs use
their local storage for temporary data only, while the fooegd
VMs are hosted entirely from local storage, as shown in Fig. 3
This choice allows volunteers to be lightweight and agileabyid-
ing data-loss and expensive replication as volunteersjoifieave:
volunteers are only sent data which they will immediatelygass,
and are not relied upon to host data in the long-term. Thiscagh
is necessary because, in contrast to prior work on passivevo
teerism for MapReduce [25], interactive nodes are muchtshor
lived and unlikely to return in the near future. Finally, thgbrid
cluster design provides a performance baseline to mitigaésy-
glers, caused by bursty and unreliable volunteers, viaudgtee
execution of delayed volunteer tasks by dedicated nodes.

In this setting, the cloud administrator is faced with thiofe-
ing question:Given an arbitrary batch job, and limited knowledge
about the interactive workloads, what hybrid cluster size and com-
position will give the best performance for the cost? This problem
can be formulated as a dynamic, virtualized cluster-sipitagplem,
which brings new challenges not studied in prior work. Ualik
traditional cluster-sizing scenarios, the highly-dynamature of
this environment introduces substantial complicationgnvinod-
eling performance, determining an ideal cluster size, aheting
cluster composition. For example, Fig. 2 shows the diveasge
of monetary costs and energy consumption among differenhba
workloads. These results are dependent on the specific batch
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vices. A background job runs on 2 dedicated and 4 cluster, with 6 dedicated nodes and c|yster design. The hypervisor is used

volunteer nodes.

puts, foreground workloads and pricing structure chosewedl as
cluster hardware, network and energy characteristicdei@ifices
in these factors yield different ideal cluster sizes.

Existing work has addressed several related problemsidimg
MapReduce cluster sizing [15, 19, 32, 39], volunteeristoridy
clusters for MapReduce [9, 21, 25] and workload consolida-
tion [40]. However, these prior studies were not designecbto
sider the unique challenges in harvesting residual ressuirom
interactive users, particularly (1) the high degree of terapand
spatial transience in residual resources, and (2) the aedicode
1/0 saturation constraint in our target asymmetric architee.
More detailed related work discussion is given in §2.

To address such unique challenges in discovering and nvainta
ing the ideal hybrid cluster size for arbitrary batch wodds, ei-
ther white-box or black-box performance modeling can beduse
but each has downsides. Black-box performance modelintgusi
system-level metrics enables generalization and unabémnsss,
but such metrics can be noisy. White-box modeling allow$éig
sensitivity to the limitations of a particular platform, dapoten-
tially greater accuracy, but limits generalization. Reakld paral-
lel batch workloads are commonly composed of short jobs§2d]
novel jobs [1, 15]. As a result, profiling must be completetkiy
with noa priori knowledge to yield reliable estimates early.

In this paper, we present the Resource Harvester for Interac
tive Clouds (RHIC), a generic management framework which au
tonomically optimizes a hybrid cluster running within hsal re-
sources. RHIC provides intelligent cluster sizing for a evidnge
of throughput-oriented parallel batch workloads. To acglish
this, RHIC combines profiling with black-box performancedab
ing to make resizing decisions in an iterative, online fashiWe
profile the CPU, memory and 1/0 consumption of each workload
and build self-tuning models to translate these systerml-leetrics
into job performance estimates. Finally, we tailor this raggh
to the hybrid cluster design, by predicting residual reselwavail-
ability at the volunteers and directly managing 1/0O saioraat the
dedicated nodes. Our multi-faceted approach handles dgreard
unpredictable behavior from a wide range of sources, agtjreg
unstable resources into a reliable batch platform. Thraaxghn-
sive evaluation, we show that RHIC robustly delivers aceuper-
formance estimates and quickly discovers the best clusterfer
novel workloads. The major contributions of this work are:

0-36 volunteers.

to prioritize foreground disk access.

throughput-oriented workloads.

e \We carried out an evaluation of over 400 runs on a hybrid efust
of 42 nodes, using real traces collected from productioerint
active clouds and representative batch analytics worklo@uir
results show that RHIC achieves high accuracy across 28-work
load/goal combinations in minimizing cost/energy (5%/386 e
ror as compared to exhaustive surveys), and enforcing idead|
(2% under on average). In addition, we demonstrate RHIG’s pe
formance against alternative algorithms, tolerance fordased
instability and hardware heterogeneity, and low overhead.

In the rest of the paper, we give an overview of related worgdn

provide background motivation in 83, and discuss RHIC'sgies

in 84. In 85 we present our evaluation and in 86 we conclude.

2. RELATED WORK

Our work is related to contributions from several other area
Volunteer computing. Volunteer computing (VC), known widely
through projects such as Condor [26, 35] and BOINC [4], has a
long history as both a computation paradigm and a methodref ha
vesting wasted cycles. While passive VC has traditionaliyned
the bulk of interest in this research area, advancing raskihg
technology has made it feasible and attractive to perfortiveac
volunteer computing [18, 22], where the user and harvestex-c
ist temporally. Active and passive VC are similar in spivitith
active VC posing additional challenges in maintaining riatgive
user experience [18, 23] and delivering consistent backgtqer-
formance using unreliable residual resources [6].

The focus of this work is related to the second challenge men-
tioned above: how bursty residual resources can efficigntyide
a stable batch execution platform that meets performandéian
cost goals. RHIC'’s novelty is in modeling the relationshgivibeen
batch workload progress and resource availability, withiégues
to mitigate burstiness, heterogeneity and other artifaictair hos-
tile environment. While both passive and active VC are irtgoar
prerequisites to RHIC, our design and claims are orthogonal
Cluster sizing for parallel batch workloads. Several works have
been recently published which perform cluster sizing forapel
batch workloads [15, 19, 32, 39, 41]. Of these, our effores ar
most-closely related to those which combine modeling with o
line adjustment and feedback [15, 32, 39]. Jockey [15] isshesy
for meeting deadlines in MapReduce clusters using offlire pr

e To the best of our knowledge, we are the first to propose batch filing/simulation, coupled with an online control loop whican

cluster sizing as a tool for resource harvesting in intéract
clouds, with the goal of making the background job itselfrgge
and cost efficient.

e We present an adaptive cluster sizing solution that usesbieo
nation of online profiling and performance modeling to qlyick
discover and maintain efficient hybrid cluster sizes.

adapt to cluster availability. Conductor [39] also comksimeod-
eling and online adjustment to meet deadlines and minimiz¢ ¢
for MapReduce, taking into account data upload and mignatio
overheads. RAS [32] is a MapReduce scheduler that profikes th
resource requirements of Map/Reduce tasks and then agempt
allocate sufficient slots for each running job to meet soficde

e \We develop black-box batch job performance models which map lines. Starfish [19] is a system for optimizing cluster siaedrbi-

aggregate residual resources to goal performance. RHIZ onl
relies on system monitoring data and a progress score frem th
background job, which allows generalization to a wide raofye

trary MapReduce workloads and hardware, using a combimafio
workload profiling and and configuration parameter modelivig
et al. [41] describe a system for modeling batch workloadgper



mance and allocating masters and workers to avoid resowastew

Table 1: CPU consumption, burst and reservation charac-

Compared to the aforementioned efforts, RHIC addresses ateristics collected from NCSU’s VCL. CPU data are collected

unique permutation of traditional cluster sizing for p&hbatch
workloads. We consider several sub-problems which areifspec
to our harvesting theme, including foreground demand predi
tion, heuristic node selection, 1/0 saturation awaren#8scurve
discovery and heterogeneity-tolerant performance mideliln
summary, the differences between RHIC and the aforemesdion
MapReduce cluster-sizing efforts are as follows: (1) thiguely
unstable environment in which we operate, (2) our suppart fo
novel, short-lived jobs, and (3) the general applicabditgur mod-
eling approach to a broad class of parallel batch workloads.

from real user session traces (described in more detail in §5).
Reservation data covers 750,000 sessions from 2004-2010.

Metric | Matlab | Photoshop [ Office | CDev |
CPU Consumedy) 19.8% 7.0% 2.8% 22.5%
CPU Consumedd) 23.2% 16.2% | 12.4% 24.3%
CPU burst heightyf) 39.9% 25.8% | 31.0% 27.7%
CPU burst lengthyf) | 6.9 sec 2.0sec| 1.3sec| 47.4sec
Reservation () 93 min 74 min | 70 min | 120 min
Reservation ) 90 min 79min | 91 min | 99 min

Because we rely on the foreground user for dynamic residual leaved temporally but not spatially. Mesos [20] is a framekfor

CPU and static residual memory availability, each voluntemle
offers a varying contribution to the job’s completion timés a
result, node or task-level performance modeling [15, 19,32
41] will not adequately capture the performance of a givers<l
ter. Our insight regarding aggregate residual CPU avidiitalaind
its direct effect on cluster performance (84.4) led to RBICPU-
centric modeling approach. Further, hybrid clusters hageifs
icant 1/0 restrictions since dedicated nodes provide aiiptent
storage. We take a unique approach to discovering and nngdeli
I/0 bottlenecks (84.3) in response. Wieder et al. [39] dosater
data staging and migration costs in their performance mdulg!
do not account for the effects of disk contention and I/O load
balance on whole-cluster performance. Yu et al. [41] carsithta
transfer time and cluster balance, but not 1/O saturatiomaxter
nodes or imbalanced demand from heterogeneous workers.
RHIC can optimize novel and short-lived jobs (which are com-
mon [1, 15, 20]) with noa priori knowledge, using a combina-
tion of online profiling and adaptive scaling. All prior effe re-
quire either previous executions of the target job [15, 29,43] or
key performance characteristics [39]. While those withirenbd-
justment [15, 32, 39] could adapt to some deviation from tize p
file performance (as Wieder et al. [39] demonstrate), theadyo
nature of volunteer heterogeneity directly inspired RI$IGhline
learning and reactive approaches to CPU (84.3) and I/0)84.4
Finally, RHIC offers a highly-generic performance modglin-
terface, which only requires a job progress score and ageeesi
length. The models employed by prior works have varioud$evke

dependency on the workload, from MapReduce as a concept [32,
Because we envision

39] to specific MR frameworks [15, 19].
RHIC as a harvesting platform which manages throughpetroed
parallel batch jobs, we built it with to be workload-indegdent
and evaluate this capability (85.5). Further, becausentekrs
are lightweight and transient, we believe RHIC could be iaplpl
to multi-stage jobs [15] by managing each stage indepehydent
Hybrid MapReduce, Volunteerism and Cluster Sharing. Prior

works use Amazon EC2 Spot Instances to perform MapReduce

jobs [9, 21, 27], whose transience is similar to interactieud
nodes. Two approaches are taken to handle SPOT instanabiinst
ity: (1) using SPOT instances to supplement a core set otetsdi,

non-SPOT nodes [9, 21], and (2) using Amazon’s cloud storage

service to preserve intermediate results [27]. Our apfpr&amost-
similar to the former, in that robust aggregated storagenavail-
able in our environment and a hybrid cluster design is necgds
provide stability. Both of these works [9, 21] elect to hoatadonly
on core nodes, but do not consider the performance impad¢Oof |
in such an offloading scenario. Although Lee et al. [21] higf

a similar problem space to our work, they have not proposgd an

concrete solution for automatically determining ideakoéu size.

MOON [25] enhanced Hadoop to operate under passive volun-

teerism, where a foreground workload and MapReduce are inte

batch framework co-location above a shared distributeslyfim.
Both works do not consider our target scenario, with two Waakls
asymmetrically sharing resources, or perform clustengizi
Workload Consolidation. Co-locating workloads on the same
physical host is a well-established technique [40] completary
to our approach. RHIC can transparently harvest whatewid-re
ual resources are available after consolidation, with dpeetation
that the user will leave some free during periods of “thimkef.

3. BACKGROUND

As mentioned earlier, we leveragehgbrid cluster design [9,
21, 25] to harvest residual resources. In 83.1, we justifyctuster
design choice by showing that it is appropriate for our emnvinent.
Then, in §3.2 we validate assumptions regarding the fdagiand
profitability of adopting this approach.

3.1 Hybrid Cluster Design Rationale

A hybrid cluster is composed of dedicated nodes acceletated
lightweight volunteer VMs, providing a large performancsobt
limited only by the size of the dedicated cluster and theatukty
of the workload. Volunteer VMs are hosted alongside foregtb
VMs in a pairwise fashion, arbitrated by the hypervisor,hniol-
unteers granted minimum priority and foreground VMs grérite
maximum. Volunteers are pre-loaded on foreground nodest; bo
ing at the same time as foreground VMs and waiting latent unti
needed. When in use, volunteers are sent only the data wiegh t
need for immediate computation, returning outputs to thikodeed
nodes as they are completed.

Our hybrid design is motivated by the characteristics ofrint
active cloud workloads observed on the VCL. Table 1 sumraariz
statistics information collected from VCL remote desktepsons.
It shows that while user reservations are fairly long, ttkira-
tions have very high variances, indicating unpredictatdss®n
lengths. Further, CPU bursts are quite short-lived, everttfe
more computation-intensive workloads (such as Matlabk 6w
average utilization is indicative of the significant resititesource
availability in this cloud, which will go to waste and yieldor
energy efficiency unless they are capturdthe sheer volume of
wasted resources in a cloud of this size (over 1000 nodes) jus
fies examining hybrid cluster design as a cost-effective alterna-
tive to buying and operating separate batch clusters.

Such highly dynamic behavior renders traditional appreach
such as workload consolidation [36] less appealing. Coaser
tive consolidation approaches can maintain interactie@1$Q0S
requirements but will inevitably waste resources. Aggdwesap-
proaches, on the other hand, may face severe performanakipen
in case of resource conflicts. In particulshared nothing clouds
have significant migration costs because both the disk iraage
memory contents must be transferred, often requiring ragaven
with high bisection bandwidth. Although live migration isgsible
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savings by using a hybrid
cluster design, over a reg-
ular dedicated-only cluster.
Error bars represent the
range of savings. using node-local MPI.
both with shared and non-shared storage [30], the short CiPdtish
and highly variable session durations seen in interactinikhads
will require frequent migration and may lead to heavy thiiagh

In the hybrid cluster design, the dedicated nodes have lomdé-
storage capacity, while the volunteer VMs only use theial@tor-
age for temporary data, as shown in Fig. 3. This design aselses
the dynamic and unreliable nature of residual resourcasadby
interactive tasks, in several ways. First, it keeps volentedes
lightweight and agile, making it much easier to use/diseanmbde
due to foreground interactive load shifts and to dynamyjcsdiale
the virtual cluster size. Second, expensive tasks peridioyethe
underlying distributed file system, such as replication dath re-
balancing, will not be unnecessarily performed on volatdéun-
teers. Third, through mechanisms such as task replicatidrrex
liable dedicated nodes, this hybrid design can aggregshavest
residual resources while preventing stragglers from dedpjob
completion. Finally, this approach helpssulate foreground VMs
from heavy 1/0 contention on local disks by offloading most back-
ground disk traffic to the dedicated nodes.

3.2 Validating Key Assumptions

Here we validate three key assumptions used in our design:

1. Savings over dedicated clusters.To verify the energy/cost
benefits of the proposed hybrid cluster approach, we exeetiea
with 2 dedicated nodes and 2-8 volunteers, priced/metesatisa
cussed in 85.1. Fig. 4 shows sample monetary and energygsavin
when running Hadoop workloads on a hybrid cluster, as coetpar
to using a regular Hadoop cluster with the same number ofshode
(dedicatedt- volunteers). E.g., we directly compare 2 dedicated

2 volunteers to 4 regular nodes. The foreground workloadabn v
unteer nodes is Photoshop. The hybrid cluster design isrshow
deliver significant savings: 20-29% energy and 20-40% cost.

2. Foreground users can be isolated from volunteers.Mod-
ern hypervisors have been shown to offer effective perfoceaa
isolation [12], partially demonstrated by today’s high V@énsi-
ties [11, 37]. We further verified this with our own experinten
by testing work-conserving schedulers in the Xen and KVMéryp
visors. These tests co-located foreground and backgrowvis, V
with the foreground given the maximum CPU, disk and network
priority, and the background VM minimum. We tested our most
resource-intensive background workload (Word Coocceekon
three hypervisors, as well as 1/0 and CPU benchmarks on tibet la
version of KVM. Our results (Fig. 5) indicate that the perfance
impact is low despite virtual desktop applications’ sewijt to

1/0 latency. Xen is quite effective in performance isolatiavith

an average slowdown of 1%. KVM 1.2 delivets 6% slowdown

and AT&T'’s R benchmark. Background work-
loads include several resource-intensive bench- Figure 6: Disk and network bandwidth utilization
marks: Word Cooccurrence (Cooc), lozone,
and NAS PB (EP, CG), which run on all cores

on 2 dedicated nodes, with and without 8 volun-
teers. Disk utilization is measured by the % of
time the CPU spent blocked on 1/0.
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Figure 7: RHIC components and data flow

with Word Co-occurrence, and does quite well alongside intensive
microbenchmarks with the exception of R paired with CG, due t
CG's high memory bandwidth demand. To our knowledge, no hy-
pervisor currently arbitrates memory bandwidth usage.

3. Dedicated nodes have sufficient residual disk bandwidtiot
offload computation to volunteers. To verify this, we examined
the availability of disk and network bandwidth when runniag
background MapReduce job on 2 dedicated nodes alone and when
supplementing these nodes with 8 volunteers (with no forau
workloads, to create maximum I/O pressure). Figure 6 plots t
disk and network utilization level (collected with thest at and
dst at tools respectively) for the two most I/O-intensive work-
loads in our MapReduce background test set: Wordcount aep.Gr
It illustrates that (1) substantial disk and network baruttviis
available on each node executing MapReduce jobs, (2) usihg v
unteers significantly speeds up the job execution whileeiasr
ing 1/0 bandwidth utilization, and (3) disk bandwidth corgu+
tion is significantly higher than that of network, and therefmore
bottleneck-prone. This reinforces our choice to étgelerate a
dedicated cluster with volunteers and (2)identify the appropriate
number of volunteers for a given dedicated cluster. Our later eval-
uation (85.2) further corroborates this conclusion.

4. FRAMEWORK DESIGN

4.1 Overview

RHIC combines online profiling with periodic job progressian
system resource monitoring to adaptively scale the voarmede
set throughout @ackground (batch) job’s execution. Progress
scores are commonly exported by batch frameworks as a éuncti
of their fixed input sizes, in contrast to streaming or tratisaal
workloads. Fig. 7 shows RHIC’s major components (and their
interactions), which collaborate to periodically re-exk cluster
sizing decisions. RHIC starts a batch job execution withdfilpr



ing phase, where the dedicated nodes run alone. This allsws u
seed our I/O model by viewing the background job running with
out 1/0O pressure generated by the diskless volunteers, atiig
background job characteristics such as memory requirement

Throughout the rest of the job execution, RHIC continues to
monitor system status, such as interactive node resougeus
dedicated node I/O saturation level and job progress. \Wetirti-
tial profiling and the continuous monitoring, respectiyeRHIC
automatically observes and adapts to both the backgrolrslje-
havior and changes in the foreground workload. The backgtou
job’s execution is partitioned intevaluation intervals. At the be-
ginning of each interval, a search algorithm generatesidated
volunteer counts to be evaluated. For each volunteer stisier-
active nodes are selected to meet this quota byntide selection
component (84.2), based on online node resource monitdetey
Their predicted resource availability is supplied as irpuhe 1/0
model, generated by thkO modeling component (84.3), which
identifies the I/O saturation point on the dedicated nodedater-
mines whether a given set of volunteers will incur dedicatieile
disk bottlenecks. Finally, completion time and goal perfance is
predicted for the cluster by thaerformance modeling component
(84.4). The best candidate volunteer pool is used until tiiea#
the interval, when the process repeats.

In our prototype implementation, we set the initial dedécht
only profiling phase to be one minute, the continuous resoancl
job progress monitoring frequency to be once a second, and th
cluster resizing evaluation interval length to be once auteinWith
our moderate testbed (6 dedicated and 36 interactive ndeEe$T
can exhaustively evaluate all possible volunteer count36j0in
250ms. However, for scalability, we have also implemented an
alternative search module using simulated annealing.

Throughout this section, we make reference to a synthetidane
which we callproductivity, which represents a volunteers’ ability to
perform work on behalf of the background workload. Produisti
is measured in units of CPU utilization (%), but through thedm
eling process is adjusted to account for foreground CPU ddma
and memory restrictions, as well as I/O bandwidth resticti We
explain how this metric is formulated in 8§4.2-4.3, and howI&H
uses it to model workload performance in §4.4.

To handle the dynamic set of interactive nodes, each cautitnidp
varying amount of resources, and to achieve online perfocma
modeling independent of the actual workload and batch dixetu
framework, RHIC relies on three key insights derived from exr
periments. These insights, as listed below, help us to dynmlr
performance model, identify chief performance constgaiand fo-
cus on the behavior of aggregate resources from volunteers:

e Insight 1: Although each foreground interactive workload has
unpredictable resource usage burstsaierage usage over a
longer period of time tends to be more stable.

e Insight 2: In our proposed hybrid execution mode, the disk
1/0 bandwidth afforded by the dedicated nodes can be a major
factor limiting theeffective productivity of a volunteer.

e Insight 3: The overall progress of a batch job is determined
by the aggregate productivity from all selected volunteers,
largely independent of the productivity distribution argon
these nodes.

In the rest of this section, we discuss in detail the aboviglhs
and the interaction between several major RHIC componélate
that for simplicity, our initial discussion is based on hayaneous
hardware across the node pool. However, in §4.6, we addnisss t
shortcoming by explaining a thin translation layer that\al RHIC
manage and model different node types.

4.2 \Volunteer Selection and Management

Given a desired aggregate volunteer set size, RHIC musttsele

which specific interactive nodes to use in an efficient antbbta
manner. This selection is based on continuous residualireso
monitoring and prediction, as discussed below. Common-inte
active cloud workloads are highly bursty, making load cdidse
tion [40] backed by VM migration difficult. However, for rumg
background jobs that yield to the interactive foregroursksait is
the sustained CPU resource availability that matters. uRately,
we found that although individual CPU usage spikes appear ra
dom and unpredictable, the average CPU utilization can fee-ef
tively estimated using near-term history data (Insight 1).
Residual resource prediction: RHIC employs an online fore-
ground workload CPU demand model using once-a-second CPU
consumption samples from the interactive nodes. We consid-
ered four common prediction methods: moving average, auto-
regression, auto-correlation, plus a hybrid of signahased Fast
Fourier Transform and Markov chains used in previous wo.[3

We evaluated all four

_ 8] ®XXJ Over-Prediction
u_n_der a range _Of CoN- "5 6] ] Under-Prediction
ditions which simulate § 4]
our intended environ- < 21 oo el
ment: 10, 20, 30 and § 5|
60 minutes of history, ‘5 -4
and 5 and 10 minutes 2 5
of lookahead (prediction £ 1o
W.II.‘ldOW). These con-  -12- Moving  Auto-  Auto-  Hybrid
ditions were chosen be- Average Reg.  Corr.
cause we desire a short Algorithm

lookahead but simulta-
neously do not expect a
long history to be avail-
able due to interactive
node transience. Fig. 8
shows the accuracy of
these four prediction methods. Moving average yields thetmo
accurate predictions, most likely due to the short trainifmgdow.
Moving average and auto-correlation show identical pengoice,

but this occurs because auto-correlation falls back to amgoav-
erage when it is unable to achieve a match. As a result, wedsave
lected moving average as our prediction algorithm and wetai

a prediction model for each interactive node regardlesshaftier

itis currently selected as a volunteer.

For memory, we assume that the foreground VMs have pre-
specified memory caps based on their workload, as in the dase o
Amazon EC2 and VCL instances. Background memory require-
ments, on the other hand, are estimated during the initcdllimg
phase. For MapReduce-like platforms, we adjust the numicgr o
multaneous worker processes (such as Map 9\ts:s) on each
volunteer to fit within its residual memory capacity. If thisd
of performance knob is unavailable, we instead discard adgs
which do not have the minimum memory required.

Put together, the predicted foreground CPU consumption
(CPU;4) and CPU after considering memory restrictioh®0%% x
Nsiots) indicate the volume of unused residual resources avail-
able for volunteer consumption on an interactive node. fecef
whichever of these two factors is most-restrictive dictanehat
CPU will be available for the volunteer’s workload. We cdlist
quantitypotential productivity Pyotentiar (EQ. 1), because it is the
estimated maximum productivity a volunteer, harvestinghisin-
teractive node, could contribute to the background job. \ige d
tinguish this quantity apotential because 1/0 bottlenecks may re-
sult in a loweractual productivity, as we discuss in 84.3. Here

Figure 8: Accuracy of four different

prediction algorithms for the fore-

ground traces which we use. Ab-
solute error is shown, with a value
range of 0-100.



CPUpqz represents the maximum CPU available on the interac-
tive node, such as 400% for four cores.

Ppotential = mln(CPUma:v - CPUfg, (100% X NSlots)) (1)

Note that we do not consider time-of-day in our predictioas a
idle cloud sessions are likely to be terminated by eitheruber
or the system for cost/energy saving, as does the VCL. Thire w
likely be daily or weekly interactive pool size fluctuatiomnghich
can be handled by RHIC as a global constraint when selectihg v
unteer cluster sizes for multiple concurrently runningkemound
workloads.

Node selection:In selecting specific volunteers from the interac-
tive node pool, we adopt a greedy algorithm for better sdihab
Candidate nodes are sorted according to their potentialustiv-

ity level. Then RHIC makes volunteer selections by evahgalif-
ferent prefix sets of the candidate list toward a given op@tion
goal, using the 1/O-aware performance model discussed.ih $4
the current volunteer set is no longer optimal, adjustmemade
by including nodes with the highest or discarding nodes with
lowest predicted CPU contribution.

Intuitively, this approach reduces the number of volurdersed,
contributing to lower overall monetary and energy cost. tier
this limits the search to a linear rather than exponentiatepin re-
gard to the candidate interactive node pool size. In additi@ use
a periodic threshold-based “replacement” process to iigeand
replace volunteers that experience a significant decreasesid-
ual CPU availability. This is necessary because our nodeteh
algorithm only discards nodes when RHIC chooses to lower the
volunteer count. To do this, we periodically perform chegkby
comparing the most-available unused node with the leastadle
used one. If the difference in their CPU availability is abav
threshold, we swap the two. This process is repeated uatC#U
availability difference falls under the threshold. Intetiege node
churn presents an issue for our search-driven clusteigsizineme,
because nodes can arrive/leave unexpectedly and changie#he
batch cluster size. In such a situation, a naive responsévoeu
to perform another round of searching immediately to findbst
cluster size, in light of the altered interactive pool. Hoee be-
cause interactive nodes can learemasse, i.e. at the end of a
class lab session, there could be significant thrashingedansthe
search process as it tries to react to a series of arrivartep
events. To avoid this, RHIC takesdeferment strategy: upon an
interactive pool change, it enforces the decision madeeagiial of
the last evaluation interval, deferring new decisions ®ehd of
the current interval.

In our shared-nothing cluster, we disable migration beedt.is
costly and ill-suited (§3.1). However, if foreground mitioa is en-
abled, RHIC can seamlessly adapt to the post-migrationnveér
with its constant monitoring, periodic volunteer pool asseent
and node selection.

4.3 Modeling Workload 1/0 Behavior

As verified in §3.2, our proposed method is based on the ohserv
tion that, for typical distributed batch workloads, thesevailable
1/0/network bandwidth for dedicated nodes to support éofut
volatile, diskless volunteer nodes. This model applies d@okb
ground workloads with non-trivial compute demand, but tas
egory is fairly broad - we find that significant cost/energinga&an
be achieved for Grep, which is substantially I/O-intensitow-
ever, as the number of volunteers grows, eventually /O Wwadtti
on dedicated nodes is likely to become the chief limitingdaor
performance/scalability (Insight 2), which has not beemsadered
in prior work [9, 21]. Despite this scalability limitatiomye show

in our evaluation (85.2) that a pool of volunteers can gyeatt
celerate a dedicated cluster's performance, making this portion of
RHIC’s modeling especially valuable.

RHIC builds an I/O model at runtime for the target batch job to
identify the existence of I/O bottlenecks. Fig. 9 illusesthe in-
teraction between the volunteer productivity and the I/6tention
at the dedicated nodes for two sample MapReduce worklodds. |
shows the aggregagetual productivity from the volunteers at each
level of aggregateotential productivity, averaged over the Map
phase. The actual productivity is measured from the voarié/
usage, while the potential is calculated with Eq. 1. We vedifhat
the leveling off point in these curves corresponds to theodeed
node /O saturation point. This figure also demonstratesttiea
onset of the 1/0 saturation is highly workload-dependenith\a
more |/O-intensive workload (SFASTA in this case), the sation
comes earlier and results in a lower aggregate actual prigtdyc
Fig. 9b plots the actual to potential productivity ratio odéferent
volunteer counts. It illustrates that the MapReduce jolsoames a
constantly declining portion of the aggregate potentiatipctivity.

As a result, we base our I1/O model §®otential, Pactual } PAITS
for the given workload and hardware, derived at runtime.
Saturation Point Estimation: For each background job, RHIC
builds an 1/0 curve that tracks potential productivity oe draxis
and actual productivity on the Y-axis, in order to ultimgtptedict
the actual productivity for a given volunteer set. RHIC udata
from the initial profiling, as well as continuous samplingdaap-
plies regression to build this I/O curve. To avoid inaccyreaused
by extrapolation or sampling well beyond the 1/0 saturapomt,
it is important to estimate an approximate location of theickted
node 1/O saturation onset. The saturation point also inelé&cthe
upper bound of volunteers needed, regardless of optirnizgtal,
as beyond this point more volunteers will not return addgiger-
formance.

RHIC bases its saturation point estimate on 1/0O bandwidth co
sumption data collected in the initial profiling phase. Asgg
a linear relationship between actual productivity and |&ndnds
(limitations discussed below in §4.5), it estimates theeggcvol-
unteer productivity each dedicated node can support usin® E
Here BW Utila.4 is the average disk bandwidth utilization mea-
sured on the dedicated nodes during the initial profilingsghand
Prnaz is the maximum productivity potential on a nodéol P s.pp
is the volunteer productivitgach dedicated node could support, in
addition to its own demand. Next, we calculate the range ef po
tential 1/0O saturation onset points, using best and wasee@sti-
mates. The best-case estimate represents completelyebdl&#O
load (each dedicated node serving equal volunteer demaddha
worst-case completely-imbalanced (one dedicated nodegeall
volunteer demand). Below we derive the pair of estimatesdasa
Vol Psupp, WhereNy is the number of dedicated nodes:

100%
Vol Puwn = (G~ 1) % @
Spest = Vol Paupp X Na (3)  Sworst = Vol Paupp (4

Using the best and worst case estimates, RHIC increaseiz¢he s
of the volunteer pool using Algorithm 1. It samples the waase
estimate and halfway between the best and worst case, tlesn us
linear regression to guess the actual saturation onset. pRiIC
then verifies the occurrence of I/0 saturation using the sksisors
on the dedicated nodes, based on the disk bandwidth utilizat
metric from the ost at ultility. In practice, we have found that this
approach quickly finds the 1/0 saturation point with satitfay
accuracy. In addition, this allows us to sample system eeetmder
a range of cluster sizes, improving the breadth of our models
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Figure 9: Impact of 1/0 bottlenecks on actual

volunteer productivity, using 2 dedicated and 1-
8 volunteers, with a max of 800% CPU on each.
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Algorithm 1 Initial volunteer pool scaling algorithm. The cluster
is pushed to the saturation point using a combination of E4j. 3
and first-degree regression (line 18). This approach alsouats
for the effects of diminishing marginal returns (DMR) whe@|
saturation is not the primary limit on scalability, whichafen the
case if the price of volunteers is relatively high.

. /I Perform one profiling period with dedicated nodes alone

. ProfileData <+ RunPeriod() , Period < 1,Vols + 0

. /] Calculate saturation range using Eq. 3-4

(Sworst, Spest) < ComputeSaturationPoinB¢o file Data)

. Il Predict the max from DMR, ignoring 1/O saturation

Mazpur < PredictldeallgnoringlQfro file Data)

: /I Push to the 1/O saturation point, accounting for DMR

: while (I0Saturation()}# True) AND (|Vols| < Maxpmr)
do

9. if Period ==1 then

ONOUTAWN R

10: NextSize <+ min(Sworst, Maxrpmr)
11: elseif Period == 2 then

12: NextSize + min(W,MaxDMR)
13: elseif Period == 3 then

14: if Maxpamr < Spest then

15: NextSize < Maxrpmr

16: else

17: /I Linear extrapolation

18: Vols < ExtrapolateSaturation()
19: end if

20: else

21: NextSize < |Vols| + Sworst

22:  endif

23: /I Find volunteers to satisfy the next size, and run theode
24:  Vols < FindVolunteersiVextSize)

25:  RunPeriod{ ols) , Period +=1

26: end while

Improving 1/0O Balance: To increase the chance that I/O load is
balanced across dedicated nodes, therefore yielding aatatu
point closer toS,.s:, RHIC can leverage background framework-
specific cues to assign volunteers to dedicated nodes inral+tou
robin fashion. In Hadoop, topology locality cues are useals&ign
sets of volunteers to the same logical rack as dedicatedsnode
creasing the probability (but not guaranteeing) that rotal-J/O de-
mand is balanced across dedicated nodes. Since Hadoos &liow
arbitrary rack hierarchy depths, this technique can be tesedtor-
porate real topology data as well, by assigning dedicateldvah
unteer nodes to the same physical rack, and then subdividamng
into logical racks per dedicated node. Hadoop will prefetaba
odes which are “closer” to the given TaskTracker, resultmg
volunteer trying its assigned dedicated node, then ottodrIccal
dedicated nodes, before proceeding to other more-remdieaded

nodes. Below in 8§4.6 we discuss how heterogeneous 1/O subsys

tems on dedicated nodes can be factored into this scheme.

1727374567 8
Volunteer Host

(a) Resource distributions
Figure 10: Impact of residual resource distribution on MapReduce job comple-
tion time for 2 dedicated and 8 volunteer nodes. All distribuions have the same
total residual CPU.
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1/0 Curve Building with Clustering and Curve-fitting:  Next,
we complete the 1/O curve that maps aggregate potentiahtexu
productivity to aggregate actual volunteer productivitiIC uses
Mean-Shift clustering [8] to pre-process rd\Wyotentials Pactuat b
data points. This allows us to avoid a critical flaw in usingveu
fitting for decision making, where incorrect decisions feine
themselves by repeated sampling in the same area, skewing R-
squared summations. Also, clustering allows us to tolariadémges
in the 1/0 landscape, such as increased Reducer disk I/Oifoad
MapReduce, byging data points. Finally, RHIC performs first-
degree spline fitting on the cluster centers to build the @ve.
This approach allows us to deliver interpolated valuestiygton-
strained to the observed curve, which is important near #te s
uration point, because minimization decisions hinge onginat
cost/gains. Prediction of the aggregate actual prodigtivin a
given set of volunteers can then be performed with intetfia
based on the projected aggregate potential productivityhese
volunteers. This approach assumes that the network battdvsid
either static or is not a limiting factor, which we believerea-
sonable (RDP sessions consume a low 384Kbps on average [10])
but will be relaxed in future work, to incorporate hotspotedtion,
topology awareness and bandwidth availability prediction

4.4 Background Job Performance Modeling

Background job performance modeling is the core of RHICGs si
ing intelligence. As mentioned earlier, RHIC's performamod-
eling is based on the observation that the aggregate pioityict
from the selected volunteers, largely independent of tk&idu-
tion of residual resources on individual volunteer nodethé chief
factor determining a job’s completion time on a hybrid ctugin-
sight 3 - limitations discussed below in 84.5). Fig. 10 shewser-
imental results demonstrating this performance behawothese
tests, we collected the execution time of four MapReducekwor
loads under four different CPU allocation distributionscerm the
volunteers, simulating different productivity distribas. Accord-
ing to each distribution, a volunteer is allocated 4 corgh @iCPU
cap between 50%-350% (with one cere100%), while the total
CPU allocations from all 8 volunteers are fixed at 1600%. Edz
illustrates the shape of the distributions used.

Fig. 10b shows that the duration of the Map phase is nearly con
stant across all distribution types, for all MapReduce JWaalls
tested. In other words, frameworks like Hadoop are quiteriol
ant to heterogeneity in node processing capabilities,iplgsdue
to the adoption of mechanisms such as speculative exeoutthn
the well-proven LATE algorithm [42]. In particular, the faihat
dedicated nodes are robust, stable and 100% availables@sab-
gressive, reliable speculative execution, effectivekjrig over the
job from straggler volunteers.

This observation allows us to build our performance (andseen
quently cost) modeling on theollective behavior of the dynamic
interactive nodes. Rather than micro-managing volunteeies



according to their foreground resource usage bursts, Ridkg$
its decision on the aggregate potential productivity froamdi-
date volunteer node sets, filtered through the 1/0 modehahigh
Fig. 10 only demonstrates static CPU allocation heteragemnee
show in our evaluation that this technique can be succégsipt
plied to dynamic heterogeneity as well.

Completion Time Estimation and Damping: More specifically,
RHIC predicts that “a background job will complete at tipé it
receives a sustained total volunteer productivityctf This sim-
plification is aided by both RHIC'’s preference for most-protive
volunteers (84.2) and speculative execution. For this, exel
oped a simple model based on the processing Rate., shown
in EQ. 5. HereJeompieted iS the current fraction of the job com-
pleted,Teiapsca is the time elapsed, andP,.:..q:1 is the aggregate
actual productivity (dedicate¢t volunteer) oveflciapsed. Rproc IS
re-evaluated periodically during the background job.

By calculating the fraction of remaining Work-cmaining =
Jiotal — Jeompleted, W€ C€an then invert Eq. 5 and produce a Map
completion time estimat@).c...ining, given a predicted aggregate
actual productivityA Pp,cdicted, @S shown in EQ. 6. AP, cdicted
is calculated by applying RHIC'’s 1/0 model to the voluntégre-
dicted aggregate potential productivity, which togethstineates
the aggregate productivity that mustainable by the dedicated
1/0 infrastructure. Finally, to tolerate stragglers, weladsmall
padding value to our completion time estimate, based onuée a
age length of background tasks experienced.

Jcompleted
Telapsed X APactual

Rproc - (5)

J’r‘e'maining

APpredicted X Rp'roc

Tremaining = (6)

To avoid oscillation or thrashing, we estimate the traasitime
required by a volunteer pool size change. \Volunteer additie-
quire a fixed setup overhead, which we profile. Volunteer rexiso
are trickier - as we allow deselected volunteergitain running
tasks when we remove them (discussed in 84.8). We predict the
draining duration based on the observed average volundsér t
length. In both cases, the transition time is accountechfaraking
completion time predictions.

Overall, with our experimentation we found this runtime rabd
ing approach simple but effective. We view such simplicisyaa
asset, in contrast to alternative approaches which relyigiiyr
detailed whitebox techniques [19] and therefore cannotpipdied
to a broad range of parallel batch frameworks.

Goal Estimation: Based on the completion time estimate, RHIC
generates performance scores (to be minimized) for carediabé-
unteer sets, given one of the three goals it currently sugpor

(1) Deadlines: To satisfy a deadline requirement, RHIC com-
putes the performance score as the difference between the es
mated job completion time and the deadline.

(2) Monetary cost: With pay-as-you-go cloud computing,
volatile volunteer nodes are likely to be charged at a lovege.r
Given a certain pricing policy, RHIC calculates the perfance
score as the overall cost based on the completion time dstima

(3) Energy: Energy estimation is more complex and requires the
offline construction of an energy model for the specific handwv
used. In this paper, we focus exclusively on CPU power copsum
tion, considering prior findings that CPU typically domiesiten-
ergy consumption in modern systems [13]. Our energy mogelin
takes the well-established approach of running a micratueark
that thoroughly enumerates the relationship between CRidaut
tion, frequency and power consumption [13]. We then useipielt
regression to derive a power model that estimates poweuogns

tion at an arbitrary utilization and frequency level. Thisahel is
subsequently used by RHIC to compute the performance seore a
the predicted power consumption with the given voluntegroser
the length of the job. We made the simplification of using CPU
alone, as energy modeling is not a major focus of our work hisd t
naive approach proved accurate for our testbed. If neetieal,ld
be replaced with a more sophisticated model without modifina
to other parts of RHIC.

Recall that our hybrid cluster design is partially motichtey
the energy savings enabled by piggybacking backgroundlosmntk
on interactive foreground tasks. While all power consumptn
dedicated nodes is billed to the background user, he/shalys o
responsible for thencremental energy consumption incurred by
the background job on the volunteer nodes, because thess nod
would not be powered on otherwise. Therefore, in modelirgy th
background job power consumption, we exclude the basatiie (
power consumption as well as the predicted foreground power
volunteers.

4.5 Limitations of Linearity Assumptions

The aforementioned performance modeling is dependent on
Ryroc remaining somewhat static over the lifetime of the job.
While our scheme tolerates noise R),,.. calculation resulting
from uneven job progress reporting (shown in §5.3), wordtéoéhat
have inherently heterogeneous progress can reduce RHi€s a
racy. For example, biological sequence search algorittamsskip
over large portions of input sequences depending on theifas
ity. In cases like these, RHIC will only track the averaBg,o.
of the workload, which makes the accuracy of runtime préafist
dependent on the variance of this metric. The same issuéappl
to our assumption of linearity between 1/0 demand and CPU con
sumption: heterogeneous job progress per unit CPU is tipica
dicative of heterogeneous I/O demand per unit CPU. Thisnagsu
tion has also been made in prior works [41], but does hinddRH
ability to handle certain workload classes.

We believe that this shortcoming can be addressed with efflin
profiling, or hints provided by the administrator, which veallow
us to distill how muchR,... varies in the given workload. Since
Rproc IS input-dependent, we would need to observe a number of
runs across different inputs in order to form a degree of denfie
in our measurements. These statistics will allow us to fdateu
best and worst-case estimates of fhg ... of a novel input at the
job’s outset, which can in turn influence how aggressive oseo
vative RHIC behaves, based on the performance goal. For-exam
ple, to meet deadlines, RHIC would hew closer to the worseca
estimate early in the job, while for minimization goals, adpwint
between the best and worst-case may be more appropriatesié |
examination of this sub-problem as future work.

4.6 Handling Hardware Heterogeneity

Our /O and runtime modeling techniques center on our syitthe
productivity metricPyotential, described in previous sections. Het-
erogeneous hardware presents a problem with this metraubea
background workload is likely to generate different pregreates
at the same CPU uitilization across different hardware, aedte
different 1/0 pressure as a result. To cope with this dispawe
use a two-fold scheme which provides a translation layeatoue
late equivalencies between different machine classes. gédmeral
approach has been applied in prior works [14, 19] under the as
sumption of a rather limited set of machine classes or génes
valid for today’s clouds (like EC2 and VCL).

For different CPU and/or memory bus speeds, we use a transla-
tion metric which we call efficiency, which allows us to equate



the processing power of different machine classes to a bassic

no modification to RHIC. For example, interactive nodes ddé

(Eo = 1), which we merely set as the most-popular class at cluster offered to RHIC instances in a round-robin fashion, andteataf

launch. Ex for a new machine clask” is calculated by compar-
ing the job progress.ompicted ;- PEr UNIt of actual productivity

unused after several periods, similar to Mesos [20].
Volunteer termination: The lifetime of a volunteer is equal to the

P..iwai ¢ ON the new class, to that of the base class, as shown in lifetime of the interactive node which it resides on. As auteol-

Eq. 7. This technique is then applied to calculate the piatigmto-
ductivity in common units, as shown in Eq. 8, which can bediye
incorporated with productivity from other classes whertakdting
Pactuals Rproc, runtime etc.

E JcompletedK Pactualo (7)
K =

PactualK Jcompletedo
Ppotentialcommon - Ppotentle X EK (8)

For different disk I/O subsystems on dedicated nodes, pingu
a translation metric based purely on online profiling is seime
trickier because it must be disintangled from CPU diffeemnBe-
cause of this, we perform basic offline profiling of disk baittiv
for each dedicated machine class, deriving a disk bandweigtiiv-
alency metricBx for each machine clask’, again relative to a
chosen base class wifBy = 1. By is then incorporated into our
scheme in two ways: first during saturation point estimatod
second in allocation of volunteers to dedicated nodes usipgl-
ogy cues, as discussed above in §4.3. For saturation poimaes
tion, we multiply the best and worst case estimates by theagee
of Bx in the dedicated cluster. For volunteer allocation to dedi-
cated nodes, we perform a similar scaling, assigning ptigaily
more volunteers to dedicated nodes with higBevalues.

4.7 RHIC Scalability

In our evaluation, we run RHIC on a single management node
with minimal overhead (30% single-core CPU utilization, 2%
multi-core) and quick decision turnaround (250ms) usinigaes-
tive searches on a hybrid cluster of 42 nodes. To handle naugér
clusters of hundreds or thousands of nodes, we believeigmafis
cant portions of RHIC can be parallelized and pushed out tha&o
volunteers themselves if necessary. Each interactive cmuald use
residual cycles to predict its own near-future CPU avdlilghand
communicate this to RHIC. Further, each iteration of thecea
algorithm evaluates a different volunteer pool indepetigieand
therefore can be parallelized and computed by volunteeraore
sophisticated search algorithm could further reduce amtisver-
head. Building the 1/0O model and calculatit,... can also be
accelerated in a distributed fashion, by aggregating ‘ekmpro-
ductivity information before sending it to the managemeotian
using a tree-shaped reduction overlay network [5].

4.8 Integrating RHIC into MapReduce

RHIC uses a generic modeling approach and can manage aBackground Workloads:

wide class of embarassingly-parallel batch frameworksgrasent,
MapReduce is easily the most-popular paradigm within thagkw
load class, and below we discuss several issues specifidrtg us
RHIC to manage MapReduce background jobs.

Multi-tenancy: MapReduce clusters are traditionally multi-tenant
with several jobs vying for available slots. Because RHIhtly
couples cluster size and the performance characteristecsiagle
job, we believe greater performance and efficiency can beddy
running multiple RHIC-guided hybrid clusters, side-byesiwvithin

unteers can be terminated with little warning, which pospsob-
lem for Hadoop because the JobTracker assumes that Map tasks
completed by the terminated node are lost. Several fixeshfsr t
issue have been proposed, including task checkpointrtg3&],
pushing intermediate data to Reducers [28] and placingriredi-

ate data on a distributed filesystem. Amazon’s Elastic MapRe
(EMR) takes this third approach, allowing EMR clusters te us-
stable SPOT instances. Because these features are natiemnésl

in our version of Hadoop (0.21), we emulate them using a mextlifi
scheduler, which allows us to stop assigning new Map tasles to
volunteer while preserving its intermediate data.

Reducer placement:The loss of Reduce tasks is particularly dam-
aging to MapReduce job runtimes because intermediate daga m
be re-shuffled [9, 38]. As a result, we do not run Reducers én vo
unteers and focus on the runtime of the Map phase, which for ou
workloads dominates the total execution time. This is bddke
findings [7] that Map-only jobs are common, the Map phase dom-
inates MapReduce jobs, and input data is the majority ofestor
bytes. We believe that this is a reasonable simplificatiaverg
that hybrid clusters have an abundance of CPU but limitedé/O
sources.

5. EXPERIMENTAL EVALUATION

In this section, we evaluate RHIC in six key areas, afterrgjvi
an overview of our test platform in 85.1. First, in §5.2, weabtish
that RHIC can accurately discover near-ideal cluster gizieci-
sions, in comparison to an exhaustive search. In 85.3, weamn
the performance, stability, and adaptability of RHIC to #eraa-
tive algorithm based on fuzzy control theory. Next, we vaiéd
RHIC's performance under increased cloud instability idg§and
demonstrate RHIC’s general applicability to parallel battame-
works in 85.5. Finally, we evaluate RHIC’s hardware heteragty
tolerance in 85.6, and briefly discuss RHIC'’s overhead i.85.

Unless otherwise noted, we run each test three times and repo
the average, with the goal of evaluating RHIC under a widgean
of scenarios. To this end, we have conducted over 400 redétwo
(non-simulated) experiments, each with over 600 workecgsses
and in general found the variance to be quite small. Erros bar
denoting standard deviation are omitted unless we haveast &
runs for a given test and the deviationis2%.

5.1 Test Workloads, Platform, and Settings

For evaluating RHIC, we use
Hadoop [16] and a thin compute layer running over HBase [§7] a
the background job execution frameworks. Hadoop and HB@&se a
widely used open-source implementations of the Google MapR
duce and BigTable systems, respectively.

We used four representative MapReduce workloads: Wordcoun
(70GB of input), Grep (70GB of input), Word Co-occurrence
(11GB of input), and Pi (trivial input). Map phase executtones
are typically between 20 and 40 minutes, and are the targeufo
optimization as mentioned above (84.8).

the same cloud. With this proposed execution model, each job We used two representative workloads on top of HBase: Com-
would be anchored on a set of dedicated nodes and managed byress (offline LZO compression of text cells on 70GB of input

an independent instance of RHIC, harvesting from a sharetl po
of interactive nodes, each used by at most one job at a time. Th
RHIC instances would have no knowledge of each other and-ther
fore could be co-located using a trivial arbitration layequiring

data), which is 1/O-intensive, and Raytrace (image geperan
100MB of input data), which is CPU-intensive. Both are likel
to run during off-peak hours against semi-structured dataed in
a production HBase cluster, and hence are suitable for dimut-
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are fixed at Cy = $1.00/hr, with four different volunteer rates:
{$0.20, $0.42, $0.60, $0.80} /hr, represented as Exh () and RHIC(C,). Volun-

teer count is the time-weighted average over the job.

oriented volunteer harvesting. Compress could concenablised
on user messages, profile data etc., motivated by compnesssts
which cannot be borne by frontend servers during peak h&ag-
trace is representative of image/tile generation worlddad mul-
tiplayer games creating randomly-generated worlds.
Foreground Workloads: NCSU’s VCL is an excellent model of an
interactive-user laaS cloud, and we drew on it for ideas &ltppi-
cal” clouds of this nature. To determine what were the mopufsr
applications used in the VCL, we analyzed a log of 750,008rres
vations from 2004-2010 and selected four representativik-wo

Co Figure 12: Impact of increased interac-

tive churn on RHIC and Fuzzy(4)

noted, we adopt a sample pricing policy following the co$t8©2
n2. x| ar ge On-Demand and SPOT Instances at the time of writ-
ing. This sets the per-node rate to $1.00/hour for dedicateis
and $0.42/hour for volunteers, although we calculate etusbsts
to the nearest second due to the short duration of our test job

5.2 Exhaustive Evaluation

First, we performed an exhaustive evaluation over the vekm
cluster size range, for each MapReduce test workload. Wertre
RHIC under identical conditions to verify its ability to aqudy find

loads: Matlab, Photoshop, OpenOffice, and C Development. We the ideal cluster size.

then instrumented images of these types and collected 6@eret
source consumption traces of real users, ranging in lemgth 20
minutes to 4 hours. Finally, we built a replay framework tban

Our hybrid cluster is composed of 6 dedicated nodes and O-
36 volunteers, with over 600 worker processes. We colleeted
haustive datapoints every 2 volunteers, fréMm2,...,36}, and

generate CPU and memory load using microbenchmarks to matchrepeated each test twice. For a fair comparison, we enshedd t

the consumption in a recorded trace. In addition to trackyyegn
individual nodes, we also built support infrastructure istribute
traces, randomize their start points, and repeatedlyyeptasame

every run (exhaustive or RHIC) had an identical foregroumdka
load “mix”, composed of the same traces starting the sam&oi
in time. This mix is composed of a randomized selection afasa

set of randomized traces across a fleet of foreground VMs. We and start points taken in equal proportion from each of the fo

use different randomized foreground “mixes” for each grotipx-
periments. The length arghurn rate of the foreground VM ses-
sions are generated using a normal distribution with tharpaters
derived from the 2004-2010 VCL log data. Finally, we setistat
memory allocations for foreground VMs using per-workldggde
normal distributions extracted from the VCL logs.

Test Platform: Our main test platform is NCSU's ARC cluster,
which has 108 nodes interconnected via InfiniBand, each 46th
2GHz cores on two processors, 32GB RAM, a SATA disk drive
and the KVM hypervisor. We use IP over Infiniband for our ex-
periments, but due to KVM’s virtualization overhead, we caty
achieve approximately 500 MBit/sec speeds (VM to VM). We re-
strict dedicated VMs to 16GB of RAM, while foreground and-vol
unteer VMs share 8GB RAM total. ARC is a scientific computing
cluster and therefore ®p-heavy in terms of compute to disk 1/O
resources, which actually makes this environnmmate challeng-

ing for RHIC. A more-robust 1/0 subsystem relative to compute
and memory would yield greater scalability, higher 1/O sation
points, and less-flat cost and energy curves (85.2).

foreground workloads described in §5.1 (25% each). Thideste
mix allowed us to collect foreground-only energy consumptnd
subtract it from the total, calculating the background gpeurves
shown in Fig. 16. To generate the exhaustive performanaegur
we developed a “targeted” version of our framework whichmnai
tains a specific number of volunteers using the same volunteke
selection mechanism (84.2) as RHIC. This ensures that if(RHI
and the targeted framework choa¥ednteractive nodes at the same
point in the background job, they will receive the same set.

Fig. 11 and 16 show the performance of RHIC relative to the
exhaustive search for cost and energy minimization, resedc
It can be clearly seen that (1) supplementing dedicatedshaite
volunteers does bring monetary cost and energy benefitdiff@)
ent volunteer cluster sizes yield a large range in executasts,
generating72% monetary savings and7% in energy compar-
ing the most and least optimal settings, (3) the behavioref t
cost/energy curves are highly workload-dependent, anRREIC
is able to identify the optimal or near-optimal cluster sizeomat-
ically. On average, RHIC achieves within 5% of the minimimum

We chose to use ARC because it has both reasonable size anaost and 3% of the minimum energy. The only notable anomaly is

node-attached power meters. To calculate background pmaver
sumption we replay the foreground workload by itself andeal
late the difference. For monetary cost evaluation, unléssraise

that RHIC undershoots the energy minimum for Co-occurrdyce
approximately 4 volunteers. This is because Co-occurrenoé
timately CPU-bound but has non-trivial I/O demand, whichl&H
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Figure 13: RHIC vs exhaustive: Deadline en-
forcement. Values just under 1.0 are ideal,
but above 1.0 are missed deadlines.

1k

’52.0k7 ’E
I1.5kf¥'.’_.;/‘/_/ T 800
£ % 600
© ] ©
g 1.0k £ 400
SO.Skf 3200
5 00 ————————————— & Oy
S 0 5 10 15 20 25 30 35 S 0 5 10 15 20 25 30 35
Volunteers T VoILglteers
™ Wordcount [2m rep
T 5k T
= 4kd £ 3k
S 3k = %
\;, 2k ;
> 1k S 1k
2 o 3 o
:Cj 0 5 10 15 20 25 30 35 uc_j 0 5 10 15 20 25 30 35
Volunteers i Volunteers
Pi Exhaustive Word Cooccurrence
e RHIC

Figure 16: RHIC vs exhaustive: Energy minimization. Volun-
teer count is the time-weighted average over the job.

cautiously explores. Unlike Pi's energy minimization, fehich
RHIC immediately pushes to 36 volunteers, RHIC takes 3 sipps
to 36 volunteers with Co-occurrence to ensure that I/0 do#itks
do not occur. This is exacerbated by the long straggler pimase
Co-occurrence, during which most volunteers sit idle.

Fig. 13 shows soft deadline enforcement results. Three-dead
lines were chosen for each background workload, acrossatiger
of achievable completion times, each tested twice for @ tia&
apoints per workload. In Fig. 13, the horizontal black barkaa
the normalized deadlined(l.0). The exhaustive bar represents the
closest setting, identified by the exhaustive tests, whittiezes
the deadline. Again, RHIC achieves near-ideal performance
most cases, enforcing runtimes 2% under the deadline oageer
It misses 5 of 24 deadlines, but by less than 3% on average.

5.3 Optimization Technique Evaluation

Conceptually, RHIC is based on the combination of online pro
filing and model-guided optimization. Given the highly-atle
nature of our harvesting environment and the need for coatin
adjustment, a control theory approach could be a validratere.

In this section, we compare RHIC with an alternative schease
on fuzzy control for minimization, as well as a naive thrddtai-

gorithm. Traditional control systems are well-suited foolems
where the goal is clearly defined (i.e. deadlines) but steugipen
itis not (i.e. minimization). To address both cases, we tafuzzy
control systems. Fuzzy control has been previously appdieain-

imization problems in server clusters by Liu et al. [29], ahis
used as the basis for our fuzzy controller (FUZZY) desigs.2k
period historical comparison is similar to hill-climbing.

For Liu et al.'s Rules #1,3 we increment/decrement by a param
eterp > 1 (shown in Fig. 17 as Fuzzy)), which determines the
magnitude of cluster size changes when the controllerdedi is
moving in the “correct” direction, while for Rules #2,4 welpim-
crement/decrement by a single volunteer, since FUZZY is tiea

Figure 15: FUZZY’s example choices for
Pi. The vertical black bar shows the
deadline..

minimum. To adapt the minimizing fuzzy controller desigroto
scenario, we use the interactive node selection and clusteage-
ment (84.2) modules from RHIC. The fuzzy controller’s logi@s
follows:

1. Evaluate the efficiency of the previous evaluation irderv

2. Compare the previous evaluation interval to the evanait-
terval before it

3. Avoid action if the change in efficiency is below a threshol

4. Otherwise choose an action based on the fuzzy rules

FUZZY requires 2 initial “start points” because it is basedea
historical comparison of two time-steps: the performana @n-
trol decisions of the previous two steps are used as the bt
step. We use the same profiling phase as RHIC for the first step,
to allow FUZZY to determine memory demands of the background
workload at runtime. However, the second step must be mignual
determined, so we set it to a range of fixed values. For eadk bac
ground workload, goal and value, we evaluated FUZZY with 3
different start points:S = 25%, 50%, 75% of the total volunteer
pool (36 volunteers). This was motivated by the observattiar
FUZZY'’s performance is heavily influenced I8, which can be
seen in Fig. 15.

In addition, we included a naive “threshold” algorithm, wlhi
chooses interactive nodes with residual resource avijeabove
a percentage - i.e., Threshold(0.5) selects all voluntests >
50% predicted available resources. We evaluated the two akern
tive methods plus RHIC with all three goal criteria acrossfour
background workloads, again using a hybrid cluster of 6cidd
and 0-36 volunteers. One deadline was chosen for each lmacidr
workload, in the middle of its achievable completion timege.

For FUZZY we variedp = {2, 4, 8}, while for the naive threshold
algorithm we used thresholds of 25%, 50% and 75%, but 75% is
omitted due to its universally poor performance.

From Fig. 17, we see that alternative schemes yield worse cos
and energy minimization performance relative to RHIC, ahti®
enforces deadlines much more tightly. While some altereati
schemes deliver near-RHIC minimization resuksi% additional
cost/energy) for some workloads, none consistently do sosac
all background workloads and goals. For example, Fuzzyé8) p
forms well on Grep and Word Co-occurrence deadlines and most
energy minimization, but delivers poor results on Grep antbBt
minimization, Grep energy minimization, and Wordcount dhd
deadline enforcement. RHICa&aptability to both the workload
and the desired performance goal clearly offers a broad advantage.
The only place where RHIC underperforms any of the alteveati
schemes (by 2% at most) is in energy minimization for Word Co-
occurrence, for the same reason as discussed in 85.2.

Several insights about these results are worth mentioning:
FUZZY’s poor decision-making: this stems from two root causes.
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Figure 17: Performance of alternative schemes to RHIC. Forast and

energy, lower values are better, and 0% is RHIC’s pedrmance.

For deadlines, values just below 1.0 are best, and values al®1.0 indicate missed deadlines.

First, Hadoop’s global progress indicator is not smootlihgdr,
due to task reporting and 1/0 delays. RHIC uses repeatedlgsamp
and averaging to address this issue. Second, FUZZY doesnot a
count for changes in the foreground CPU demand. One possible
solution to this would be to use volunteer CPU consumptien in
stead of volunteer count in FUZZY’s fuzzy rules. Howeverr ou
experience is that CPU consumption reporting itself is vesipy
due to task turnover and 1/O buffering, which RHIC addressasg
problem-tailored curve fitting. Therefore, we opted agadukling
this capability to FUZZY, under the reasoning that it wouitthgly
shift the unreliability issue to another metric.

Threshold is goal-oblivious: this yields arbitrary performance,
solely dependent on cost, energy and runtime curves (asiseen
Fig. 11). Due to this property, we ran only one batch of Thresh
old runs and used the performance for all goal settings, Uuseca
changing the goal would make no difference in management be-
havior. While this algorithm is much simpler in implemeiat
than RHIC, itis entirely inflexible and will suffer greatlydm un-
friendly performance landscapes, as shown in other work [19
Alternate schemes finish far before deadlinessimply put, the
administrator has requested a deadlineXofand runtimes which
are much earlier than this deadline (X x 90%) allocate too
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Figure 18: Minimization performance for HBasePCF. Volun-
teer count is the time-weighted average over the job.

Exhaustive
e RHIC

cost minimization performance in all cases but Pi with 8hurn.
This exception is because the volunteer pool is smaller ercge

at such high churn rate: we begin all experiments with 100% of
interactive nodes available, and many nodes become abgéme b
end of the job. For the CPU-intensive Pi, it is impossiblegaah

the cluster size producing the minimum cost.

5.5 Other Background Frameworks

many volunteers and thus waste resources which could be used T, jemonstrate that RHIC is generalizable to non-MapReduce

for other background jobs. Avoiding wasting residual reses

a second time (after the foreground workload already négem
use them) is a key motivation of our work, which is why RHIC
tightly hugs the deadline whenever possible. Of all altévea
schemes, none deliver tightly-coupled deadline enforceecept
Fuzzy(8), which suffers from large deadline overruns witkaid
minimization inefficiency elsewhere.

5.4 Impact of Environment Stability

In all preceding experiments, we used the VCL's natural chur
rate, described in 85.1. In this section, we attempt to dfyatiite
impact of increased churn on RHIC'’s ability to conduct cluster
sizing optimization. In Fig. 12 we show RHIC’s cost minimiza
tion and deadline enforcement performance unde(baseline),
2x and 8« the normal churn rate, for monetary cost minimiza-
tion and deadline enforcement. Here Ihdicates that nodes join
and leave twice as frequently, with half the mean and halktae-
dard deviation of the baseline. For comparison, we alsadethe
performance of FUZZY wittp = 4, which was the most-accurate
FUZZY parameter found in §5.3. Due to length limits, we show
only the most I/O-intensive (Grep) and the most CPU-inten@?Pi)
background workloads.

Overall RHIC clearly outperforms FUZZY in both minimizatio
performance and deadlines, largely due to the decisioeraheint
technique discussed in §4.2. More specifically, RHIC idiexgito
the high interactive node turn-over rates and achievesideatical

batch processing systems, we wrote a parallel compute frame
work (HBasePCF) in 800 lines of Python to perform batch jobs
on top of HBase. In accordance with RHIC’s requirements,
HBasePCF only exports a progress score and average task,leng
and HBase runs on top of HDFS hosted on the dedicated nodes. We
used HBasePCF to perform one I/O-intensive and one compute-
intensive job (85.1). Our hybrid cluster is composed of 3icked
nodes and 0-18 volunteers. For monetary cost, dedicatezbraoe
priced at$1.00/hr and volunteers &t0.42/hr. Fig. 18 shows the
cost and energy minimization performance of RHIC alongside
exhaustive search with volunteer count§0f2, ..., 18}. As with
Hadoop, RHIC achieves near-minimum performance for bagh I/
and compute-intensive workloads, with 1% average errocést

and 2% for energy.

5.6 Hardware Heterogeneity

To evaluate RHIC’s approach to handling hardware hetemgen
ity, we ran Pi and Grep on three different clustéfs. . . C> with
identical inputs. Each cluster has a different processoeiggion,
number of cores, foreground CPU consumption and I/O subsyst
We set(C as the base class and determined the accuracy of our
equivalency layer as follows: after the first period, we jres
the runtimeTy;...: of each cluster independently using RHIC’s
base methods described in 84.4. Simultaneously, we peefdibe
runtime Tequiv Of €ach cluster using its equivalency metfige
from Eq. 7,Co’s runtime and the ratio between actual productivity



P.ctuar ON the two clusters. 1Ek is representative of the differ-
ence between the clusters in processing power per utt of,.;,

and the difference i, .;.q; 1S accounted for, we should find that
Tairect @ndTequi, are very close. Between these two predictions
we achieved 0.9% error for Pi and 2.0% error for Grep, demon-
strating that our equivalency calculation is sufficient tanslate
performance between multiple machine classes.

5.7 Overhead

RHIC's overhead can be measured in two dimensions: the
amount of resources RHIC itself takes to run, and its laténcy
making a cluster-sizing decision. By instrumenting RHIEatrol
VM, which resides on the Hadoop master, we found that it con-
sumes less thaB0% CPU (on 1 of 16 cores, or 2% overall) on
average and takes less th250ms to make an exhaustive cluster
sizing decision for 36 volunteers. This overhead would beslidfor
a more efficient search algorithm (84.1). Since clustengigeci-
sions are made once per evaluation interval (1 minute)halpe-
riodic resource and job progress monitoring incurs less tha%
overhead on volunteer or candidate interactive nodes.

6. CONCLUSION AND FUTURE WORK

In conclusion, we have outlined RHIC, an autonomic manage-
ment framework for harvesting resources with throughpig¢red
parallel batch workloads. By combining black-box modelamg
online profiling, RHIC is able to quickly discover and mainta
optimal cluster sizes across a range of workloads and gwitls,
5% average error for cost minimization and 3% for energy-rel
tive to exhaustive searches, and delivers runtimes 2% uiehsd-
lines. With RHIC, we have found that it is possible to tolerat
the high degree of instability in interactive clouds and jabs
with noa priori knowledge of either the foreground or background
workloads. Finally, RHIC requires only system-level metrand
a progress score, yielding broad applicability to an ertlass of
embarassingly-parallel analytics workloads.

Our work is only a first step towards a full-featured harvesti
batch platform. We are interested in identifying ideal hgltatuster
compositions for a given workload and performance goaljrsga
both the dedicated and volunteer nodes with topology avessen
Further, we plan to extend our system to flexibly harvest mere
source types, including memory and network bandwidth.
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