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1 Introduction

Datasets may be generated by algorithms in the purpose of testing the performance

of database management systems. In this report, we will define symmetric synthetic

dataset and two types of non-symmetric synthetic datasets that has some special

structures and properties. The rest of the report is organized as follows. In Section

2, we introduce symmetric synthetic dataset, its structure and the properties of the

associated views. In Section 3, we discuss two types of non-symmetric synthetic

datasets by generalization and modification of the symmetric synthetic dataset. We

end the report with some concluding remarks in Section 4.

2 Symmetric synthetic dataset

2.1 Construction of dataset

Define a dataset D as follows. The dataset D has K attributes. Each attribute takes

m different values. We denote the dataset as D(K,m). The master table contains all

the possible entries by taking different values over K attributes. Hence, the number

of rows in the master table is mK . Under this definition, the dataset with a symmetric

structure, is thus called symmetric synthetic dataset.

For example, assume dataset D(3, 4) has 3 attributes A, B and C. Each attribute

takes four values 0, 1, 2 or 3. The master table has 64 (= 43) entries. And the master

table is shown in Table 1.

2.2 Views of symmetric synthetic dataset

A view, as a common type of derived data, is a virtual table consists of the result

set of a query. In this context, we denote a view by its associated attributes. In a

synthetic dataset D(K,m), there are 2K different associated views. Evaluate the size

of a view by its number of rows. Then, the size of a k-attribute view is mk. In a

symmetric synthetic dataset, if view V1 has the same number of attributes as view
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V2, then they have identical size. And if view V1 is a decedent of view V2, then V2 is

at least m times the size of V1.

For example, D(3, 4) has 8 (=23) views. Each view which contains only one

attribute (view {A}, {B} or {C}) has 4 (= 41) rows, shown in Table 2. And each

view which contains two attributes (view {A,B}, {B,C} or {A,C}) has 16 (= 42)

rows, shown in Table 3. And the raw-data view (view {A,B,C}) has 64 (= 43) rows.

View {A,B} is four times the size of view {A}.
The size of views in D(4, 7) and D(5, 9) are shown in Table 4 and Table 5, respec-

tively.

3 Non-symmetric synthetic dataset

In this section, we define two types of non-symmetric synthetic dataset based on the

the symmetric synthetic dataset obtained in the previous section.

3.1 Type I non-symmetric synthetic dataset

3.1.1 Construction

We consider a generalization of the symmetric synthetic datasets by changing the

condition that all the attributes take identical number of values. Define a datasetD as

follows. The datasetD hasK attributes, denoted as a1, a2, . . . , aK . Attribute ak takes

mk different values, for k = 1, 2, . . . , K. We denote the dataset as D(K;m1, . . . ,mK).

The master table contains all the possible entries by taking different values over K

attributes. We define dataset D(K;m1, . . . ,mK) as type I non-symmetric synthetic

dataset. Hence, given the input parameters (K;m1, . . . ,mK), we obtain the master

table of type I non-symmetric synthetic dataset with the number of rows ΠK
k=1mk.

For example, assume dataset D(3; 2, 3, 4) has 3 attributes A, B and C. Attribute

A takes two values 0 or 1; Attribute B takes three values 0, 1 or 2; Attribute C takes

four values 0, 1, 2, or 3. The master table has 24 (= 2 × 3 × 4) entries. And the

master table is shown in Table 6.

Note that we could obtain the input parameters (K;m1, . . . ,mK) for a type I

non-symmetric dataset based on a symmetric synthetic dataset D(K,m) by randomly

choosing a number mk from {1, 2, . . . ,m} as the number of values for each attribute

ak.

3.1.2 Views

The non-symmetric dataset D(K;m1, . . . ,mK) has 2
K different associated views. We

examine a relationship between the size of view and the number of values in each of

2



its attribute. The size of view {ak1 , ak2 , . . . , akl}, measured by its number of rows, is

mk1mk2 · · ·mkl .

The views in a type I non-symmetric dataset lacks of symmetric properties while

it has its own properties. Let mmin = min1≤k≤K mk. Hence, if V1 is a descendent of V2

in the view lattice of D(K;m1, . . . ,mK), V2 is at least mmin times the size of V1. And

identical number of attributes in different views does not guarantee identical size of

them.

For example, D(3; 2, 3, 4) has 8 (= 23) views. As shown in Table 7, view {A}, {B}
and {C} has 2, 3 and 4 rows, respectively. And view {A,B}, {A,C} and {B,C} has

6 (= 2× 3), 8 (= 2× 4) and 12 (= 3× 4) rows, respectively, shown in Table 8. The

raw-data view has 24 rows. View {A,B} is three times the size of view {A}.
The size of views in D(4; 5, 2, 7, 11) and D(5; 6, 8, 5, 13, 7) are shown in Table 9

and Table 10, respectively.

3.2 Type II non-symmetric synthetic dataset

3.2.1 Construction

The type I non-symmetric dataset lacks of symmetric properties while it has its

own special structure in the master table and views. We consider to break such

properties in a new dataset, so-called type II non-symmetric synthetic dataset, by

partially eliminating rows from the master table of a type I non-symmetric synthetic

dataset obtained in the previous section.

The easy way to do the elimination is to randomly eliminating each row in a

type I non-symmetric synthetic dataset with a certain probability. However, after

conducting this elimination on some datasets, we observe that the size of views in

the new datasets does not change much. Thus, we derive the following elimination

procedure for obtaining a type II non-symmetric synthetic dataset.

Given a type I non-symmetric synthetic datasetD(K;m1, . . . ,mK) with attributes

a1, . . . , aK , we conduct an elimination process based from attribute a1 to aK . To do

this, for each attribute ak, the sub-elimination process consists of two steps. We first

do elimination from the first row of the master table to the end. Assume each row

in the master table of D(K;m1, . . . ,mK) would be kept with an identical probability

pk, and equivalently, eliminated with probability qk = 1 − pk. Secondly, for each

eliminated row r, we also eliminate the rows in the master table with the same values

as r on all attributes except ak.

Let us denote by S0 the number of rows in the master table of D(K;m1, . . . ,mK).

S0 =
∏K

k=1 mk. In order to evaluate the expected number of rows remaining in

the master table after elimination, we first reorder all the entries in the master table

grouped by the attributes a2, . . . , aK . Equivalently, we divide the entries in the master
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table into
∏K

k=2 mk groups, such that the rows in each group have identical values

over a2, . . . , aK , and are different from each other only on the value of attribute a1.

In other words, each group corresponds to one row in view {a2, a3, . . . , aK}. And the

number of rows in each group is m1, which refers to the number of values on a1. If

one row is eliminated at the first step of the sub-elimination process, all the rows in

its group are eliminated at the second step. In other words, each group of rows will

be eliminated or remaining in the master table simultaneously. And the probability

of eliminating the whole group of rows is 1−pm1
1 . Thus, the expected number of rows

in each group remaining in the master table is m1p
m1
1 . And the expected number

of rows remaining in the master table after the elimination based on attribute a1,

denoted by S1, is

S1 =
∑
group

m1p
m1
1 = m2 · · ·mKm1p

m1
1 = S0p

m1
1

To evaluate the expected remaining rows after elimination based on attribute

a2, we reorder the remaining entries after elimination based on a1 grouped by a1, a3,

a4, . . . , aK . The S1 rows are divided into m1m3 · · ·mK groups. The number of rows in

group g, denoted by mg, is no more than m2, i.e., mg ≤ m2,∀g. Thus, the probability
of eliminating all the rows in group g is 1 − p

mg

2 . And the expected number of rows

remaining in the master table after the elimination based on attribute a2, denoted by

S2, is

S2 =

m1m3···mK∑
g=1

mgp
mg

2 ≥
m1m3···mK∑

g=1

mgp
m2
2 = S1p

m2
2

Thus,

S2 ≥ S0p
m1
1 pm2

2

.

Similarly, we obtain the expected number after the sub-elimination process based

on attribute ak, denoted by Sk, and

Sk ≥ S0p
m1
1 pm2

2 · · · pmk
k

And thus, the expected number of remaining rows after the whole elimination

process, denoted by S̄, satisfies

S̄ ≥ S0

K∏
k=1

pmk
k =

K∏
k=1

mkp
mk
k (1)

As a result, given the lower bound of the expected rows, after elimination in the

master table, denoted by SL, we could choose the elimination probability qk for each

sub-elimination process based on attribute ak. The algorithm of obtaining a type II

non-symmetric synthetic dataset D′ by partial elimination of the rows in a given type
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I non-symmetric synthetic dataset D(K;m1, . . . ,mK) is shown as follows.

Step 0. Input SL and D(K;m1, . . . ,mK). Choose p1, . . . , pK such that

SL ≥
∏K

i=1 mip
mi
i . Set k = 1.

Step 1. Mark each row in the current table as ’selected’ with probability 1− pk.

(If a row is marked, it will be eliminated.)

Step 2. Order the rows in the current table grouped by attribute a1, a2, . . ., ak−1,

ak+1, . . ., aK .

For g = 1 to
∏K

i=1 mi

/
mk

In each group g, if there exists one row marked, then mark all the mk rows

in that group.

Step 3. Eliminate all the marked rows in the table. If k = K, output the table as

D′, otherwise k = k + 1 and go to step 1.

3.2.2 Views

After the new master table is obtained, all the views will be redefined. Thus, we

could not guarantee that the views with identical number of attributes have identical

size. And the relationship between the size of view and the number of values in each

of its attribute is no longer established.

4 Conclusions

In this report, we have defined a symmetric synthetic dataset and two kinds of non-

symmetric synthetic dataset. The views of the symmetric synthetic datasets have

some symmetric properties while the non-symmetric dataset may not. Once the input

parameters for dataset construction are given, the type I non-symmetric synthetic

dataset is a deterministic set while the type II non-symmetric dataset is a random

one. All these datasets are beneficial for testing the algorithms in computational

experiments such as models in Asgharzadeh[1].
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Appendix

A B C A B C A B C A B C

0 0 0 1 0 0 2 0 0 3 0 0

0 0 1 1 0 1 2 0 1 3 0 1

0 0 2 1 0 2 2 0 2 3 0 2

0 0 3 1 0 3 2 0 3 3 0 3

0 1 0 1 1 0 2 1 0 3 1 0

0 1 1 1 1 1 2 1 1 3 1 1

0 1 2 1 1 2 2 1 2 3 1 2

0 1 3 1 1 3 2 1 3 3 1 3

0 2 0 1 2 0 2 2 0 3 2 0

0 2 1 1 2 1 2 2 1 3 2 1

0 2 2 1 2 2 2 2 2 3 2 2

0 2 3 1 2 3 2 2 3 3 2 3

0 3 0 1 3 0 2 3 0 3 3 0

0 3 1 1 3 1 2 3 1 3 3 1

0 3 2 1 3 2 2 3 2 3 3 2

0 3 3 1 3 3 2 3 3 3 3 3

Table 1: The symmetric dataset D(3, 4)

A B C

0 0 0

1 1 1

2 2 2

3 3 3

Table 2: View {A}, {B} and {C} in the symmetric

dataset D(3, 4)
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A B A C B C

0 0 0 0 0 0

0 1 0 1 0 1

0 2 0 2 0 2

0 3 0 3 0 3

1 0 1 0 1 0

1 1 1 1 1 1

1 2 1 2 1 2

1 3 1 3 1 3

2 0 2 0 2 0

2 1 2 1 2 1

2 2 2 2 2 2

2 3 2 3 2 3

3 0 3 0 3 0

3 1 3 1 3 1

3 2 3 2 3 2

3 3 3 3 3 3

Table 3: View {A,B}, {A,C} and {B,C} in the symmetric dataset D(3, 4)

view size view size view size view size

(0,0,0,1) 7 (0,0,1,0) 7 (0,1,0,0) 7 (1,0,0,0) 7

(0,0,1,1) 49 (0,1,0,1) 49 (0,1,1,0) 49 (1,0,0,1) 49

(1,0,1,0) 49 (1,1,0,0) 49

(0,1,1,1) 343 (1,0,1,1) 343 (1,1,1,0) 343

(1,1,1,1) 2401

Table 4: Sizes of views in D(4, 7)

view size view size view size view size view size

(0,0,0,0,1) 9 (0,0,0,1,0) 9 (0,0,1,0,0) 9 (0,1,0,0,0) 9 (1,0,0,0,0) 9

(0,0,0,1,1) 81 (0,0,1,0,1) 81 (0,0,1,1,0) 81 (0,1,0,0,1) 81 (0,1,0,1,0) 81

(0,1,1,0,0) 81 (1,0,0,0,1) 81 (1,0,0,1,0) 81 (1,0,1,0,0) 81 (1,1,0,0,0) 81

(0,0,1,1,1) 729 (0,1,0,1,1) 729 (0,1,1,0,1) 729 (0,1,1,1,0) 729 (1,0,0,1,1) 729

(1,0,1,0,1) 729 (1,0,1,1,0) 729 (1,1,0,0,1) 729 (1,1,0,1,0) 729 (1,1,1,0,0) 729

(0,1,1,1,1) 6561 (1,0,1,1,1) 6561 (1,1,0,1,1) 6561 (1,1,1,0,1) 6561 (1,1,1,1,0) 6561

(1,1,1,1,1) 59049

Table 5: Sizes of views in D(5, 9)
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A B C A B C

0 0 0 1 0 0

0 0 1 1 0 1

0 0 2 1 0 2

0 0 3 1 0 3

0 1 0 1 1 0

0 1 1 1 1 1

0 1 2 1 1 2

0 1 3 1 1 3

0 2 0 1 2 0

0 2 1 1 2 1

0 2 2 1 2 2

0 2 3 1 2 3

Table 6: Non-symmetric dataset D(3; 2, 3, 4)

A B C

0 0 0

1 1 1

2 2

3

Table 7: View {A}, {B} and {C} in the non-symmetric dataset D(3; 2, 3, 4)

A B A C B C

0 0 0 0 0 0

0 1 0 1 0 1

0 2 0 2 0 2

1 0 0 3 0 3

1 1 1 0 1 0

1 2 1 1 1 1

1 2 1 2

1 3 1 3

2 0

2 1

2 2

2 3

Table 8: View {A,B}, {A,C} and {B,C} in the non-symmetric dataset D(3; 2, 3, 4)
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view size view size view size view size

(0,0,0,1) 5 (0,0,1,0) 2 (0,1,0,0) 7 (1,0,0,0) 11

(0,0,1,1) 10 (0,1,0,1) 35 (0,1,1,0) 14 (1,0,0,1) 55

(1,0,1,0) 22 (1,1,0,0) 77

(0,1,1,1) 70 (1,0,1,1) 110 (1,1,1,0) 154

(1,1,1,1) 770

Table 9: Sizes of views in D(4; 5, 2, 7, 11)

view size view size view size view size view size

(0,0,0,0,1) 6 (0,0,0,1,0) 8 (0,0,1,0,0) 5 (0,1,0,0,0) 13 (1,0,0,0,0) 7

(0,0,0,1,1) 48 (0,0,1,0,1) 30 (0,0,1,1,0) 40 (0,1,0,0,1) 78 (0,1,0,1,0) 104

(0,1,1,0,0) 65 (1,0,0,0,1) 42 (1,0,0,1,0) 56 (1,0,1,0,0) 35 (1,1,0,0,0) 91

(0,0,1,1,1) 240 (0,1,0,1,1) 624 (0,1,1,0,1) 390 (0,1,1,1,0) 520 (1,0,0,1,1) 336

(1,0,1,0,1) 210 (1,0,1,1,0) 280 (1,1,0,0,1) 546 (1,1,0,1,0) 728 (1,1,1,0,0) 455

(0,1,1,1,1) 3120 (1,0,1,1,1) 1680 (1,1,0,1,1) 4368 (1,1,1,0,1) 2730 (1,1,1,1,0) 3640

(1,1,1,1,1) 21840

Table 10: Sizes of views in D(5; 6, 8, 5, 13, 7)
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