Incremental All Pairs Similarity Search for Varying
Similarity Thresholds

Amit Awekar, Nagiza F. Samatova, and Paul Breimyer
acawekar@ncsu.edu, samatovan@ornal.gov, pwbreimy@uzsu
North Carolina State University, Raleigh, NC
Oak Ridge National Laboratory, Oak Ridge, TN

Abstract— All Pairs Similarity Search (APSS) is a ubiqui-
tous problem in many data mining applications and involves
finding all pairs of records with similarity scores above a
specified threshold. In this paper, we introduce the problem
of Incremental All Pairs Similarity Search (IAPSS), where
APSS is performed multiple times over the same dataset by
varying the similarity threshold. To the best of our knowledge,
this is the first work that addresses thel APSSS problem. All
existing solutions for APSS perform redundant computations
by invoking APSS independently for each threshold value.

In contrast, our solution to the IAPSS problem avoids
redundant computations by storing the history of previous
APSS invocations and using index splitting. While offering
obvious benefits, the computation and I/O intensive nature

of the TAPSS solution raises two key research challenges:

(1) to develop efficient 1/0O techniques to manage computatio
history and (2) to efficiently identify and prune redundant com-
putations. We address these challenges through the propate
(a) history binning technique that clusters record pairs baed
on similarity values and performs /O during the similarity
computation, and (b) splitting of inverted index that maps excch
dimension to a list of records that have a non-zero projectin
along that dimension. As a result, we evaluate the effectiness
of our techniques by demonstrating speed-ups in the order of
2X to over 10° X over the state-of-the-art APS.S algorithm for
four real-world large-scale datasets.

I. INTRODUCTION

value. ThelAPSS problem is challenging to solve when it
is applied frequently or over large datasets.

However, there are a number of important applications that
require efficient handling theA PSS problem. For example,
the output of /APSS is used to detect all near duplicate
document pairs [13]. A news search engine has to solve the
ITAPSS problem every few minutes over a small subset of
the web, whereas a general web search engine has to solve
theIAPSS problem once every few days, but over the entire
web.

To the best of our knowledge, theAPSS problem has
not received a special treatment in the literature and the
“brute-force” strategy is used instead. Namely, applying a
new instance ofAPSS after each similarity threshold value
changes. Obviously, this solution may be inefficient due to
inherent redundancies.

All of the existing solutions fod PSS [13], [4], [2], [9] do
not exploit the fact that a significant part of the computatio
is redundant across multiple invocations4PSS, because
each of theAPSS instances executes independently for
changing similarity threshold values. For example, coersid
performingAPSS twice on a dataset. Initially, the threshold
value is 0.9 and later it is reduced to 0.8. All pairs present
in the output of the firsd PSS will also exist in the output

Many data mining techniques search for all pairs of record®f the second1PSS. There is no need to compute the sim-
that have similarity scores above a specified threshold [4]arity score for these pairs during the secahéS.S. While

[13]. In the literature, this problem is referred tosimilarity
join [13] or all pairs similarity search(APSS) [4]. For
example, the Jarvis-Patrick algorithm for clustering spies
the similarity score matrix by retaining only those enttieast
satisfy a predefined threshold [6].

executing the firsd PSS, the similarity score computed for
some pairs would be less than 0.8. We can safely prune the
similarity score computations of such pairs during the séco
APSS. Arguably, the more timeslPSS is performed, the
greater the opportunity to optimize the search by elimirgati

Selecting a meaningful similarity threshold is an art betedundant calculations. .
cause it is data dependent. Domain experts often use a trialThe [APSS problem should not be confused with other
and error approach by |Ooking at the qua“ty of Output_ Foformulauons of incremental problemS. Incremental algo-

example, the optimal threshold for sparsifying the sinitjar

rithms for various types of similarity searches have pripar

score matrix in the Jarvis-Patrick algorithm can be detefddressed the challenge of handling perturbations in efstas
mined only after evaluating the quality of different cluste themselves, when data records and/or their dimensions are

ings by varying the similarity threshold for sparsification

added or removed[14]. Unlike these incremental methods,

Varying the similarity threshold leads to another importhe IAPSS problem assumes that such datasets remained

tant problem that we refer to as thecremental all pairs
similarity search(APS'S), which performs4A PSS multiple

unchanged across different searches. Some incremental al-
gorithms are designed to identify thep-k similar pairs

times on the same dataset by varying the similarity threshol12]- But the JAPSS problem requires aliatching pairs

Nagiza F. Samatova is the corresponding author.

Incremental algorithms for the distance join [5] address
problems similar tolAPSS for distance measures, such

as the Euplidian _distancg. However, their t_echniques assum TABLE I: Notations Used
that the triangle inequality holds true for distance meesur taple _

which is not the case for similarity functions like the casin | Notation | Meaning
similarity and the Tanimoto coefficient. Given & dimensiory

. . density(j) the number of vectors iV with non-

Given a dataset witlw records in ad dimensional space zero projection along the dimensign
whered >> n, a naive algorithm for 7APSS will com- global-maz_weight[j] | «[j] such thate[j] > y[j] for vy € V
pute and store the similarity scores between all pairs ini—————— (’“’me[gﬂ;’sﬁt?gzm[k] SETET2
O(n? x d) time. However, this computational cost becomes d - -
prohibitively expensive for large-scale problems. To addr d
this limitation our solution to thed APSS problem stores L.sum Zm["]
the computation history during each invocation oA PSS oy tﬁ; unindexed part of
and later uses the history to systematically identify and| z” the indexed part of
effectively prune redundant computations. The compute and ! (size ofz) the number of nonzero components fin
I/0O intensive nature of thé APSS problem raises two key = n
research challenges: (1) developing efficient techniqoes f | ||z|| (magnitude ofx) > afif?
I/0 while using the computation history; and (2) efficiently i=1
identifying and pruning redundant computations. To adglres Given a pair of vectorsz, y)
these challenges, we propose two major technigissory dot(,y) Zx[i]'ym
binning andindex splitting cos(z,y) df;t(m,y)/(||a:|| Tl

The history binning technique stores information about all
pairs evaluated in theurrent invocation of TAPSS. Pairs
are grouped based on their similarity scores and stored ine Incorporates our history binning and index splitting
binary files. This information is used in threextinvocation techniques into the state-of-the-a#tPSS algorithm
of TAPSS to avoid re-computation of known similarity and parallelizes it, which leads to efficient end-to-end
scores. Grouping pairs enables our algorithm to read only computation.
the necessary parts of the computation history. The I/O for « Offers more responsive output than the state-of-the-art
history binning is performed in parallel to the similarity APSS solution by almost instantaneously identifying
score computation, which reduces the overhead in end-to- pairs with high similarity scores. This responsive nature
end execution time. is particularly desirable for processing large datasets
The index splitting technique divides the inverted index requiring multiple hours for complete execution.
based on the values of.., andt,q. This splitting enables We perform empirical studies using four real-world mil-
our algorithm to avoid searching through a major part of thigon record datasets derived from: (a) scientific literatur
inverted index and to prune similarity score computatiohs @ollaboration in Medliné indexed papers, (b) Flickrsocial
pairs that exist in the computation history. networks, (c) LiveJourndlsocial networks, and (d) Orkut
Lowering the value of the similarity threshold results insocial networks. We compare the performance of our al-
exploring a greater portion of the search space (i.e., tlgorithm against the state-of-the-a#PSS algorithm [4].
number of record pairs evaluated). The lowest similaritpepending on the similarity threshold variation, our speed
threshold value used in previodigl PSS invocations defines ups vary from2X to over10°X.
the parts of the search space that have already been explored
Depending on the value of the current similarity threshold
(tnew) and the previous lowest similarity threshold value In this section we define the problem and other important
(tora), We identify three different cases for thhel PSS prob- terms referenced throughout the paper (please, see Table |
lem: (1) booting where thel APSS algorithm is executed for the summary of notations).
for the first time on a given dataset, (Bpscaling where Definition 1 (All Pairs Similarity Searcht The all pairs
told < tnew, and (3)downscaling wheret, ;g > t,e,. The similarity search APSS) problem is to find all pairgz, y)
history binning technique is used in all three cases, whiland their exact value of similarityim(x, y) such thate, y €
index splitting is required only for the downscaling case. V andsim(z,y) > t, where
We incorporate both history binning and index splitting « V is a set ofn real valued, non-negative, sparse vectors
into the state-of-the-atd PSS algorithm [4], which enables over a finite set of dimension® and|D| = d;
us to split thel APS'S computation into various independent o sim(z,y) : V x V. — [0,1] is a symmetric similarity
subtasks that can be executed in parallel. This paper pespos function; and
the following contributions: o t,t € 0,1], is the similarity threshold.

« Develops history binning and index splitting techniques _ _
. . . . Iwww.nlm.nih.gov/pubs/factsheets/medline.html
that systematically identify and effectively prune re- 5 - o0 o
dundant computations across multiple invocations of 3w livejournal.com
APSS. 4www.orkut.com

II. DEFINITIONS AND NOTATIONS

Definition 2(Incremental All Pairs Similarity SearghThe computing an upper bound on the similarity score in constant
incremental all pairs similarity search problem is to thlvso time. Otherwise, the exact similarity score is computed for
APSS problem for a given similarity threshold valug.,, the candidate pair.
when theA PSS problem is already solved for the least value The indexing phase adds a part of the given vector to
of similarity thresholdt,;,. the inverted index so that it can be matched with any

Definition 3 (Inverted Index The inverted index maps of the remaining vectors (lines 15-21, Algorithm 1). The
each dimension to a list of vectors with non-zero projedionAll_Pairs algorithm uses an upper bound on the possible
along that dimension. A set of alllists I = {11, >,, I}, similarity scores with only a part of the current vector ¢in
i.e., one for each dimension, represents the inverted ifatex 17, Algorithm 1). Once this bound reaches the similarity
V. Each entry in the list has a pair of values w) such that threshold, the remaining vector components are indexed.

if (x,w) € I, thenz[k] = w. The inverse of this statement Please, refer to Bayardet al. [9] for more details.
is not necessarily true because some algorithms index only
a part of each vector. Algorithm 1: Ali_Pairs Algorithm.

Definition 4 (Candidate Vectoand Candidate Paiy:
Given a vectorz € V, any vectory in the inverted index
is a candidate vector fot, if 35 such thatz[j] > 0 and
(y,ylj]) € I;. The corresponding paifr,y) is a candidate
pair.

Definition 5(Matching Vectorand Matching Paip: Given
a vectorz € V and the similarity threshold, a candidate
vectory € V' is a matching vector fat if sim(x,y) > t. We
say thaty matches withe, and vice versa. The correspondmg
pair (x,y) is a matching pair.

During subsequent discussions we assume that all vectdts i _ ,
are of unit length |(z|| = ||y|| = 1), and the similarity i partSCOTEMapiy} + min(ly'], |]) =
function is the cosine similarity. In this case, the cosine x.max_weight * y' .max_weight > t then

— AN
similarity equals the dot product, namely: 10 s = partScoreMap{y} + dot(z,y’);
11 if s >t then

sim(z,y) = cos(x,y) = dot(z,y). 12 | MPS=MPS U (z,y,s)

Our solution to thd APS'S problem can be extended to other®
popular similarity measures like the Tanimoto coefficierit'

Input: V, t, d, global_-maz_weight, €2, 11
Output: M PS (Matching Pairs Set)
MPS = 0

=0,v1i<i<d,
Q sorts vectors in decreasing order byix_weight;
IT sorts dimensions in decreasing order by density;
foreach x € V in the order defined by2 do
partScoreMap = (;
FindCandidates(,I,t,II, partScoreMap) ;
foreach y: partScoreMap{y} > 0 do

o b~ W N P

and the Jaccard similarity using transformations presbntjer’ mazProduct = 0;
by Bayardoet al. [4]. foreachi: z[i] > 0, in the order defined byl do
17 max Product = maxProduct + x[i] *
lll. APSS ALGORITHM min(global_max_weightli], . max_weight);
Because the proposddd PSS algorithm is based on the 18 if mazProduct >t then
APSS algorithm, here we briefly summarizé PSS and 19 I = LU{z,z[i]};
explain the All_Pairs algorithm [4], which is the state-of- 20 zli] = 0;

the-art algorithm forAPS'S. The basic idea is similar to the 21
way information retrieval systems answer queries [11].rizve22
vector in the dataset is considered to be a query and #sereturn M PS
corresponding matching pairs are found using the inverted
index. Most of the time, however, the information retrieval
system only requires thiwp — k& similar pairs, whileAPSS
requires all matching pairs.

The algorithm can be broadly divided into three phases: Thel APSS algorithm is based on the observation that the
data preprocessing, pairs matching, and indexing. The preroportion of the search space explored during the exatutio
processing phase (lines 1-4, Algorithm 1) reorders vectord a single APSS invocation is inversely proportional to
using a permutatiof2 defined oveil” and components within the value of the similarity threshold. If < ¢, then the
each vector using permutatidh defined overD. search space explored while executiAg’SS for ¢’ is a

The matching phase (lines 6-14, Algorithm 1) finds cansubset of the search space explored foiTherefore, the
didate pairs and selects matching pairs from them. Forlawest previously used value of the similarity threshold is
given vectorz € V, the FindCandidates procedure scans required while solving thd APSS problem. Depending on
the lists in the inverted index that correspond to the namzethe relative values of the current similarity thresholg.(,)
dimensions inz to find candidate pairs. Simultaneously, itand the previous lowest similarity threshold valug,),
accumulates a partial similarity score for each candidate p Figure 1 gives an overview of theAPSS algorithm and
Some of the candidate pairs can be safely discarded Hyere are three possible cases for thePSS solution:

IV. TAPSS ALGORITHM OVERVIEW

Procedure FiindCandidates procedure

1

Input: z, I, t, II, partScoreMap
Output: modified partScoreMap, and I
d

remMaxScore = Z x[i] * global _max_weight[i];

i=1

2 minSize = t/x.mazx_weight;
foreach i: z[i] > 0, in the reverse order defined @y

3

10

do

ly| < minSize;

foreach (y, y[i]) € I; do
if partScoreMap{y} >0 or
remMaxScore > t then
partScoreMap{y} =
partScoreMap{y} + x[i] * y[i];

Iteratively remove(y, y[i]) from front of I, while

remMaxScore = remMaxScore —
global_mazimum_weightli] * x[i];

t

Booting Case:
*Perform IAPSS
*Write History

Downscaling Case:
*Read Partial History
*Perform IAPSS
*Delete Partial History
*Write New History

old 7 *new

Upscaling Case:
*Read Matching
Pairs from History

Fig. 1: IAPSS Overview

figure

1) Booting: t,1q = oo, executing thel APSS algorithm

for the first time on a given dataset.

2) Upscaling t,q < tnhew, reading a subset of pairs that

are already present in the computation history.

3) Downscaling t,q > tnew, potentially adding new

similarity pairs to the computation history.

V. BOOTING

Booting is a relatively simple case dfAPSS that per-
forms APSS while recording the computation history using

history binning.

A. History Binning

Our TAPSS algorithm takes a user defined parameter, The producer and consumer share two data structures:
Pz, that specifies the number of partitions for the similarthe doneFlag and candidate PairQueue. The doneFlag
ity interval of [0, 1]. The interval is divided into equal sizedis a binary variable that is initialized to false, and the

non-overlapping’,,.... partitions. For example, i, = 5,

a similarity values, the corresponding partition numb&x
can be calculated in constant time Bs= | s * Py, |. FOr
the special case of = 1 the partition number i, — 1.

All experiments reported in this paper are performed with
Pae = 20. The effect of varyingP,,... is discussed in
Section IX-C.

The history binning technique classifies candidate pairs
into two types: approximate pairsand exact pairs For
each partition, pairs of each type are stored in different
files, called approximate pairs filesand exact pairs files
respectively. During the similarity score computation som
candidate pairs are discarded after computing an upperboun
on their similarity score because they do not satisfy themiv
threshold value (line 9, Algorithm 1). Such pairs are stored
as approximate pairs in aapproximate pairs fileof the
partition corresponding to the value of the upper bound on
their similarity score. The exact similarity score is cortgul
for the rest of the candidate pairs (line 10, Algorithm 1).
These pairs are stored in @&xact pairs fileof the partition
corresponding to their exact similarity score.

B. Booting Algorithm

Booting is the case of executing tHeAPSS algorithm
for the first time on a given dataset. As there is no infor-
mation available from any previous invocation dfPSS,
our IAPSS algorithm simply uses the fastest algorithm for
APSS while storing the computation history. The booting
algorithm is divided into two concurrent threads: the Can-
didate Pair Producer and the Candidate Pair Consumer. The
Candidate Pair Producer executes #hé_Pairs algorithm
(please, refer to Algorithm 3), and the Candidate Pair Con-
sumer writes candidate pairs to persistent storage (please
refer to Algorithm 4).

Algorithm 3: Candidate Pair Producer Algorithm:
Replace lines 9-13 of Algorithm 1 with the following
pseudocode

1 upperBound = partScoreMap{y} + min(sum(y’) *
x.maz_weight, sum(x) * y .max_weight);
2 if upper Bound > t then
s = partScoreMap{y} + dot(x,y’);
Add (z,y, s, true) to candidate PairQueue;
if s>t then
| MPS=MPS U (z,y,s)

else
Add (z,y, upper Bound, false) to
candidate PairQueue;

© 00 N O O b~ W

10

Candidate pair producer sets it toue when all candidate

then the similarity interval is divided into five partitions pairs are added to theindidate PairQueue. Each entry in

[0,0.2); [0.2,0.4); [0.4,0.6); [0.6,0.8); and[0.8,1.0]. Given

the candidate PairQueue has four components: the ids of

10000 6 100000 ¢
8
2 a O @
38 1000 5, S 10000
) B £
< 100 2 3k S 1000
[} wn N
£ 2 @
[
10 & ‘ : ‘ — 1k ‘ : : ‘ : 00 brm—oororo——
05 06 07 08 09 0.99 0.5 0.6 0.7 0.8 09 0.99 05 06 07 08 09 099
Booting Similarity Threshold Booting Similarity Threshold Booting Similarity Threshold
Medline —a— LiveJournal e Medline —4— LiveJournal e Medline —+— LiveJournal e
Flickr v Orkut ===~ Flickr v Orkut ===~ Flickr v Orkut ===~
(a) Running Time off APSS (b) Speed-up overll_Pairs (c) Size of Computation History
Fig. 2: Results for Booting
figure
15 1e+06
2]
3 -
& o 100000 m
] 7 =
4 ® 10000 £
c Q [}
£ [o% N
g @ 1000 = @
£
100
0.5 0.6 0.7 0.8 0.9 0.99 05 06 07 08 0.9 099 0.5 0.6 0.7 0.8 09 0.99
Upscaling Similarity Threshold Upscaling Similarity Threshold Upscaling Similarity Threshold
Medline LiveJournal e Medline LiveJournal e Medline LiveJournal e
Flickr = Orkut ------- Flickr - Orkut ---—=-- Flickr - Orkut ---=---
(a) Running Time off APSS (b) Speed-up overll_Pairs (c) Size of Computation History Read
Fig. 3: Results for Upscaling
figure

Algorithm 4: Candidate Pair Consumer Algorithm

discarded to reduce the size of data to be written. In later

for a thread that writes candidate pairs to persistent invocations of/APSS, the value of the upper bound of an

storage
1 while doneFlag not true do

2 Dequeue all candidate pairs from
candidate PairsQueue in write PairsSet;

3 foreach Elementw in writePairsSet do

4 P, = |w.score * Py |;

5 if w.isExact is true then

6 Append entry(w.z, w.y, w.score) to file for
exact pairs corresponding to partitidt,

7 else

8 Append entry(w.z, w.y) to file for
approximate pairs corresponding to partition
Py

9

10

11

approximate pair can be computed using its partition number
However, it will be a loose upper bound.

The I APSS algorithm uses two tighter bounds on filtering
conditions derived by Awekar and Samatova [3]. While
searching for candidate pairs, the lower bound on the siae of
candidate (line 2F'indCandidates Procedure) is squared by
the IAPSS algorithm. While evaluating candidate pairs, the
upper bound used by thed PSS algorithm on the similarity
score is tighter (line 1, Algorithm 3) than the bound used by
All_Pairs (line 9, Algorithm 1).

Figure 2a shows the running time of thiel PSS booting
algorithm for various similarity threshold values. Spegd-
with respect to thedil_Pairs algorithm is shown in Figure
2b. This speed-up is due to tighter bounds on the filtering
conditions. Please, refer to Appendix for a description of
the experimental set-up and datasets.

VI. UPSCALING
Upscaling is another simple case bAPSS, which only

both vectors in the pair, the similarity score value, and @ flarequires reading a part of the computation history and is

indicating if it is the exact score or an upper bound.

the case where,;; < t,c. The set of matching pairs for

The producer thread performs the similarity computatiothreshold,,.., will be a subset of the matching pairs Q.
and adds candidate pairs to the queue. The consumer thr8dee matching pairs fot,;4 are a subset of all the candidate
removes candidate pairs from the queue and writes them pairs for threshold,;; and have already been stored through
a file depending on the value of the similarity score. Whildnistory binning while executingAPSS for 4. If a pair is a

writing approximate pairs, the value of the upper bound

imatching pair, then its similarity score is computed exactl

(lines 3-7, Algorithm 3). Therefore, all matching pairs for Algorithm 5: Downscaling Algorithm.

thresholdz,,q have already been stored in exact pairs files. " \nput: V', ¢, d, global_maz_weight, 0, 11, Pas
No separate search is required to find the matching pairs foroyutput: A7 PS (Matching Pairs Set)

thresholdt,,c., .

1 MPS = 0

Our algorithm only reads the computation history and, jold — ¢ v 1< <g;
outputs the matching pairs. It does not need to read theeentif jrew — v 1< <g;

computation history because the history binning techniqug () sorts vectors in decreasing order byiz_weight;

groups the paiI’S based on their S|m||ar|ty values. For mrres 11 sorts dimensions in decreasing order by density;
invocation of TAPSS, our algorithm first computes the ¢ foreach Partition P : P,.., < P < Pyyan do

partition numberP,,.,, corresponding to thresholg.,,, and
then reads the exact pairs files corresponding to all pamiti 4
P, Ppewy < P < Ppay. The pairs satisfying the threshold g
thew are then added to the output. 10

During our experiments, the firstAPSS (booting) ex- 4,

foreach Exact Pair (z,y) in partition P do
if s> t,00 then
| MPS = MPS U (z,y,s);

periment used a threshold value @b and then performed ;, foreach z € V' in the order defined by do

upscaling with various similarity thresholds. For all dats, 5
upscaling was completed in less than two seconds (please,
refer to Figure 3a); this is expected because the algorithp
only reads and outputs matching pairs. It results in large
speed-ups in the rang@2X to 10°X (please, refer to Figure
3b). The speed-up for the upscaling case is not dependgnt
on the valuet,;; because the number of pairs read by thg
upscaling algorithm depends only on the value.,of,. 18
Grouping pairs by similarity score enables our algorithmy
to only read the required portions of the history. Figure 3g
shows the effectiveness of grouping pairs using the history
binning technique. Upscaling algorithms read at most five
percent of the total history written during the booting casey;

Initialize approxList and knownList to empty
sets;

foreach Partition P : P,ey < P < Ppas dO
Add eachy to ApproxzList, such thatz, y) is
an approximate pair irP;

Delete (z,y) from computation history;
FindKnownCandidates() ;
FindNewCandidates(z,1,t,);

foreach y: partScoreMap{y} > 0 do

upper Bound =

partScoreMap{y} + min(sum(y’) *
x.mazr_weight, sum(z) x y .max_weight);
if upper Bound > t then

VIl. D OWNSCALING 22 s = partScoreMap{y} + dot(z,y’);
L o 23 Add (z,y, s, true) to
Downscaling is the case of,;y > tpew. This is the candidate PairQueue;

trickiest case to handle because the search space explgyed
for thresholdt,;q is a subset of the search space that neegls
to be explored for threshold,.,, and the challenge is ,4
to identify this overlap efficiently, which is achieved ugin ,,
history binning and index splitting. 28

if s>t then
| MPS=MPS U (z,y,s)

else
Add (z,y, upper Bound, false) to
candidate PairQueue;

A. Division of Search Space ”

The search space, that is, the set of candidate pafier 3 SplitindexVector() :
the given similarity threshold,..,, can be partitioned into 31 ¢,,; = #,,c0:
two parts: 32 store updated value af;4 to persistent storage;
o C,q = The search space explored after runnidg®SS 33 return MPS
for thresholdt,;4, that is, the set of all candidate pairs
present in the computation history; and

* Crew =C = Coua N _ similarity score must be recomputed for pairgig, ... The
Coia can be further partitioned into: search space explored in the current executiod 4SS
« Ciow = Exact and approximate pairs having similarityis limited t0 Cunknown = Chew U Capprox and will
score less tham,.; result in pruning similarity score computations for pains i
o Chaten, = Exact pairs having similarity scores greaterC;,, ..., = C — Cuntnown = Clow U Cmateh-
than or equal ta,.,,; and
o Cupprox = Approximate pairs having similarity score B. Index Splitting
upper bounds greater than or equak4e,,. The size of the inverted index is inversely proportional
Pairs in Cj,, can be ignored, as they will not satisfyto the value of the similarity threshold (lines 16-21, Algo-
thresholdt,,..,. Pairs inC,,.;c, can be directly added to rithm 1). The inverted index®? is built for threshold value
the output without re-computing the similarity score. Tdest,;; and will be a subset of the inverted indéxbuilt for
pairs have already been written in the exact pairs files. Thbreshold valué,,.,,. Our index splitting technique splits the

Procedure SplitIndexVector procedure Procedure Find KnownCandidates procedure

Input: =z, Jold rew o tew, 11 Input: z, 1 ¢4, 1, partScoreMap, knownList,

Output: approxList
1 maxProduct = 0; Output: modified partScoreMap, and knownList
2 foreachi: z[i] > 0, in the order defined byl do 1 partScoreMap = 0;
3 mazxzProduct = maxProduct + x[i] * d

min(global _max_weight[i], z.max_weight); remMazxScore = Z zi] * global_maz_weight|i];
4 if maxProduct > t,q then 2 i=1 ‘)
5 194 = 914 Lo 2i]); 3 minSizeoq = (toia/x.max_weight)?;
6 :cl[i] — 0 ’ ' 4 foreachi: z[i] > 0, in the reverse order defined ly
' do
7 else . : : old \yhi
o if mazProduct > t,., then 5 Iteratively ignore(y, y[¢]) from front of I2** while
9 Jrew — Jrew | i |y| < minSizeyd;
g {e,alil} 6 | foreach (y,y[i]) € I?' do
10 x[i] = 0; . ¢
1 7 if y € approxList then
1 8 partScoreMap{y} =
13 partScoreMap{y} + x[i] = y[i];
9 else
10 | Add y to knownList,

11
inverted index/ into the following two partitionsZ°'¢ and 12 remMaxScore = remMaxScore —

I whereI"ew = | — [°!4 Please refer to procedure global _mazimum_weight[i] * x[d];
SplitIndexVector for details. Index splitting is used by 13 if remMaxScore < tqq then
the downscaling algorithm to partition the search spaae int4 | return

Cknown and Cunknown- 15

16

C. Downscaling Algorithm

The downscaling algorithm explores th&,, kn0wn S€arch
space and stores each evaluated pair in the computatewvaluation forC,,., Now piggybacks searching 6fx,ouwn
history. The pairs iNCyatcn and Coppro are read from andCiey.
computation historyCy.,,..n is found by traversing°'¢ and 3) Finding Crpnown: Finding all the pairs inCy,own €an
is used to prune redundant computations while finding artse accomplished by reading the entire computation history.
evaluatingC,e.,. All pairs in Cyninown are evaluated using However, findingClpown from the inverted index is more
the inverted index and added to the computation historgfficient because it is an in-memory data structure. For
Old entries for the pairs ifCy,pr0, are removed from the a given vectorz, the FindKnownCandidates procedure
computation history because their updated similarity ssor finds pairs in Cr,own. It traverses the inverted index in
will be stored during the current invocation 6APSS. the same manner as thBindCandidates procedure in

1) Reading Cy,qicn: All pairs in Cy,.:cr, are already Algorithm 1. However, the similarity score is computed only
present in the computation history. They are read from tHer pairs in theapproxzList. The list of pairs inCrpown iS
exact pairs files corresponding to each partitidnsuch that stored in theknownList.
Prew < P < P4, (lines 6-11, Algorithm 5). This step is 4) Finding C,.,: For a given vector z, the
similar to the upscaling case. FindNewCandidates procedure finds candidate

2) Reading and Evaluating',,,r.: Similar to the pairs vectors in Cy.,. The procedure is similar to the
in Chnaten, Pairs in Cyppror caN be read all at once from FindCandidates procedure in Algorithm 1. However,
the approximate pairs files and evaluated directly. Howit does not search the part of the index that was traversed
ever, computing similarity scores directly for all thesdérpa by FindKnownCandidates. If any candidate vectory
will not be efficient, because computing the dot produds present in that part of the index, then by definition
requires serially traversing both vectors. Instead, wal redz,y) € Coq. Therefore, any pair inCy., cannot be
the pairs inC,,,.., during the matching phase (lines 15-present in that part of the index. Simultaneously, the phrti
16, Algorithm 5). For a given vectox, the list of pairs similarity score is accumulated ipartScoreMap for all
in Cupproz IS stored inapproxList. The partial similarity pairs in Cunknown-
score for these pairs is calculated using the inverted index5) Evaluating and Storingy.,.known: The partial simi-
when findingClown @ndChe,, (please, refer to procedureslarity score of all the candidate pairs @, xn0wn IS Stored
FindKnownCandidates and Find N ewCandidates). The in partScoreMap. These candidate pairs are evaluated and
similarity score computation using the inverted index iseno stored exactly like the booting case (lines 19-29, Algo-
efficient than serially traversing the vectors. In addititre rithm 5).

Medline Flickr LiveJournal Orkut
175 625 = 8000 s

725

6000

125 425

525
4000

75 225

325
2000

400

25 +

Time in Seconds

Time in Seconds

Time in Seconds

Time in Seconds

25

125

0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
Downscaling Similarity Threshold Downscaling Similarity Threshold Downscaling Similarity Threshold Downscaling Similarity Threshold
IAPSS —+— All_Pairs s IAPSS —a— All_Pairs e IAPSS —+— All_Pairs =m= IAPSS —+— All_Pairs wm=

@) (b) (© (d)
Fig. 5: Comparison of Running Time for Downscaling wittdl_Pairs

figure
tme TalXo) was presented in Algorithms 3 and 4. For other producer-
T T T T - consumer pairs, synchronization scheme is similar.
T4(Xg) Tofxq)
o) 7 0 o 177 - Figure 5 shows running time comparisons for iePS.S
T - - downscaling case and théll_Pairs algorithm. We started
Too) | D0 || T] - with a booting similarity threshold df.99. Then we reduced
i To) | | T [~ the similarity threshold td.5 in 0.1 decrement steps. The
To(%0) Ta(x2) end-to-end running time is the most important measure for
T i comparing the APSS solution to theAll_Pairs algorithm.
— The results for other comparison factors are available en th
Taxa) Web [1], such as the size of the search space and the amount
Tyo: Index Vector T4: Read Pairs in Cpatcn of /0 performed.
T,: Read Pairs in Cppr0x T: Find Pairs in Cynown
T,: Find Pairs in Cpy Ts: Evaluate Pairs in Cynmown IX. END-TO-END TAPSS PERFORMANCE

Tg: Write Pairs in C . . .
¢ unknonn In this section, we present results for experiments that are

Fig. 4: Overview of Parallelization relevant across all three cases of IeP S 'S algorithm using
figure three metrics: (1) query responsiveness, (2) speed-ugd3and
sensitivity. We chose the following set of similarity thineéd
values for the experiments:

VIII. PARALLELIZATION T = {0.99,0.9,0.8,0.7,0.6.0.5}.

Additional performance gains may be attained by inter-] o]
leaving 1/0 and computation, and by concurrently executin?- Query Responsiveness to Similarity Value Changes in
various subtasks, such as findifgc.,, Crnown, and eval- PSS
uating Cyunknown. Out of the three cases for theAPSS An algorithm has high query responsiveness if it immedi-
problem, the solution for the upscaling case only consits ately generates the majority of its output and then computes
reading matching pairs from the exact pairs files, and dodise remaining portion of the output. Other algorithms that
not require parallelization. The solution for the bootirage use the/APSS output can benefit from the algorithm’s
uses parallelization to multiplex I/O with the computationquery responsiveness. These algorithms do not need to wait
The same is true in the solution presented in Algorithm &until all matching pairs are found. Instead, they can start
However, various smaller subtasks presented in Section Vllising the matching pairs as they are identified. This is
C present opportunities for parallelizing the downscalingarticularly useful while processing large datasets, wlilee
computation. These subtasks can run in parallel, while datatal running time for finding all matching pairs may take
flows through these subtasks. hours.

Figure 4 shows the parallelization outline. It works as a The query responsiveness of tHedPSS solution for
pipeline of producers and consumers. Each task works #ge booting case, is similar to thdli_Pairs algorithm.

a producer for its successor, and works as a consumer fbine /APSS solution directly outputs all matching pairs by
its predecessor. For example, the task finds the set of reading them from the computation history for the upscal-
pairs inC,,,, for a given vectorr, and adds it to the queue ing case. For the downscaling case, théPSS algorithm
shared with task task;. The vector: and the corresponding immediately outputs pairs ii,,.;c, and then finds pairs
pairs inC,,, are then removed from the queue by the taski C\,known- All pairs having similarity scores greater than
Ts. In our implementations, each task runs as a thread and equal tot,;4 are present irC,,qsch, i.€., pairs with high
synchronizes with its neighbors using shared-memory dasamilarity value are immediately identified by theAPSS
structures. Data flows from top to bottom in this pipelinesolution. Figure 6 shows the ratio of the number of pairs
Synchronization between the last two task$, and Ts, in Cqcn to the total number of matching pairs for various

Procedure FindNewCandidates procedure

1
2
3
4

10

11
12
13
14

15
16
17
18
19
20

21

22

23

24

25

26

Input: =z, 1o ¢, 10, partScoreMap, knownList,
approxList
Output: modified partScoreM ap
d

remMaxScore = Z x[i] * global_max_weight[i];
i=1

minSizeoq = (toia/r.maxr weight)?;

minSizenew = (tnew/T.maz_ weight)?;

foreachi: z[i] > 0, in the reverse order defined By

do

Iteratively remove(y, y[i]) from front of I***, and

I2' while |y| < minSizencw;

if remMaxScore > t,q then

foreach (y, y[i]) € I?'? while |y| < minSizeyq
/ = remaining part in the list
was traversed by
FindKnownCandidates procedure
*/

do

if y ¢ knownList then

‘ partScoreMap{y} =
partScoreMap{y} + x[i] * y[i];

—h

oreach (y, y[i]) € I7** do
if y ¢ knownList then
‘ partScoreMap{y} =
partScoreMap{y} + x[i] * y[i];

else
foreach (y, y[i]) € I U I?' do
if y ¢ knownList then
if partScoreMap{y} >0 or
remMaxScore > t,q, then
partScoreMap{y} =
partScoreMap{y} + x[i] * y[i];

remMaxScore = remMaxScore —
global mazimum_weight[i] x x[i];

downscaling similarity threshold values. This ratio regenets

1,

0.5 0.6 0.7 0.8 0.9
Downscaling Similarity Threshold

©
3
o
2
£ 09
g 08
=
3 07
£ 06
5
% 05
£
O

Medline —a— LiveJournal e
Flickr s Orkut ---—---

Fig. 6: Fraction of Matching Pairs Immediately Found by

Downscaling Algorithm
figure

Worst Case Execute booting followed byn(— 1) down-
scaling cases.

Spped-up

edline

Journal
Worst Case

Best Case

Fig. 7: Best and Worst Case Speed-up for Similarity Values
in SetT’
figure

The best case is obtained by sorting the threshold values
in the threshold s€t’ in increasing order and then executing
IAPSS. The worst case is obtained by sorting the threshold
values in decreasing order and then executigPSS.
Figure 7 shows the best and worst case speed-ups achieved by
the JAPSS solution compared to thdli_Pairs algorithm.

The speed-up is computed by comparing the total running
time over all similarity threshold values in the sét If

the value of|T| is increased, i.e., iITAPSS is executed
more often on the same dataset, then the resultant speed-up
will increase because thied PSS algorithm will prune more
redundant computations from later invocations.

The external algorithm that invokes tliel PSS algorithm
can implement various strategies to achieve the best case
speed-up. A particular lowest similarity threshold can be

the part of the output immediately generated by the dowmpredicted for some applications based on historical datia an
scaling algorithm.

B

. Extreme Cases Speed-up

The speed-up achieved by thd PSS algorithm depends
on how the similarity threshold is varied. If theAPSS

empirical knowledge. Alternatively, the external algbnit
can also buffer thd APSS request for some time instead
of executing it immediately. Depending on the nature of the
application, it can wait for a certain time to check if any@rth
TAPSS requests have been received with lower similarity

algorithm is executed times over a given dataset, then thenreshold values.
following are the best and worst cases for the end-to-end
running time.

Best CaseExecute booting followed byn(— 1) upscaling

cases.

C. Sensitivity to Varyind®,q.

The P, parameter is used to divide the similarity range
into equal sized partitions. For a given value #f,,, the

IAPSS algorithm has to read the computation history for all TABLE II: Data Sets Used
partitionsP : Py < P < Pphq.. SOme pairs in the partition igp|e

P,c, Will not satisfy the similarity threshold, but must be Data Set | n=d T‘éta' NO”‘Zet’O A"S‘?fage
. . . - omponents 1ze
read anyway. This overhead is attenuated if the partitiar flo Medine | 1865145 18722452 11.96
equalst,ew, 1.€., Prew = tnew*Pmaz- HOWever, we observed Elickr 1441433 22613976 15.68
that this overhead is not significant. During our experiragnt LiveJournal | 4598703 | 77402652 16.83
we varied theP,,,, parameter from 3 to 25. The variation Orkut | 2997376] 223534153 | 7457

in total running time for the best case and the worst case for

values inT" was less than ten percent. A Datasets

X. CONCLUSIONS AND FUTURE WORK One of the datasets comes from the scientific literature
. o collaboration information in Medline indexed papers, &hil
The Incremental All Pairs Similarity SearcfAPSS) the rest come from popular online social networks: Flickr,
problem is introduced and a solution is proposed. The majfveJournal and Orkut. These datasets represent a vafiety o

features of the solution are the following: large-scale web-based applications like digital libraraad
« Redundant computations in response to varying simpnline social networks that we are primarily interested in.
larity thresholds across multiple invocations 4PSS The distribution of the vector sizes in these datasets is the

on the same dataset are systematically identified af@wer law distribution [7], [3], [4]. These datasets arehhig

effectively pruned using the proposed history binninglimensional and sparse (please, refer to Table Il). The odti
and index splitting techniques. the average vector size to the total number of dimensions is

« Additional performance gains are attained by paralleliZess thanl0~*. All these characteristics are common across
ing ourJAPSS algorithm to take advantage of moderndatasets generated and used by many large-scale web based
multi-core processors. applications [13], [4]. These applications have to solve th

« Query responsiveness is improved for olIiPSS IAPSS problem for high-dimensional datasets with millions
solution, compared to thall_Pairs APSS algorithm, of records, which are often sparse. Therefore, we expect our
because it almost instantaneously output pairs with highistory binning and index splitting techniques to be retg¢va
similarity values. to other similar datasets as well.

The compounded effect of these approaches resulted ipl) Medline: This dataset was selected to investigate possi-
speed-ups 02X to over10°X on four large-scale real-world b e applications for Iarge_wgb-bfised SC|ent|f|.c digitaldities
datasets. like PubMed, the ACM Digital Library, and CiteSeer. We use

Our current parallel solution fof APSS is limited to the_ dat"?‘s"” prepargd by the .Aut.on.Lab O.f Carnegie Mel-lon

a shared-memory multi-core system. Scaling thePSS University. We are interested in finding pairs of authorshwit

solution using both shared and distributed memory systeﬁgélgt;?:lazgeﬂogfFgﬁtz[ﬂséfi\izr\ﬁgz r;é)ereci‘e;ﬁiﬂhors
is an interesting direction for future work and may enabl P P

even larger datasets to be processed in the future. q’wo authors are considergd collabor_ators if they Wr_itemﬂg
two papers together. Similar strategies were used in pusvio
work [4] to eliminate accidental collaborations. We use the
weighting scheme of Newman [8] to derive the collaboration
We empirically evaluate the effectiveness of our techrnésqueveight between any two authors. K authors have co-
by performing experiments on four real-world datasets fomruthored a paper, then it adtis(k — 1) to the collaboration
both the cosine similarity and the Tanimoto coefficientweight of each possible pair of authors of that paper. All
Results for both similarity measures are quite similarhiis t vectors are then normalized to unit-length.
paper, we only present results for the cosine similarity for 2) Flickr, LiveJournal and Orkut: These three datasets
the sake of brevity. More details about the results for thevere selected to explore potential applications for large
Tanimoto coefficient can be downloaded from the Web [1]online social networks. We are interested in finding user
All our implementations are in C++ and we used thegairs with similar social networking patterns. Such pairs
standard template library for most of the data structures. \Ware used to generate more effective recommendations based
used thedense_hash_map_class ® from Googlé™ for the on collaborative filtering [10]. We use the dataset prepared
hash based partial score accumulation. We used the GNW Mislove et al. [7]. Every user in the social network is
gce 4.1.2 compiler and the-O3 option for optimization. We represented by a vector over the space of all users. A user’s
used thepthreads library for multithreading to implement vector has a non-zero projection along those dimensions tha
parallelization. All experiments were performed on a 2.€orrespond to other users in his/her friend list. Howeves, t
GHz Intel™™ Xeon™ class machine with eight CPU coresweights of these social network links are unknown. There-
and 16 GB of main memory. The code and datasets afere, we applied the weight distribution from the Medline
available for download on the Web [1]. dataset. To ensure that our results are not specific onlyeto th
selected weight distribution, we also conducted expertmen
Scode.google.com/p/google-sparsehash/ by generating the weights randomly. The results were simila

APPENDIX

and are available on the Web [1].

ACKNOWLEDGMENT

This work is performed as part of the Scientific Data
Management Center (http://sdmcenter.lbl.gov) under the D
partment of Energy’s Scientific Discovery through Advanced
Computing program (http://www.scidac.org). Oak Ridge Na-
tional Laboratory is managed by UT-Battelle for the LLC
U.S. D.O.E. under contract no. DEAC05-000R22725.

REFERENCES

[1] Code and data sets for our algorithms www4.ncsu.edu/
~acawekar/snakdd/

[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact setarity joins.
In VLDB '06.

[3] A. Awekar and N. F. Samatova. Fast matching for all pairsilarity
search. Technical Report TR-2009-14, CSC Department, Nife St
University, May 2009.

[4] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all paimilgrity
search. InWWW '07

[5] G.R. Hjaltason and H. Samet. Incremental distance jiorihms for
spatial databases. BIGMOD '98

[6] R. Jarvis and E. Patrick. Clustering using a similaritgasure based
on shared near neighbor@omputers, IEEE Transactions 08-22(11),
Nov. 1973.

[7] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and Bha®-
tacharjee. Measurement and analysis of online social meswén IMC
'07.

[8] M. E. J. Newman. Scientific collaboration networks. iostest paths,
weighted networks, and centralitiphysical Review64(016132), 2001.

[9] S. Sarawagi and A. Kirpal. Efficient set joins on simitarpredicates.
In SIGMOD '04

[10] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluatimygilarity
measures: a large-scale study in the orkut social networkDD '05.

[11] H. Turtle and J. Flood. Query evaluation: strategiesd aptimizations.
Inf. Process. Manage31(6):831-850, 1995.

[12] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set simifarjoins.
In ICDE '09.

[13] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similayioins for
near duplicate detection. WWW ’'08

[14] D. Zhou, S. Zhu, K. Yu, X. Song, B. L. Tseng, H. Zha, and C. L
Giles. Learning multiple graphs for document recommendati In
WWW '08

