
A Study of a Formal Model

For View Selection for Aggregate Queries

Zohreh ASGHARZADEH TALEBI1, Rada CHIRKOVA2, and Yahya FATHI1

1 Operations Research Program, NC State University, Raleigh, NC 27695,

{zasghar,fathi? ? ?}@ncsu.edu

2 Computer Science Department, NC State University, Raleigh, NC 27695,

chirkova@csc.ncsu.edu†

Abstract. We present a formal study of the following view-selection problem: Given a set of queries

and a database, return definitions of views that, when materialized in the database, would reduce

the evaluation costs of the queries. Optimizing the layout of stored data using view selection has a

direct impact on the performance of database systems. At the same time, the optimization problem is

intractable, even under natural restrictions on the types of queries of interest. We introduce an integer-

programming model to obtain optimal solutions for the view-selection problem for aggregate queries on

data warehouses. We show that this model can be used to solve realistic-size instances of the problem.

We also report the results of the post-optimality analysis that we performed to determine the impact of

changing certain input characteristics on the optimal solution, and compare our approach to a leading

heuristic procedure [20]. A shorter version of some results of this paper has been published as [25].

1 Introduction

As relational databases and data warehouses keep growing in size, evaluating many com-

mon queries — such as aggregate queries — by database-management systems (DBMS)

may require significant transformations of large volumes of stored data. As a result, the re-

quirement of good overall performance of frequent and important user queries necessitates

? ? ? This author’s work is partially supported by the National Science Foundation under Grant No. 0321635.
† This author’s work is partially supported by the National Science Foundation under Grant No. 0307072.



optimal DBMS choices in choosing and executing query plans. A significant aspect of query

performance is the choice of auxiliary data used in query answering, such as which indexes

are used in a query plan to access a given stored relation. In modern commercial database

systems, another common type of auxiliary data is materialized views — relations that were

computed by answering certain queries on the (original) stored data in the database and that

can be used to provide, without time-consuming runtime transformations, “precompiled” in-

formation that is relevant to the user query. We give an example of using materialized views

to answer select-project-join queries with aggregation in a star-schema [22] data warehouse.

Example 1. Consider a star-schema data warehouse with three stored relations: Sales(CID,

DateID,QtySold,Discount), Customer(CID,CustName,Address,City,State), and

Time(DateID, Day,Week,Month,Year); here, Sales is the fact table.

Let the query workload have two queries, Q1 and Q2. Q1 asks for the total quantity of

products sold per customer in the last quarter of the year 2005. Q2 asks for the total product

quantity sold per year for all years after 2000 to customers in North Carolina.

Q1: SELECT c.CID, SUM(QtySold) Q2: SELECT t.Year, SUM(QtySold)

FROM Sales s, Time t, Customer c FROM Sales s, Time t, Customer c

WHERE s.DateID = t.DateID AND s.CID = c.CID WHERE s.DateID = t.DateID AND s.CID = c.CID

AND Year = 2005 AND Month >= 9 AND Month <= 12 AND Year > 2000 AND State = ‘NC’

GROUP BY c.CID; GROUP BY t.Year;

We can use techniques from [20] to show that the following view V can be used to give

exact answers to each of Q1 and Q2.

V: SELECT s.CID, Year, Month, State, SUM(QtySold) AS SumQS FROM Sales s, Time t, Customer c

WHERE s.DateID = t.DateID AND s.CID = c.CID GROUP BY s.CID, Year, Month, State;

2



That is, suppose the view V is materialized in the data warehouse, which means that

the answer to the query V on the database is precomputed and stored as a new relation

V3 alongside Sales, Customer, and Time. Then the answer to each of Q1 and Q2 can be

computed by accessing just the data in the relation V. For instance, Q1 can be evaluated as

Q1: SELECT CID, SUM(SumQS) FROM V WHERE Year = 2005 AND Month >= 9 AND Month <= 12 GROUP BY CID;

Note that evaluating the query Q1 using the view V is likely to be more efficient than evaluat-

ing Q1 using its original definition, as using V allows the DBMS to avoid taking an expensive

join of Sales, Customer, and Time and also may save some time in grouping and aggregation.

We consider the following view-selection problem: Given a set of queries, a database, and a

set of constraints (e.g., a storage limit on the amount of disk space that can be used to store

materialized views), return definitions of views that, when materialized in the database,

would satisfy the constraints and reduce the evaluation costs of the queries. As design of

materialized views is an important component of query processing in data warehouses [7, 20,

31, 35, 38] and of automated query-performance tuning [21, 28, 30], the problems of selecting

views and of answering queries using views have been studied thoroughly in the literature.

Generally, spending more time on designing views tends to pay off, as greater improve-

ment can thereby be achieved in the query performance using the resulting stored derived

data. As the number of beneficial views or indexes tends to be prohibitive even for simple

query workloads [3, 12, 20], it is not practical to use exhaustive enumeration to obtain derived

data that would globally minimize query costs. Several approaches (see, e.g., [3, 18, 20, 31])

3 We follow the tradition of using the same name for a view query and its answer.

3



have been proposed to efficiently design good-quality sets of derived data for SQL queries.

We continue the work of [18, 20] of studying view-selection algorithms that are competitive,

that is, provide optimality guarantees on their outputs without necessarily exploring the

entire search space of views. We present a formal model of view selection for queries on star-

schema data warehouses and explore competitive techniques for designing and using views

in this context. Our techniques and results are applicable to a practically important class of

range-aggregate queries on star-schema data warehouses.

Our contributions are as follows:

(1) we model view selection as an integer-programming (IP) problem and give references to

similar IP structures in the literature (Section 3),

(2) we use standard IP-solver software (CPLEX [29] with an AMPL interface [15]) to solve

optimally realistic-size instances of the problem on the popular TPC-H benchmark [36]

and on real data in the Sloan Digital Sky Survey (SDSS) dataset [34] (Sections 4–6),

(3) we study the limits of our approach for two versions of the view-selection problem, de-

termined by whether the table for the view resulting from joining all the base relations

(we call this view raw-data view) is part of the solution (Sections 3 and 5), and

(4) we experimentally compare our method with a leading heuristic approach in the field [20],

and theoretically analyze the worst-case performance of that approach (Section 6).

In our experiments we solved hundreds of problem instances, both on TPC-H data [36]

and on the SDSS dataset [34]. The problem instances used both randomly generated query

workloads and queries related by an ancestor-descendant relationship in the sense of [20].

4



After outlining related work, in Section 2 we provide the background and formal defini-

tions. Section 3 introduces our IP model of the view-selection problem. Section 4 describes

our framework for analysis and experimentation. We report our experimental results and

theoretical analysis in Sections 5 and 6, and conclude in Section 7.

Related Work

Designing and using derived data to improve query performance has long been studied in

data-intensive systems. A wealth of theoretical results (see [19] for a survey) and some practi-

cal solutions [4, 10, 11] have been accumulated on using views and indexes in query answering.

Answering aggregate queries using views was considered in relation to data warehouses and

data cubes [2, 9, 16, 37]; results on answering each query using a single view were presented

in [17, 33]. Recent work [1, 13] considered rewriting aggregate queries using multiple views.

Considerable work has been done on efficiently selecting views and indexes for general

SQL queries [3] and in particular for aggregate queries (e.g., [1, 18, 20, 31]). [38] proposed

algorithms, including an IP approach, for selecting materialized views to minimize the sum

cost of processing the given queries and of maintaining all the views. [3, 4] introduced an end-

to-end approach and a system architecture for designing and using materialized views and

indexes to answer queries. In this paper we study the problem of selecting views for aggregate

queries on star-schema data warehouses. The setting and assumptions we use generalize those

in [18, 20] (in contrast to those in [38]) — that is, we seek to minimize the total execution

costs of q given set of queries under a storage-limit constraint. At the same time, the novelty

of our work is in obtaining efficiently optimal solutions for problem instances of realistic

5



sizes, for two versions of the view-selection problem. In the first version, we assume similarly

to [20] that the raw-data view is always part of the solution set of materialized views. We

lift this restriction in the second version of view selection; the resulting problem arises in

practice in settings where it is too expensive to maintain efficiently the result of joining

all base tables, including data-integration settings where certain views are materialized in

the mediator to improve query-processing efficiency [19]. In our current work we are using

lower-bound relaxation in developing competitive heuristics for problem instances that are

too large to be solved optimally, for both versions of the view-selection problem.

2 Preliminaries and Problem Specification

The setting we use is similar to that in [18, 20]. We consider relational select-project-join

queries with equality-based joins and with aggregation functions sum, count, max, or min.

Our approach is applicable to queries with inequality comparisons of attributes to constant

values, including the important class of range-aggregate queries. We study parameterized

queries: The parameterized version of a query has placeholders instead of all the constants.

In this paper we focus on the special case of star-schema queries: We assume that the

database schema is a star schema [22], with a fact table and dimension tables. Further, in

each star-schema query, each join is a natural join of the fact table with a dimension table.

Our cost model is as follows. We consider the costs of answering queries using unindexed

materialized views, such that each query can be evaluated using just one view relation and no

other data, as in Example 1. (This setting is the same as in [20].) Thus, the cost of evaluating

6



each query is proportional to the size of the view chosen for the evaluation. We use two metrics

for view sizes: (1) the number of rows in the view relations (this is a common assumption

in the literature on view selection), and (2) the number of bytes in the view relations. In

Section 5 we will see that these metrics give us different experimental results. Finally, given

a query workload Q and a set of views V that have been precomputed on a database D, the

total cost of evaluating Q using V is the sum of the costs of evaluating all the queries in Q,

such that each query is evaluated using a view in V. The sum can be weighted to reflect the

relative frequency or importance of individual queries. We consider two settings: In the first

setting, similarly to [20] we assume that a view resulting from joining all the base relations

in the star schema — we call it the raw-data view — is always part of the available set V of

materialized views. We lift this assumption in the other setting considered in this paper.

We consider the following view-selection problem: Our goal is to minimize the evaluation

costs of a given workload of parameterized aggregate queries defined on a star schema, by

selecting and precomputing views that can be used in answering the queries. (We consider

only equivalent query rewritings, i.e., we require that exact answers to all the queries in Q

can be computed using V.) We consider this minimization problem under a storage-space

limit, which is an upper bound on the amount of disk space that can be allocated for the

views. Thus, our problem inputs are of the form I = (D,Q, b), where D is a database, Q is a

workload of parameterized queries, and b is the (positive integer) value of the storage limit.

For any parameterized query in the given workload, our goal is to design views that can

be used in evaluating any instance of the query. Thus, similarly to [18, 20] we consider only

7



views without comparisons with constants. We use the following definitions of solutions and

of the optimal viewset problem (OV P ):

Definition 1. For a problem input I = (D,Q, b), a set of views V is an admissible viewset

if (1) each query in Q can be rewritten using V, and (2) V satisfies the storage limit b.

Definition 2. For a problem input I = (D,Q, b), an optimal viewset is a set of views V

defined on D, such that (1) V is an admissible viewset for I, and (2) V minimizes the cost

of evaluating Q on the database DV , among all admissible viewsets for I. Here, DV is the

database that results from adding to D the relations for all the views in V computed on D.

Definition 3. (Problem OV P ) For a given problem input I = (D,Q, b), find an optimal

viewset. A solution for a given instance of OV P consists of a set of materialized views V

(which includes the raw-data view on D and all additional views that we choose to materialize)

and an association between each element of Q and its corresponding element of V.

As we mentioned earlier in this section, we also consider a variation OV P ′ of the optimal-

viewset problem: Unlike OV P , in OV P ′ we do not require that the raw-data view be mate-

rialized as part of the solution. In Section 5 we present an experimental comparison of two

versions of our proposed approach, one for OV P and the other for OV P ′.

3 The Formal Model

In this section we propose an integer programming (IP) model for the optimal-viewset prob-

lems OV P and OV P ′, and discuss methodologies for solving this IP model. We use the

following notation to represent the input I = (D,Q, b) in this model:

8



ai : Size of the view i, for all i ∈ IV , where IV is the index set for all possible views;

b : storage limit;

cij : evaluation cost of answering query j by using view i, for all i ∈ IV and j ∈ Q.

We let cij = +∞ if view i cannot be used to answer query j. We further define the

following decision variables for the IP model.

xi =















1 if view i is materialized

0 otherwise

for all i ∈ IV

and

yij =















1 if we use view i to answer query j

0 otherwise

for all i ∈ IV and j ∈ Q

The optimal-viewset problem OV P can now be stated as the following IP model OV IP .

Minimize
∑

i ∈ IV

∑

j ∈ Q cijyij (OV IP )

subject to
∑

i ∈ IV aixi ≤ b (1)

∑

i ∈ IV yij = 1 for all j (2)

yij ≤ xi for all i, j such that cij 6= +∞ (3)

x1 = 1 (4)

xi, yij ∈ {0, 1} for all i, j

Constraint (1) limits the size of the views to be no more than the storage space b.

Constraint (2) states that each query is answered by exactly one view in the set of views.

Constraint (3) guarantees that query j can be answered by view i only if view i is already

9



materialized. Constraint (4) states that the raw-data view is always materialized, and the

remaining constraints are simply the binary requirements for xi and yij. Note that the binary

requirement for yij can be replaced by a simple non-negativity restriction without affecting

the corresponding optimal solution for this model. This relaxation, however, has a significant

impact on reducing the overall computational effort required to solve this IP model.

We can also modify this model into an IP model for the problem OV P ′ by removing

constraint (4). This is equivalent to stating that the raw-data view is not required to be

materialized. We refer to this modified model, i.e., OV IP without constraint (4), as OV IP ′.

The structure of this IP model is similar to those for the uncapacitated facility location

problem (UFL) and the k-median problem. These two problems are well studied in the

literature, and relatively large instances of the corresponding IP models can be solved within

reasonable time. Several heuristic approaches for solving these problems have also been

reported. See [14] and [24] for the facility location problem and [26] for the k-median problem.

We can also employ the linear programming (LP) or Lagrangean relaxation of this IP

model to develop lower bounds for the optimum solutions. [32] observed that the LP re-

laxation for the facility location problem can provide strong lower bounds for it, and [27]

showed that the Lagrangean relaxation can provide even better lower bounds. Due to the

similarity of the structure of OV IP (OV IP ′) with these models we expect that similarly

strong lower bounds can be obtained for OV IP (OV IP ′). As these bounds are typically

obtained with modest computational effort, we could use them to devise exact algorithms

(such as branch and bound) for solving this problem. We can also employ the lower bound

10



for each instance to evaluate the solution obtained via a heuristic procedure, hence providing

an upper bound on the performance ratio of the algorithm in that instance.

4 Our Framework

We consider view selection for star-schema queries. To design aggregate views for star-schema

queries, we use a data structure, view lattice, that was introduced in [20]. A view lattice is a

representation of the search space of views for a problem input, where nodes represent views

and directed edges between the nodes denote which view can be evaluated using another

view. For any view we choose to materialize, if the view is usable in evaluating an input

query, then the answer to the view is the only relation needed in the evaluation. That is,

our view-selection procedures determine joinless rewritings of queries (see [1, 13] for work on

rewritings computed via joins of aggregate views with other relations).

Fig. 1. Lattice example with space

costs [20].

To define an instance of the problem and to construct

input data for our IP formalism, we first select a query work-

load, that is, frequent and important queries whose evalu-

ation costs we want to reduce by materializing views. We

then use the approach of [20] to construct a view lattice, by

associating each workload query with a node in the lattice.

More specifically, we construct from the query workload a set of grouping and aggregated

attributes of interest — these are all the attributes mentioned in the queries, except the

attributes in the join conditions. We then use the attributes to construct a view lattice

11



as described in [20]. For instance, suppose queries Q1 and Q2 in Example 1 comprise our

workload queries. We use attributes mentioned in Q1 and Q2 to construct the grouping and

aggregated attributes of interest — CID, Year, Month, State and QtySold, respectively.

Once we have constructed a view lattice, we calculate the sizes of the answers to all

the views in the lattice. We can estimate the sizes by using methods mentioned in [20], for

instance sampling. Finally, to complete the input data, we specify a storage limit.

To illustrate, we present an example adopted from [20]. Figure 1 shows the view lattice

for this example that consists of the raw-data view (node a) and of views {b, c, d, e, f, g, h}.

The space requirement is given next to each node, and the edges represent the relationship

between views as discussed above. We assume that the query workload consists of all nodes

in the lattice, and the problem is to determine a set of at most three additional views

to materialize (in addition to the raw-data view a) that would minimize the total cost of

answering the workload queries. Note that to be consistent with the example given in [20]

we restrict the number of views, rather than their corresponding storage space requirement.

The IP model (OV IP1) for this example can be written as follows:

Minimize
∑

8

i=1

∑

8

j=1
cijyij (OV IP1)

subject to
∑

8

i=1
xi ≤ 4

∑

8

i=1
yij = 1 for all j = 1 to 8

yij ≤ xi for all i, j such that cij 6= +∞

x1 = 1

xi ∈ {0, 1}, yij ≥ 0 for all i, j = 1 to 8

12



Fig. 2. Cost matrix for OV IP1.

The matrix of objective-function coefficients cij for

the model OV IP1 is shown in Figure 2, where nodes

a, b, c, d, e, f, g, and h correspond to the rows (and columns)

1 through 8, respectively. The model OV IP1 has 8 binary

variables and 64 continuous variables. We solved this prob-

lem using the IP solver CPLEX [29] with an AMPL inter-

face [15] and obtained the optimal solution x1 = x2 = x4 =

x6 = 1 (corresponding to nodes a, b, d, f in the lattice), y11 = y22 = y13 = y44 = y25 = y66 =

y47 = y68 = 1, with all other variables equal to zero. The total cost associated with this

solution is 420. Incidentally, this solution is identical to the solution in [20].

To represent the lattice associated with a large data set (for a realistic instance of view

selection), we use a table format. Each row in the table corresponds to a lattice node; the

two entries in each row represent the view ID and the view size for that node, respectively.

Thus, the table has two columns and as many rows as the number of lattice nodes.

In each row (i.e., node of the lattice) the view size is represented in units that we choose

for our analysis (e.g., number of rows in the view, number of bytes of stored data in the

view, etc.), and the view ID is a binary vector of size K. The ith element in the vector is

the ith grouping attribute, and K is the total number of grouping attributes. For each view,

an entry of 1 in the ith position of its view ID implies that the corresponding attribute is

used to group the associated rows in the database (to form this view). In other words, a 1

entry in the ith position of the view ID for a node implies that this node (view) can be used

13



to answer a query that requires the ith attribute, and a 0 entry in the ith position implies

otherwise. We give SQL examples in Section 5; see Appendix B in [6] for a full description

of one instance of view selection on TPC-H data [36] and its solution.

Thus, dependencies among nodes can be derived from their view IDs. A query e can be

computed from a view f (i.e., f is an ancestor of e in the lattice) if the set of positions

with entry 1 in the view ID for e is a subset of the respective set in the view ID for f (e.g.,

f = {1, 1, 0, 0, 1} is an ancestor for e = {0, 1, 0, 0, 1}, but it is not an ancestor for e′ =

{0, 1, 0, 1, 0}). Note that the number of nodes in the lattice is 2K and increases exponentially

as the number of attributes K increases. For this reason, in order to keep the size of the IP

model as small as possible, in each instance we only maintain those nodes of the lattice that

are potential ancestors of at least one query in our query workload for that instance.

The evaluation cost of a query e using a view f is the storage cost of the view f if e can

be answered by f , and is ∞ otherwise. Following the above criteria, the cost matrix for a

query workload can be easily computed and transformed to the input of the IP model.

5 Experimental Evaluation of our Approach

We have conducted extensive experiments to evaluate the IP models and framework presented

in Sections 3 and 4. (For each experiment type, we have solved many more instances of the

problem than are described in this and next sections. For a report on all the instances,

please see [5, 6].) All experiments were run on a machine with a 3GHz Intel P4 processor,

1GB RAM, and a 80GB hard drive running Windows XP SP2 and CPLEX/AMPL 9.0.

14



Region
Nation2
Nation1
Orders
Customer
PartSupp
Supplier
Part

Lineitem

396
2,103
2,103

482,877,440
244,883,456

5,830,541
14,188,544

1,193,906
2,147,483,647
Size (bytes)Name

TPC-H Tables

Fig. 3. Sizes of TPC-H tables.

In this section we outline an experimental evaluation of

our approach; in Section 6, we compare our approach with the

state-of-the-art algorithm of [20]. We did all the experiments

on two datasets: (1) on a TPC-H database benchmark [36],

and (2) on real data, using a modified Sloan Digital Sky Sur-

vey (SDSS) dataset [34]. Figure 3 shows the sizes of the stored tables for the TPC-H dataset.

Size estimates for the lattice were obtained by running the queries for all views on the TPC-H

stored data with scale factor of 0.1 and by extrapolating the answer sizes to the sizes of the

data (scale factor of 1) used in the experiments. For the SDSS dataset, whose sizes of the

stored tables are shown in Figure 4, the view sizes were measured on the original database.

The observations we made in our experiments were consistent across the two datasets; there-

fore, in reporting our results we will use examples just from the TPC-H dataset.

Neighbors
Field
Segment
Plate
PhotoObj

SpecObjAll

1,321
919
621

69,035
38,206,539

200,851,705
Size (bytes)Name

SDSS Tables

Fig. 4. Sizes of SDSS tables.

The goal of the experiments that we report in this section

was to obtain optimal solutions and lower bounds on instances

of OV IP and OV IP ′ of realistic sizes. The experimental re-

sults show the following:

– relatively large instances of the view-selection problem, including instances of realistic

sizes, can be solved optimally within reasonable execution time;

– the LP relaxation provides a strong lower bound for the corresponding optimal value;

– regardless of whether we use the number of rows or the number of bytes for measuring

the storage capacity, the IP model that we propose can be used equally easily to find the

15



corresponding optimal solution of the view-selection problem, and in many instances the

respective optimal solutions are not identical;

– in many instances the optimal solution for OV IP ′ is different from that for the corre-

sponding OV IP problem, and the value of the objective function is significantly smaller.

The experimental results that we present in Section 6 further demonstrate that the overall

computational effort required to solve an instance of the problem using our proposed IP

model (i.e., the time required to find an optimal solution for a problem instance) is substan-

tially smaller than that required to solve the same instance using the heuristic procedure

proposed in [20] (i.e., to find a potentially sub-optimal solution for the same instance).

Ins. No. of Maximum Query Capacity No. of No. of No. of

ID attr. no. nodes workload no. rows nodes xj ’s yij ’s

1 7 128 { 5, 7, 17, 69, 81, 88, 112 } 702,709 60 60 60 × 7

2 13 8,192 { 88, 112, 593, 912, 2050, 2368, 6656, 7936 } 1,264,194 4,104 4,104 4,104 × 8

3 15 32,768 { 152, 224, 2848, 3201, 8194, 8832, 26624, 31232 } 1,522,810 17,464 17,464 17,464 × 8

Table 1. Description of three problem instances in the experiments.

5.1 Solving the Problem Instances

For the experiments that we report here we used four TPC-H datasets — raw-data views with

7, 13, 15, and 17 attributes, respectively. (To obtain some raw-data views for the experiments,

we used joins of TPC-H tables.) The numbers of nodes in the view lattices for these datasets

are 128, 8192, 32768, and 131072, respectively. For each raw-data view we constructed the

IP model OV IP for several instances of the problem, each instance with a different query

workload and storage limit b. For each instance, given the view lattice, query workload, and

storage limit, we constructed the input files for the IP model, as described in Section 4. We

16



solved each instance using the software package CPLEX/AMPL, and in each instance on

datasets with 7, 13, and 15 attributes we were able to find an optimal solution. In Table 1

we give detailed characteristics of three different problem instances in our experiments. Each

row of this table corresponds to one instance and gives the view lattice (raw-data view)

and query workload corresponding to that instance. The maximum number of nodes in each

instance is 2K, where K is the number of attributes in the view lattice. Note that in our IP

model we only include those nodes that could be used as potential ancestors for one or more

queries in the query workload for that instance. Thus, the number of nodes we included in

the IP model is in fact smaller than 2K, as stated in the table. For each instance we also

give the number of variables in the corresponding IP model.

We now explain how to read the IDs of queries and views in Table 1 and in the other

tables in this and next sections. Recall that by construction of the view lattice, there is a

one-to-one relationship between aggregate queries/views on the raw-data view and nodes in

the view lattice. We order the grouping attributes of the raw-data view from left to right

and index each node in the lattice using the decimal representation of the list of 1/0 bits

that is constructed as described in Section 4. As the root node of the view lattice always has

exactly the grouping attributes of the raw-data view, the decimal index of the root node is the

decimal encoding of a list that has only 1’s. To illustrate the assignment of indexes to queries

and views in Tables 1 and 2, we give the definition of view 55 and one possible definition of

query 55 (see instance 1 in Table 2) on the list of attributes Orderkey, Suppkey, Partkey,

Returnflag, Linestatus, Shipdate, and Discount in the TPC-H [36] table Lineitem:

17



View55: SELECT Suppkey, Partkey, Linestatus, Shipdate, Discount, SUM(Extendedprice) FROM Lineitem

GROUP BY Suppkey, Partkey, Linestatus, Shipdate, Discount;

Query55: SELECT Suppkey, Partkey, Linestatus, SUM(Extendedprice) FROM Lineitem

WHERE Discount < 0.2 AND Shipdate = ‘2005-08-01’ GROUP BY Suppkey, Partkey, Linestatus;

Recall that each query is associated with a node that has as grouping attributes all

attributes mentioned in the GROUP BY and WHERE clauses of the query. Thus, the attributes

Discount and Shipdate of View55 appear in the WHERE clause in Query55. (The aggregated

attribute Extendedprice is not represented in the view lattice, similarly to [20].)

5.2 Execution Time

2 4 6 8 10 12 14 16

13

14

15

16

17

18

19

20

21

22

 Optimal Cost
 LP lower bound

X10
5

X10
5

 

C
os

t

Storage Limit, b

Fig. 5. Sensitivity analysis and LP

lower bound for the view-7 instance.

The execution time for CPLEX/AMPL to solve the three

instances in Table 1 was 0.12 seconds, 0.45 seconds,

and 3.89 seconds, respectively. The execution time is ex-

pected to grow at an exponential rate with the size of

the IP model; hence we do not expect it to be practi-

cal to solve much larger instances of this IP model using

CPLEX/AMPL. At the same time, the instances that we are able to solve are of realistic sizes

in practice, as exemplified in the three instances described in Table 1. This demonstrates

that we can use a standard IP solver to solve practical instances of our proposed IP model.

Aside from the number of attributes and queries, the size (and execution time) of the IP

model also depends on the number of lattice nodes that are actually included in the model,

i.e., on the number of nodes that are ancestors for one or more workload queries. This

18



number is usually larger if some workload queries are placed relatively low in the lattice.

Hence, the largest IP model in our experiments does not necessarily pertain to the lattice

with the largest number of attributes. In fact, the largest IP model that we were able to solve

optimally was for instance 3 in Table 1, which is on a 15-attribute lattice with 8 queries,

and its execution time was 3.89 seconds. The largest instance of OV P that we were able to

solve, however, pertains to a 17-attribute lattice with 15 randomly generated queries, and its

execution time was only 2.64 seconds, see [5]. The number of nodes included in the former

IP model is 17, 464 (see Table 1), while in the latter is 13, 755. Further, the largest IP model

does not necessarily pertain to the longest execution time, since the latter also depends on

the growth of the search tree in the context of the branch and bound algorithm. In fact, the

longest execution time in our experiments pertains to an instance with a 7-attribute view

lattice and 50 queries (instance 14 in Table 4); its execution time was 13 seconds.

In many instances, while solving the IP model we also observed that the runtime of

CPLEX/AMPL for solving the model is only slightly larger than its runtime for solving

the corresponding LP model. Intuitively, the lower bound obtained via the LP model is a

relatively strong lower bound, hence it leads to quick fathoming of most branches in the

corresponding branch-and-bound tree. In our experiments, every time that CPLEX/AMPL

was not able to solve the IP model within our stated time limit, it was also unable to solve

its LP model. We report on the quality of this lower bound in the next subsection.

Note that the heuristic approach of [20] (see Section 6) was much less effective, in terms

of runtime, than the IP model in solving larger instances of the problem.

19



In our experiments we also studied whether the ancestor-descendant relationships be-

tween workload queries influence the runtime or outcome for our approach. In particular,

we studied problem instances with “single-path” query workloads, that is, with workloads

Q where for each query Q ∈ Q, each remaining query in Q is either a descendant or an

ancestor of Q in the view lattice. It has been observed in [23] that workload queries with

such relationships are likely to occur in query sessions by a single user in data warehouses,

where the user performs roll-ups and drill-downs on the data of interest. In our study, we did

not observe significant differences in the runtime or outcome for our approach depending on

the type of relationships among workload queries. Rather, as mentioned earlier, we observed

that the placement of individual queries in the view lattice has a bigger influence on how

efficiently the problem instance can be solved by our approach.

5.3 Post-Optimality Analysis

2 4 6 8 10 12 14 16

12

14

16

18

20

22

24

 Optimal Cost
 LP lower bound

X10
5

X105

 

C
os

t

Storage Limit, b

Fig. 6. Sensitivity analysis and LP

lower bound for the view-13 instance.

We have performed a post-optimality analysis to observe

the impact of changing the storage limit b on the opti-

mal value of the objective cost function. In realistic view-

selection scenarios, the total space available to store the

materialized views is usually smaller than the total size of

the relations for the input query workload; otherwise we

can precompute all the queries in advance and store them on disk, which would be a globally

optimal solution to the view-selection problem. At the same time, the storage limit has to

be at least as large as the size of the raw-data view [20] (unless we relax the requirement

20



that the raw-data view must be materialized, as in OV IP ′). Hence, to explore the tradeoff

between the amount of available storage space and the resulting total query costs, in our

experiments we varied the value of storage space b between one and five times the size of

the raw-data view. Figures 5 and 6 show the results for two instances of Table 1, with 7 and

13 attributes respectively. In each instance and for each value of b we also solved the corre-

sponding LP problem to obtain the associated lower bound; the lower bounds are also shown

on the graphs. (The step curves in Figures 5 and 6 give the optimal cost value, whereas the

smooth curves show the lower bounds.) Intuitively, the optimal cost changes only when the

value of b increases sufficiently to allow for a different combination of materialized views to

be the optimal solution. Hence, as we increase the value of b, we observe a stepwise decrease

in the optimal cost only at those values of b that would allow sufficient capacity for a different

(better) collection of materialized views. Note that if the storage capacity b is so limited that

we can only store the raw-data view, then each query would be computed directly from that

view; the optimal query cost decreases monotonically as we increase the value of b. Finally,

we observe that the LP lower bound is very close to the optimal value of the IP problem

most of the time: LP relaxation provided a good lower bound in all the instances, and the

ratio of the lower bound to the optimum varied between 0.92 and 0.99.

5.4 Measuring Table Sizes in Rows and Bytes

In another set of experiments we used bytes, rather than rows, to measure view sizes. View

sizes and query costs are typically measured in units of rows (see, e.g., [18, 20, 31]). At the

same time, the units of bytes are the actual measure of storage requirements and of query

21



costs in database-management systems, because the cost of answering a query using a view

is proportional to the number of disk blocks occupied by the view. In some experiments we

expressed in bytes both the storage requirements for the views and the costs of answering

queries using those views. Note that if we state the problem this way for units of bytes, we

do not need to change the formulation (equalities and constraints) of our IP model.

Inst- No. of Root Query Units of rows Units of bytes

ance grouping node workload storage optimal storage optimal

ID attrib. index (query indexes) limit viewset limit viewset

1 7 127 { 55, 59, 125, 126 } 899,418 { 55, 126, 127 } 4,487,825 { 55, 127 }

2 7 127 { 1, 7, 53, 76, 111, 115 } 1,084,770 { 1, 53, 76, 127 } 5,412,766 { 1, 7, 76, 127 }

3 13 8,191 { 1792, 3013, 5392, 6096, 7063 } 900,541 { 1792, 5392, 8191 } 6,889,391 { 5392, 6096, 8191 }

4 13 8,191 { 1185, 5224, 6401, 6672 } 836,835 { 6401, 6672, 8191 } 6,402,022 { 6929, 8191 }

Table 2. Solving the problem for units of rows and bytes.

In our experiments, for some problem instances we obtained identical optimal solutions

when view sizes and query costs are measured in rows and bytes; for other instances, however,

we obtained different results. In Table 2 we report some results where we obtained different

optimal solutions when we used units of rows versus units of bytes. The table shows exper-

imental results for two problem instances on a view lattice with seven grouping attributes

(instance IDs 1 and 2), and for two problem instances on a view lattice with thirteen group-

ing attributes (instance IDs 3 and 4); the raw-data view for each lattice comes from the

TPC-H dataset [36]. For each instance we report the ID of the root node of the lattice; the

root node is the raw-data view, which is (similarly to [20]) always required to be part of the

viewsets we output as solutions for problem instances of OV IP .

22



For each of the four problem instances we did two experiments — one with the storage

limit and all view sizes measured in rows, and the other with the storage limit and view sizes

measured in bytes. For example, the second row of Table 2 gives results for two experiments

for instance ID 2. One experiment was done for the value of storage limit b = 1,084,770 rows,

and the other was done for b = 5,412,766 bytes. (We set the value of b in units of rows and

of bytes in such a manner that the instances are comparable.)

Our main observation on the results in Table 2 is that regardless of the units employed

(rows or bytes), the IP model that we propose can be used to obtain an optimal solution

for the problem within a reasonable amount of execution time (less than 20 seconds for the

instances reported earlier), and using the units of bytes in this context does not impose any

additional computational burden for solving the IP model. Further, the two optimal solutions

obtained when we use these units of measurement are not necessarily identical. As units of

bytes (instead of rows) is a more realistic measure in the context of view selection, we posit

that these units should be employed as the primary units of measurement in problem inputs.

5.5 Solving the OV IP
′ Problem

We now outline our experimental results for the OV IP ′ version of the problem, where the

top raw-data view in a view lattice is not required to be materialized. This version of the

problem can arise in, for instance, data warehouses with form interfaces, where the total

number of parameterized queries that a user can ask is finite and fixed by the interface.

Another application is situations where it may be too expensive to maintain the raw-data

view relation, and it is desirable to explore solutions which do not force that relation to

23



be materialized; these situations include data-integration settings where certain views are

materialized in the mediator to improve query-processing efficiency [19]. (Recall that in

many cases, the top raw-data view in the view lattices of [20] is the result of joining several

base relations in the star schema.) Note that even though in this paper we compare our

approach to the heuristic approach HHRU of [20] (see Section 6), we could not do the

comparison in this setting as the HHRU approach requires that the raw-data view be always

materialized. Clearly the optimal cost for OV IP ′ can be smaller than the optimal cost for

the corresponding OV IP since in OV IP ′ we are not forced to materialize the raw-data view.

We report here some representative problem instances and solutions for a 7-attribute

TPC-H dataset, with relation sizes measured in rows. In Table 3, the value of the storage

limit for each problem instance is the sum of the size of the raw-data view with .67 the

sum of the sizes of the answers to the input queries. By “optimal cost” (columns 6 and 9 in

Table 3) we denote the total cost of evaluating the input queries using our optimal solutions.

Inst- No. of Sto- OV IP OV IP ′

ance workload rage no. of space optimal no. of space optimal

ID queries limit views used cost views used cost

1 5 1,112,258 4 914,119 1,213,067 4 913,664 1,212,612

2 6 370,977 6 364,837 364,837 6 106,220 106,220

3 8 405,781 5 385,411 171,804 6 113,156 158,166

4 8 362,002 8 360,985 360,985 8 92,823 92,823

Table 3. Solving the OV IP and OV IP ′ problems.

For example, in instance 2 in Table 3 we solved the problem for six queries, with IDs

{40, 50, 52, 88, 104, 112}. The storage limit for both the OV IP and OV IP ′ versions of the

problem was set to 370, 977 tuples. The OV IP version of the problem output six views with

24



IDs {40, 50, 52, 127, 104, 112}; the first view (ID 40) is used to answer the first query (ID 40),

the second view (ID 50) is used to answer the second query (ID 50) and so on. Note that

the raw-data view 127 is used to answer query 88. The resulting storage-space requirement

for OV IP is 364, 837 tuples, and the solution cost is also 364, 837. (Here, the storage-space

requirement for the solution is the same as the solution cost because each view is used

to answer a distinct workload query.) In the OV IP ′ version of the problem, we obtained

six views with IDs {40, 50, 52, 120, 104, 112}. The resulting storage-space requirement and

solution cost for OV IP ′ are both 106, 220. (This solution for OV IP ′, while not identical

to the input query workload, is still globally optimal for this problem instance, because the

query-evaluation costs of both solutions are identical on the problem inputs.)

In Table 3 we see that the solution cost is consistently lower for the OV IP ′ version of

the problem (column 9) than for the OV IP version (column 6) — even when the number of

materialized views is greater in the OV IP ′ version (see instance 3 in Table 3, columns 4 and

7). The storage space actually used by the solutions (columns 5 and 8) gives an intuition for

why the costs are the way they are — recall that the cost of answering each workload query

is the size, in rows, of the smallest-size view that can be used to answer the query.

6 Comparing OV IP to the Leading Heuristic Procedure

In order to further evaluate our proposed approach for solving the view-selection problem,

we have experimentally compared the effectiveness of the approach with that of a leading

heuristic procedure in the field. This heuristic procedure, which is based on the principle of

25



greedy construction, was proposed in Harinarayan et al. [20]; throughout this section we refer

to it as procedure HHRU . (See Appendix A in [6] for the details of HHRU .) In this section

we discuss our experimental study and present the findings. Briefly stated, our empirical

observations are as follows:

– The execution time required for solving OV IP is generally smaller than the execution

time required by HHRU ; this implies that we can solve larger instances of the problem

via OV IP than we can via HHRU .

– In some instances the quality of the solution obtained via HHRU is comparable to (either

close to or identical with) the optimal solution obtained via OV IP . However, in other

instances the quality of the solution obtained via HHRU is far from the optimal solution.

We also demonstrate that in general the value of the solution obtained via HHRU can

be significantly larger than the optimal value. To this end we present a family of problem

instances for which the performance ratio for the heuristic procedure (defined as the value

of the solution obtained via HHRU divided by the optimal value) can be arbitrarily large.

6.1 Computational Results and Empirical Observations

To carry out this comparative study, we developed an independent computer program for

the heuristic procedure HHRU . This program is written in C and run on the same machine

that we used for solving the OV IP models, as described in Section 5.

The data sets that we used to carry out the experiments were the same as those described

in the previous section. Initially we used the units of rows to measure view sizes, and all

26



observations that we report in this section pertain to these instances. We ran a similar

experiment in which we used the units of bytes to measure the view sizes. We noticed that

the pattern of our observations did not change in any significant manner, except that when we

used bytes to measure view sizes, in those instances where HHRU did not find the optimal

solution, the difference between the value obtained by HHRU and the optimal value was

slightly larger (at the order of 1% or 2%). In all instances that we report, unless specifically

mentioned otherwise, we set the value of the storage limit to the size of the top raw-data

view plus half the sum of sizes of the answers to the input queries.

On the TPC-H dataset, we solved instances with 7, 13, 15, and 17 attribute lattices. The

results that we present primarily pertain to the 7-attribute lattice. Our observations with the

13- and 15-attribute lattices were similar, except that the execution time was generally larger.

In the case of the 17-attribute lattice, however, for most instances that we attempted to solve

via the IP model the corresponding execution time was larger than the 15-minute time limit

that we imposed, hence we terminated the algorithm prior to its successful completion. Only

in a few such instances the algorithm terminated successfully within the imposed time limit,

and in all these instances it actually terminated very quickly (within 3 seconds). In contrast,

when we attempted to solve a similar set of instances via HHRU we did not succeed to solve

even one such instance, due to its excessive computation time.

Within each lattice we constructed and solved several problem instances using both the

OV IP model and the HHRU procedure. Each instance has a different number of input

queries, and we select the queries either randomly or systemically from among the set of all

27



nodes in the lattice (e.g., among all 128 nodes in the 7-attribute lattice). The set of instances

where we selected the input queries systemically includes the following special cases:

– the input queries have an ancestor-descendant relationship with each other;

– the input queries form a single path, that is, for each query Q in the list of input queries,

each remaining query in the list is either a descendant or an ancestor of Q;

– the list of input queries consists of the entire collection of views (nodes) in the lattice.

Results for nine representative instances on the 7-attribute lattice are reported in Ta-

ble 4. Results for other instances within the lattice of size 7, as well as for the instances

in other lattices, are similar to those presented here (see [6] for experimental results on all

18 instances.) For each instance in Table 4 we report the number of queries in the input

query workload, the execution time required for solving the OV IP model, the execution

time required by the HHRU procedure, the optimal value obtained via the OV IP model,

and the value of the solution obtained via the HHRU procedure. (By “value” we mean the

total cost of evaluating the workload queries using the solution output by either procedure.)

Inst- No. of workload Time (sec.) Time (sec.) Optimal value Heuristic Ratio

ance ID queries OV IP HHRU v(OV IP ) value v(HHRU) v(HHRU)/v(OV IP )

1 2 0.03 40 300,314 300,314 1

2 3 0.02 < 1 565,830 565,830 1

8 9 0.09 11 1,987,860 1,987,864 1.000002

9 10 0.07 2 2,043,735 2,043,735 1

11 15 0.03 1 3,875,900 3,875,903 1.000001

14 50 13 117 11,242,300 11,242,304 1

15 60 0.1 5 13,001,276 13,001,276 1

17 100 0.22 5363 21,006,900 21,006,947 1.000002

18 127 0.23 59188 27,191,700 27,191,700 1

Table 4. Instances on a 7-attribute lattice on the TPC-H dataset.

28



Based on these data we make two observations. First, the execution time of HHRU is

generally larger than the time for the corresponding OV IP model. Except for instance 14, the

execution time for the OV IP model is always less than one second, but the execution time for

HHRU is usually larger and varies in an unpredictable manner. One possible explanation

for this behavior of HHRU is as follows. HHRU selects one materialized view in each

iteration in a greedy manner, and terminates as soon as the total size of all materialized

views becomes close to the storage capacity b. If at an early iteration a relatively large-size

view is selected, HHRU would terminate sooner than in the case where all selected views in

the early iterations are relatively small in size. As a result, the number of input queries has a

relatively low impact on the execution time of HHRU , while the relative size of the storage

capacity and the choice (i.e., size) of the materialized view could play a more significant role.

Our second observation is that for this collection of instances, the quality of the solutions

obtained via the HHRU procedure is relatively good. In 13 of the 18 instances HHRU finds

an optimal solution, while in the remaining 5 instances the value of the solution found by

HHRU is within a fraction of percentage of the optimal value. But this characteristic is

not shared among all instances that we solved. In some instances the quality of the solution

obtained via HHRU was in fact far from optimal, as we discuss later in this section.

With respect to the execution time, we observed a similar behavior when we solved

numerous other instances of the problem, on 7-, 13- or 15-attribute lattices. For instances

on the 13-attribute lattice, the execution time for the corresponding OV IP model ranged

from 0.05 seconds (for an instance with 2 input queries) to 0.59 seconds (for an instance with

29



20 input queries), while the execution time for HHRU on the same instances ranged from

2 seconds (for an instance with 2 input queries) to 265 seconds (for an instance with only

10 input queries). Comparable numbers when we used OV IP to solve randomly generated

instances on the 15-attribute lattice range from 0.05 seconds (for an instance with 2 input

queries) to 3.52 seconds (for an instance with 20 input queries). On the same lattice it took

HHRU 597 seconds to solve an instance with only 2 input queries. The largest instance of

the problem that we solved using OV IP is on a 17-attibute lattice (with 15 input queries),

and it took about 2.64 seconds. In general in our experiments, the overall computational

requirements for solving the OV IP model were significantly less than those for HHRU . As

a result, we are able to solve larger instances of the problem using our proposed IP approach.

With respect to the quality of solutions obtained via HHRU we had mixed observations,

while, of course, the solutions obtained via OV IP were consistently optimal for all instances.

Similar to the results that we presented above, we observed in many other instances that

the value of the solution obtained via HHRU is either identical to the optimal value or very

close to it. But this behavior was not consistent among all instances. Indeed in one instance

on the 7-attribute lattice the value of the solution obtained via HHRU (i.e., v(HHRU)) was

as much as 584 folds larger than the corresponding optimal value (i.e., v(opt)) obtained via

OV IP . See Table 5 for detailed information regarding several instances for the 7-attribute

lattice where the HHRU procedure performed poorly.

Upon further scrutiny we noticed that all instances in which HHRU performed poorly

had a common feature in their input data: All these instances had two or more input queries

30



Query Heuristic solution Optimal solution

Instance workload Capacity Materialized views v(HHRU) value Materialized views v(opt) value Ratio ρ

1 {4,8,16} 300328 {8,16,24} 299828 {4,8,16} 514 583.3

2 {4,8,32} 300327 {8,32,40} 299827 {4,8,32} 513 584.5

3 {8,16,32} 299858 {56} 132 {8,16,32} 16 8.25

Table 5. Some instances on a 7-attribute TPC-H lattice in which HHRU performed poorly; root node 127 is included

in all solutions; “ratio” ρ = v(HHRU)/v(opt).

with a common parent. This led us to construct a general family of instances for which

we can show that HHRU always performs poorly relative to the globally optimal solution

returned by OV IP . We present this family of instances in the next subsection.

6.2 A Family of Instances with Special Structure

We present a family of instances of the view-selection problem for which we can demonstrate

that the quality of the solution returned by the HHRU algorithm would always be highly

suboptimal. Consider a k-attribute lattice and suppose the list of input queries includes two

queries (nodes) where each query is grouped by one attribute only; further let us assume that

these two nodes have a common parent node. We refer to these two queries as queries q1 and

q2, respectively, and to their common parent as query p. Let c1 and c2 denote the sizes of q1

and q2, respectively, and let cp denote the size of their common parent. Also let ctop denote

the size of the top raw-data view. For convenience of presentation we assume that queries q1

and q2 are the only required (input) queries, although this assumption can be easily lifted

with minor adjustments (i.e., the list of input queries can include other queries as well.)

We assume that the values c1, c2, cp, and ctop satisfy the following relationships:

31



2(ctop − cp) > ctop − c1 (5)

2(ctop − cp) > ctop − c2 (6)

cp > c1 + c2 (7)

The storage capacity (limit) is b = ctop + cp.

top view

parent 
view p

input 
query q1

input 
query q2

Fig. 7. Special-structure queries.

Under these restrictions, HHRU would select to materialize the node p before selecting

the node for either q1 or q2, due to Equations (5) and (6). As soon as p is selected, the

storage limit b is reached, hence the procedure terminates. The value of this solution is

v(HHRU) = 2cp, as both q1 and q2 would be evaluated using the materialized view p.

From Equation (7) it follows that the optimal solution in this case is to select nodes q1

and q2, with a total value of v(opt) = (c1 + c2). The corresponding value of the performance

ratio is ρ = v(HHRU)/v(opt) = 2cp/(c1+c2). Note that Equations (5) and (6) are equivalent

to ctop > 2cp − c1 and ctop > 2cp − c2, respectively. This implies that we may select the

values of c1, c2, cp, and ctop in such a manner that they satisfy all above requirements while

making the value of ρ as large as desired. This family of instances demonstrates that the

solution obtained via HHRU may be far from the optimal value (obtained via OV IP ).

7 Conclusions and Future Work

We studied the following view-selection problem: Given a set of queries, a database, and an

upper bound on the amount of disk space that can be used to store materialized views, return

definitions of views that, when materialized in the database, would satisfy the constraints

32



and reduce the evaluation costs of the queries. We focused on practically important range-

aggregate queries on star-schema data warehouses. We described an IP model that allows

us to obtain optimal solutions without having to enumerate all possible candidate solutions.

We presented the formulation of the IP model and introduced an LP relaxation. The results

of our extensive experiments show the practicality of our approach for problem instances of

realistic sizes. We experimentally compared our method with a leading heuristic approach

in the field [20], and provided a theoretical analysis of its worst-case performance.

To solve larger instances, we are investigating techniques for developing an algorithm

that takes advantage of the special structure of the problem. Solving even larger instances of

the problem using exact methods might prove to be altogether too time consuming; thus, we

may have to use a heuristic procedure that would exploit the structure of OV IP (OV IP ′),

such as a Lagrangean heuristic [8, 26]. In addition, we are working on extending our approach

to selecting indexes alongside views, in the setting of [18], and are studying the view- and

index-selection problems under the maintenance-cost constraint on views and indexes.

References

1. F. Afrati and R. Chirkova. Selecting and using views to compute aggregate queries. In Proc. ICDT, 2005.

2. S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J.F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the

computation of multidimensional aggregates. In Proc. VLDB, pages 506–521, 1996.

3. S. Agrawal, S. Chaudhuri, and V.R. Narasayya. Automated selection of materialized views and indexes in SQL

databases. In Proc. VLDB, pages 496–505, 2000.

4. S. Agrawal, S. Chaudhuri, and V.R. Narasayya. Materialized view and index selection tool for Microsoft SQL

Server 2000. In Proc. ACM SIGMOD, 2001.

33



5. Z. Asgharzadeh Talebi, R. Chirkova, and Y. Fathi. Experimental study of an IP model for the view selection

problem. Technical Report TR-2005-34, NCSU, July 2005.

6. Z. Asgharzadeh Talebi, R. Chirkova, and Y. Fathi. A study of a formal model for view

selection for aggregate queries. Technical Report TR-2006-2, NCSU, 2006. Available from

http://dbgroup.ncsu.edu/rychirko/Papers/techReport010506.pdf.

7. E. Baralis, S. Paraboschi, and E. Teniente. Materialized view selection in a multidimensional database. In Proc.

VLDB, 1997.

8. J. Barcelo and J. Casanovas. A heuristic Lagrangean algorithm for the capacitated plant location problem.

European Journal of Operations Research, 15:212–226, 1984.

9. S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. SIGMOD Record, 26:65–74,

1997.

10. S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries with materialized views. In

Proc. ICDE, pages 190–200, 1995.

11. S. Chaudhuri and V.R. Narasayya. AutoAdmin ’What-if’ index analysis utility. In Proc. ACM SIGMOD, 1998.

12. R. Chirkova, A.Y. Halevy, and D. Suciu. A formal perspective on the view selection problem. VLDB Journal,

11(3):216–237, 2002.

13. S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggregate queries using views. In Proc. PODS, 1999.

14. G. Cornuejols, G.L. Nemhauser, and L.A. Wolsey. The uncapacitated facility location problem. Technical Report

605, Operations Research and Industrial Engineering, Cornell University, 1984.

15. R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for Mathematical Programming. Boyd

and Fraser, Danvers, Mass., 2002.

16. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, and M. Venkatrao. Data cube: A relational

aggregation operator generalizing Group-by, Cross-Tab, and Sub Totals. Data Mining and Knowledge Discovery,

1(1):29–53, 1997.

17. A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data warehousing environments. In

Proc. VLDB, pages 358–369, 1995.

18. H. Gupta, V. Harinarayan, A. Rajaraman, and J.D. Ullman. Index selection for OLAP. In Proc. ICDE, 1997.

19. Alon Y. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–294, 2001.

20. V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes efficiently. In Proc. SIGMOD, 1996.

34



21. IBM. Autonomic Computing. http://www.research.ibm.com/autonomic/.

22. R. Kimball and M. Ross. The Data Warehouse Toolkit (second edition). Wiley Computer Publishing, 2002.

23. Y. Kotidis and N. Roussopoulos. DynaMat: A dynamic view management system for data warehouses. In Proc.

SIGMOD, 1999.

24. J. Krarup and P.M. Pruzan. The simple plant location problem: Survey and synthesis. European Journal of

Operations Research, 12:36–81, 1983.

25. J. Li, Z. Asgharzadeh Talebi, R. Chirkova, and Y. Fathi. A formal model for the problem of view selection for

aggregate queries. In Proc. ADBIS, 2005.

26. John M. Mulvey and Harlan P. Crowder. Cluster analysis: An application of lagrangian relaxation. Management

Science, 25:329–340, 1979.

27. R. G. Parker and R.L. Rardin. Discrete Optimization. Academic Press, 1988.

28. Microsoft Research. AutoAdmin Project. http://research.microsoft.com/dmx/autoadmin/default.asp.

29. ILOG S.A. CPLEX 7.0 software package. http://www.ilog.com, 2000.

30. Dennis Shasha and Philippe Bonnet. Database Tuning: Principles, Experiments, and Troubleshooting Techniques.

Morgan Kaufmann, 2002.

31. A. Shukla, P. Deshpande, and J.F. Naughton. Materialized view selection for multidimensional datasets. In Proc.

VLDB, pages 488–499, 1998.

32. K. Spielberg. Algorithms for the simple plant location problem with some side constraints. Operations Research,

17:85–111, 1969.

33. D. Srivastava, S. Dar, H.V. Jagadish, and A.Y. Levy. Answering queries with aggregation using views. In Proc.

VLDB, pages 318–329, 1996.

34. A.S. Szalay, J. Gray, A.R. Thakar, P.Z. Kunszt, T. Malik, J. Raddick, C. Stoughton, and J. vandenBerg. The

SDSS SkyServer - Public access to the Sloan Digital Sky Server data. Technical Report MSR-TR-2001-104,

Microsoft Research, Microsoft Corporation, 2002.

35. D. Theodoratos and T. Sellis. Data warehouse configuration. In Proc. VLDB, 1997.

36. TPC-H:. TPC Benchmark H (Decision Support). http://www.tpc.org/tpch/spec/tpch2.1.0.pdf.

37. Jennifer Widom. Research problems in data warehousing. In Proc. CIKM, 1995.

38. J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design in data warehousing environment.

In Proc. VLDB, pages 136–145, 1997.

35


