
Automated Testing of Cloud Applications

Linghao Zhang, Tao Xie, Nikolai Tillmann,

Peli de Halleux, Xiaoxing Ma, Jian lv

{lzhang25, txie}@ncsu.edu, {nikolait, jhalleux}@microsoft.com, {xxm, lj}@nju.edu.cn

Abstract: Recently, cloud computing platforms, such as Microsoft Azure, are available to provide

convenient infrastructures such that cloud applications could conduct cloud and data-intensive

computing. To ensure high quality of cloud applications under development, developer testing (also

referred to as unit testing) could be used. Generally, manual developer testing is time consuming and

labor intensive. To reduce the manual efforts, developers could employ automated test generation

tools. However, the behavior of a unit in a cloud application is often dependent on the state of the cloud

environment. Applying an automated test generation tool faces the challenge to generate various cloud

states for achieving effective testing, such as achieving high structural coverage of the cloud application.

To address this challenge, we propose an approach to (1) use parameterized mock objects to mimic the

behavior of the environment and, (2) apply dynamic symbolic execution (DSE), a state-of-the-art

automated test generation technique, to both generate test inputs and mock cloud states to achieve

high structural coverage. We apply our approach on some open-source Azure cloud applications. The

result shows that our approach automatically generates test inputs and mocks cloud states to achieve

high structural coverage.

Keywords

Cloud Computing, Software Testing, Dynamic Symbolic Execution, Parameterized Mock Objects

Introduction

Cloud computing has become a new computing paradigm where the cloud could both provide

virtualized hardware and software resources that are hosted remotely and provide a use-on-demand

service model. One typical service model of cloud computing is Platform as a Service (PaaS). Such cloud

platform services, such as the Microsoft Azure platform [1], provide convenient infrastructures for

conducting cloud and data-intensive computing. After deploying an application to the cloud, one can

access and manage it from anywhere using a client application, such as an internet browser, rather than

running or storing the application locally. For example, a typical Microsoft Azure cloud application

consists of web roles, i.e., typical web-service (client-interfacing) processes deployed on Internet

Information Services (IIS) hosts, and worker roles, i.e., background-processing (such as computational

and data management) processes deployed on system hosts. Web roles and worker roles communicate

with each other via queues. Both web roles and worker roles access storage services in the Azure cloud.

To ensure high quality of cloud applications under development, developer testing (also referred as to

unit testing) could be used. Generally, testing a unit with all possible inputs is impossible since the input

space is too large or even infinite. Therefore, we need a criterion to decide which test inputs to use and

when to stop testing. Coverage criteria (such as structural code coverage) could be used for such

purposes and effective use of coverage criteria makes it more likely that faults could be revealed [2].

Among different coverage criteria, structural code coverage is the most commonly used one. Although

full structural code coverage cannot guarantee fault-free software, a code coverage report for showing

less than 100% code coverage indicates the inadequacy of the existing test cases, e.g., if a faulty

statement is not covered by all the execution of any existing test case, then this fault can never be

revealed. To achieve high structural coverage, test cases can be written manually; however, manual

writing test cases is labor-intensive. To reduce the manually efforts, testers or developers could employ

automated test generation tools that automatically generate test inputs to achieve high structural

coverage, such as Dynamic Symbolic Execution (DSE) [3] (also called concolic testing [4], a state-of-art

structural testing technique) based tools.

In order to test a cloud application before deployment, various desktop-based cloud-environment

emulators, such as Microsoft Azure Compute and Storage Emulators [5], enable developers to run and

test their cloud applications locally. To directly manipulate some parts of the cloud environment (either

the local emulated environment or the remote real environment), we could leverage some cloud

management tools, such as the Cloud Storage Studio for Microsoft Azure. Since cloud applications are

actually cloud-environment-dependent applications, the behavior of a unit under test in a cloud

application is dependent on the input to the unit as well as the state of the cloud environment.

Automated test generation tools would fail to generate high-covering test inputs because these tools

generally lack knowledge on how to generate a required state of the cloud, or even cannot control the

state of the cloud. Using Mocking techniques to isolate the application unit under test could alleviate

those issues. Existing mocking frameworks, such as NMock [6] [6] and Moles [7], use lightweight

simulation/implementation to replace the application unit's interactions with the cloud environment.

Particularly, the mocked cloud API methods provide some default or customized return values without

reflecting the logic or the state consistency of the actually ones, resulting false warnings. In addition,

developers still need to manually provide the expected return values of each API method in order to

cover some particular parts of the unit under test.

To address the limitation of existing mocking techniques, we propose to use a parameterized mock

cloud [8] to simulate various possible return values automatically. This mock cloud could enable

automated test generation tools to explore all the feasible execution paths, and later use the

information collected from different paths to generate test inputs and a mock cloud state to achieve

high structural coverage. In addition, to reduce false warnings, we implement our cloud as a stateful

cloud such that it replicates the effect of cloud API methods by performing the same operations on

itself.

Background

DSE is a constraint-solving-based technique that combines concrete execution with symbolic execution.

It could be used in both test generation and program analysis. DSE automatically explores the space of

program paths while incrementally increasing the code coverage such as block or branch coverage. DSE

initially executes the program under test with a default or random test input. When encountering a

branch statement, DSE collects the symbolic constraints on the taken branch of the statement. The

conjunction of all symbolic constraints along an executed path is called path condition, which represents

an equivalence class of concrete input values that take the same path. By flipping a taken branch in the

executed path, DSE constructs a new path that shares the prefix to the taken branch with the executed

path, but takes a different branch at the flipped point. Pex [7] is an automatic white-box test generation

tool for .NET, based on dynamic symbolic execution. Pex has been integrated into Microsoft Visual

Studio as an add-in. A key methodology that Pex supports is parameterized unit testing [9], which

generalizes unit testing by allowing unit tests to have parameters.

Empirical Investigations

We surveyed open source Azure projects available from Codeplex and Google Code (21 projects in total,
whose details can be found on our project web site [10]). Among them, 5 projects include unit tests. We
manually investigate the unit test result of the Lokad.Cloud project because there exist 3 classes that
heavily interact with the cloud environment and a number of test cases written to test almost every
method in those 3 classes. The unit tests achieved 80% block coverage for class BlobStorageProvider, 79%
for class QueueStorageProvider, and 93% for class TableStorageProvider. We carefully inspect the not-
covered blocks in these 3 classes and find out that there are four reasons causing a block not covered: (1)
covering it requires a specific cloud state; (2) covering it requires a specific program input; (3) the
method that it belongs to is not executed by any test case; (4) covering it depends on other business
logic. In summary, 78% (111/141) blocks are not covered because the existing test cases fail to provide
either specific cloud states or program inputs. In addition, most test cases, which are written for testing
a unit that interacts with the cloud environment, begin with a manual step of preparing environment
setup and these test cases must run against a local cloud environment simulator. Different execution
paths of a unit under test require different combinations of program inputs and cloud states, and
developers may miss some combinations when writing test cases (including setting up a cloud state).

Testing Challenge

We next illustrate the testing challenge with an example shown in Figure 1. The code snippet is a
simplified method with a unit test from an open source project PhluffyFotos [11]. The method
DispatchMsg first acquires a CloudQueueClient from the StorageAccount at Line 3 and gets a list of
existing MessageQueues at Line 4. Then this method fetches one message from each queue at Line 6
and dispatches the message to another message-processing method according to the type of each
queue at Lines 10-23. The flag success is assigned to be true if the message has been successfully

dispatched and processed at Lines 14 and 17. Finally, this method deletes the message at Line 26 if the
flag success is true.

Figure 1. A method under test with a unit test in the PhluffyFotos project.

If developers want to write test cases to test this method, they need to first clean up the cloud to avoid
that the old cloud state may affect the test result, and then prepare an appropriate cloud state before
executing this method. An illustrative manually written test case at Lines 31-47 first gets a reference of a
CloudQueue “PhotoQueue” at Line 37 and cleans all the messages in this queue at Line 40, and then

executes this method at Line 44 after inserting a new message into the queue at Line 42. The assertion
at Line 46 is to check whether the message has been deleted or not. However, if we want to cover all
the branches of this method, we need to provide various cloud states. In particular, to cover the true
branch at Line 8, at least one queue should be empty; to cover the true branch at Line 24, at least one of
the PhotoQueue or PhotoCleanupQueue should exist with at least one message in the queue. For this
relative simple method under test, developers already need some effort to construct the cloud state.
Some branches of a more complex method or unit test may require some specific cloud states that
cannot easily be constructed manually due to the complex execution logic.

Automated test generation tools usually require executing all the cloud-related API methods (by
instrumenting these methods) to collect necessary information for test generation. Particularly, tools,
such as Pex, use symbolic execution to track how the value returned by a cloud-related API method is
used. Depending on the subsequent branching conditions on the returned value, these tools execute the
unit under test multiple times, trying different return values to explore new execution paths. However,
directly applying Pex would fail due to the testability issue because the cloud-related API methods are
depending on the cloud environment that Pex cannot control.

Using mocking techniques, a mock object (with its mock API methods) can be generated automatically;
however, it is still the responsibility of developers to simulate possible return values for each mock
method. For example, developers manually provide a list of CloudQueue as the return value of the
method ListQueues(). A mock object enables Pex to automatically generate various inputs and return
values for the unit under test to explore different execution paths. However, such mocking techniques
generally cannot reflect the changes of the cloud environment. For example, after the method
DeleteMessage(msg) at Line 26 in Figure 1 is executed, the message msg should be deleted from the
queue, and the return value of method GetMessage() at Line 46 should be null. If a mock object cannot
capture this behavior, the method GetMessage() may return a non-null value even the method
DeleteMessage() has been executed. Consequently, this test case fails in the assertion at Line 46,
causing it a false warning.

Addressing Testing Challenge

To address the challenge of automated testing of cloud applications, we propose a new approach with a
Parameterized Mock Cloud. Given a unit of a cloud application under test, our approach includes four
parts: Cloud Mocking, Code Transformer, Test Generator, and Test Transformer.

Mocking the cloud

A simple or native implementation of a mock cloud environment generally cannot reflect the actual

behavior of the real cloud environment, causing false warnings in the test results. We mainly implement

a simulated mock cloud environment and provide mock cloud API methods that replicate the effect of

the corresponding API methods on the real cloud environment by performing the same operations on

the mock cloud environment. In particular, our mock cloud currently focuses on providing simulated

Azure storage services and mocking the classes in the Microsoft.WindowsAzure.StorageClient

namespace, which provides interactions with Microsoft Azure storage services. Microsoft Azure storage

services provide three kinds of storage: Blob (abbreviation for Binary Large Object), which is used to

store things such as images, documents, and videos; Table, which provides queryable structured storage

that is composed of collections of entities and properties; Queue, which is used to transport messages

between applications.

To implement such a mock cloud, we not only carefully read the API documents from MSDN but also

read though many code examples from the investigated open source projects. Here, our mock cloud is

implemented using a test-driven approach, where we mock different classes and functionalities

incrementally by the demand of a unit under test rather than mocking the whole storage services all at

once. The name of each mock class starts with “Mock”, and ends with its original name. For example,

the mock class for class CloudQueue is named as MockCloudQueue in our mock cloud. The name of each

method is the same as the original one. We build up the three kinds of storage based on C# generic

collections. Currently, we have mocked all the main classes and API methods in the three storage

services. Queue storage is mocked using an instance of List<MockCloudQueue>, where each

MockCloudQueue is mocked using an instance of List<MockCkoudMessage>. Blob storage is mocked

using an instance of List<MockContainer> and each MockContainer is mocked using an instance of

List<MockIBlobItem>. Table storage is mocked with a similar way.

Transforming Code Under Test

With a mock cloud, we execute a unit under test with the mock environment rather than the real cloud

environment. Code Transformer redirects a unit under test to interact with our mock cloud

environment. This process is done by pre-processing a unit under test. Specifically, if the target unit

under test refers to Class A in the Microsoft.WindowsAzure.StorageClient namespace, this reference is

redirected to class MockA; when a method M of Class A is invoked, this invocation is replaced by the

simulated method in class MockA.M. Then, the processed unit under test would now interact with our

mock cloud.

Generating Test Inputs and Cloud States

The Test Generator incorporates an automated test generation tool, Pex, to generate both test inputs

and required cloud states for a unit under test. Specifically, Pex generates not only symbolic program

inputs but also symbolic cloud states that include various storage items (such as container, blob,

message, and queue) to be inserted into the mock cloud before the execution of the unit under test.

Pex performs concrete execution on the unit under test with default or random values and performs

symbolic execution to collect path constraints. By flipping a taken branch of the collected path

constraints and solving the new constraints, Pex acquires a new program input and cloud that lead to a

new execution path. In the end, Pex produces a final test suite where each test includes a test input and

a cloud state. The algorithm for Queue storage state generation is shown in Figure 2.

We also add various constraints to ensure that Pex could choose a valid value for each field of a storage

item. For example, if we test a cloud application using the DevelopmentStorageAccount, the Uri address

for any blob container should be “http://127.0.0.1:10000/devstoreaccount1/containerName”. Pex

would choose only the name for each container, making the Uri address field valid. We use a similar

algorithm to generate the blob storage states. But the algorithm to generate Table storage states is a

little different. Practically, different types of entities can be stored in the same cloud table, but most

open source projects use only one cloud table to store a particular type of entities. Therefore, we also

restrict each MockTable to store only one type of entities. The algorithm for generating Table storage

also requires the types of entities (an entity type is similar to a data schema but much simple) to be

stored in each table. Such simplification enables Pex more easily to generate table storage states

without losing much applicability.

Figure 2. Algorithm for Queue storage state generation.

Transforming Generated Unit Tests

Testing the code under test with only the mock cloud environment is insufficient. To gain high

confidence on the correctness of the code, testing the code with either the local emulated cloud

environment or the real cloud environment is necessary. The Test Transformer transforms a generated

unit test together with a cloud state into a general unit test. Specifically, the Test Transformer

transforms a cloud state generated by the Test Generator to a sequence of real cloud API methods that

could construct the same state as in the real cloud environment.

Testing Example with Mock Cloud

Now let us use the same example in Figure 1 to illustrate how our approach works. In the mock cloud

queue storage, we use an instance of List<MockCloudQueue> named MockQueueList to store all the

existing queues, and use an instance of List<CloudMessage> to represent a message queue. Initially, Pex

would arbitrarily choose N (representing the total number of MockQueueList) to be 0, and there will

exist no queue. So the execution would directly jump out of the loop at Line 4 and the path condition

collected by Pex is “N == 0 && N >= 0”. Then, Pex next tries to come up with a new cloud state by

flipping the condition “N == 0 && N >= 0”. By consulting the underlying constraint solver with the new

path constraint, Pex chooses N to be 1 in the second run. Next, Pex would create a new

MockCloudQueue and arbitrarily choose a name “/0” for this queue. Pex also chooses M (representing

the total number CloudMessages in queue “/0”) to be 0. Then the execution would take the false

branch at Line 8 because there is no message in MockCloudQueue “/0”. A new path condition collected

by Pex in the second run is “M == 0 && MockQueueList.name == “/0” && N == 1”1. If the Depth-First-

Search strategy is adopted, Pex would try to flip “M == 0” to “M != 0”. In the third run, the path

constraint is “M != 0 && MockQueueList.name == “/0” && N == 1” and one queue with one message is

created. The execution would take the false branch at Line 12, adding a new constraint

“MockQueueList.name! = PhotoQueue”. Once Pex flips the constraint “MockQueueList.name! =

PhotoQueue” in a certain run, Pex could create a new queue named “PhotoQueue”, and then the true

branch of Line 12 can be covered. As Pex keeps exploring the unit under test, finally, all the feasible

paths/blocks can be covered with various cloud states. If the feasible paths are infinity or too many, Pex

would stop at a certain termination condition. Finally, our approach generates nine cloud states that

cover all the blocks in Dispatch method after 194 runs. The details of these generated cloud states can

be found in our project web site [10].

As we have discussed earlier, a native implementation of a mock cloud can easily cause false warnings

because it fails to reflect the actual behaviors of the real cloud environment. In contrast, our mock

cloud can avoid false warnings by simulating the basic behavior of the cloud storage. The unit test

shown in Figure 1 would pass using our mock cloud since the method “queue.GetMessage()” returns

null. This return value would be the same when the unit is executed against the real cloud environment.

After Pex finishes exploring the unit under test with different cloud states, the Test Transformer

transforms each cloud state to be a sequence of real cloud API methods. Suppose that one generated

cloud state includes two queues named “PhotoQueue” and “PhotoCleanupQueue”, and each queue

contains one CloudMessage “Msg1”. Such cloud state would be translated into the following method

sequence:

1. var storageAccount = CloudStorageAccount.DevelopmentStorageAccount;

2. CloudQueueClient queueClient = storageAccount.CreatCloudQueueClient();

3. var queue1 = queueClient.GetQueueReference(Constants.PhotoQueue).CreatIfNotExist();

4. queue1.addMesssage(new CloudQueueMessage(“Msg1”));

5. var queue2 = queueClient.GetQueueReference(Constants.PhotoCleanupQueue).CreatIfNotExist();

6. queue2.addMesssage(new CloudQueueMessage(“Msg1”));

The basic algorithm of Test Transformer is to traverse every storage item. Once a new item is visited, the

Test Transformer records a pre-defined sequence of standard Azure API methods that create this item in

the real storage. A transformed unit test could first call such method sequence to achieve the required

cloud state, and then execute the unit under test followed by some assertions.

1
 Here, we omit some path constraints (such as constraints for field values) because they are irrelevant to the path

exploration in this example.

Discussion

Correctness of Our Mock Cloud. To ensure the correctness of our mock cloud, we conduct unit testing

on such cloud. For each method in our mock cloud, we write several unit tests. These unit tests can also

be found in our project web site [10]. Each test passes using either the real cloud environment or our

mock environment. Although our mock cloud cannot replace the local cloud emulator that provids a

cloud application with an execution environment, our mock cloud indeed could simulate the basic

behavior of the cloud storage.

Stateful Mock Cloud vs. Stateless Mock Cloud. By employing a stateful cloud, we make the assumption

that the cloud is not modified concurrently by other processes. However, one may argue that a

simplistic and stateless mock cloud is enough and any return value of a cloud API method should be

valid considering that the cloud can be manipulated by other clients. In addition, a stateless mock cloud

is much easier to implement. Although we should conduct thorough testing that includes all possible

scenarios, in practice, developer testing mostly focuses on realistic common scenarios first.

Result of Testing PhluffyFotos Project. We apply our approach on one open-source project PhluffyFotos

from codeplex since the code in this project frequently interacts with cloud storage services. We focus

on testing the units that interact with the cloud environment. In total, we test 17 methods and our

approach achieves 76.9% block coverage. Since the Azure Table Service is an extension of ADO.net data

services, we also mock some of the ADO.net data service API methods to enable our approach to

explore the methods under test. The details of the test results are shown in our project web site [10].

The results show us our approach is able to test Microsoft Azure applications with high structural

coverage.

Test-Driven Development. We adopt a Test-Driven-Development-based approach to implement our

mock cloud. Each time we test a new program unit, we extend our mock cloud with new functionalities

used in the new unit, and then test this unit again. In general, most generated test inputs and cloud

states would fail initially, and then we manually investigate the reported failures. Some failures are due

to the insufficiency of the mock cloud. In these cases, we improve the mock cloud based on these

reported failures. Other failures are due to the insufficiency of the parameterized unit tests such as

insufficient assumptions there that could cause the generation of invalid test inputs or incorrect

assertions there. Another type of failures could be due to faults in the cloud application code. However,

we have not found any real fault in the already well tested application.

Conclusion and Future Work

In this article, we present an approach that combines a mock cloud and Dynamic-Symbolic-Execution to

automatically test cloud applications. Currently, our approach is implemented on Pex and can be applied

to Microsoft Azure applications; however, the key idea of our approach is general for any type of cloud

applications adopting the Platform-as-a-Service model. Other test generation tools can be also used by

our approach with different test generation techniques.

We plan to conduct more unit testing on our mock cloud and select more open source projects to

evaluate our approach. In addition, we plan to extend our mock cloud with more functionalities as the

real cloud environment, and extend our mock cloud to include the classes in Microsoft.

WindowsAzure.ServiceRuntime and Microsoft.WindowsAzure namespaces.

References

[1] http://www.microsoft.com/windowsazure/

[2] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge Univ Press, 2008.

[3] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine for C. In

Proceedings of ESEC/FSE-13, pages 263–272, 2005.

[4] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random testing. In

Proceedings of PLDI, pages 213–223, 2005.

[5] http://www.microsoft.com/windowsazure/sdk/

[6] http://www.nmock.org/

[7] http://research.microsoft.com/projects/pex/

[8] Nikolai Tillmann and Wolfram Schulte. Mock-object generation with behavior. In Proceedings of

ASE, pages 365-368, 2006.

[9] Nikolai Tillmann and Wolfram Schulte.Parameterized unit tests. In Proceedings of ESEC/FSE-13,

pages 253-262, 2005

[10] https://sites.google.com/site/asergrp/projects/cloud

[11] http://phluffyfotos.codeplex.com/

