
Predicting Attack-prone Components with Internal Metrics 
Michael Gegick1, Laurie Williams1, Jason Osborne2

1Department of Computer Science, 2Department of Statistics 
North Carolina State University, Raleigh, NC 27695  

{mcgegick, lawilli3}@ncsu.edu, jaosborn@stat.ncsu.edu  

ABSTRACT 
Extensive research has shown that reliability models based upon 
software metrics can be used to predict which components are 
fault- and/or failure-prone early in the development process.  In 
this research, we seek to parallel failure-prone component 
prediction with security models to predict which components 
are attack-prone.  Security experts can use these models to make 
informed risk management decisions and to prioritize redesign, 
inspection, and testing efforts.  We collected and analyzed data 
from a large commercial telecommunications software system 
containing over one million lines of code that had been 
deployed to the field for two years.  Using recursive partitioning 
and logistic regression, we built attack-prone prediction models 
with the following metrics: static analysis tool output, code 
churn, source lines of code, failure reports from feature/system 
testing, and customer-reported failures.  The models were 
validated against k-fold cross-validation and ROC curves.  One 
model identified 100% of the attack-prone components with an 
8% false positive rate. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification 
– statistical methods. D.2.8 [Software Engineering]: Metrics – 
Product metrics.  

General Terms 
Security, Measurement. 

Keywords 
Vulnerability-prone, attack-prone, security, predict, prioritize, 
recursive partitioning, logistic regression. 

1. INTRODUCTION 
Limited resources preclude software engineers from finding and 
fixing all problems in their software system.  Some faults are 
subtle and can be overlooked while others may cause failures in 
a state that occurs outside of a testing environment [31].  The 
costs to find and fix software problems grows with time [7] and 
extending verification and validation (V&V) efforts late into the 
software life cycle (SLC) to find these elusive faults can be 
costly.  Predictive modeling that points software engineers 
toward problem areas early in the SLC has been one approach 
for increasing the effectiveness of V&V efforts. 
Extensive research (including [2, 4, 29, 31, 36]) has shown that 
software metrics can be used to identify fault- and failure-prone 
components1 and to predict the overall reliability of a system 
early in the SLC.  These models indicate where in the software 

                                                                                                                                 
1 A component is constituent part, element, or piece of a 

complex whole [25]. 

reliability problems most likely exist so that software engineers 
have an objective strategy of where V&V efforts should begin.  
Similarly, our research objective is to create and evaluate 
security prediction models that use internal metrics to predict 
which components are attack-prone.    
In addition to quality assurance personnel who focus on overall 
product reliability, organizations often have security specialists.  
In this research, we seek to aid these security experts in their 
prioritization of security-based redesign, inspection, and testing 
efforts.  Unlike the general reliability models, our security 
models will have to predict which components contain the 
subset of all faults that can be exploited to cause a security 
problem.  These models will have to make accurate predictions 
based on few data since security faults may only account for as 
few as 0.12% of all faults in a software system [1].  While 
security vulnerabilities are fewer in count than general 
reliability problems, the exploitation of the vulnerabilities can 
severely impact businesses and end users.    
We conducted a case study on a large commercial2 
telecommunications software system comprised of over 1.2 
million source lines of code (SLOC) to create and evaluate 
predictive models that identify attack-prone components.  The 
candidate internal metrics to our predictive models are output 
from the static analysis tool FlexeLint3, code churn, and SLOC.  
These metrics are obtainable early in the SLC.  We hypothesize 
that these metrics can be used to identify attack-prone 
components.  We based our hypothesis on previous research 
results that demonstrate the predictive power of these metrics   
in the general reliability realm.  Previous research [32, 42] has 
indicated that the output from static analysis tools can predict 
fault- and failure-prone components.  Additionally, SLOC-
normalized code churn has been used to point to problem areas 
in software [14, 33].  SLOC, although having disputed effects 
on fault density [10, 16], is a metric that is often available with a 
software system.  Our models with static analysis tool output 
use different combinations of metrics and statistical techniques 
that were not used by either Nagappan et al. [32] or Zheng et al. 
[42].   We further describe the differences between general 
reliability models and our security models in Section 7. 
The external metrics in our study included pre-release system 
testing failures and post-release failures reported by customers.  
We performed correlations, recursive partitioning, and logistic 
regression analyses in our models.  The internal metrics we use 
can be obtained during development and may have predictive 
power on the external metrics, which were identified during 
late-cycle system testing.  We will show security-based 
predictive models with each of the internal metrics alone and 
then all together in the same model.   

 
2 The corporation chose not to be identified in this paper. 
3 http://www.gimpel.com 



The remainder of the paper is organized as follows: Section 2 
provides background information, Section 3 provides an 
overview of prior research on predicting problem areas, Section 
4 details our industrial case study, Section 5 presents the threats 
to validity, Section 6 reports correlations with our results, 
Section 7 presents results from pre-release failure predictive 
modeling, Section 8 presents results from post-release failure 
predictive models, Section 9 provides a discussion of our 
results, and finally we summarize in Section 10. 

2. BACKGROUND  
This section presents background material on the definitions and 
techniques related to our work.  We align our definitions of 
vulnerability- and attack-prone with the well-established 
definitions of fault- and failure-prone components and ISO/IEC 
24765 [25]  definitions  of faults and failures.   

2.1 Definitions 
Internal metrics - “Those metrics that measure internal 
attributes of the software related to design and code. These 
“early” measures are used as indicators to predict what can be 
expected once the system is in test and operation” [24].  

External metrics - “Those metrics that represent the external 
perspective of software quality when the software is in 
use…These measures apply in both the testing and operation 
phases” [24]. 

Reliability - “The ability of a system or component to perform 
its required functions under stated conditions for a specified 
period of time” [25]. 

Security - “The protection of system items from accidental or 
malicious access, use, modification, destruction, or disclosure” 
[25].

2.1.1 Latent Fault Definitions 
Fault - reliability concept:  “An incorrect step, process, or data 
definition in a computer program. Note: A fault, if encountered, 
may cause a failure” [25]. 

Fault-prone component - reliability concept:  “A component 
that will likely contain faults” [12].   

Vulnerability - security concept:  An instance of a [fault] in the 
specification, development, or configuration of software such 
that its execution can violate an [implicit or explicit] security 
policy [27]. 

Vulnerability-prone component - security concept: A 
component that is likely to contain one or more vulnerabilities 
that may or may not be exploitable [18].   

2.1.2 Realized Fault Definitions 
Failure - reliability concept:  “The inability of a software 
system or component to perform its required functions within 
specified performance requirements”  [25]. 

Failure-prone component - reliability concept:  A component 
that will likely fail due to the execution of faults [40].  

Attack - security concept:  The inability of a system or 
component to perform functions without violating an implicit or 
explicit security policy.  We borrow from the ISO/IEC 24765 
[25] definition of failure to define attack, but remove the word 

“required” because attacks can result from functionality that was 
not stated in the specification. 

Attack-prone component - security concept:  A component 
that will likely be exploited [18]. 
Fault-prone prediction models can estimate which components 
are fault-prone, but if the faulty code is never executed it will 
not be prone to failure.  The inspection of all fault-prone 
components may cause the development team to expend 
valuable and limited verification resources on low risk areas of 
the code that may be of high quality and/or may rarely or never 
be used by a customer.  Failure-prone prediction models, based 
on a customer’s operational profile, and historical failures from 
the field, can further guide fault-finding efforts toward low 
quality components that are likely to cause problems for the end 
user. 
A vulnerability-prone component is analogous to a fault-prone 
component in that vulnerabilities may remain latent (similar to 
faults) until encountered by an attacker (or tester/customer) in 
an executing system.  The vulnerabilities in a vulnerability-
prone component can include a wide range of severity and 
likelihood of exploitation.   
A similar relationship between vulnerability-prone and attack-
prone components exists as with fault- and failure-prone 
components.  An attack-prone component is a vulnerability-
prone component if an attacker will likely exploit one or more 
vulnerabilities in that component.  Vulnerability-finding 
techniques can cause security experts to expend valuable and 
limited security resources on low risk areas of the code that may 
be adequately fortified, may be uninteresting to an attacker, or 
contain difficult-to-exploit vulnerabilities.  Attack-prone 
prediction models based on test failure data and attacks in the 
field can make vulnerability-finding efforts more efficient and 
effective by identifying those components with the highest 
security risk.  While failures in the reliability realm are 
dependent on the operational profile, attacks can occur 
anywhere in a software system regardless of the operational 
profile.     

2.2 Automated Static Analysis (ASA) 
We used static analysis tool output as one of our internal 
metrics.  A static analysis tool analyzes the content of a software 
system to detect faults without executing the code [8].  We use 
the term automated static analysis (ASA) to refer to the use of 
static analysis tools. Examples of the types of problems 
identified by ASA tools include the detection of calls to 
potentially insecure library functions, bounds-checking errors 
and scalar type confusion.  ASA tools perform analyses such as 
semantic, structural, configuration, control- and data-flow 
analyses.  The output of an ASA tool is an alert.  An alert is a 
notification to a software engineer, of a potential fault in the 
source code that has been identified via static analysis [20]. 
Static analysis tools provide an early, automated, objective, and 
repeatable analysis for detecting faults.  The software 
organization we worked with uses the ASA tool, FlexeLint.  
Increasingly, ASA tools are used to identify security 
vulnerabilities [9].     
ASA tools have a high false positive rate.  There can be as many 
50 false positives for each true positive [38].  The organization 
we worked with outsources the manual task of auditing the raw 



FlexeLint output to separate out the true positive from false 
positive alerts.  The outsourced organization returns a report 
listing the alerts they classified as true positives along with their 
severity levels.   In this paper, we refer to “audited” alerts as 
those that have undergone this outsourced review while “un-
audited” alerts are those that are output by the tool. 

2.3 Recursive Partitioning  
Our predictive models are comprised of a statistical technique 
and the following input variables: ASA alerts, code churn, and 
SLOC.  Recursive partitioning, also known as classification and 
regression trees (CART), is a statistical technique that 
recursively partitions data according to X and Y values.  The 
result of the partitioning is a tree of groups where the X values 
of each group best predicts a Y value.  The leaves of the tree are 
determined by the largest likelihood-ratio chi-square statistic.  
The threshold or split between leaves is chosen by maximizing 
the difference in the responses between the two leaves [39].  For 
our study, the X values are values from the internal metrics and 
the Y value is a binary value describing a component as attack-
prone or non attack-prone.     

2.4 The Common Weakness Enumeration 
We use Common Weakness Enumeration (CWE) names to 
identify the vulnerabilities so our analysis can be repeated on 
other systems with the same vulnerability naming scheme.  The 
CWE [30] is a publicly-available aggregation of security-based 
vulnerability taxonomies/sources.  Examples of the taxonomies 
it includes are including Seven Pernicious Kingdoms [41], the 
Preliminary List of Vulnerability Examples for Researchers 
(PLOVER)4, ten from Open Web Application Security Project 
(OWASP)5, and the Web Security Threat Classification6. The 
CWE describes software vulnerabilities in a consistently named 
fashion.  For this paper, we use the term “vulnerability” instead 
of the CWE term “weakness.”    Each classification of 
vulnerability contains the classification name and classification 
ID.  For example, with Null Pointer Dereference (476), Null 
Pointer Dereference is the classification name and (476) is the 
unique ID given to the classification.  The appropriate method 
of citing a CWE vulnerability is to include both the name and 
ID.   

3. RELATED WORK 
We now present prior research that has shown how internal 
metrics can predict fault-, failure-, and vulnerability- prone 
components. 

3.1 ASA Alerts as Static Metrics for Fault- 
and Failure-Prone Prediction 
Discriminant analyses have been used in many instances to 
distinguish fault-prone and not fault-prone components [21, 22, 
26, 32, 42].  Recently, modules have been classified as being 
fault-prone and not fault-prone using ASA alerts as input 
variables for discriminant analysis [32].  Nagappan et al. [32] 
demonstrated that they could distinguish 82.91% of their 

                                                                 

                                                                

4 http://cve.mitre.org/docs/plover 
5 http://www.owasp.org/index.php/Main_Page 
6http://www.webappsec.org/projects/threat/v1/WASC-TC-

v1_0.pdf 

components.  Due to the proprietary nature of their work, Type I 
and Type II misclassifications are not reported.  The 
classification results indicate that a strong enough difference can 
be made between faulty and non faulty components to 
confidently prioritize the allocation of testing resources and 
inspections.  Zheng et al. [42] correctly classified 87.5% of the 
modules in their study when the number of ASA faults and 
number of test failures are considered.  Our research will further 
these findings to determine if ASA can be used to classify 
attack-prone components based on recursive partitioning and 
logistic regression. 

3.2 Prediction with Code Churn 
In our setting, churn is the count of SLOC that has been added 
or changed a component since the previous revision of the 
software.  Nagappan et al. [33] experimented with churn to 
determine if there was a positive association between churn and 
defect density.  In an analysis with Windows Server 2003, they 
discovered that there is a correlation and that churn can 
discriminate between fault-prone and non fault-prone binaries 
with an accuracy of 89%.  They also show that relative churn – 
churn normalized against lines of code, file count, and file churn 
– is a better predictor than the raw value of churn.  Elbaum et al. 
[14] reported that code churn was a more effective indicator of 
faults than other measures such as the number of people 
working on the code and the number of change requests to that 
code. 

3.3 Prediction with SLOC 
Fenton et al. [16] analyzed a large software system and 
compared their analysis on SLOC, fault count, and fault density 
to that of Basili et al. [5] who performed an analysis on another 
system.  Basili et al. [5] found that fault density decreased as 
module size increased.  However, Fenton et al. [16] could not 
find any association between fault count and SLOC nor could 
they with fault density and SLOC.  Fenton suggests that other 
factors such as design, inspection, and testing effort per module 
factor on how many faults are found in a component.  Our 
analysis will include SLOC to give support (or opposition) to 
these claims based on a different software system. 

3.4 Vulnerability-prone Component 
Predictions 
Our work in this paper follows a case study we performed on 
Sendmail7 [17].  We found a high positive association between 
un-audited ASA alerts from Fortify Software Source Code 
Analyzer (SCA) 4.0, and vulnerabilities documented in 
Sendmail.  The association indicates that vulnerability-prone 
components in Sendmail were also likely to have high alert 
counts.  Specifically, we modeled Sendmail vulnerability counts 
using Poisson regression in which the counts follow a Poisson 
distribution with a mean that is linear in alert count, after 
applying a log transformation.  Fitting this generalized linear 
model led to an estimated slope of 247.8 alerts/reported 
vulnerability (SE=61, p<.0001), which indicates that the mean 
change in vulnerability count, on the log-scale, is 247.8 per unit 
increase in alert count. The analysis had grouped ASA alerts 
based on severity assigned by SCA.  The most severe alerts 
were alerts used in the calculated association.  The case study in 

 
7 http://sendmail.org 



this paper extends the Sendmail analysis by adding churn and 
SLOC as input variables.   

Neuhaus et al. [34] have also investigated predictive models that 
identify vulnerability-prone components.  They created a 
software tool, Vulture, that mines a bug database for data that 
predict which components will likely be vulnerable.  The 
predictors for their models are code patterns that are associated 
with vulnerabilities.  They performed an analysis with Vulture 
on Bugzilla, the bug database for the Mozilla browser, using 
imports and function calls as predictors.  They were able to 
identify 50% of all of the vulnerable components in Mozilla.  
Their work is similar to ours in that the metrics are internal, but 
the metrics we use are different.   

4. CASE STUDY 
We analyzed data from a large commercial telecommunications 
software system that had been deployed to the field for two 
years.  The system contained 38 well-defined components 
whereby each component consisted of multiple source files.  A 
full set of information necessary for our analysis was only 
available for 25 (66%) of the components of the system, and 
thus the study focuses on those components.  The 25 
components we analyzed summed to approximately 1.2 million 
lines of code.  All faults in the failure reports have since been 
fixed. 

The metrics used in our analysis include failure reports, ASA 
alerts, and the count of churn and SLOC per component.  The 
failure reports included pre- and post-release failures.  A pre-
release failure for our study is a failure discovered by an internal 
tester during feature and/or system robustness testing.  A post-
release failure indicates that a failure occurred in the field and 
was reported by a customer.  Both the pre- and post-release 
reports explicitly identified the component where the solution 
was applied.  Information in the failure reports gave details on 
log output, how to reproduce the failure, stack traces when 
applicable, severity, impact to end users, test output, and brief 
general strategies on how to remedy the problem.  

An ASA analysis was performed on the system by FlexeLint.  
Although FlexeLint is a reliability-based ASA tool, we sought 
to determine if the full set of defect types identified by the tool 
could be warnings of security vulnerabilities on a per-
component basis.  Additionally, we classified some of the defect 
types as security-related (see Section 4.1) and used those alerts 
with these defect types along with the reliability-related alerts 
for predictors in our models.  For our analysis we were provided 
with both audited and un-audited output from FlexeLint.  The 
audited output, compiled by the software organization’s 
outsourced manual auditing service, contained an enumeration 
of true positive alerts.  For each alert, the report would contain a 
brief general description about the alert, a mapping to the 
component containing the fault, and the impact/severity as 
defined by the auditors, and a code fragment.  The un-audited 
report included all true and false positive alerts and the file in 
which the alert was found.  A file path was given in the un-
audited report that was used to map to the component.  The pre- 
and post-release failure reports and the un-audited/audited 
FlexeLint output provided the numbers of failures and alerts for 
each component which was sufficient for our analyses.  There 
were 55,024 alerts produced by FlexeLint.  The outsourced 

auditing service classified 302 (0.55%) alerts as true positives.  
We did not have enough information to determine which of the 
alerts had identified the failures found by the pre- and post-
release failures.  Churn and SLOC were reported by the 
software organization for each of the components we analyzed.    

4.1 Failure Report Classification 
The first author and additional research student, doctoral 
students in software security, independently reviewed each of 
the 1255 pre- and post-release failure report to determine which 
failure reports were security problems.   Based on the failure 
reports we developed criteria that identified which failures were 
non-security problems and which were indicative of security 
problems.  Some failure reports were explicitly labeled as 
security problems (approximately 0.5%) by either internal 
testers or security engineers.  We analyzed all other failure 
reports that were not explicitly labeled a security problem.  We 
found that many reports contained the following keywords that 
are often seen in security literature:  crash, denial-of-service, 
access level, sizing issues, resource consumption, and data loss.  
These keywords increased our suspicion of whether or not the 
failure could be a security problem, but did not necessarily 
indicate a security problem.   

We compiled a list of these keywords and used it to match 
against all failure reports that were not explicitly labeled as a 
security problem.  We excluded from our analysis any failure 
report that indicated that the problem was not reproducible 
(6.4%) or did not contain enough information about the failure 
to adequately understand the fault or declare it as a security 
problem (0.6%).  The criteria for a failure report to be classified 
as a security problem are now listed: 

• Remote attacks.  The failure reports explicitly indicated 
when the failure was due to a remote user or machine.  Pre- 
and post-release failure reports that contained the security 
keywords and could be remotely initiated had the highest 
confidence of an exploitable vulnerability.   

• Insider attacks.  If the failure report did not indicate that 
the failure was due to an external user or machine, then we 
looked for attacks that did not require remote access to the 
system.  For example, one report indicated that an insider 
attack was possible if a disgruntled employee was to abuse 
a privilege in the system.    

• Audit capability.  Weak or absent logging for important 
components was considered a security vulnerability.  An 
example of an important log that was not working properly 
involved loss of a financial transaction that may result in an 
attacker obtaining a service for free.  The absence of logs 
has been demonstrated as a security problem when audits 
are required to identify an attack [37]. 

• Security documentation.  We also considered if the 
fundamental principles of software security were followed.  
For instance, in two failure reports, the testers indicated 
that the problem would occur if the users were not “well-
behaved,” which breaks the principle of Reluctance to 
Trust [3].  Additionally, we also looked at documented 
vulnerabilities descriptions (e.g. those listed in the 
Common Weakness Enumeration at http://cwe.mitre.org) 



could apply, or if any documented attack patterns [23] 
could match to the software.   

After filtering for security vulnerabilities, the first and fourth 
authors compared their findings, settled differences, and then 
reported the final results to the software organization’s security 
engineer.  The security engineer audited our report and 
eliminated false positives (6.8%) from our report.  False 
positives were reliability faults that we claimed to be security 
vulnerabilities.  The number of vulnerabilities in our analysis 46 
(3.7%) of the total failure reports were classified as security 
failures.  Any of the failure reports that we misclassified as non-
security problems are false negatives in the study.  We used the 
failure reports that were verified as security problems in our 
statistical analyses.  A security-based failure represents the 
presence of a security vulnerability.  We did not include the 
failure reports that did not have a security impact on the 
software system in our study.  For this paper, failure and alert 
densities are calculated by dividing the number of failures and 
alerts by the number of KLOC (thousands lines of source code) 
of that component.   

4.2 Classification of Vulnerabilities 
According to the CWE 
We mapped each vulnerability identified by the failure report to 
one of 550 weakness classifications of the CWE.  The 
classification provides evidence that the vulnerabilities we have 
identified in the pre- and post-release failure reports have been 
known to be vulnerabilities.  Additionally, the CWE provides 
common names to the vulnerabilities that we report which 
affords the models to be adopted without nomenclature 
differences between different software engineers. 

The CWE contains high- and low-level descriptions of 
vulnerabilities.  For example, the CWE classification (ID) 
Buffer Errors (119) can include stack overflows and heap 
overflows.  A more specific CWE classification is Stack 
Overflow (121), which is specific to overflows on the stack and 
Heap Overflow (122) is specific to overflows on the heap.  We 
mapped the vulnerabilities found in the failure reports to the 
most specific classification.  If not enough information was 
given in the failure report to distinguish between a high-level 
and specific CWE classification, then the high-level 
classification name was assigned to the vulnerability.  We 
assigned the CWE classification identifier Technology-specific 
Environment Issues (3) to vulnerabilities in our system that were 
not listed in the CWE.  Vulnerabilities in the Technology-
specific Environment Issues (3) included network security 
vulnerabilities, vulnerabilities specific to the software’s design 
and operation, and absent or weak logging for security audits.  
Table 1 shows our mapping of vulnerabilities to nine of the 
~550 CWE classifications. 
For our analysis, we identified components as attack-prone if 
they were associated with a security failure.  Since our work 
was performed in the context of failures (i.e. execution of the 
software), we label the components as attack-prone instead of 
vulnerability-prone.  An example of a vulnerability-prone 
component is a component that contains vulnerabilities 
discovered by static inspections (e.g. ASA), but we do not 
address these components in this paper.  We manually classified 
a component as pre-release attack-prone if it had at least one 

pre-release security failure.  A component with no pre-release 
failures was classified as a non attack-prone component.  
Likewise, a post-release attack-prone component contained at 
least one post-release failure while a non attack-prone 
component contained no post-release failures. We use the 
threshold of one failure because there is little variability in the 
failure count per component and only one attack is needed to 
cause substantial business loss.  The post-release failures were 
not necessarily due to attacks.  However, according to the 
failure report and the security engineer, the vulnerability could 
have been exploited maliciously and thus we consider the 
failure an “attack” for the purposes of this paper. No malicious 
attacks were reported for the software system.   

Table 1.  Vulnerabilities present in the software system used 
in our analysis.  The ratio of the type of vulnerability to the 
total number of vulnerabilities is given in the right column. 

CWE (ID) Security  
vulnerabilities 

Information Leak Through Source Code (540) 2.2% 

Permissions, Privileges, and Access Controls (264) 2.2% 

Race Conditions (362) 2.2% 

Insecure Default Permissions (276) 4.3% 

Buffer Errors (119) 6.5% 

Null Pointer Dereference (476) 8.7% 

Stack Overflow (121) 8.7% 

Resource Exhaustion (400) 32.6% 

Technology-specific Environment Issues (3) 32.6% 

4.3 Adherence to the Pareto Law 
According to Pareto’s law, 80% of the outcomes will be derived 
from 20% of the activities [15].  Although, this observation was 
originally described in the context of economics, it has also 
been used to describe the distribution of faults in a software 
system.  The application of the law is that software problems 
will not be evenly distributed across the software system.  For 
example, in a survey of multiple software systems it was shown 
that between 60% and 90% of software faults are due to 20% of 
the modules [6].  The result of the manual analysis of the 
components in our system showed that ten (40%) of the 
components were pre-release attack-prone while four (16%) of 
the components were post-release attack-prone.  The 
distribution of attacks among the components in our data set 
obeys Pareto’s law because the vulnerabilities are not evenly 
distributed across all components. 

4.4 Classification of Alerts According to the 
CWE 
We created three groups of FlexeLint alerts (as shown in Table 
2) that could serve as indicators of security problems: buffer 
overrun, memory leak, and null pointer.  The three ASA alert 
groups were considered security-oriented because the test data 
showed that vulnerabilities existed due to buffer overruns, 
memory leaks, and null pointers.  Within each alert group are 
FlexeLint alert types, identified by their unique codes that are 
related by the issue they describe.  The alert descriptions given 



at the FlexeLint website8 and the descriptions given in the 
audited FlexeLint report provided enough information on which 
alert type belonged to the alert group and CWE classification. 
The three subsets together represent 16 of the 2000 FlexeLint 
alert types.   

Approximately 72.4% of the audited alerts were categorized 
into the three security-based alert groups.  Only 23.5% of the 
total un-audited FlexeLint output was used to create the three 
groups.  When referring to the combination of three security 
groups of security alerts in our analyses, we will use the term 
“total security alerts.”  Percentages of the security-based alerts 
as compared to the overall number of alerts are given in Table 3.  
Buffer overflow alerts constitute approximately half of all 
audited alerts.  We will use the term “total alerts” for the 
remainder of the paper to denote all alerts (security-based and 
non security-based) from the FlexeLint output. 

Table 2. Alert groups with CWE name and alert codes. 

Alert group CWE classification 
(ID) 

FlexeLint 
alert codes 

buffer overrun Buffer Errors (119) 
Stack Overflow (121) 

415, 416, 419, 
420, 661, 662, 
669, 670 

memory leak Resource Exhaustion 
(400) 

423, 429, 672, 
1540 

null pointer Null Pointer 
Dereference (476) 

412, 418, 613, 
668 

FlexeLint was not able to detect all of the vulnerabilities in the 
system identified by pre- and post-release system test failures.  
The classes of faults detectable by FlexeLint are listed on the 
publicly available web page and could be compared against our 
list of vulnerabilities.  The types of vulnerabilities not detected 
were: Information Leak Through Source Code (540), 
Technology-specific Environment Issues (3), Insecure Default 
Permissions (276), and Permissions, Privileges, and Access 
Controls (264).  Therefore, 41.3% of the security vulnerabilities 
identified in the failure reports were not detectable by FlexeLint. 
 
Table 3.  Audited and un-audited ASA alerts from FlexeLint 
and the percentage of the total number of alerts.   

Audited 
Un-audited 

ASA security-based  
alerts 

% Total  
alerts 

buffer overrun  50.1% 

memory leak  14.1% Audited 
(72.4%) 

null pointer  8.2% 

buffer overrun  1.7% 

memory leak  2.4% un-audited 
(23.5%) 

null pointer  19.4% 

4.5 Hypotheses 
Our hypotheses are centered on whether or not alerts associate 
with security-based failures.  The null and alternative 
hypotheses are now listed: 

H0: Internal metrics cannot distinguish between attack-prone 
and non attack-prone components.  
                                                                                                                                 
8 http://www.gimpel-online.com/MsgRef.html 

HA: Internal metrics can be used to distinguish between attack-
prone and non attack-prone components.   

5. LIMITATIONS 
Our security data are sparse. Our analysis included only 3.7% of 
the organization’s faults making statistical analyses difficult and 
reducing the confidence in our models. Additionally, we had a 
small sample size of 25 components to partition, making 
analyses difficult; an analysis at the file-level was not possible.  
The models that fit our system may not fit all software systems 
due to differences such as architecture, programming language, 
and developers.  Also, after testing is complete, we can only 
know detected faults; we do not know which faults still remain 
[13]. Thus, our analysis is based on incomplete vulnerability 
discovery. Additionally, system and feature-level testing may 
not be adequate for detecting all vulnerabilities while using 
other techniques (e.g. architectural risk analyses) may be 
suitable for finding different types of security vulnerabilities.  
The analysis of pre-release failures is based upon the testers’ 
abilities to find robustness problems that enable an attack.  
Furthermore, our ASA analysis is based upon only one ASA 
tool, FlexeLint, and may not be representative of the predictive 
power of other ASA tools.   
There was some subjective interpretation in the analysis of pre- 
and post-release failure reports though the cross examination 
between two doctoral students and one industrial security expert 
strengthens our results.  Also, we could not determine if testing 
effort was equal for all components; it may have been driven by 
factors such as churn or code size.  Lastly, once the model is 
applied, the model is not guaranteed to be effective for the next 
revision of the software. 

6. CORRELATION RESULTS 
In this section, we show correlations between our external and 
internal metrics and correlations between the internal metrics.     

6.1 Correlations Between Internal Metrics 
and Security Failure Counts 
We calculated Spearman rank correlations9 between the internal 
metrics and security failure counts of the system components as 
shown in Table 4.  The strongest but yet modest correlation 
(0.43) was found between SLOC and post-release security 
failure count.  This correlation indicates there is a positive 
association between SLOC and security failures and that an 
increase in SLOC is accompanied with some general post-
release security failure count.  The correlation coefficient 
between total security alerts and pre- and post-release failures 
was similar to that of SLOC. 
The correlations listed in Table 4 that are smaller than 0.4 
represent low correlations between the internal metrics and 
failure counts.  The correlations represent that there is little 
positive association between alert counts and a security failure 
counts.  For our system, the correlations less than 0.4 indicate 
there is only a marginal increase in security failure count as the 
internal metrics increase.   

 
9 Correlations in Tables 4 and 5 generated by SAS® 9.1.3. 



Table 4. Spearman rank correlations between ASA alert 
counts and security failure counts.  Alert metric is the count 
of alerts. 

FlexeLint 
output Metric Security failure 

count 

Spearman 
rank 

(p-value) 
total security 

alerts 
pre- and post-

release 
0.42 

(0.04) 
total security 

alerts pre-release 0.42 
(0.04) 

total  security 
alerts post-release 0.37 

(0.06) 

audited 

total alerts pre- and post-
release 

0.39 
(0.05) 

un-audited memory leak post-release 0.38 
(0.05) 

SLOC post-release 0.43 
(0.03)  

churn pre-, post-
release, or both Not sig. 

We were unable to fit our data into a generalized linear 
regression model where alert density was the input variable with 
and failure density the response variable.  We tried Poisson, 
zero-inflated Poisson, negative binomial, and zero-inflated 
negative-binomial to determine if associations were present, but 
the results contained a large amount of deviance making the 
results inconclusive.  However, we were able to use logistic 
regression (see Section 7.3). 

6.2 Correlations Between Internal Metrics 
We show correlations between the internal metrics in Table 5.  
These security alerts are composed of buffer overruns, memory 
leak alerts, and null pointer alerts (see Section 4.4).  The 
Spearman correlation coefficients indicate that the density of 
memory leak alerts and null pointer alerts are moderately 
correlated. Therefore, where there are memory leaks, there are 
null pointers in our system.   
We also found the Spearman rank correlation coefficient (not 
shown in Table 5) between churn and SLOC to be 0.78 
(p<.0001) suggesting that churn and SLOC strongly correlated. 

Table 5. Spearman rank correlation coefficients between the 
densities (audited) of ASA alerts.   

 Buffer overrun 
(p-value) 

Memory leak 
(p-value) 

Null 
pointer 

(p-value) 
Buffer 

overrun 1.00 Not sig. Not sig. 

Memory 
leak -- 1.00 0.58792 

(0.0020) 
Null 

pointer -- -- 1.00 

7. RESULTS FROM PRE-RELEASE 
PREDICTIVE MODELS 
The models we build may identify the internal metrics that best 
predict which components are attack-prone and non attack-
prone.  Our nine predictive models included the recursive 
partitioning and logistic regression statistical techniques10 with 

                                                                 
10 Performed on SAS JMP 6.0.3. 

the following three internal predictors: ASA alerts, churn, and 
SLOC.  We approached model building in a stepwise fashion 
where we analyze how each metric performs individually and 
then combine the metrics into one model.    If the predictions 
generated by our models are consistent with the post hoc manual 
classifications based upon testing results and customer reports, 
then the models may be a viable approach to prioritizing 
security-based verification efforts for our software system.  We 
used a dichotomized scheme (attack-prone or non attack-prone) 
for component classification in our models as described in 
Section 4.2.  In our setting, Type I and Type II errors are as 
follows: 

Type I error (false positive) - a non attack-prone component 
that was predicted to be attack-prone. 

Type II error (false negative) - an attack-prone component that 
was predicted to be non attack-prone. 

To validate the efficacy of each model, we evaluate the models 
with two techniques: k-fold cross-validation and receiver 
operating characteristic (ROC) curves.  We cross-validated the 
R2 to determine how much variation was accounted for by the 
model rather than by random error.  In our setting we used five-
fold cross-validation where there were five groups of 
components, each consisting of an equal number of randomly 
chosen components.  Five has been shown to be a good value 
for performing cross-validation [19]. One group was used as the 
test set and the training set contained the other four groups.  The 
R2 of the training set was compared to the test set during five 
trials where each group was allowed to be in the test set once.   
The second test was with the ROC curve. With ROC, a curve is 
drawn on a graph where the true positive rate of attack-prone 
component identification is on the y-axis and the false positive 
rate on the x-axis.  The true positive rate is the probability that 
the attack-prone prediction is correct.  The false positive rate is 
the probability that the attack-prone prediction is incorrect when 
a component is not attack-prone.  The area under the curve 
measures how well the predictors estimate the probability a 
component is attack-prone.   
Our predictive models are comprised of a statistical technique, 
the predictors (metrics), the response variables (pre-release and 
post-release failures), and the data set under analysis.  Our 
models can be differentiated from those in Section 3.1, 3.2, and 
3.3 because we use ASA alerts, churn, and SLOC as predictors 
in the same model.  Furthermore, the work performed by 
Nagappan et al. [32] and Zheng et al. [42] was performed with 
discriminant analysis while we used recursive partitioning.  
Recursive partitioning is similar to discriminant analysis in that 
both lead to classifiers of component vulnerability based on 
functions of metrics.  The difference is the choice of functions; 
recursive partitioning uses successive dichotomizations of the 
metrics, discriminant analysis uses linear combinations of 
metrics, so that the former is considered a parametric procedure, 
and the latter a non-parametric procedure.  

7.1 Predictive Model 1: ASA Alerts 
We used recursive partitioning to define a threshold based on 
the number (or density) of alerts that will distinguish attack-
prone and non attack-prone components.  The threshold divides 
components into two groups of components (partitions) that we 
will designate as the lower partition (the smaller count or 



density of alerts) and the upper partition (the higher count or 
density of alerts).  Model 1 uses recursive partitioning with the 
following ASA alerts as predictors in our models: count and 
density of audited and un-audited null pointer, memory leak, 
buffer overrun alerts, the combination of the previous three 
security-related alerts, and all of the reported FlexeLint alerts.  
According to the alternative hypothesis, we expect that the more 
alerts in the component, the more likely the component is 
attack-prone.  Therefore, the upper partition resulting from the 
split will be interpreted as having true positives when containing 
attack-prone components, and if attack-prone components exist 
in the lower partition, then they are Type II errors. 
The first split with recursive partitioning was based on total alert 
density.  Of all the ASA alert metrics, the total alert density 
served as the best metric for separation based on the functions of 
the metric that maximize the difference between attack-prone 
components and non attack-prone components.  The upper 
partition correctly identified 40% (100% of the attack-prone 
components) of the components as attack-prone, but had a 28% 
Type I error rate where components were misclassified as 
attack-prone.  The lower partition contained 32% true negatives.  
The value of total alert density at the split is 0.19 alerts/KLOC.  
That is, a component with a total alert density below 0.19 
alerts/KLOC is in the lower partition and a component with an 
alert density greater than or equal to 0.19 alerts/KLOC is in the 
upper partition.  The p-value of the split is 0.012 and the root 
mean square, R2, is 31.5%.   
The value of R2 is low which indicates that the proportion of the 
response that can be attributed to the alerts is small compared to 
that of standard error.  Therefore, we made a second split to 
increase the ability of the model to account for more variability.  
The second split again used total alert density of all of the 
possible metrics and produced the split in the upper partition of 
the first split.  The value for the total alert density at the split is 
0.39 alerts/KLOC.  The p-value for the second split is .007 and 
the R2 is 32.2%.  The combined R2 of the model is therefore 
63.7%.  Twelve percent of the attack-prone components are in 
the upper partition of the second split and 28% in the lower 
partition.  The 28% misclassification (shown in lower partition 
of the second split in Figure 1) was originally correctly 
classified as attack-prone by the first split, but the second split 
misclassified them as non attack-prone.  The second split 
indicates that the higher alert density, then the less chance that a 
component is attack-prone, contradicting the first split.  No 
further splitting with a p-value at or less than .05 was possible.  
We do not include the second split in our model because it is not 
intuitive for software engineers to use a model that indicates 
more alerts means that a component is less likely to be attack-
prone.  See Figure 1 for a summary of the recursive partitioning 
results. 
The average R2 in the cross-validation was taken from the five 
trials and was calculated as 60.7% suggesting that the R2 is 
correct within the overall model.  The area under the ROC curve 

for Model 1 is 93.0%.  The large area under the curve indicates 
that the predictors for each model are accurate at specifying 
attack-prone components.   
 

 
Figure 1: Model 1 after two splits with recursive partitioning to 
separate attack-prone from non attack-prone components.   
A summary of the results from Model 1 and the following 
models are presented in Table 6.  The Type I and II error rates, 
R2, validated R2, and ROC curve values are reported in Table 6 
for the remainder of the paper unless explicitly stated for 
emphasis.     

There are several possible reasons why the second split showed 
that a higher alert density means there is less of a chance that a 
component is attack-prone.  First, we found that there was no 
correlation between total alert density and pre-release security 
failure count.  Therefore, an increase in alert density does not 
follow an increase in security failure count. Secondly, the 
metric, total alert density includes all alerts, both security-
related and not security-related, which inflated the alert density 
value.  Lastly, system testers may be finding vulnerabilities that 
ASA cannot find and ASA may be finding faults in components 
that the testers do not find.         

Observation 1: ASA alerts by themselves cannot accurately 
predict pre-release attack-prone components. 

7.2 Predictive Models 2 and 3: Churn and 
SLOC 
We attempted to build predictive models with churn and SLOC 
by themselves, but we were unsuccessful.  In Model 2, we used 
churn as the single predictor and only one split (p=.01) was 
possible.  The value of the churn at the split is 3,861 SLOC.  No 
further splits at or below the .05 level could be made.       

Observation 2: Code churn by itself cannot accurately predict 
attack-prone components. 

 
 



 
 
Table 6: Summary of recursive partitioning models results after all statistically significant splits have been made.   

Pre- or 
post-

release 
Model Metric Type I Type II R2

Cross-
validated 

R2
ROC 

1 alerts 28% 0% 31.5% 19.4% 76.7% 

2 churn 28% 0% 31.5% 30.1% 76.7% 

3 SLOC -- -- -- -- -- 
pre-

release 

 
4 

alerts, 
churn, 
SLOC 

8% 0% 67.9% 61.1% 93.3% 

6 alerts 24% 0% 38.8% 33.7% 85.7% 

7 churn -- -- -- -- -- 

8 SLOC  20% 0% 43.8% 25.5% 88.1% post-
release 

9 
alerts, 
churn, 
SLOC 

20% 0% 43.8% 25.5% 88.1% 

 
We also tried modeling with churn normalized against SLOC 
according to Nagappan et al. [33].  We found that only one split 
could be made with 36% Type I errors and no Type II errors.  
The R2 was only 21.9%.  The R2 values are too low to accept as 
potential models. 
We also tried to predict attack-prone components with SLOC as 
the only metric in Model 3, but no splits were possible at or 
below the .05 level.  We did not build a model with SLOC and 
churn together because these metrics are strongly correlated (see 
Section 6.2) and thus likely have the same predictive power. 

Observation 3: SLOC by itself cannot accurately predict pre-
release attack-prone components. 

7.3 Predictive Models 4 and 5: Alerts, 
Churn, and SLOC 
We created a model, Model 4, with the following predictors: 
alerts, churn and SLOC.  The first split was determined by churn 
and had 100% of the attack-prone components in the upper 
partition with a Type I error rate of 28%.  The value of churn at 
the split is 3,861 SLOC with an R2 of 31.5%.  The p-value is 
.012.  We performed another split and the metric chosen was 
total alert density.   
The total alert density further separated the attack-prone and 
non attack-prone components in the upper partition from the 
first split.  The results showed that the higher the alert density, 
the more likely the component was attack-prone.  The value of 
the alert density at the split was 0.19 alerts/KLOC and the p-
value for the second split was less than .0001.     
Since Model 4 indicated that two different metrics, churn and 
alerts, could be combined we tried using discriminant analysis 
to distinguish attack-prone from non attack-prone components.  
There was no correlation between churn and total alert density 
and thus multi-collinearity is not a concern.  The model did not 
exhibit a goodness-of-fit to the data to discriminate between 
attack-prone and non attack-prone components.   

For Model 5, we utilized logistic regression, a linear regression 
technique used in generalized linear models, to identify attack-
prone and non attack-prone components.  The tests from the 
whole-model fit, which compares the model to a model with just 
the intercept (i.e. without the three predictors) is shown in Table 
7.  The probability that the model fits better than with just the 
intercept parameter is given by the Prob>ChiSq, 0.0009, which 
indicates the model fits better than with just the intercept 
parameter. 

Table 7: Logistic regression whole model test for Model 5. 
Model -LogLikelihood ChiSquare Prob>ChiSq 

Difference 8.24 16.5 0.0009 

Full 8.06 

Reduced 16.30 

 

We found that the churn and total alert density are good 
predictors of attack-prone components.  The third parameter in 
Model 5, the product of churn and total alert density, is however 
weakly significant (p=.07) as shown in Table 8.    The logistic 
regression supports the recursive partitioning results where 
components with high churn and high total alert density are also 
more likely to be attack-prone components.  We provide unit 
odd ratios as shown in Table 8 to show how the estimated 
probability of a component being attack-prone increases per unit 
increase in predictor.  The results show that there is a positive 
increase in likelihood of a component being attack-prone if the 
predictors increase in count or density.  We also tested the 
predictors under Model 5 with an ROC curve and found that 
93.6% of the area is under the curve representing that most of 
the variability is accounted for. 

 
 
 
 
 
 
 



Table 8: Significance of predictors in Model 5. Note: For 
logistic regression, total alert density was measured in 
100KLOC. 

Predictor Prob>ChiSq Unit Odds 
Ratio 

churn .0573 1.0 
total alert density .0527 1.77 
(churn-17650.7)* 
(totalAlertDensity-41.7) 

.0720 1.0 

Observation 4: ASA alerts and code churn can predict pre-
release attack-prone components. 

7.4 Interpretation of Results 
The results from Model 1 are inconclusive for determining if the 
ASA alerts can distinguish between attack-prone and non 
attack-prone.  The total alert density in the second split 
represents that more alerts means less security failures, and 
there was no correlation between the alerts and failures.  
However, Models 4 and 5 represent that components with high 
churn and high total alert density are more likely to be attack-
prone.  The total output of FlexeLint in total alert density was a 
better predictor than our security-based alerts.  Models 1, 4, and 
5 have similar R2 values and ROC curves, but Model 1 had 
more Type II errors (28%) than Models 4 or 5.  Therefore, we 
do not accept the null hypothesis.  The R2 values for the models 
are modest, but they do provide some guidance on how security 
efforts can be prioritized. 

8. RESULTS FROM POST-RELEASE 
PREDICTIVE MODELS 
We now present models that attempt to predict which 
components are post-release attack-prone. There were only four 
components that had post-release security failures.  Each 
component also contained pre-release security failures.  With 
such a small sample size, we have to be skeptical about the 
statistical results and how the models may apply to our software 
system. 

8.1 Predictive Model 6: Alerts 
In Model 6, we performed recursive partitioning with the same 
predictors as Model 1. The first split was achieved with the 
count (383) of un-audited null pointer alerts.  The p-value for 
the split was 0.038 the R2 was 38.8%.  We performed another 
split and the density of un-audited null pointer alerts 
(value=12.65alerts/KLOC) was chosen as the best metric.  The 
p-value for the split was .025 and the R2 was 38.4%.  The 
second split for Model 6 indicated that the higher the un-audited 
alert density was, the less likely a component was attack-prone.  
No further splitting was possible at or below the .05.  The false 
positive rate in the un-audited alerts may have inflated the alert 
count and thus may have influenced Model 6 to suggest that 
more alerts means less security failures.  As with Model 1, the 
results are inconclusive as to whether or not alerts can 
accurately predict attack-prone components.  As with Model 1, 
we disregard the values of the second split. 

8.2 Predictive Model 7 and 8: Churn and 
SLOC 
We attempted to build a model, Model 7, with churn by itself, 
but no splits were possible at or below the .05 level.  Model 8 

consisted of SLOC alone.  One split was possible where the p-
value was 0.021.  The value of the split was 34,052 SLOC.  No 
further splits were possible at or below the .05 level.   The R2 

value is too small to accept as an accurate predictive model. 

8.3 Predictive Model 9: Alerts, Churn, and 
SLOC 
We created a model, Model 9, with alerts, churn and SLOC as 
predictors to predict attack-prone components.  The first split in 
the recursive partitioning was achieved with SLOC.  The result 
is the same as Model 8.  We tried to perform discriminant 
analysis and logistic regression with alerts, churn, and SLOC 
metrics, but the models suffered from lack of fit.   

Observation 5: No combination of ASA alerts, churn, and 
SLOC can accurately predict post-release attack-prone 
components. 

9. DISCUSSION 
While no single fault detection technique can detect all 
problems, static analysis tools have been shown to predict 
reliability problems that are not explicitly detected by ASA 
based on alert counts and density [32, 42].  ASA tools analyze 
code and are thus more apt at coding problems then the more 
complex, high-level design or operational problems identified 
by testing.  In our research, Models 4 and 5 indicate that ASA 
alerts can, in part, identify components that contained 
vulnerabilities identified by late-cycle robustness testing.  As 
mentioned in Section 4.2, 41.3% of the vulnerabilities could not 
have been detected by FlexeLint suggesting that the 58.6% of 
the code-related vulnerabilities could predict more complex 
problems in the software.  However, the correlations in Table 4 
and the modest R2 values indicate that the relationship between 
alerts and vulnerabilities identified by testing is not strong.   
The association of simple faults to complex faults is known as 
the coupling effect [11].  The coupling effect has also been 
observed in the context of mutation testing [28, 35].  Evidence 
of the coupling effect shows that ASA can be used while code is 
written to identify coding faults as well as predict that more 
complex design and operational vulnerabilities exist.   

10. SUMMARY AND FUTURE WORK 
We have created models to predict which components are prone 
to attacks on a large scale industrial software system.  The 
internal metrics used in our models are churn, SLOC, and ASA 
alerts from the static analysis tool, FlexeLint.  We have shown 
that churn and alerts can be used to identify attack-prone 
components using recursive partitioning.  We investigated 
models with single metrics and then with metrics combined.  
We chose the model with churn and ASA alerts to have the most 
applicability to our industrial system because of the 8% false 
positive rate 0% false negative rate.  This model is also feasible 
because only two metrics are required to make predictions.   
Alerts and churn as metrics can indicate future problems in the 
software so that security experts can prioritize their security 
efforts before late-cycle testing begins.  We are currently 
analyzing another large scale industrial software system with 
additional metrics to determine if the models are applicable to 
other software systems. 



11. ACKNOWLEDGEMENTS  
This work is supported by the National Science Foundation 
under CAREER Grant No. 0346903. Any opinions, findings, 
and conclusions or recommendations expressed in this material 
are those of the authors and do not necessarily reflect the views 
of the National Science Foundation.  Thanks to Yonghee Shin 
for her help with data collection.  Also, thanks to the NCSU 
RealSearch group for their helpful review. 

12. REFERENCES 
[1] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, "Measuring, 

analyzing and predicting vulnerabilities in software 
systems," Computers & Security, vol. 26, no. 3, pp. 219-
228, May 2006. 

[2] E. Arisholm and L. Briand, "Predicting Fault-prone 
Components in a Java Legacy System," Proc of the 5th 
ACM-IEEE International Symposium on Empirical 
Software Engineering, Rio de Janeiro, Brazil, pp. 8-17, 21-
22 September 2006. 

[3] S. Barnum and M. Gegick, "Design Principles," 
https://buildsecurityin.us-
cert.gov/portal/article/knowledge/Principles, 2005. 

[4] V. Basili, L. Briand, and W. Melo, "A Validation of Object 
Oriented Design Metrics as Quality Indicators," IEEE 
Transactions on Software Engineering, vol. 22, no. 10, pp. 
751-761, 1996. 

[5] V. Basili and B. T. Perricone, "Software Errors and 
Complexity: An Empirical Investigation," Communications 
ACM, vol. 27, no. 1, pp. 42-52, 1984. 

[6] B. Boehm and V. Basili, "Software Defect Reduction Top 
10 List," IEEE Computer, vol. 34, no. 1, pp. 135-137, 
2001. 

[7] B. W. Boehm, Software Engineering Economics, 
Englewood Cliffs, NJ, Prentice-Hall, Inc., 1981. 

[8] P. Chandra, B. Chess, and J. Steven, "Putting the Tools to 
Work: How to Succeed with Source Code Analysis," IEEE 
Security & Privacy, vol. 4, no. 3, pp. 80-83, 2006. 

[9] B. Chess and J. West, Secure Programming with Static 
Analysis, Boston, MA, Addison Wesley, 2007. 

[10] S. G. Crawford, A. A. McIntosh, and D. Pregibon, "An 
analysis of static metrics and faults in C software," Journal 
of Systems and Software, vol. 5, no. 1, pp. 37-48, February 
1985. 

[11] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, "Hints on 
test data selection: Help for the practicing programmer," 
IEEE Computer, vol. 11, no. 4, pp. 34-41, 1978. 

[12] G. Denaro, "Estimating software fault-proneness for tuning 
testing activities," Proc of the International Conference on 
Software Engineering, St. Malo, France, pp. 269-280, 
2000. 

[13] E. Dijkstra, Structured Programming, Brussels, Belgium, 
1970. 

[14] S. Elbaum and J. Munson, "Code Churn: A Measure for 
Estimating the Impact of Code Change," Proc of the 
International Conference Software Maintenance, 24-31 
November 1998. 

[15] A. Endres and R. D. Rombach, A Handbook of Software 
and Systems Engineering, Harlow, England, Pearson 
Education, Limited, 2003. 

[16] N. E. Fenton and N. Ohlsson, "Quantitative Analysis of 
Faults and Failures in a Complex Software System," IEEE 
Transactions on Software Engineering, vol. 26, no. 8, pp. 
797-814, August 2000. 

[17] M. Gegick and L. Williams, "Correlating Automated Static 
Analysis Alert Density to Reported Vulnerabilities in 
Sendmail," Proc of the MetriCon 2.0 at 16th USENIX 
Security Symposium (Security '07), Boston, MA, August 
2007. 

[18] M. Gegick and L. Williams, "Toward the Use of Static 
Analysis Alerts for Early Identification of Vulnerability- 
and Attack-prone Components," Proc of the First 
International Workshop on Systems Vulnerabilities 
(SYVUL ’07) at the First International Conference on 
Global Defense and Business Continuity, Santa Clara, CA, 
July 1-6 2007. 

[19] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements 
of Statistical Learning, New York, Springer, 2001. 

[20] S. Heckman and L. Williams, "Automated adaptive ranking 
and filtering of static analysis alerts," Proc of the Fast 
abstract at the International Symposium on Software 
Reliability Engineering (ISSRE), Raleigh, NC, November 
2006. 

[21] R. Hochman, T. Khoshgoftaar, E. B. Allen, and J. 
Hudepohl, "Evolutionary Neural Networks: A Robust 
Approach to Software Reliability Problems," Proc of the 
Eighth International Symposium on Software Reliability 
Engineering, Albuquerque, New Mexico, pp. 13-26, 
September 1997. 

[22] R. Hochman, T. M. Khoshgoftaar, E. B. Allen, and J. 
Hudepohl, "Using the Genetic Algorithm to Build Optimal 
Neural Networks for Fault-Prone Model Detection," Proc 
of the Seventh International Symposium on Software 
Reliability Engineering, pp. 152-162, 1996. 

[23] G. Hoglund and G. McGraw, Exploiting Software, Boston, 
Addison-Wesley, 2004. 

[24] ISO, "ISO/IEC DIS 14598-1 Information Technology - 
Software Product Evaluation - Part 1: General Overview," 
October 28 1996. 

[25] ISO/IEC 24765, "Software and Systems Engineering 
Vocabulary," 
http://pascal.computer.org/sev_display/index.action, 2006. 

[26] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and W. 
Jones, "Classification Tree Models of Software Quality 
over Multiple Releases," Proc of the 10th International 
Symposium on Software Reliability Engineering, pp. 116-
125, 1999. 

[27] I. Krsul, "Software Vulnerability Analysis," PhD Thesis in 
Computer Science at Purdue University, West Lafayette, 
1998.  

[28] R. J. Lipton and F. G. Sayward, "The Status of Research on 
Program Mutation," Proc of the In Digest for the Workshop 
on Software Testing and Test Documentation, pp. 355-373, 
December 1978. 

[29] T. Menzies, J. Greenwald, and A. Frank, "Data Mining 
Static Code Attributes to Learn Defect Predictors," IEEE 
Transactions on Software Engineering, vol. 33, no. 1, pp. 
2-13, January 2007. 

[30] MITRE, "Common Weakness Enumeration," 
http://cwe.mitre.org/, 2006. 

http://pascal.computer.org/sev_display/index.action
http://cwe.mitre.org/


[31] J. Munson and T. Khoshgoftaar, "The Detection of Fault-
Prone Programs," IEEE Transactions on Software 
Engineering, vol. 18, no. 5, pp. 423-433, 1992. 

[32] N. Nagappan and T. Ball, "Static Analysis Tools as Early 
Indicators of Pre-release Defect Density," Proc of the 
International Conference on Software Engineering, St. 
Louis, MO, pp. 580-586, 2005. 

[33] N. Nagappan and T. Ball, "Use of Relative Code Churn 
Measures to Predict Defect Density," Proc of the 
International Conference on Software Engineering, St. 
Louis, MO, pp. 284-292, 15-21 May 2005. 

[34] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, 
"Predicting Vulnerable Software Components," Proc of the 
Computer and Communications Security, Alexandria, Va, 
pp. 529-540, 29 October-2 November 2007. 

[35] A. J. Offutt, "The Coupling Effect: Fact or Fiction?," Proc 
of the International Symposium on Software Testing and 
Analysis, Key West, Florida, pp. 131-140, 1989. 

[36] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Where the 
bugs are," Proc of the International Symposium on 
Software Testing and Analysis, Boston, Massachusetts, pp. 
86-96, 2004. 

[37] V. Prevelakis and D. Spinellis, "The Athens Affair," IEEE 
Spectrum, vol. 44, no. 7, pp. 26-33, 2007. 

[38] Reasoning Inc., "Automated Software Inspection: A new 
Approach to Increase Software Quality and Productivity," 
http://www.reasoning.com/pdf/ASI.pdf, 2003. 

[39] SAS Institute Inc., "The Partition Platform," SAS Institute, 
Inc., Cary, NC, 2003. 

[40] A. Schroter, T. Zimmermann, and A. Zeller, "Predicting 
Component Failures at Design Time," Proc of the 
International Symposium on Empirical Software 
Engineering, Rio de Janeiro, Brazil, pp. 18-27, September 
21-22 2006. 

[41] K. Tsipenyui, B. Chess, and G. McGraw, "Seven 
Pernicious Kingdoms: A Taxonomy of Software Security 
Errors," Proc of the Automated Software Engineering, 
Long Beach, CA, November 7-8 2005. 

[42] J. Zheng, L. Williams, W. Snipes, N. Nagappan, J. 
Hudepohl, and M. Vouk, "On the Value of Static Analysis 
Tools for Fault Detection," IEEE Transactions on Software 
Engineering, vol. 32, no. 4, pp. 240-253, April 2006. 

 
 

http://www.reasoning.com/pdf/ASI.pdf

	1. INTRODUCTION
	2. BACKGROUND 
	2.1 Definitions
	2.1.1 Latent Fault Definitions
	2.1.2 Realized Fault Definitions

	2.2 Automated Static Analysis (ASA)
	2.3 Recursive Partitioning 
	2.4 The Common Weakness Enumeration

	3. RELATED WORK
	3.1 ASA Alerts as Static Metrics for Fault- and Failure-Prone Prediction
	3.2 Prediction with Code Churn
	3.3 Prediction with SLOC
	3.4 Vulnerability-prone Component Predictions

	4. CASE STUDY
	4.1 Failure Report Classification
	4.2 Classification of Vulnerabilities According to the CWE
	4.3 Adherence to the Pareto Law
	4.4 Classification of Alerts According to the CWE
	4.5 Hypotheses

	HA: Internal metrics can be used to distinguish between attack-prone and non attack-prone components.  
	5. LIMITATIONS
	6. CORRELATION RESULTS
	6.1 Correlations Between Internal Metrics and Security Failure Counts
	6.2 Correlations Between Internal Metrics

	We show correlations between the internal metrics in Table 5.  These security alerts are composed of buffer overruns, memory leak alerts, and null pointer alerts (see Section 4.4).  The Spearman correlation coefficients indicate that the density of memory leak alerts and null pointer alerts are moderately correlated. Therefore, where there are memory leaks, there are null pointers in our system.  
	We also found the Spearman rank correlation coefficient (not shown in Table 5) between churn and SLOC to be 0.78 (p<.0001) suggesting that churn and SLOC strongly correlated.
	7. RESULTS FROM PRE-RELEASE PREDICTIVE MODELS
	7.1 Predictive Model 1: ASA Alerts
	7.2 Predictive Models 2 and 3: Churn and SLOC
	7.3 Predictive Models 4 and 5: Alerts, Churn, and SLOC
	7.4 Interpretation of Results

	8. RESULTS FROM POST-RELEASE PREDICTIVE MODELS
	8.1 Predictive Model 6: Alerts
	8.2 Predictive Model 7 and 8: Churn and SLOC
	8.3 Predictive Model 9: Alerts, Churn, and SLOC

	9. DISCUSSION
	10. SUMMARY AND FUTURE WORK
	11. ACKNOWLEDGEMENTS 
	12. REFERENCES

