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Abstract
Recently, the high-performance computing community has realized
that power is a performance-limiting factor. One reason for this
is that supercomputing centers have limited power capacity and
machines are starting to hit that limit. In addition, the cost of
energy has become increasingly significant, and the heat produced
by higher-energy components tends to reduce their reliability. One
way to reduce power (and therefore energy) requirements is to use
high-performance cluster nodes that are frequency- and voltage-
scalable (e.g., AMD-64 processors).

The problem we address in this paper is: given a target program,
a power-scalable cluster, and an upper limit for energy consump-
tion, choose a schedule (number of nodes and CPU frequency) that
simultaneously (1) satisfies an external upper limit for energy con-
sumption and (2) minimizes execution time. There are too many
schedules for an exhaustive search. Therefore, we find a sched-
ule through a novel combination of performance modeling, perfor-
mance prediction, and program execution. Using our technique, we
are able to find a near-optimal schedule for all of our benchmarks
in just a handful of partial program executions.

Categories and Subject Descriptors D.4.8 [Performance]: Mod-
eling and Prediction

General Terms Measurement, Experimentation

Keywords Power, Energy, Modeling, Prediction, MPI

1. Introduction
Recently, power-aware computing has gained traction in the high-
performance computing (HPC) community. There are two primary
reasons for this. First, decreasing power consumption leads to
greater reliability (temperature decreases and mean time between
failures increases) and maintainability. It also has significant sec-
ondary benefits because of the corresponding reduction in heat
generated, such as lower cooling costs and increased machine den-
sity. Even relatively new centers that house large clusters are having
trouble staying within power and cooling constraints [27]. Second,
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because HPC applications rarely achieve peak efficiency, much of
the power that is used is actually wasted.

As a result, low-power, high-performance clusters, such as
BlueGene/L [1], have been developed to satisfy the ever-increasing
demand for energy, while maintaining good performance. Blue
Gene/L and similar systems solve this problem by utilizing low-
power processors. However, since the processors are only designed
to use one voltage, the system uses the same amount of energy un-
der load, regardless of the characteristics of that load. Our previous
work has shown this can be inefficient for some applications [14].

Our research focuses on using power-scalable clusters, which
utilize processors that are each frequency and voltage scalable—
i.e., their clock speed and therefore power consumption can be
changed dynamically. In this paper, we refer to the different avail-
able frequencies as energy gears. Such clusters can potentially de-
liver good energy efficiency because an increase in CPU frequency
generally results in a smaller increase in application performance.
The reason for this is that the CPU is frequently not the bottleneck
resource.

However, while the CPU frequency of a node (in our case, a
node is a single processor) can be scaled down to save energy,
such scaling primarily saves CPU energy. A much greater savings
is possible by simply not using a node; i.e., using only a subset of
the available nodes. Hence, given a power-scalable cluster, there
are two primary ways to save energy: (1) power down a subset
of the nodes, and (2) on the nodes that are actively participating
in the computation, scale down the CPU frequency. This paper
synthesizes these two approaches.

The problem we address in this paper is: given a target pro-
gram, power-scalable cluster, and an upper limit for energy con-
sumption, choose a schedule that simultaneously satisfies the en-
ergy limit and minimizes execution time. In this paper the term
schedule means a tuple whose first element specifies the number of
nodes to be used; the remaining elements indicate, for each compu-
tational phase, the CPU frequency (gear) in which to execute that
phase. Because determining the optimal schedule requires (in the
worst case) executing all possible schedules, the problem is expo-
nential in the number of phases. Hence, the goal of this paper is to
determine a near-optimal schedule, while only (partially) executing
a given program a small number of times.

The approach we propose uses a combination of performance
modeling and performance prediction, backed up by actual pro-
gram execution. First, we create models for both execution time and
energy consumption. Second, we create initial estimates of the key
parameters of the model by executing the program a small num-
ber of times and subsequently performing regressions. Then, we
repeatedly execute the following steps until our algorithm believes
it has found a satisfactory schedule: (1) use the model to create pre-
dictions for each possible schedule, (2) execute a few iterations of
the program using the best predicted schedule, and (3) update the



estimates of the key parameters using the additional information
collected during the executed iterations.

For evaluation, we used a combination of the NAS parallel
benchmarks and several synthetic benchmarks. This allows us to
give both a real-world evaluation and an exploration of the bounds
of the problem space. Using our technique, we are able to find a
near-optimal solution in just a handful of partial program execu-
tions. For example, for the NAS FT benchmark, by using 11 execu-
tions (of just a few iterations), we discovered a schedule that results
in a completion time that is within 2.2% of the optimal. An exhaus-
tive search would have required execution of over 100 schedules.
In addition, the results are promising not just for FT, but also for the
other NAS benchmarks and a set of synthetic programs that cover
a range of different application characteristics in terms of parallel
speedup and memory pressure.

The rest of this paper is organized as follows. Section 2 de-
scribes related work. Section 3 discusses our model and algorithm
for finding an effective schedule. Section 4 discusses the measured
results on our power-scalable cluster. Finally, Section 5 summarizes
and describes future work.

2. Related Work
This section describes some of the closely related research. It di-
vides the related work into two broad categories: performance pre-
diction and tuning and energy-related research in server/desktop
and mobile systems.

2.1 Performance Prediction and Tuning

First, underlying this work is the problem of understanding parallel
scalability. The work in [32] focuses on finding MPI operations
that cause scalability problems. This is done though both machine
learning and statistical analysis. A model for understanding the
scalability of a class of task and data parallel programs is presented
in [31].

Second, several researchers have addressed various parallel pro-
gramming issues by (1) executing programs, (2) taking measure-
ments, and then (3) analyzing the results. Perhaps the best known
of these is ATLAS [37], which uses the Automated Empirical Op-
timization of Software technique. Essentially, a specialized library
of linear algebra functions is created by executing the library func-
tions over several days, with many different compile-time options.
The ADAPT system took a similar approach [34]. The ATLAS
technique was generalized to other high-performance computing
kernels in [38]. Other related techniques include executing a few it-
erations of a high-performance application to predict performance
across different platforms [39] and executing MPI routines on each
new platform to generate the most efficient implementation [11].

This paper borrows several of these general ideas, but differs
in several ways. First, the number of executions that our technique
can make is limited, because we are not creating a library, but rather
running a program that the user wishes to complete as soon as pos-
sible. Second, we address the need to understand program scalabil-
ity by running a (small) set of iterations of the program and devel-
oping time and energy models that encompass both computation
and communication.

2.2 Energy-Related Research

Several people have investigated saving energy in server systems.
In sites such as hosting centers where there is a sufficiently large
number of machines, energy management may become an issue;
see [5, 26, 10] for examples of this using commercial workloads
and web servers. Such work shows that power and energy man-
agement are critical for commercial workloads, especially web
servers [22]. Additional approaches have been taken to include dy-
namic voltage scaling (DVS) and request batching [9]. The work

in [29] applies real-time techniques to web servers in order to con-
serve energy while maintaining quality of service.

Our project differs from most prior research because it fo-
cuses on HPC applications and installations, rather than commer-
cial ones. An HPC installation exists to speed up an application,
which is often highly regular and predictable. One approach is to
save energy in an application-specific way; the work in [6] used
this approach for a parallel sparse matrix application. Another
HPC effort that addresses the memory bottleneck is given in [17].
Also, Cameron et al. [3] use a variety of different DVS scheduling
strategies (for example, both with and without application-specific
knowledge) to save energy without significantly increasing execu-
tion time. None of this work, however, considers finding a schedule.

In server farms, disk energy consumption is also significant;
several have studied reducing disk energy (e.g., [4, 41, 16, 25]). In
this paper, we do not consider disk energy, as it is relatively minor
compared to CPU energy, especially if scientific programs operate
primarily in core.

There are also a few high-performance computing clusters de-
signed with energy in mind. One is BlueGene/L [1], which uses
a “system on a chip” to reduce energy. Another is Green Destiny
[35], which uses low-power Transmeta nodes. A related approach
is the Orion Multisystem machines [24], though these are targeted
at desktop users. Unlike our approach, these machines sacrifice per-
formance in order to save energy by using less powerful processors.

While not our focus in this work, there is also a large body
of work in saving energy in mobile systems. At the system level,
there is work in trying to make the OS energy-aware through mak-
ing energy a first-class resource [8, 7]. One important avenue of
application-level research on mobile devices focuses on collabo-
ration with the OS [23, 36, 40, 12]. Our approach differs in that
we are concerned with saving energy in HPC applications, where
execution time is the primary consideration.

Our prior work is threefold: an evaluation-based study that fo-
cused on exploring the energy/time tradeoff in the NAS suite [14],
development of an algorithm for switching CPU frequency (gear)
dynamically between phases [13], and leveraging load imbalance
to save energy [20].

In [13], we establish the usefulness of varying the energy gear
per phase and providing an algorithm for choosing the gear assign-
ment. This paper extends this idea by allowing the number of nodes
to vary, which complicates the problem considerably.

Finally, in our work we divide programs into one or more
computational phases. There has been a large body of work in phase
partitioning. Static techniques, such as [21, 28], appeared in the
literature first. More recently, dynamic techniques have been used
[19, 30].

3. Implementation
This section describes our implementation. The inputs to our sys-
tem are a program divided into � phases, an energy limit, and a
maximum number of available nodes. Our system will output a
(� � �)-tuple, or schedule, the first element of which is the num-
ber of nodes to use, and the remainder the CPU frequency (energy
gear) selected for each phase. To determine a schedule, we use a
combination of performance modeling and performance prediction,
backed up by small number of program executions (where each ex-
ecution is only a handful of iterations).

Our system takes as input a program divided into one or more
phases. For this paper, we used a straightforward phase division
technique, which applies primarily to iterative and predictable HPC
applications. We first obtain a trace of the application in question
(using the fastest gear on each node—highest frequency-voltage
setting). The division into phases is done by examining the trace
and using an ad hoc approach that conforms to the following
heuristics. First, any MPI operation demarcates a block boundary.



Second, if the memory pressure changes abruptly, a block boundary
occurs at this point. (Memory pressure is determined by inspecting
performance counters; for this paper we look at operations and
cache misses.) We have found in previous work that multiple phases
are necessary to obtain good time/energy tradeoffs in several of the
NAS benchmarks. For example, in MG, by using multiple phases
we were able to save an additional 11% energy compared to using
a single phase (and therefore only a single gear). Further details are
available in [13] and in Section 4.

This section first describes our assumptions in this paper. Then,
it presents our time and energy models. Next, we give our algorithm
for finding an effective schedule. Finally, we discuss specific details
of our algorithm.

3.1 Assumptions

First, the effectiveness of our system relies on having valid parti-
tionings of phases. We consider the general phase division problem
to be orthogonal to our research, but can leverage off of a large
amount of related work in the area (described in Section 2).

Second, we assume that we are given an maximum (total) en-
ergy constraint (by the user or cluster administrator). While not
currently policy on large supercomputers, based on others’ expe-
rience with large clusters in even modern data centers [27], we can
envision a situation in the near future where the cost of energy is
charged at least partially to the user. This constraint may be im-
posed for many reasons; for example, the aggregate mean time to
failure of large clusters has fallen into the range of minutes [18].
The Arrhenius equation states that a ��� reduction in operating
temperature will result in a doubling of expected hardware life-
time [33]. Because energy consumed translates directly into heat
dissipated, reducing energy consumption should extend hardware
lifetimes.

Third, we assume no load imbalance. In future work we will ad-
dress load imbalance, but the programs in the NAS suite generally
balance the computation between nodes fairly evenly. Extending
the model described in the next subsection to handle load imbal-
ance is a nontrivial task. Finally, we assume that program behavior
between iterations is consistent, so that it is possible to predict fu-
ture program behavior by examining current behavior.

3.2 Model

In this section we describe our models of execution time and con-
sumed energy. Later, we discuss the algorithm we use to predict
time and energy in as few iterations as possible.

In our previous work [14], we noted that (1) computation time
and communication time tend to scale differently as the number
of nodes increases, and (2) the power consumed by the system is
different when computing than when communicating. Therefore,
our model separates execution time and consumed energy into their
computation and communication components:

� � �� � ��

� � ���� � ����

where �� is computation time and �� is the communication time
(which we assume is primarily blocking), while �� and �� are
the corresponding average power consumption levels. Below we
show how to model time and energy as a function of the energy
gear and the number of nodes; that is, the model produces the
functions � ��� �� and ���� ��. Given this model, one can estimate
the time and energy for all values of � and � with only a handful
of empirical measurements. The four individual terms in the model
are discussed below.

Computation time To determine the effect the number of nodes
has on �� , we make use of Amdahl’s law. The computation com-
ponent of a program can be decomposed into parallelizable and

inherently serial fractions (�� and ����, respectively). Given ��,
computation time in the fastest gear (gear 0) as a function of � is:

����� �� � ����� ���
��
�

� �� ���	

Now we address the effect the number of gears has on �� . Let

� � ����� �������� �� be the slowdown of the computation at
gear � relative to top gear. Our data indicates that 
� is independent
of �. Putting it together,

����� �� � 
������ ���
��
�

� �� ���	

Both �� and 
� are determined experimentally.

Communication time We assume that any time spent in blocking
communication calls is unaffected by gear because the CPU is
mostly idle. In other words, ����� �� � ����� �� � �. Using
measurements of �� on a handful of different numbers of nodes,
we develop an equation to extrapolate ����� �� for all � (described
in the next subsection).

Computation power The model makes two assumptions regard-
ing power consumed during computation. First, it leverages the as-
sumption of no load imbalance to conclude that each node uses
the same amount of power, i.e., ����� �� � ����� �� � �. Next,
it assumes that per-node power consumption is independent of the
total number of nodes. Our previous work has found this is gener-
ally true [14]. The exception to this rule occurs when changing the
number of nodes causes a material change in the application. One
example of this is when an application is out of core on � nodes
but in core on � nodes (�  � ). (The CG benchmark has this
property; see Section 4 for details). In any case, what is needed to
find ����� �� is simply measurements of ����� �� � �.

Communication power In order to determine ����� ��, we mea-
sure ����� ��, and then, similar to the assumption that communi-
cation time is independent of gear, we assume that power while
communicating is also independent, i.e., ����� �� � ����� �� � �.
Therefore, ����� �� � ����� �� � �.

While the above equations are relatively straightforward, there
are two situations where they are not fully precise. First, we as-
sumed that ����� �� and ����� �� are independent of the gear �.
It turns out that they are actually affected by the gear. We further
discuss how we extend the model to improve its accuracy in Sec-
tion 3.4.

Second, in our earlier work [14], we discussed the effects of re-
ducible time, on execution time when changing gears. Reducible
time is defined as the time between an send/receive or send/wait
pair. It is important because when using a lower gears, computation
speed slows but communication speed remains relatively constant.
Any reducible work increase, therefore, will result in a correspond-
ing blocked time (����� ��) decrease (unless ����� �� reaches
zero).

We analyzed program traces to determine the amount of re-
ducible time for the programs considered for these experiments and
found that all but one of them had essentially no reducible time.1

Thus, we elected not to consider the effects of reducible time in this
paper, but we will consider this in future work.

3.3 Algorithm

Broadly speaking, our algorithm repeatedly executes the program
for a handful of iterations. On each run, we measure time and
energy as well as refine our estimates for a subset of the dependent
variables (��, 
�, and ����� ��) in our model. This improves our

1 The NAS SP benchmark had 6s of reducible time out of 60s of computa-
tion time. Further inspection revealed that any prediction inaccuracy due to
reducible time was at most 1s.



overall estimate of execution time and energy consumption. This
section provides details of our algorithm.

3.3.1 Step 1: Initialize

The first step is to determine initial values for ����� ��, ��, and

�. The minimum number of runs to do this is � � �. The first
� runs are required to determine ����� �� for each energy gear.
This is done by executing the program on one node and dividing
the observed energy consumption by the execution time. One node
is used so that communication does not affect our measurements.
In other words, we are only measuring computation power. Note
that power is not constant over different applications, because their
different characteristics lead to different use of the machine.

Combined with the one-node, top gear run, we can create accu-
rate estimates for ����� ��, ����� ��, and 
�, with just two addi-
tional runs. These are performed in top gear. To estimate ����� ��,
we use a regression on measured values for ��. Our previous work
has shown that for programs without scaled speedup, �� scales lin-
early with the number of nodes. Therefore, a linear regression using
these values is an accurate way to predict their values at unknown
numbers of nodes.

To estimate ����� ��, we first note that communication time
may scale in different ways depending on the implementation of a
specific program. In most cases, communication time scales either
logarithmically, linearly, or quadratically. Knowing which of these
models best fits the communication of a particular program requires
three runs. With the observed data, we fit the data to each of the
three functions, and select the function that gives the lowest average
error.

We found that the best way to predict 
� was to use micro-ops
per data cache miss, OPM. Our previous work shows that OPM cor-
relates well with memory pressure [15]. Through experimentation,
we found that a logarithmic function best fits the relation between
OPM and 
�. We used this to estimate 
� for unknown numbers of
nodes. The reason we use OPM to indirectly measure 
� is because

� is not constant across numbers of nodes; indeed, cache perfor-
mance (which is directly related to how much pressure is exerted
on memory) often improves when nodes are added.

3.3.2 Step 2: Predict and sort all schedules

Because the time taken to predict execution time and consumed
energy (as opposed to executing the program) for a given schedule
is negligible, we make predictions for every possible schedule. We
divide the schedules into two lists: those predicted to satisfy the
energy constraint (denoted satisfying), and the remainder (denoted
non-satisfying). Because the power meter has a limited precision
(see Section 4.2 for details), a schedule is deemed satisfying if the
energy consumed is smaller than the difference of the limit and the
error.

Each list is then sorted: the satisfying list in order of increasing
execution time, and the non-satisfying list in order of increasing
energy. In other words, the first schedule on the satisfying list is the
one predicted to be fastest within the energy constraint. Further-
more, the first schedule on the non-satisfying list is predicted to be
closest to satisfying the energy constraint.

3.3.3 Step 3: Execute schedule, update estimates

We then select the first schedule on the satisfying list. In this step
we do not ever select a test that was previously executed (see
below). We execute this schedule for a few iterations (5 in all of our
tests). The results are compared to the energy constraint, and if it
indeed is below the constraint, we perform validation tests (step 4).
Otherwise, we update our estimates of �� and 
� (using regression
as in step 1) and return to step 2.

Run Schedule Time Energy
Predicted Actual Predicted Actual

�� (1, [0, 0]) — 267 — 28.0
�� (4, [0, 0]) — 100 — 38.5
�� (9, [0, 0]) — 64 — 53.1
1 (4, [2,1]) 108 109 36.9 36.2
2 (4, [1,1]) 107 101 37.6 35.1
G (4, [0,1]) 107 110 37.9 37.1
N (9, [4,4]) 73.2 68.4 47.1 42.5
S (4, [1,1]) 107 101 37.6 35.1

Table 1. An illustration of our algorithm on SP with an energy
limit of 37 kJ. Boldface entries satisfy the energy limit.

3.3.4 Step 4: Validate schedule

Once we have found a schedule that satisfies the energy constraint,
we wish to ensure that the proposed solution is close to the best
possible schedule. To do this, we run two further tests: one which
differs in gear selection, and the other differs in the number of
nodes.

To ensure we are using the right gear, we perform what we call
gear validation. We consider a schedule using the same number
of nodes, but with at least one phase using a faster gear. To do
this we use the first such schedule on the non-satisfying list. If this
schedule does not satisfy the constraint, it means that any schedule
using strictly faster gears and the same number of nodes will fail to
satisfy the energy constraint.

This schedule is then executed for a few iterations. If this sched-
ule does not satisfy the constraint, it means that any schedule using
strictly faster gears and the same number of nodes will fail to satisfy
the energy constraint. If the test does satisfy the energy constraint,
then we go to step 2 and regenerate new estimates for all schedules.
Otherwise, we proceed to node validation, which is similar in spirit
to gear validation. Specifically, we examine the non-satisfying list
for schedules that use a larger number of nodes than the current
schedule.2 Of those schedules, we choose the one that is predicted
to use the least energy and executes faster than the candidate sched-
ule. This schedule is then executed for a few iterations. If it does
not satisfy the energy constraint, it is unlikely that any solution us-
ing more nodes will satisfy the energy constraint or execute in less
time.

At this point we have shown that there is likely no better legal
schedule if the number of gears or nodes is changed, so our algo-
rithm terminates and returns the candidate schedule. Presumably
the user will now execute the entire program using this schedule.

On the other hand, if the node validation test does satisfy the
constraint, then, as before, it means the candidate solution may be
able to be improved with better estimates, and so we return to step
2.

It is possible that a validation test may be skipped: this occurs
if either (1) we are using top gear for all phases (so there is no
schedule with a faster gear), or (2) we are using the maximum
number of nodes (so there is no schedule with more nodes). In
either case, that validation test is skipped. In addition, a given
schedule is only run once during program execution. We store the
results of every execution so that should a schedule be selected
twice, the results of the first run will be used.

3.3.5 Example

We illustrate our algorithm for the specific case of SP with an
energy limit of 37kJ. Table 1 shows the steps carried out. In the

2 The NAS programs do not run on an arbitrary number of nodes, so the
closest higher number of nodes may not be simply adding 1 to the current
number.



table, the entries in the Run column are one of the following: ��,
��, and �� are the initialization tests, an S denotes the accepted
schedule, G is a gear validation test, N is a node validation test,
and an integer denotes an ordinary test. If the actual energy value is
below the limit, then that entry is in bold. A schedule is described
by (� , [��, ��, 	 	 	]), where � is the number of nodes and �� is the
gear to be used for phase �.

First, we run the initialization tests on different numbers of
nodes (�� through ��). (For brevity, we omit the gear-based ini-
tialization tests.) Then, we predict energy consumption and exe-
cution time for all schedules. Based on the predictions, we select
(4, [2,1]) as the the fastest schedule predicted to satisfy the energy
constraint. Then, we execute the program using this schedule for a
few iterations and collect the energy consumed. Because it is below
the energy limit, we attempt the gear validation test, which uses the
schedule (4, [1, 1]). This is the schedule that uses the same number
of nodes, but at least one faster gear, and is predicted to be faster
than (4, [2, 1]) but to consume more energy than the limit. After ex-
ecution of this test, we note that, contrary to our predictions, (4, [1,
1]) did satisfy the energy limit. Therefore we refine our estimates,
return to step 2, and once again predict all schedules.

This time, the best predicted schedule is (4, [1, 1]) and, because
it has already been evaluated, we begin gear validation again. The
schedule (4, [0, 1]) is selected and executed. The result is that it
does not satisfy the energy limit. Thus gear validation is successful,
and we progress to node validation. For this, we select the schedule
(9, [4, 4]). This is the schedule with more nodes that is predicted
to be closest to, but not satisfying, the limit. Execution of this
schedule showed that it did not satisfy the limit, so node validation
is successful. This means that the algorithm terminates, returning
(4, [1, 1]) as the selected schedule.

3.4 Implementation Details

This section describes some specific details of our implementation.
First, we discuss how we collect data. Then we describe how we
estimate ����� ��.

3.4.1 Data Collection

To initialize the dependent variables (��, 
�, ����� ��) of the
model, it is necessary to gather data from program executions. To
do so, we utilize a combination of MPI call profiling, hardware per-
formance counters, and inline multimeters. As described above, we
need to collect ����� ��, ����� ��, and OPM in order to estimate
the above dependent variables.

To do this, we use use our MPI-JACK tool, which intercepts
MPI calls and allows for arbitrary code to be inserted before and
after execution of the call. This was used to gather the duration of
each MPI call as well as to inspect the performance counters to
obtain micro-operations and cache misses (to determine OPM).

We determine energy consumption by placing a WattsUp
wattmeter between the system power supply and the wall; then,
Power readings are taken from the multimeter every second. The
values are integrated over time to yield energy consumption.

3.4.2 Generalizing ����� ��

Earlier, we assumed that any time spent blocking on communi-
cation calls (e.g., MPI Allgather and MPI Recv) consumes
constant power. Separate results [15] have showed that the time is
largely (but not completely) independent of gear. Therefore, we do
not concern ourselves with a generalization of ����� ��.

However, we found through experiments that the power con-
sumed blocking on communication calls could be significantly
more than idle power—and that it varied with gear. This is be-
cause there is a computation component of communication time
(e.g., copying between an MPI buffer and a user buffer) that may
be significant. So, it is inaccurate to consider power due to commu-

nication for blocking calls to be identical to power consumed when
the system is idle. Because different MPI calls have different com-
putation/communication ratios, we need to determine power due to
communication separately for each call.

To address this issue, on any multiple-node run we use MPI-
JACK to log all message events. We record the computation
portion of communication routines as well as the energy con-
sumed. ����� �� is determined experimentally. Then, we deter-
mine ����� �� at top gear by first using:

����� �� �
���� ����� ������� ��

����� ��

To calculate ����� �� for an arbitrary gear �, we need to know
the percentage difference between CPU power consumption for all
�. Because ����� �� represents the combination of CPU and sys-
tem power, it is necessary to record system-only power by taking
readings when idle. Once system power has been measured, the
CPU-only power is measured by subtracting the idle power from
����� ��. Then, ����� �� can then be computed by multiplying
����� �� by the CPU power at gear � divided by CPU power at top
gear.

4. Performance
This section reports our performance results. For all experiments,
we used a 10-node AMD Athlon-64 cluster connected by a 100Mbps
network. Each node has 1 GB of main memory. The Athlon-64
CPU supports energy gears of 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, and 0.8
GHz, but the 1.0GHz gear was not reliable and so was not used.
Each node runs the Fedora Core 2 OS, and gear shifting was done
through the sysfs interface. All applications were compiled with
either gcc or the Intel Fortran compiler, using the -O2 optimiza-
tion flag. We controlled the entire cluster, so all experiments were
run when the only other processes on the machines were daemons.

We first describe the overall results of running the NAS suite
[2] on our system. Then we present the results of more detailed
examinations of the behavior of both our algorithm and model.

4.1 NAS Parallel Benchmarks

Table 2 displays the results of running the NAS programs on our
system. For each program, we selected an energy limit as follows.
First, we measured the energy consumed running at top gear (de-
noted as gear 0) for all phases, using 8 nodes (or 9, for those bench-
marks that require it). Then, we subtracted 10% from this amount
of energy. This results in a different energy limit for each applica-
tion because the applications execute for different lengths of time.

In the table, we first show the number of executions incurred
by our algorithm (labeled Necessary). Next, we show the number
of schedules that could be selected by an optimal algorithm (Opti-
mal). Any other schedule would never be chosen by an optimal al-
gorithm, because it is dominated by a schedule that takes less time
and uses less energy. (There is exactly one optimal schedule for any
given energy limit, but the optimal schedule may change if the limit
changes.) The next column shows number of executions needed for
an exhaustive search (Exhaustive). Finally, and most importantly,
we show the time difference from optimal. The optimal solution
was obtained through exhaustive search; of course, in general this
is not feasible. Recall that each “execution” is not an execution of
the entire program, but rather a small number of iterations (5 in the
NAS programs).

The table shows that we are able to produce an optimal or near-
optimal schedule in all cases in which a schedule that satisfies the
energy limit exists. Furthermore, in all cases the number of execu-
tions using our system was small. In particular, BT was the program
in the NAS suite that required the largest number of executions—
and it only required 16, 8 of which are required initialization runs.
Considering that running all schedule permutations requires 108



Program Energy Limit (kJ) Executions Chosen Schedule Time Difference
Necessary Optimal Exhaustive

BT 65 16 18 108 (9, [1,1]) 0.0%
CG 20 12 7 24 (4, [1]) 0.0%
EP 45 11 4 24 None —
FT 72 11 47 144 (8, [4,4]) 2.2%
IS 33 14 16 24 (8, [2]) 0.0%
LU 23 15 36 864 (8, [2,4,2]) 6.1%
MG 21 13 29 144 (8, [2,3]) 2.0%
SP 48 16 15 108 (9, [2,1]) 0.0%

Table 2. Results of running our algorithm on NAS parallel benchmarks. The chosen energy limit is 10% less than the energy consumed at
top gear for all phases, using 8 nodes (or 9, for BT and SP). The time difference is that between executing the program using our chosen
schedule and executing the optimal schedule. Note that the “necessary” executions include eight executions required for initialization.

runs (� � 	�, as there are three possible node configurations, six
gears, and two phases), this is reasonable—and is the worst case
over the entire NAS suite in terms of the number of runs. Note that
LU requires 864 runs to complete all permutations, and our system
only needs 15 to arrive at a schedule just 6.1% from optimal.

In fact, in some cases we achieved the minimum number of
runs: 8 initialization runs and 3 subsequent runs (one prediction and
then up to two validation tests). This was the case for EP and FT. It
is worth noting that the reason that BT required the most executions
is because the energy constraint was in a region containing many
clustered schedules (i.e., both their time and energy are similar).
Based on the observed accuracy of the BT predictions, it is likely
that fewer executions would be needed with a different constraint
(we verified this with additional experiments). More details on the
effect of the energy limit are given in Section 4.2.

We emphasize that the number of initialization runs remains
constant as both the number of available nodes and the number
of program phases increase—meaning that the initialization runs
will be negligible on large clusters executing large-scale programs.
Additionally, if the energy limit is later changed, the initialization
runs need not be repeated.

Next, we examine the quality of the chosen schedule. We deem
our system to have chosen a high-quality schedule if it results in an
execution time that is close to that of the optimal schedule.

Table 2 shows that our system does indeed select a high-quality
schedule in all cases. For BT, CG, IS, and SP, our algorithm se-
lected the optimal schedule. In the case of FT, the chosen sched-
ule produced an execution time that was within 2% of the optimal
schedule. The reason we did not select the best schedule is because
there are many schedules “near” the chosen schedule in the prob-
lem space. In general, this makes choosing the optimal schedule
challenging; on the other hand, a suboptimal choice is likely to re-
sult in an execution time close to the optimal. In the case of LU, we
chose the schedule (8, [2,4,2]). Nevertheless, this is our worst case
and is only 6% from optimal. It is important to note that by soften-
ing the constraints in our algorithm for what schedules should be
accepted, we could explore more of the search space and arrive at a
better result. However, the cost would be more program executions
for all programs, and our system finds a near-optimal schedule in
all other cases.

Additionally, in EP no schedule satisfied the 10% energy limit.
For this program, 8 nodes at top gear consumes 50kJ, so the energy
limit chosen was 45kJ. Because EP gets nearly perfect speedup, the
energy consumption is essentially the same on all node configura-
tions, because the time decreases as nodes are added. Also, EP is
highly CPU bound. Therefore, reducing the gear has a large time
penalty and little energy savings.

Finally, CG is an interesting case. This application presented a
potential problem for our system because on our cluster, the one-
node program is out of core. This results in superlinear speedup for
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Figure 1. Energy-time scatter plot of every LU schedule. Sched-
ules on the line are not dominated. For readability, the axes do not
start at the origin.

the two-, four-, and eight-node programs and results in distorted
values of ��. This in turn can cause the gear and node validation
steps to fail because a better schedule arises.

To handle CG, we used a simple filtering technique to remove
anomalous results. Specifically, when our system detects superlin-
ear speedup, we compute�� using the first number of nodes that re-
sults in an in-core program. This allowed our system to choose the
optimal schedule, which was (4, [1]). Separate tests showed that
without filtering, the schedule chosen was (2, [0]), which would
have resulted in a 10% slowdown in time as well as two extra exe-
cutions.

4.2 Detailed Results

In this section, we examine in more detail several aspects of our
model as well as the behavior of our algorithm. Specifically, we
first examine our assumption that using different gears in different
phases is important. Then, we investigate the behavior at the ex-
tremes of the problem space, the sources of error, the effect of the
choice of energy limit, and the accuracy of our predictions,

4.2.1 Multigear schedules

This work is motivated by the notion that a program has phases
with different optimal gears. This section presents some empirical
data to support this conjecture. First, it looks at LU in detail, then
it shows data for all multiphase benchmarks.

Figure 1 plots the energy and time of every possible LU sched-
ule. The line connects the set of schedules that are not dominated.



Number of schedules
Total Optimal Multigear

BT 72 18 13 72%
FT 108 47 36 77%
LU 648 36 35 97%
MG 108 29 20 69%
SP 72 15 11 73%

Table 3. Total schedules (excluding one-node), number of sched-
ules that are not dominated, and the number and percentage of such
schedules that are multigear.

Importantly, if only single gear schedules are considered, then ex-
ecution time may be much higher. For example, if the energy limit
were 22kJ, there are several 8-node multigear schedules that exe-
cute in less than 40 seconds. However, the best single-gear schedule
under the limit is (4, [0,0]), which takes nearly 60 seconds.

Table 3 shows the overall benefit of using multiple gears on
the 5 multiphase NAS benchmarks. The total number of schedules
depends on the number of phases, gears, and node configurations,
as stated above. Each of these schedules was executed on our
cluster. Next, the table shows the number of schedules that are not
dominated as well as how many of those schedules are multigear.
For NAS, on average, 79% of the schedules that are not dominated
are multigear, which we believe shows that a model that allows
different gears in different phases is important.

4.2.2 Examining the problem space

In our previous work [14], we showed that the behavior of a par-
allel program at different gear settings was dependent on program
speedup and memory pressure. The better the speedup, the lower
the energy premium to run using more nodes. At the limit, if
speedup is perfect, then there is no additional energy cost because
doubling the nodes halves the execution time. Also, the higher the
memory pressure, the greater benefit in running at a lower gear, be-
cause the CPU spends a large amount of time waiting on memory.
Together, these two factors control the behavior of a program as it
relates to our algorithm and model.

To illustrate that our algorithm can support an arbitrary combi-
nation of speedup and memory pressure, we constructed a set of
six benchmarks. Each consists of two phases. A phase has (1) ei-
ther poor or excellent speedup and (2) either low or high memory
pressure. Assuming we do not care about order and that we want
each phase to have different characteristics, this yields six bench-
marks. The idea is that these benchmarks are at the extremes of the
problem space, and all NAS benchmarks are in the “interior” of the
space.

The results of the six benchmarks, each using three different
energy limits, are presented in Table 4. The energy limits are chosen
by calculating the value, for each program, of 95% of energy
consumed by the 8-, 4-, and 2-node versions at top gear for both
phases. There are several interesting aspects of these results. First,
our system often finds the optimal schedule (12 times out of 15).
Second, when we do not find the optimal, we are always within
6%. Third, the schedule (8, [2,0]) is chosen on all three energy
limits for the fifth benchmark, which has excellent speedup in both
phases. This is the case because perfect speedup means that adding
extra nodes does not increase the energy limit. In addition, top gear
is not chosen in the first phase because memory pressure is high.
Fourth, most of the schedules chosen have different gears per phase.
Last, all schedules shown in Table 4 use the top three gears. This
is due to the limits used; different limits will select schedules with
slower gears (as occurred in the NAS programs).
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Figure 2. Effect of the energy limit. On the top, the number of
executions required. On the bottom, the percentage difference from
the optimal schedule.

4.2.3 Sources of error

Here we examine the sources of error in our system. First, we use
an external power meter, which is accessed through the serial inter-
face. We found that there is a relatively small variation in measure-
ments of consumed energy. We believe this is a combination of the
precision of the meter and that it is accessed through the serial port.
Consequently, very small measurements of energy may be unreli-
able. Considering that a typical NAS program consumes thousands
of joules even when running for only a handful of seconds, and in-
specting how long our programs run, we estimate the meter error to
be less than 1%.

Second, as mentioned earlier, we model idle time assuming that
it is independent of gear. As idle time includes blocking commu-
nication calls, this is not strictly true. However, our measurements
have shown that the time to receive data in MPI is relatively insen-
sitive to gear. We have not yet measured the precise error here, but
our initial results suggest that it is quite small.

4.2.4 Effect of energy limit

In our NAS programs, we chose an energy limit that was 10% less
than the peak energy that each program consumed. Here, we inves-
tigate the effect of varying the energy limit for a one-phase syn-
thetic benchmark that has poor speedup and high memory pres-
sure. We vary the limit from 13kJ, which for this program is the
minimum needed to find a valid schedule, to 25kJ, where the cho-
sen schedule is to use the maximum number of nodes at the fastest
gear.

Figure 2 shows the results, including the number of executions
as well as the quality of the schedule. Two things are of note here.
First, at 16.5kJ, a much greater number of executions is needed.
This is due to the fact that there are a large number of schedules
whose energy consumption is predicted to be close to the limit. A
small error in energy prediction may cause a candidate schedule to
exceed the energy limit when it is believed to be within the limit



Program Chosen Schedules
95% of 8 Time Diff. 95% of 4 Time Diff. 95% of 2 Time Diff.

(Poor/High, Excellent/High) (8, [2,1]) 3.7% (4, [1,1]) 0.0% None —
(Poor/High, Poor/Low) (8, [1,2]) 0.0% (4, [1,2]) 0.0% (2, [2,0]) 0.0%
(Poor/High, Excellent/Low) (8, [2,1]) 0.0% (4, [1,1]) 0.0% None —
(Excellent/High, Poor/Low) (8, [2,1]) 5.1% (4, [0,1]) 0.0% (2, [2,1]) 0.0%
(Excellent/High, Excellent/Low) (8, [2,0]) 0.0% (8, [2,0]) 0.0% (8, [2,0]) 0.0%
(Poor/Low, Excellent/Low) (8, [2,0]) 3.7% (2, [0,0]) 0.0% None —

Table 4. Results of running our algorithm on six synthetic benchmarks. Each program is two phases. For example, (Poor/High, Excel-
lent/Low) indicates that the first phase had poor speedup and high memory pressure, and the second phase had excellent speedup and low
memory pressure. Each of the six programs is run with three energy limits (95% of energy consumed by the 8-, 4-, and 2-node programs at
top gear for both phases). Note that the number of executions for an exhaustive for all programs is 144. The average number of executions of
a program (over all 18 experiments) was 13—2 more than the minimum.
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Figure 3. Comparison of predictions vs. actual executions for LU.

(or vice versa). This causes “nearby” schedules to be evaluated.
Second, at 18.5kJ, our system produces a schedule that has the
largest difference from optimal.

4.2.5 Accuracy of our model

In Table 2 we presented the performance of our algorithm com-
bined with our model. The reason we are able to generate near-
optimal schedules in few executions is because our model is accu-
rate. To examine this further, we used our time and energy model to
make predictions for all possible permutations of gears per phase
(this totals 864 complete executions) on LU. Then we ran all pro-
grams, producing exhaustive results (as described above). The re-
sults are presented in Figure 3. Examining the predicted results,
distinct clusters can be seen, one for each number of nodes, and the
shapes are similar.

5. Conclusion
This paper addresses the problem of finding a schedule that mini-
mizes execution time on a power-scalable cluster and a maximum
energy budget. Our approach uses a combination of performance
prediction and profiling, backed up by actual program execution.
Results show that typically, only a handful of iterations of a given
program need to be executed to find a schedule that results in a near-
optimal execution time. In particular, over all NAS benchmarks,
typically less than 15 executions (of just a few iterations each) are
needed to choose a schedule. Equally importantly, the quality of the
chosen schedule is in the worst case 6.1% of the optimal schedule
that is found by running all schedules exhaustively. Furthermore,
the difference is usually less than 2% of optimal.

While we are encouraged by our results, there are still open
questions that we intend to address in future work. First, we hope
to implement our system on a much larger cluster. This will help
us determine the robustness of our system. Second, we would like
to relax some of the assumptions that we have made in this paper;
in particular, we would like to expand our model to include load
imbalance as well as reducible work. Finally, we plan to use the
infrastructure created in this work within a general power-aware
MPI runtime system.
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