
Incremental All Pairs Similarity Search for Varying
Similarity Thresholds

Amit Awekar, Nagiza F. Samatova, and Paul Breimyer
acawekar@ncsu.edu, samatovan@ornal.gov, pwbreimy@ncsu.edu

North Carolina State University, Raleigh, NC
Oak Ridge National Laboratory, Oak Ridge, TN

Abstract— All Pairs Similarity Search (APSS) is a ubiqui-
tous problem in many data mining applications and involves
finding all pairs of records with similarity scores above a
specified threshold. In this paper, we introduce the problem
of Incremental All Pairs Similarity Search (IAPSS), where
APSS is performed multiple times over the same dataset by
varying the similarity threshold. To the best of our knowledge,
this is the first work that addresses theIAPSS problem. All
existing solutions for APSS perform redundant computations
by invoking APSS independently for each threshold value.

In contrast, our solution to the IAPSS problem avoids
redundant computations by storing the history of previous
APSS invocations and using index splitting. While offering
obvious benefits, the computation and I/O intensive nature
of the IAPSS solution raises two key research challenges:
(1) to develop efficient I/O techniques to manage computation
history and (2) to efficiently identify and prune redundant com-
putations. We address these challenges through the proposed
(a) history binning technique that clusters record pairs based
on similarity values and performs I/O during the similarity
computation, and (b) splitting of inverted index that maps each
dimension to a list of records that have a non-zero projection
along that dimension. As a result, we evaluate the effectiveness
of our techniques by demonstrating speed-ups in the order of
2X to over 10

5
X over the state-of-the-artAPSS algorithm for

four real-world large-scale datasets.

I. I NTRODUCTION

Many data mining techniques search for all pairs of records
that have similarity scores above a specified threshold [4],
[13]. In the literature, this problem is referred to assimilarity
join [13] or all pairs similarity search (APSS) [4]. For
example, the Jarvis-Patrick algorithm for clustering sparsifies
the similarity score matrix by retaining only those entriesthat
satisfy a predefined threshold [6].

Selecting a meaningful similarity threshold is an art be-
cause it is data dependent. Domain experts often use a trial
and error approach by looking at the quality of output. For
example, the optimal threshold for sparsifying the similarity
score matrix in the Jarvis-Patrick algorithm can be deter-
mined only after evaluating the quality of different cluster-
ings by varying the similarity threshold for sparsification.

Varying the similarity threshold leads to another impor-
tant problem that we refer to as theincremental all pairs
similarity search(IAPSS), which performsAPSS multiple
times on the same dataset by varying the similarity threshold

Nagiza F. Samatova is the corresponding author.

value. TheIAPSS problem is challenging to solve when it
is applied frequently or over large datasets.

However, there are a number of important applications that
require efficient handling theIAPSS problem. For example,
the output ofIAPSS is used to detect all near duplicate
document pairs [13]. A news search engine has to solve the
IAPSS problem every few minutes over a small subset of
the web, whereas a general web search engine has to solve
theIAPSS problem once every few days, but over the entire
web.

To the best of our knowledge, theIAPSS problem has
not received a special treatment in the literature and the
“brute-force” strategy is used instead. Namely, applying a
new instance ofAPSS after each similarity threshold value
changes. Obviously, this solution may be inefficient due to
inherent redundancies.

All of the existing solutions forAPSS [13], [4], [2], [9] do
not exploit the fact that a significant part of the computation
is redundant across multiple invocations ofAPSS, because
each of theAPSS instances executes independently for
changing similarity threshold values. For example, consider
performingAPSS twice on a dataset. Initially, the threshold
value is 0.9 and later it is reduced to 0.8. All pairs present
in the output of the firstAPSS will also exist in the output
of the secondAPSS. There is no need to compute the sim-
ilarity score for these pairs during the secondAPSS. While
executing the firstAPSS, the similarity score computed for
some pairs would be less than 0.8. We can safely prune the
similarity score computations of such pairs during the second
APSS. Arguably, the more timesAPSS is performed, the
greater the opportunity to optimize the search by eliminating
redundant calculations.

The IAPSS problem should not be confused with other
formulations of incremental problems. Incremental algo-
rithms for various types of similarity searches have primarily
addressed the challenge of handling perturbations in datasets
themselves, when data records and/or their dimensions are
added or removed[14]. Unlike these incremental methods,
the IAPSS problem assumes that such datasets remained
unchanged across different searches. Some incremental al-
gorithms are designed to identify thetop-k similar pairs
[12]. But theIAPSS problem requires allmatching pairs.
Incremental algorithms for the distance join [5] address
problems similar toIAPSS for distance measures, such

as the Euclidian distance. However, their techniques assume
that the triangle inequality holds true for distance measures,
which is not the case for similarity functions like the cosine
similarity and the Tanimoto coefficient.

Given a dataset withn records in ad dimensional space
whered >> n, a naïve algorithm for IAPSS will com-
pute and store the similarity scores between all pairs in
O(n2 ∗ d) time. However, this computational cost becomes
prohibitively expensive for large-scale problems. To address
this limitation our solution to theIAPSS problem stores
the computation history during each invocation ofIAPSS
and later uses the history to systematically identify and
effectively prune redundant computations. The compute and
I/O intensive nature of theIAPSS problem raises two key
research challenges: (1) developing efficient techniques for
I/O while using the computation history; and (2) efficiently
identifying and pruning redundant computations. To address
these challenges, we propose two major techniques:history
binning and index splitting.

The history binning technique stores information about all
pairs evaluated in thecurrent invocation ofIAPSS. Pairs
are grouped based on their similarity scores and stored in
binary files. This information is used in thenext invocation
of IAPSS to avoid re-computation of known similarity
scores. Grouping pairs enables our algorithm to read only
the necessary parts of the computation history. The I/O for
history binning is performed in parallel to the similarity
score computation, which reduces the overhead in end-to-
end execution time.

The index splitting technique divides the inverted index
based on the values oftnew and told. This splitting enables
our algorithm to avoid searching through a major part of the
inverted index and to prune similarity score computations of
pairs that exist in the computation history.

Lowering the value of the similarity threshold results in
exploring a greater portion of the search space (i.e., the
number of record pairs evaluated). The lowest similarity
threshold value used in previousIAPSS invocations defines
the parts of the search space that have already been explored.
Depending on the value of the current similarity threshold
(tnew) and the previous lowest similarity threshold value
(told), we identify three different cases for theIAPSS prob-
lem: (1) booting, where theIAPSS algorithm is executed
for the first time on a given dataset, (2)upscaling, where
told ≤ tnew , and (3)downscaling, wheretold > tnew . The
history binning technique is used in all three cases, while
index splitting is required only for the downscaling case.

We incorporate both history binning and index splitting
into the state-of-the-artAPSS algorithm [4], which enables
us to split theIAPSS computation into various independent
subtasks that can be executed in parallel. This paper proposes
the following contributions:

• Develops history binning and index splitting techniques
that systematically identify and effectively prune re-
dundant computations across multiple invocations of
APSS.

TABLE I: Notations Used
table

Notation Meaning
Given a dimensionj

density(j) the number of vectors inV with non-
zero projection along the dimensionj

global max weight[j] x[j] such thatx[j] ≥ y[j] for ∀y ∈ V
Given a vectorx

x.max weight x[k] such thatx[k] ≥ x[i] for 1 ≤ i ≤
d

x.sum
d

X

i=1

x[i]

x′ the unindexed part ofx
x′′ the indexed part ofx
|x| (size ofx) the number of nonzero components in

x

||x|| (magnitude ofx)

v

u

u

t

d
X

i=1

x[i]2

Given a pair of vectors(x, y)

dot(x, y)
X

i

x[i] · y[i]

cos(x, y) dot(x, y)/(||x|| · ||y||)

• Incorporates our history binning and index splitting
techniques into the state-of-the-artAPSS algorithm
and parallelizes it, which leads to efficient end-to-end
computation.

• Offers more responsive output than the state-of-the-art
APSS solution by almost instantaneously identifying
pairs with high similarity scores. This responsive nature
is particularly desirable for processing large datasets
requiring multiple hours for complete execution.

We perform empirical studies using four real-world mil-
lion record datasets derived from: (a) scientific literature
collaboration in Medline1 indexed papers, (b) Flickr2 social
networks, (c) LiveJournal3 social networks, and (d) Orkut4

social networks. We compare the performance of our al-
gorithm against the state-of-the-artAPSS algorithm [4].
Depending on the similarity threshold variation, our speed-
ups vary from2X to over105X .

II. D EFINITIONS AND NOTATIONS

In this section we define the problem and other important
terms referenced throughout the paper (please, see Table I
for the summary of notations).

Definition 1 (All Pairs Similarity Search): The all pairs
similarity search (APSS) problem is to find all pairs(x, y)
and their exact value of similaritysim(x, y) such thatx, y ∈
V andsim(x, y) ≥ t, where

• V is a set ofn real valued, non-negative, sparse vectors
over a finite set of dimensionsD and |D| = d;

• sim(x, y) : V × V → [0, 1] is a symmetric similarity
function; and

• t, t ∈ [0, 1], is the similarity threshold.

1www.nlm.nih.gov/pubs/factsheets/medline.html
2www.flickr.com
3www.livejournal.com
4www.orkut.com

Definition 2(Incremental All Pairs Similarity Search): The
incremental all pairs similarity search problem is to the solve
APSS problem for a given similarity threshold valuetnew

when theAPSS problem is already solved for the least value
of similarity thresholdtold.

Definition 3 (Inverted Index): The inverted index maps
each dimension to a list of vectors with non-zero projections
along that dimension. A set of alld lists I = {I1, I2,, Id},
i.e., one for each dimension, represents the inverted indexfor
V . Each entry in the list has a pair of values(x, w) such that
if (x, w) ∈ Ik, thenx[k] = w. The inverse of this statement
is not necessarily true because some algorithms index only
a part of each vector.

Definition 4 (Candidate VectorandCandidate Pair):
Given a vectorx ∈ V , any vectory in the inverted index
is a candidate vector forx, if ∃j such thatx[j] > 0 and
(y, y[j]) ∈ Ij . The corresponding pair(x, y) is a candidate
pair.

Definition 5 (Matching VectorandMatching Pair): Given
a vectorx ∈ V and the similarity thresholdt, a candidate
vectory ∈ V is a matching vector forx if sim(x, y) ≥ t. We
say thaty matches withx, and vice versa. The corresponding
pair (x, y) is a matching pair.

During subsequent discussions we assume that all vectors
are of unit length (||x|| = ||y|| = 1), and the similarity
function is the cosine similarity. In this case, the cosine
similarity equals the dot product, namely:

sim(x, y) = cos(x, y) = dot(x, y).

Our solution to theIAPSS problem can be extended to other
popular similarity measures like the Tanimoto coefficient
and the Jaccard similarity using transformations presented
by Bayardoet al. [4].

III. APSS ALGORITHM

Because the proposedIAPSS algorithm is based on the
APSS algorithm, here we briefly summarizeAPSS and
explain theAll Pairs algorithm [4], which is the state-of-
the-art algorithm forAPSS. The basic idea is similar to the
way information retrieval systems answer queries [11]. Every
vector in the dataset is considered to be a query and the
corresponding matching pairs are found using the inverted
index. Most of the time, however, the information retrieval
system only requires thetop− k similar pairs, whileAPSS
requires all matching pairs.

The algorithm can be broadly divided into three phases:
data preprocessing, pairs matching, and indexing. The pre-
processing phase (lines 1-4, Algorithm 1) reorders vectors
using a permutationΩ defined overV and components within
each vector using permutationΠ defined overD.

The matching phase (lines 6-14, Algorithm 1) finds can-
didate pairs and selects matching pairs from them. For a
given vectorx ∈ V , the FindCandidates procedure scans
the lists in the inverted index that correspond to the nonzero
dimensions inx to find candidate pairs. Simultaneously, it
accumulates a partial similarity score for each candidate pair.
Some of the candidate pairs can be safely discarded by

computing an upper bound on the similarity score in constant
time. Otherwise, the exact similarity score is computed for
the candidate pair.

The indexing phase adds a part of the given vector to
the inverted index so that it can be matched with any
of the remaining vectors (lines 15-21, Algorithm 1). The
All Pairs algorithm uses an upper bound on the possible
similarity scores with only a part of the current vector (line
17, Algorithm 1). Once this bound reaches the similarity
threshold, the remaining vector components are indexed.
Please, refer to Bayardoet al. [9] for more details.

Algorithm 1 : All Pairs Algorithm.
Input : V , t, d, global max weight, Ω, Π
Output : MPS (Matching Pairs Set)
MPS = ∅;1

Ii = ∅ , ∀ 1 ≤ i ≤ d;2

Ω sorts vectors in decreasing order bymax weight;3

Π sorts dimensions in decreasing order by density;4

foreach x ∈ V in the order defined byΩ do5

partScoreMap = ∅;6

FindCandidates(x, I, t,Π, partScoreMap) ;7

foreach y: partScoreMap{y} > 0 do8

if partScoreMap{y} + min(|y′|, |x|) ∗9

x.max weight ∗ y′.max weight ≥ t then
s = partScoreMap{y} + dot(x, y′);10

if s ≥ t then11

MPS = MPS ∪ (x, y, s)12

13

14

maxProduct = 0;15

foreach i: x[i] > 0, in the order defined byΠ do16

maxProduct = maxProduct + x[i] ∗17

min(global max weight[i], x.max weight);
if maxProduct ≥ t then18

Ii = Ii ∪ {x, x[i]};19

x[i] = 0;20

21

22

return MPS23

IV. IAPSS ALGORITHM OVERVIEW

TheIAPSS algorithm is based on the observation that the
proportion of the search space explored during the execution
of a singleAPSS invocation is inversely proportional to
the value of the similarity threshold. Ift < t′, then the
search space explored while executingAPSS for t′ is a
subset of the search space explored fort. Therefore, the
lowest previously used value of the similarity threshold is
required while solving theIAPSS problem. Depending on
the relative values of the current similarity threshold (tnew)
and the previous lowest similarity threshold value (told),
Figure 1 gives an overview of theIAPSS algorithm and
there are three possible cases for theIAPSS solution:

Procedure FindCandidates procedure
Input : x, I, t, Π, partScoreMap
Output : modifiedpartScoreMap, andI

remMaxScore =

d∑

i=1

x[i] ∗ global max weight[i];
1

minSize = t/x.max weight;2

foreach i: x[i] > 0, in the reverse order defined byΠ3

do
Iteratively remove(y, y[i]) from front of Ii while4

|y| < minSize;
foreach (y, y[i]) ∈ Ii do5

if partScoreMap{y} > 0 or6

remMaxScore ≥ t then
partScoreMap{y} =7

partScoreMap{y} + x[i] ∗ y[i];
8

remMaxScore = remMaxScore −9

global maximum weight[i] ∗ x[i];
10

Fig. 1: IAPSS Overview
figure

1) Booting: told = ∞, executing theIAPSS algorithm
for the first time on a given dataset.

2) Upscaling: told ≤ tnew, reading a subset of pairs that
are already present in the computation history.

3) Downscaling: told > tnew, potentially adding new
similarity pairs to the computation history.

V. BOOTING

Booting is a relatively simple case ofIAPSS that per-
formsAPSS while recording the computation history using
history binning.

A. History Binning

Our IAPSS algorithm takes a user defined parameter,
Pmax, that specifies the number of partitions for the similar-
ity interval of [0, 1]. The interval is divided into equal sized
non-overlappingPmax partitions. For example, ifPmax = 5,
then the similarity interval is divided into five partitions:
[0, 0.2); [0.2, 0.4); [0.4, 0.6); [0.6, 0.8); and [0.8, 1.0]. Given

a similarity values, the corresponding partition numberPs

can be calculated in constant time asPs = ⌊s ∗ Pmax⌋. For
the special case ofs = 1 the partition number isPmax − 1.
All experiments reported in this paper are performed with
Pmax = 20. The effect of varyingPmax is discussed in
Section IX-C.

The history binning technique classifies candidate pairs
into two types: approximate pairsand exact pairs. For
each partition, pairs of each type are stored in different
files, called approximate pairs filesand exact pairs files,
respectively. During the similarity score computation some
candidate pairs are discarded after computing an upper bound
on their similarity score because they do not satisfy the given
threshold value (line 9, Algorithm 1). Such pairs are stored
as approximate pairs in anapproximate pairs fileof the
partition corresponding to the value of the upper bound on
their similarity score. The exact similarity score is computed
for the rest of the candidate pairs (line 10, Algorithm 1).
These pairs are stored in anexact pairs fileof the partition
corresponding to their exact similarity score.

B. Booting Algorithm

Booting is the case of executing theIAPSS algorithm
for the first time on a given dataset. As there is no infor-
mation available from any previous invocation ofAPSS,
our IAPSS algorithm simply uses the fastest algorithm for
APSS while storing the computation history. The booting
algorithm is divided into two concurrent threads: the Can-
didate Pair Producer and the Candidate Pair Consumer. The
Candidate Pair Producer executes theAll Pairs algorithm
(please, refer to Algorithm 3), and the Candidate Pair Con-
sumer writes candidate pairs to persistent storage (please,
refer to Algorithm 4).

Algorithm 3 : Candidate Pair Producer Algorithm:
Replace lines 9-13 of Algorithm 1 with the following
pseudocode

upperBound = partScoreMap{y} + min(sum(y′) ∗1

x.max weight, sum(x) ∗ y′.max weight);
if upperBound ≥ t then2

s = partScoreMap{y} + dot(x, y′);3

Add (x, y, s, true) to candidatePairQueue;4

if s ≥ t then5

MPS = MPS ∪ (x, y, s)6

7

else8

Add (x, y, upperBound, false) to9

candidatePairQueue;
10

The producer and consumer share two data structures:
the doneF lag and candidatePairQueue. The doneF lag
is a binary variable that is initialized to false, and the
Candidate pair producer sets it totrue when all candidate
pairs are added to thecandidatePairQueue. Each entry in
the candidatePairQueue has four components: the ids of

 10

 100

 1000

 10000

 0.5 0.6 0.7 0.8 0.9 0.99

T
im

e
in

 S
ec

on
ds

Booting Similarity Threshold

Medline
Flickr

LiveJournal
Orkut

(a) Running Time ofIAPSS

 1

 2

 3

 4

 5

 6

 0.5 0.6 0.7 0.8 0.9 0.99

S
pe

ed
-u

p

Booting Similarity Threshold

Medline
Flickr

LiveJournal
Orkut

(b) Speed-up overAll Pairs

 100

 1000

 10000

 100000

 0.5 0.6 0.7 0.8 0.9 0.99

S
iz

e
in

 M
B

Booting Similarity Threshold

Medline
Flickr

LiveJournal
Orkut

(c) Size of Computation History

Fig. 2: Results for Booting
figure

 0

 0.5

 1

 1.5

 0.5 0.6 0.7 0.8 0.9 0.99

T
im

e
in

 S
ec

on
ds

Upscaling Similarity Threshold

Medline
Flickr

LiveJournal
Orkut

(a) Running Time ofIAPSS

 100

 1000

 10000

 100000

 1e+06

 0.5 0.6 0.7 0.8 0.9 0.99

S
pe

ed
-u

p

Upscaling Similarity Threshold

Medline
Flickr

LiveJournal
Orkut

(b) Speed-up overAll Pairs

 0

 25

 50

 75

 100

 125

 0.5 0.6 0.7 0.8 0.9 0.99

S
iz

e
in

 M
B

Upscaling Similarity Threshold

Medline
Flickr

LiveJournal
Orkut

(c) Size of Computation History Read

Fig. 3: Results for Upscaling
figure

Algorithm 4 : Candidate Pair Consumer Algorithm
for a thread that writes candidate pairs to persistent
storage

while doneF lag not true do1

Dequeue all candidate pairs from2

candidatePairsQueue in writePairsSet;
foreach Elementw in writePairsSet do3

Pw = ⌊w.score ∗ Pmax⌋;4

if w.isExact is true then5

Append entry(w.x, w.y, w.score) to file for6

exact pairs corresponding to partitionPw

else7

Append entry(w.x, w.y) to file for8

approximate pairs corresponding to partition
Pw

9

10

11

both vectors in the pair, the similarity score value, and a flag
indicating if it is the exact score or an upper bound.

The producer thread performs the similarity computation
and adds candidate pairs to the queue. The consumer thread
removes candidate pairs from the queue and writes them to
a file depending on the value of the similarity score. While
writing approximate pairs, the value of the upper bound is

discarded to reduce the size of data to be written. In later
invocations ofIAPSS, the value of the upper bound of an
approximate pair can be computed using its partition number.
However, it will be a loose upper bound.

TheIAPSS algorithm uses two tighter bounds on filtering
conditions derived by Awekar and Samatova [3]. While
searching for candidate pairs, the lower bound on the size ofa
candidate (line 2,FindCandidates Procedure) is squared by
theIAPSS algorithm. While evaluating candidate pairs, the
upper bound used by theIAPSS algorithm on the similarity
score is tighter (line 1, Algorithm 3) than the bound used by
All Pairs (line 9, Algorithm 1).

Figure 2a shows the running time of theIAPSS booting
algorithm for various similarity threshold values. Speed-up
with respect to theAll Pairs algorithm is shown in Figure
2b. This speed-up is due to tighter bounds on the filtering
conditions. Please, refer to Appendix for a description of
the experimental set-up and datasets.

VI. U PSCALING

Upscaling is another simple case ofIAPSS, which only
requires reading a part of the computation history and is
the case wheretold ≤ tnew. The set of matching pairs for
thresholdtnew will be a subset of the matching pairs fortold.
The matching pairs fortold are a subset of all the candidate
pairs for thresholdtold and have already been stored through
history binning while executingIAPSS for told. If a pair is a
matching pair, then its similarity score is computed exactly

(lines 3-7, Algorithm 3). Therefore, all matching pairs for
thresholdtold have already been stored in exact pairs files.
No separate search is required to find the matching pairs for
thresholdtnew.

Our algorithm only reads the computation history and
outputs the matching pairs. It does not need to read the entire
computation history because the history binning technique
groups the pairs based on their similarity values. For current
invocation of IAPSS, our algorithm first computes the
partition numberPnew corresponding to thresholdtnew, and
then reads the exact pairs files corresponding to all partitions
P , Pnew ≤ P < Pmax. The pairs satisfying the threshold
tnew are then added to the output.

During our experiments, the firstIAPSS (booting) ex-
periment used a threshold value of0.5 and then performed
upscaling with various similarity thresholds. For all datasets,
upscaling was completed in less than two seconds (please,
refer to Figure 3a); this is expected because the algorithm
only reads and outputs matching pairs. It results in large
speed-ups in the range102X to 106X (please, refer to Figure
3b). The speed-up for the upscaling case is not dependent
on the valuetold because the number of pairs read by the
upscaling algorithm depends only on the value oftnew .

Grouping pairs by similarity score enables our algorithm
to only read the required portions of the history. Figure 3c
shows the effectiveness of grouping pairs using the history
binning technique. Upscaling algorithms read at most five
percent of the total history written during the booting case.

VII. D OWNSCALING

Downscaling is the case oftold > tnew. This is the
trickiest case to handle because the search space explored
for thresholdtold is a subset of the search space that needs
to be explored for thresholdtnew , and the challenge is
to identify this overlap efficiently, which is achieved using
history binning and index splitting.

A. Division of Search Space

The search space, that is, the set of candidate pairsC for
the given similarity thresholdtnew can be partitioned into
two parts:

• Cold = The search space explored after runningIAPSS
for thresholdtold, that is, the set of all candidate pairs
present in the computation history; and

• Cnew = C − Cold

Cold can be further partitioned into:

• Clow = Exact and approximate pairs having similarity
score less thantnew ;

• Cmatch = Exact pairs having similarity scores greater
than or equal totnew ; and

• Capprox = Approximate pairs having similarity score
upper bounds greater than or equal totnew.

Pairs in Clow can be ignored, as they will not satisfy
thresholdtnew . Pairs in Cmatch can be directly added to
the output without re-computing the similarity score. These
pairs have already been written in the exact pairs files. The

Algorithm 5 : Downscaling Algorithm.
Input : V , t, d, global max weight, Ω, Π, Pmax

Output : MPS (Matching Pairs Set)
MPS = ∅;1

Iold
i = ∅ , ∀ 1 ≤ i ≤ d;2

Inew
i = ∅ , ∀ 1 ≤ i ≤ d;3

Ω sorts vectors in decreasing order bymax weight;4

Π sorts dimensions in decreasing order by density;5

foreach Partition P : Pnew ≤ P < Pmax do6

foreach Exact Pair (x, y) in partition P do7

if s ≥ tnew then8

MPS = MPS ∪ (x, y, s);9

10

11

foreach x ∈ V in the order defined byΩ do12

Initialize approxList andknownList to empty13

sets;
foreach Partition P : Pnew ≤ P < Pmax do14

Add eachy to ApproxList, such that(x, y) is15

an approximate pair inP ;
Delete(x, y) from computation history;16

FindKnownCandidates() ;17

FindNewCandidates(x, I, t,) ;18

foreach y: partScoreMap{y} > 0 do19

upperBound =20

partScoreMap{y} + min(sum(y′) ∗
x.max weight, sum(x) ∗ y′.max weight);
if upperBound ≥ t then21

s = partScoreMap{y} + dot(x, y′);22

Add (x, y, s, true) to23

candidatePairQueue;
if s ≥ t then24

MPS = MPS ∪ (x, y, s)25

26

else27

Add (x, y, upperBound, false) to28

candidatePairQueue;
29

SplitIndexVector() ;30

told = tnew;31

store updated value oftold to persistent storage;32

return MPS33

similarity score must be recomputed for pairs inCapprox. The
search space explored in the current execution ofIAPSS
is limited to Cunknown = Cnew ∪ Capprox and will
result in pruning similarity score computations for pairs in
Cknown = C − Cunknown = Clow ∪ Cmatch.

B. Index Splitting

The size of the inverted index is inversely proportional
to the value of the similarity threshold (lines 16-21, Algo-
rithm 1). The inverted indexIold is built for threshold value
told and will be a subset of the inverted indexI built for
threshold valuetnew. Our index splitting technique splits the

Procedure SplitIndexV ector procedure

Input : x, Iold, Inew, told, tnew, Π
Output :
maxProduct = 0;1

foreach i: x[i] > 0, in the order defined byΠ do2

maxProduct = maxProduct + x[i] ∗3

min(global max weight[i], x.max weight);
if maxProduct ≥ told then4

Iold
i = Iold

i ∪ {x, x[i]};5

x[i] = 0;6

else7

if maxProduct ≥ tnew then8

Inew
i = Inew

i ∪ {x, x[i]};9

x[i] = 0;10

11

12

13

inverted indexI into the following two partitions:Iold and
Inew, whereInew = I − Iold. Please refer to procedure
SplitIndexV ector for details. Index splitting is used by
the downscaling algorithm to partition the search space into
Cknown andCunknown.

C. Downscaling Algorithm

The downscaling algorithm explores theCunknown search
space and stores each evaluated pair in the computation
history. The pairs inCmatch and Capprox are read from
computation history.Cknown is found by traversingIold and
is used to prune redundant computations while finding and
evaluatingCnew . All pairs in Cunknown are evaluated using
the inverted index and added to the computation history.
Old entries for the pairs inCapprox are removed from the
computation history because their updated similarity scores
will be stored during the current invocation ofIAPSS.

1) ReadingCmatch: All pairs in Cmatch are already
present in the computation history. They are read from the
exact pairs files corresponding to each partitionP , such that
Pnew ≤ P < Pmax (lines 6-11, Algorithm 5). This step is
similar to the upscaling case.

2) Reading and EvaluatingCapprox: Similar to the pairs
in Cmatch, pairs in Capprox can be read all at once from
the approximate pairs files and evaluated directly. How-
ever, computing similarity scores directly for all these pairs
will not be efficient, because computing the dot product
requires serially traversing both vectors. Instead, we read
the pairs inCapprox during the matching phase (lines 15-
16, Algorithm 5). For a given vectorx, the list of pairs
in Capprox is stored inapproxList. The partial similarity
score for these pairs is calculated using the inverted index
when findingCknown andCnew (please, refer to procedures
FindKnownCandidates andFindNewCandidates). The
similarity score computation using the inverted index is more
efficient than serially traversing the vectors. In addition, the

Procedure FindKnownCandidates procedure

Input : x, Iold, told, Π, partScoreMap, knownList,
approxList

Output : modifiedpartScoreMap, andknownList
partScoreMap = ∅;1

remMaxScore =

d∑

i=1

x[i] ∗ global max weight[i];
2

minSizeold = (told/x.max weight)2;3

foreach i: x[i] > 0, in the reverse order defined byΠ4

do
Iteratively ignore(y, y[i]) from front of Iold

i while5

|y| < minSizeold;
foreach (y, y[i]) ∈ Iold

i do6

if y ∈ approxList then7

partScoreMap{y} =8

partScoreMap{y} + x[i] ∗ y[i];
else9

Add y to knownList;10

11

remMaxScore = remMaxScore −12

global maximum weight[i] ∗ x[i];
if remMaxScore < told then13

return14

15

16

evaluation forCapprox now piggybacks searching ofCknown

andCnew .
3) Finding Cknown: Finding all the pairs inCknown can

be accomplished by reading the entire computation history.
However, findingCknown from the inverted index is more
efficient because it is an in-memory data structure. For
a given vectorx, the FindKnownCandidates procedure
finds pairs in Cknown. It traverses the inverted index in
the same manner as theFindCandidates procedure in
Algorithm 1. However, the similarity score is computed only
for pairs in theapproxList. The list of pairs inCknown is
stored in theknownList.

4) Finding Cnew: For a given vector x, the
FindNewCandidates procedure finds candidate
vectors in Cnew . The procedure is similar to the
FindCandidates procedure in Algorithm 1. However,
it does not search the part of the index that was traversed
by FindKnownCandidates. If any candidate vectory
is present in that part of the index, then by definition
(x, y) ∈ Cold. Therefore, any pair inCnew cannot be
present in that part of the index. Simultaneously, the partial
similarity score is accumulated inpartScoreMap for all
pairs inCunknown.

5) Evaluating and StoringCunknown: The partial simi-
larity score of all the candidate pairs inCunknown is stored
in partScoreMap. These candidate pairs are evaluated and
stored exactly like the booting case (lines 19-29, Algo-
rithm 5).

 25

 75

 125

 175

 0.5 0.6 0.7 0.8 0.9

T
im

e
in

 S
ec

on
ds

Downscaling Similarity Threshold

Medline

IAPSS All_Pairs

(a)

 25

 225

 425

 625

 0.5 0.6 0.7 0.8 0.9

T
im

e
in

 S
ec

on
ds

Downscaling Similarity Threshold

Flickr

IAPSS All_Pairs

(b)

 125

 325

 525

 725

 0.5 0.6 0.7 0.8 0.9

T
im

e
in

 S
ec

on
ds

Downscaling Similarity Threshold

LiveJournal

IAPSS All_Pairs

(c)

 400

 2000

 4000

 6000

 8000

 0.5 0.6 0.7 0.8 0.9

T
im

e
in

 S
ec

on
ds

Downscaling Similarity Threshold

Orkut

IAPSS All_Pairs

(d)

Fig. 5: Comparison of Running Time for Downscaling withAll Pairs
figure

Fig. 4: Overview of Parallelization
figure

VIII. PARALLELIZATION

Additional performance gains may be attained by inter-
leaving I/O and computation, and by concurrently executing
various subtasks, such as findingCnew, Cknown, and eval-
uating Cunknown. Out of the three cases for theIAPSS
problem, the solution for the upscaling case only consists of
reading matching pairs from the exact pairs files, and does
not require parallelization. The solution for the booting case
uses parallelization to multiplex I/O with the computation.
The same is true in the solution presented in Algorithm 5.
However, various smaller subtasks presented in Section VII-
C present opportunities for parallelizing the downscaling
computation. These subtasks can run in parallel, while data
flows through these subtasks.

Figure 4 shows the parallelization outline. It works as a
pipeline of producers and consumers. Each task works as
a producer for its successor, and works as a consumer for
its predecessor. For example, the taskT4 finds the set of
pairs inCnew for a given vectorx, and adds it to the queue
shared with task taskT5. The vectorx and the corresponding
pairs inCnew are then removed from the queue by the task
T5. In our implementations, each task runs as a thread and
synchronizes with its neighbors using shared-memory data
structures. Data flows from top to bottom in this pipeline.
Synchronization between the last two tasks,T5 and T6,

was presented in Algorithms 3 and 4. For other producer-
consumer pairs, synchronization scheme is similar.

Figure 5 shows running time comparisons for theIAPSS
downscaling case and theAll Pairs algorithm. We started
with a booting similarity threshold of0.99. Then we reduced
the similarity threshold to0.5 in 0.1 decrement steps. The
end-to-end running time is the most important measure for
comparing theIAPSS solution to theAll Pairs algorithm.
The results for other comparison factors are available on the
Web [1], such as the size of the search space and the amount
of I/O performed.

IX. END-TO-END IAPSS PERFORMANCE

In this section, we present results for experiments that are
relevant across all three cases of theIAPSS algorithm using
three metrics: (1) query responsiveness, (2) speed-up, and(3)
sensitivity. We chose the following set of similarity threshold
values for the experiments:

T = {0.99, 0.9, 0.8, 0.7, 0.6.0.5}.

A. Query Responsiveness to Similarity Value Changes in
IAPSS

An algorithm has high query responsiveness if it immedi-
ately generates the majority of its output and then computes
the remaining portion of the output. Other algorithms that
use theIAPSS output can benefit from the algorithm’s
query responsiveness. These algorithms do not need to wait
until all matching pairs are found. Instead, they can start
using the matching pairs as they are identified. This is
particularly useful while processing large datasets, where the
total running time for finding all matching pairs may take
hours.

The query responsiveness of theIAPSS solution for
the booting case, is similar to theAll Pairs algorithm.
The IAPSS solution directly outputs all matching pairs by
reading them from the computation history for the upscal-
ing case. For the downscaling case, theIAPSS algorithm
immediately outputs pairs inCmatch and then finds pairs
in Cunknown. All pairs having similarity scores greater than
or equal totold are present inCmatch, i.e., pairs with high
similarity value are immediately identified by theIAPSS
solution. Figure 6 shows the ratio of the number of pairs
in Cmatch to the total number of matching pairs for various

Procedure FindNewCandidates procedure

Input : x, Iold, told, Π, partScoreMap, knownList,
approxList

Output : modifiedpartScoreMap

remMaxScore =

d∑

i=1

x[i] ∗ global max weight[i];
1

minSizeold = (told/x.max weight)2;2

minSizenew = (tnew/x.max weight)2;3

foreach i: x[i] > 0, in the reverse order defined byΠ4

do
Iteratively remove(y, y[i]) from front of Inew

i , and5

Iold
i while |y| < minSizenew;

if remMaxScore ≥ told then6

foreach (y, y[i]) ∈ Iold
i while |y| < minSizeold7

/ * remaining part in the list
was traversed by
FindKnownCandidates procedure

* /
do8

if y /∈ knownList then9

partScoreMap{y} =10

partScoreMap{y} + x[i] ∗ y[i];
11

foreach (y, y[i]) ∈ Inew
i do12

if y /∈ knownList then13

partScoreMap{y} =14

partScoreMap{y} + x[i] ∗ y[i];
15

16

else17

foreach (y, y[i]) ∈ Inew
i ∪ Iold

i do18

if y /∈ knownList then19

if partScoreMap{y} > 0 or20

remMaxScore ≥ tnew then
partScoreMap{y} =21

partScoreMap{y} + x[i] ∗ y[i];
22

23

24

remMaxScore = remMaxScore −25

global maximum weight[i] ∗ x[i];
26

downscaling similarity threshold values. This ratio represents
the part of the output immediately generated by the down-
scaling algorithm.

B. Extreme Cases Speed-up

The speed-up achieved by theIAPSS algorithm depends
on how the similarity threshold is varied. If theIAPSS
algorithm is executedn times over a given dataset, then the
following are the best and worst cases for the end-to-end
running time.

Best Case: Execute booting followed by (n−1) upscaling
cases.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9C
m

at
ch

/T
ot

al
 M

at
ch

in
g

P
ai

rs

Downscaling Similarity Threshold

Medline
Flickr

LiveJournal
Orkut

Fig. 6: Fraction of Matching Pairs Immediately Found by
Downscaling Algorithm
figure

Worst Case: Execute booting followed by (n − 1) down-
scaling cases.

 1
 5

 10

 15

 20

 25

 30

 35

S
pp

ed
-u

p

Medline Flickr Live
Journal

Orkut

Best Case Worst Case

Fig. 7: Best and Worst Case Speed-up for Similarity Values
in SetT
figure

The best case is obtained by sorting the threshold values
in the threshold setT in increasing order and then executing
IAPSS. The worst case is obtained by sorting the threshold
values in decreasing order and then executingIAPSS.
Figure 7 shows the best and worst case speed-ups achieved by
the IAPSS solution compared to theAll Pairs algorithm.
The speed-up is computed by comparing the total running
time over all similarity threshold values in the setT . If
the value of|T | is increased, i.e., ifIAPSS is executed
more often on the same dataset, then the resultant speed-up
will increase because theIAPSS algorithm will prune more
redundant computations from later invocations.

The external algorithm that invokes theIAPSS algorithm
can implement various strategies to achieve the best case
speed-up. A particular lowest similarity threshold can be
predicted for some applications based on historical data and
empirical knowledge. Alternatively, the external algorithm
can also buffer theIAPSS request for some time instead
of executing it immediately. Depending on the nature of the
application, it can wait for a certain time to check if any other
IAPSS requests have been received with lower similarity
threshold values.

C. Sensitivity to VaryingPmax

ThePmax parameter is used to divide the similarity range
into equal sized partitions. For a given value oftnew, the

IAPSS algorithm has to read the computation history for all
partitionsP : Pnew ≤ P < Pmax. Some pairs in the partition
Pnew will not satisfy the similarity threshold, but must be
read anyway. This overhead is attenuated if the partition floor
equalstnew, i.e.,Pnew = tnew∗Pmax. However, we observed
that this overhead is not significant. During our experiments,
we varied thePmax parameter from 3 to 25. The variation
in total running time for the best case and the worst case for
values inT was less than ten percent.

X. CONCLUSIONS ANDFUTURE WORK

The Incremental All Pairs Similarity Search (IAPSS)
problem is introduced and a solution is proposed. The major
features of the solution are the following:

• Redundant computations in response to varying simi-
larity thresholds across multiple invocations ofAPSS
on the same dataset are systematically identified and
effectively pruned using the proposed history binning
and index splitting techniques.

• Additional performance gains are attained by paralleliz-
ing ourIAPSS algorithm to take advantage of modern
multi-core processors.

• Query responsiveness is improved for ourIAPSS
solution, compared to theAll Pairs APSS algorithm,
because it almost instantaneously output pairs with high
similarity values.

The compounded effect of these approaches resulted in
speed-ups of2X to over105X on four large-scale real-world
datasets.

Our current parallel solution forIAPSS is limited to
a shared-memory multi-core system. Scaling theIAPSS
solution using both shared and distributed memory systems
is an interesting direction for future work and may enable
even larger datasets to be processed in the future.

APPENDIX

We empirically evaluate the effectiveness of our techniques
by performing experiments on four real-world datasets for
both the cosine similarity and the Tanimoto coefficient.
Results for both similarity measures are quite similar. In this
paper, we only present results for the cosine similarity for
the sake of brevity. More details about the results for the
Tanimoto coefficient can be downloaded from the Web [1].

All our implementations are in C++ and we used the
standard template library for most of the data structures. We
used thedense hash map class 5 from GoogleTM for the
hash based partial score accumulation. We used the GNU
gcc 4.1.2 compiler and the−O3 option for optimization. We
used thepthreads library for multithreading to implement
parallelization. All experiments were performed on a 2.6
GHz IntelTM XeonTM class machine with eight CPU cores
and 16 GB of main memory. The code and datasets are
available for download on the Web [1].

5code.google.com/p/google-sparsehash/

TABLE II: Data Sets Used
table

Data Set n = d Total Non-zero Average
Components Size

Medline 1565145 18722422 11.96
Flickr 1441433 22613976 15.68

LiveJournal 4598703 77402652 16.83
Orkut 2997376 223534153 74.57

A. Datasets

One of the datasets comes from the scientific literature
collaboration information in Medline indexed papers, while
the rest come from popular online social networks: Flickr,
LiveJournal and Orkut. These datasets represent a variety of
large-scale web-based applications like digital libraries and
online social networks that we are primarily interested in.

The distribution of the vector sizes in these datasets is the
power law distribution [7], [3], [4]. These datasets are high
dimensional and sparse (please, refer to Table II). The ratio of
the average vector size to the total number of dimensions is
less than10−4. All these characteristics are common across
datasets generated and used by many large-scale web based
applications [13], [4]. These applications have to solve the
IAPSS problem for high-dimensional datasets with millions
of records, which are often sparse. Therefore, we expect our
history binning and index splitting techniques to be relevant
to other similar datasets as well.

1) Medline: This dataset was selected to investigate possi-
ble applications for large web-based scientific digital libraries
like PubMed, the ACM Digital Library, and CiteSeer. We use
the dataset prepared by the Auton Lab of Carnegie Mellon
University. We are interested in finding pairs of authors with
similar collaboration patterns. Each vector represents the col-
laboration pattern of an author over the space of all authors.
Two authors are considered collaborators if they write at least
two papers together. Similar strategies were used in previous
work [4] to eliminate accidental collaborations. We use the
weighting scheme of Newman [8] to derive the collaboration
weight between any two authors. Ifk authors have co-
authored a paper, then it adds1/(k− 1) to the collaboration
weight of each possible pair of authors of that paper. All
vectors are then normalized to unit-length.

2) Flickr, LiveJournal and Orkut:These three datasets
were selected to explore potential applications for large
online social networks. We are interested in finding user
pairs with similar social networking patterns. Such pairs
are used to generate more effective recommendations based
on collaborative filtering [10]. We use the dataset prepared
by Mislove et al. [7]. Every user in the social network is
represented by a vector over the space of all users. A user’s
vector has a non-zero projection along those dimensions that
correspond to other users in his/her friend list. However, the
weights of these social network links are unknown. There-
fore, we applied the weight distribution from the Medline
dataset. To ensure that our results are not specific only to the
selected weight distribution, we also conducted experiments
by generating the weights randomly. The results were similar

and are available on the Web [1].

ACKNOWLEDGMENT

This work is performed as part of the Scientific Data
Management Center (http://sdmcenter.lbl.gov) under the De-
partment of Energy’s Scientific Discovery through Advanced
Computing program (http://www.scidac.org). Oak Ridge Na-
tional Laboratory is managed by UT-Battelle for the LLC
U.S. D.O.E. under contract no. DEAC05-00OR22725.

REFERENCES

[1] Code and data sets for our algorithms :www4.ncsu.edu/

˜ acawekar/snakdd/ .
[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins.

In VLDB ’06.
[3] A. Awekar and N. F. Samatova. Fast matching for all pairs similarity

search. Technical Report TR-2009-14, CSC Department, NC State
University, May 2009.

[4] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity
search. InWWW ’07.

[5] G. R. Hjaltason and H. Samet. Incremental distance join algorithms for
spatial databases. InSIGMOD ’98.

[6] R. Jarvis and E. Patrick. Clustering using a similarity measure based
on shared near neighbors.Computers, IEEE Transactions on, C-22(11),
Nov. 1973.

[7] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee. Measurement and analysis of online social networks. In IMC
’07.

[8] M. E. J. Newman. Scientific collaboration networks. ii. shortest paths,
weighted networks, and centrality.Physical Review, 64(016132), 2001.

[9] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates.
In SIGMOD ’04.

[10] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating similarity
measures: a large-scale study in the orkut social network. In KDD ’05.

[11] H. Turtle and J. Flood. Query evaluation: strategies and optimizations.
Inf. Process. Manage., 31(6):831–850, 1995.

[12] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins.
In ICDE ’09.

[13] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for
near duplicate detection. InWWW ’08.

[14] D. Zhou, S. Zhu, K. Yu, X. Song, B. L. Tseng, H. Zha, and C. L.
Giles. Learning multiple graphs for document recommendations. In
WWW ’08.

