
NCSU CSC TR 2007‐20 submitted to SIGCSE Bulletin 7/30/07

Lessons Learned from Seven Years of Pair Programming at
North Carolina State University

Laurie Williams
North Carolina State University

Department of Computer Science
williams@csc.ncsu.edu

Abstract
A recent survey conducted on the SIGCSE mailing list indicated that up to 80% of CS1, CS2, and data
structures instructors allow students to collaborate. The use of collaboration increases as students advance
through the computer science curriculum. Some computer science educators use pair programming as the
model for their student collaboration, sometimes with mixed results. At North Carolina State University,
over a thousand students have pair programmed in CS1, undergraduate software engineering, and graduate
level courses over the last seven years. This paper provides a summary of the lessons we have learned
through experience and through extensive research over this time period.

1. Introduction
In January 2007, 148 SIGCSE educators responded to an online survey regarding the practice and perceptions of
collaboration in the classroom [6]. The results of the survey indicate that up to 80% of the instructors of CS1, CS2,
and data structures courses allow students to collaborate. The use of collaboration generally increases as students
advance through the computer science curriculum into courses such as software engineering or computer graphics.
Some computer science educators use pair programming [5] as the model for their student collaboration.

Pair programming is a style of programming in which two programmers work side-by-side at one computer,
continuously collaborating on the same design, algorithm, code, or test. One of the pair, called the driver, types at
the computer or writes down a design. The other partner, called the navigator, has many jobs. One is to observe the
work of the driver, looking for defects. The navigator also has a more objective point of view and is the strategic,
long-range thinker. Together, the driver and the navigator continuously brainstorm a solution. Periodically, the
programmers switch roles between the driver and the navigator.

Research has suggested many pedagogical benefits to pair programming, including that pair programming
creates an environment conducive to more advanced, active learning and collaboration, leading to students being
less frustrated, more confident, and more interested in information technology [1, 2]. But, as will be discussed,
successfully transitioning to pair programming in the classroom is dependent on several factors. At North Carolina
State University (NCSU), we have used pair programming extensively in our CS1, undergraduate software
engineering, and several graduate level courses over the last seven years, involving more than a thousand students.
We have learned many lessons and have adapted our policies and practices to be more successful with the
collaborative pedagogy of pair programming, including balancing a mix of pair programming and solo programming
in each class. This paper summarizes the lessons we have learned in hopes of enabling other educators to be as
successful as possible with pair programming.

2. The Positive and Negatives Aspects of Student Pair Programming
As with most pedagogical techniques, pair programming has positive and negative impacts on both the student and
the instructor. Additionally, pair programming appears to increase retention [8], particularly among women,
because it reduces some negative aspects of our traditional pedagogy that focused on solo programming, especially
in the early years of the curriculum. Through pair programming, students are able to meet the other students in their
classes and laboratories, thereby creating a more friendly and supportive environment. Students in the Millennial
generation desire to work collaboratively [4]. Also, pair programming helps to prepare students for the
collaboration, teamwork, and communication skills required in industry.

NCSU CSC TR 2007‐20 submitted to SIGCSE Bulletin 7/30/07

 Pair programming benefits the teaching staff as well. These benefits include less grading due to half the
number of assignment submissions and less cheating because of the innate support structure of pairs. Also, a pair of
students can often figure out the low-level technical or procedural questions that oftentimes burden the instructor’s
office hours and email inbox. Students enjoy the collaborative environment, and therefore are more positive and
happier about the class. Finally, there are fewer “problem students” to deal with because the peer pressure involved
in pair programming most often results with all students turning in a decent assignment. Some students become
more concerned about jeopardizing their partner’s grade and end up working harder on the assignments, often
getting started earlier than if they worked alone.

Alas, there are some costs to implementing pair programming. Most of the costs for educators are outlined in
the “lessons learned” of the next section. For students, there are two major costs that persist without apparent
recourse. First, a small segment of students will always desire to work alone. Most often, these are the top students
who do not want to be bothered with being “slowed down by” another student. Another problem for students is the
need to coordinate schedules with another student when pair programming is required outside of a classroom or
laboratory setting.

3. Lessons Learned
In this section, we enumerate the lessons we have learned in hopes of enabling other educators to be as successful as
possible with pair programming:

Closed Laboratory. Based on our experience, undergraduate students should have extensive experience
(probably two full courses) with pair programming in a closed laboratory setting before they can realistically pair on
their own outside of class. The watchful eye of a trained instructor or teaching assistant is essential for making sure
that students are properly assuming the roles of driver and navigator, switching roles periodically, and that both
students are engaged. Additionally, inexperienced students seem to have more difficulty meeting with their partners
outside of class. Students with more experience pair programming are better able to manage meeting outside of
class, but these students still seem to benefit from “bonding” with their partner by working on a joint project in a
structured lab setting. We do not require any pair programming outside of the closed lab for our CS1 class.

Attendance and Lateness Policy. A strict attendance in lecture and laboratory has always been required for
our CS1 class but not the others. For several reasons, we have evolved to a relatively strict attendance policy for the
undergraduate software engineering class as well. First, a student who does not attend lecture impacts his or her
ability to work effectively on and to contribute fairly to a paired project. Secondly, we are more likely to identify
earlier those students who are no longer participating in the class but have not dropped it yet. Additionally, we were
having a problem with students arriving late for laboratory, wondering what to do with the student anxiously
awaiting the arrival of a partner. We recommend that after a specified period of time (e.g. 10 minutes), a student is
reassigned to a different pair if their partner does not arrive. A student who arrives late must work alone with a
penalty on the lab assignment.

Peer Evaluation. Some students might attempt to escape an assignment without doing the work and/or
learning the lessons the assignment is designed to teach. An important mechanism for providing the motivation to
participate is a formal peer evaluation process that requires students to provide feedback on the participation of their
partner. At the end of each paired homework assignment, we require students to evaluate their partners using the
online PairEval1 system. Based upon the peer rating system by Kaufman et al. [3], the students are asked to choose
one of the 9 key words in the bullets below (short descriptions are provided to the students as well) to describe the
contribution of his or her partner. We found that asking the students to choose a word to describe the contributions
of their partner was more effective than asking for a numerical rating. Previously, the students all tended to give
their partner a high numerical score, and now there is a wider range of response. The students choose among the
following ratings:

1. Excellent. Consistently went above and beyond—tutored teammates, carried more than his/her fair share
of the load

2. Very good. Consistently did what he/she was supposed to do, very well prepared and cooperative
3. Satisfactory. Usually did what he/she was supposed to do, acceptably prepared and cooperative
4. Ordinary. Often did what he/she was supposed to do, minimally prepared and cooperative
5. Marginal. Sometimes failed to show up or complete assignments, rarely prepared
6. Deficient. Often failed to show up or complete assignments, rarely prepared

1 Pair Eval can be freely downloaded for use at http://agile.csc.ncsu.edu/pairlearning/paireval.php.

NCSU CSC TR 2007‐20 submitted to SIGCSE Bulletin 7/30/07

7. Unsatisfactory. Consistently failed to show up or complete assignments, unprepared
8. Superficial. Practically no participation
9. No show. No participation at all
Students can also input into the system the rationale behind their rating. If a student gives their partner a low

overall rating (e.g. “Marginal” or below), the partner is flagged and the teaching staff can review the evaluation
more carefully and perhaps contact the student. If, after such a discussion, the instructor determines that a student
made little or no effort on a partnered assignment, the student will have his or her grade reduced accordingly and the
partner’s grade will be correspondingly increased. We use a strict policy whereby a student’s score can be
multiplied by their contribution (e.g. if they did 50% of what they were supposed to, they get 50% of the score).
When pairing students for homework assignments, prompt attention and adequate consequences are essential to
bring potential “freeloaders” back into a contributing role. After the instructor handles a few of these instances, an
environment of participation is created in the classroom and instances of freeloading become rare. We recognize
that not all freeloaders are identified via this peer evaluation process because sometimes students are reluctant to
report their partners.

Grading. We want to ensure that individual students are learning the course material and not relying solely on
their partners. In CS1, where students are establishing foundational knowledge required for the rest of the
curriculum, the weekly collaborative lab assignments count for 10% of the overall grade. The other 90% of the
overall grade is assessed through individual activities, such as exams, written homework, and other programming
assignments. In other classes, where larger projects are done collaboratively, we have a policy that the students
must have a passing grade in the individual portions of the class in order to pass the class.

Choosing the pairs. We assign the pairs rather than allow them to choose their partners. Through the Pair Eval
system, we monitor the compatibility of our pairs in addition to their contribution. We have found that less than 9%
of pairs report compatibility problems [7]. Students consistently express a desire to work with a partner of equal or
better skill level relative to themselves. We have examined a variety of factors to determine if we can proactively
assign effective student pairs. We have examined the use of SAT scores, grade point average (GPA), computer
science GPA, Myers Briggs compatibility components, Felder-Silverman learning components, a computer science
self esteem index, work ethic, and time management factors. We have found the only factors that can be used to
proactively managed pairs are midterm scores (only available halfway through the semester), pairing a Myers Briggs
sensor with an intuitor, or pairing students of similar work ethic [7]. We determine their work ethic by asking the
students to rate themselves on a scale from 1 to 9 on the following question in a pre-class survey administered via
Pair Eval:

In your classes, do you work hard enough to:
1: Just barely get by
9: Get the best grade you possibly can.
Teaching assistant training. The teaching assistants (TA) need coaching and training on how to manage a pair

programming lab. In the laboratory, they must look for dysfunctional pairs who are not working well together. The
TAs must approach the pair and ask if they need help, and point them in the right direction for working together via
driver/navigator roles. The TAs must ensure that the students switch roles periodically. In solo programming labs,
the TAs spend all of their time answering questions of the students. In a paired lab, the role of the TA changes, to
some degree, from technical assistant to proactive monitor. For the most part, the multitude of technical questions
of the TAs in solo labs is reduced because pairs can usually figure out most aspects of an assignment together.
Questions from pairs tend to be focused more on learning objectives and concepts rather than technical hang-ups,
and may require more time per question (though this is time well-spent). With the remaining time, the TA needs to
proactively visit the pairs, asking how they are doing, and ensuring that they are working together effectively.

Student training. Likewise, students need training in pair programming. The instructor cannot assume that the
students will figure out what to do in pairs; they may feel the idea is to divide the work into two parts, each student
doing half. The students should be made aware that they are to work together at one computer in driver and
navigator roles, they need to switch roles, they both to be active participants at all times, and so forth. Resources for
educating students about pair programming, including a 15 minute video, can be found at
http://agile.csc.ncsu.edu/pairlearning/.

Prompt attention to problems. The most common problem with pairing is non-participation on the part of one
student. Students must understand that problems with their partner must be surfaced early to give the instructor a
chance to correct the situation. The instructor must understand the non-participatory student’s perspective as well,
and/or ask the student if he or she intends to continue with the class. If the instructor determines that a student is not
going to contribute fairly to an assignment, then the partner will be given reparations on the assignment, such as the

NCSU CSC TR 2007‐20 submitted to SIGCSE Bulletin 7/30/07

option to complete a subset of the assignment individually. When students report problems at the last minute, they
are not given these same reparations.

Pair rotation. We assign students new partners at least three or four times per semester. Periodically assigning
new partners is beneficial for the students because they have the opportunity to meet more of their peers. Also,
students will be less likely to be intolerant of their partner if they know their “relationship” only lasts a week or two.
Rotating pairs is beneficial for the teaching staff because obtaining multiple forms of peer evaluation on each
student provides a more accurate picture of the contributions of the student. Additionally, the regular pair rotation
allows dysfunctional pairs to separate without overt action on the part of the instructor.

Lab setup. At NCSU, the software engineering laboratory has an ideal pair programming setup. All computers
in the lab have two monitors, two mice, and two keyboards and the room is arranged as shown in Figure 1 to enable
pair-to-pair communication. A more traditional setup is fine if two people can sit comfortable next to each other
where both can see the display (generally a six-foot table per pair). The litmus test is that the driver and navigator
should not need to switch chairs when they switch roles. If they need to switch chairs so the driver can be better
positioned, then the set up is not ideal for pair collaboration.

Figure 1. Software engineering lab

4. Summary
Based upon our experiences with over a thousand pair programming students in the last seven years, we believe
strongly in the benefits of a balanced use of this pedagogical technique in computer science classes, beginning with
the very first class. We have learned many lessons that helped us to be more effective with the technique over time.
We hope by sharing these lessons, other educators will allow their students to pair program and that the transition to
pair programming is as smooth and beneficial as possible for student and instructor alike.

5. Acknowledgements
I would like to acknowledge the instructors and teaching assistants at North Carolina State University who have
helped to institute pair programming: Carol Miller, Suzanne Balik, Ed Gehringer, Matthais Stallman, Lucas
Layman, Mark Sherriff, Sarah Smith Heckman, Kristy Boyer and many others. Additional thanks to Lucas, Mark,
and Sarah for providing feedback on earlier drafts of this paper. This material is based upon the work supported by
the National Science Foundation under Grants CCLI 29728000, ITWF 00305917, and BPC 0540523. Any opinions,

NCSU CSC TR 2007‐20 submitted to SIGCSE Bulletin 7/30/07

findings, and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

6. References
[1] S. B. Berenson, K. M. Slaten, L. Williams, and C.-w. Ho, "Voices of Women in a Software Engineering

Course: Reflections on Collaboration " ACM Journal on Educational Resources in Computing, vol. 4, no.
1, March 2004.

[2] S. B. Berenson, L. Williams, and K. M. Slaten, "Using Pair Programming and Agile Development Methods
in a University Software Engineering Course to Develop a Model of Social Interactions," in Crossing
Cultures, Changing Lives Conference, Oxford, UK, 2005, p. to appear.

[3] D. B. Kaufman, R. M. Felder, and H. Fuller, "Peer Ratings in Cooperative Learning Teams," in American
Society for Engineering Education, Charlotte, NC, 1999.

[4] D. Oblinger, "Boomers, Gen-Xers, and Millennials: Understanding the New Students," Educause Review,
vol. 38, no. 4, pp. 37-47, July/August 2003.

[5] L. Williams and R. Kessler, Pair Programming Illuminated. Reading, Massachusetts: Addison Wesley,
2003.

[6] L. Williams and L. Layman, "Lab Partners: If They're Good Enough for the Natural Sciences, Why Aren't
They Good Enough for Us?," in Conference on Software Engineering Education and Training, Dublin,
Ireland, 2007, pp. 72-82.

[7] L. Williams, L. Layman, J. Osborne, and N. Katira, "Examining the Compatibility of Student Pair
Programmers," in Agile 2006, Minneapolis, MN, 2006, pp. 411-420.

[8] L. Williams, C. McDowell, N. Nagappan, J. Fernald, and L. Werner, "Building Pair Programming
Knowledge Through a Family of Experiments," in International Symposium on Empirical Software
Engineering (ISESE) 2003, Rome, Italy, 2003, pp. 143-152.

