
NCSU CSC TR-2006-22 - 1 -

An Introduction to Data-Flow Testing

Janvi Badlaney Rohit Ghatol Romit Jadhwani
Department of Computer Science
North Carolina State University

Raleigh, NC 27695, USA
jrbadlan@unity.ncsu.edu, rgghatol@unity.ncsu.edu, rgjadhwa@unity.ncsu.edu

Abstract

Control flow diagrams are a keystone in testing the
structure of software programs. By examining the flow of
control between the various components, we can design
and select test cases. Data-flow testing is a control-flow
testing technique which also examines the lifecycle of
data variables. Use of data-flow testing leads to a richer
test suite concentrating on improper use of data due to
coding errors. The main goal of this paper is to discuss
the concept of data-flow testing and apply it to a running
example.

Keywords: Data-flow testing, control-flow graph, Data-
flow anomaly.

1. Introduction

Software testing is “The process of analyzing a
software item to detect the differences between existing
and required conditions (that is, bugs) and to evaluate the
features of the software items” [9]. The main goals of
software testing are to reveal bugs and to ensure that the
system being developed complies with the customer’s
requirements. To make testing effective, it is
recommended that test planning/development begin at the
onset of the project. Software testing techniques can be
divided into 2 kinds: black box and white box techniques.
Black box testing is mainly a validation technique that
checks to see if the product meets the customer
requirements. However, white box testing is a verification
technique which uses the source code to guide the
selection of test data.

Data-flow testing is a white box testing technique that
can be used to detect improper use of data values due to
coding errors [6]. Errors are inadvertently introduced in a
program by programmers. For instance, a software
programmer might use a variable without defining it.
Additionally, he/she may define a variable, but not
initialize it and then use that variable in a predicate [6].
e.g. int x ;

if (x ==100) {};

In data-flow testing, the first step is to model the

program as a control flow graph. This helps to identify
the control flow information in the program. In step 2, the
associations between the definitions and uses of the
variables that is needed to be covered in a given coverage
criterion is established. In step 3, the test suite is created
using a finite number of paths from step 2.

In this paper, we have discussed the concept of data-
flow testing. The next section covers the data-flow testing
criteria and data-flow anomalies. A billing application is
considered and the corresponding control-flow graphs are
presented and annotated to explain the concept of data-
flow testing. Section 3 presents the test cases created for
this application. Section 4 summarizes the concepts
presented in this paper and concludes the paper.

2. Literature survey/Case Study

This section discusses data-flow testing concepts, data-
flow anomalies and data-flow testing strategies.
Throughout this section, data-flow testing techniques are
illustrated using an example of a billing application.

Data-flow testing monitors the lifecycle of a piece of
data and looks out for inappropriate usage of data during
definition, use in predicates, computations and
termination (killing). It identifies potential bugs by
examining the patterns in which that piece of data is used.
For example, A pattern which indicates usage of data in a
calculation after it has been killed is certainly a bug which
needs to be addressed.

To examine the patterns, we need to construct a
control flow graph of the code. A control flow graph is a
directed graph where the nodes represent the processing
statements like definition, computation and predicates
while the edges represent the flow of control between
processing statements. Since data-flow testing closely
examines the state of the data in the control flow graph, it
results in a richer test suite than the one obtained from
traditional control flow graph testing strategies like all
branch coverage, all statement coverage, etc [3].

NCSU CSC TR-2006-22 - 2 -

2.1. Data-flow Anomalies

Data-flow anomalies represent the patterns of data
usage which may lead to an incorrect execution of the
code.

The notation for representing the patterns is [2][5]:

• d – defined, created, initialized
• k – killed, terminated, undefined
• u – used

o c – used in a computation
o p – used in a predicate

• ~x - indicates all prior actions are not of interest
to x

• x~ - indicates all post actions are not of interest
to x

Table 1 lists the combinations of usage and their
corresponding consequences. It can be observed that not
all data-flow anomalies are harmful but they are all
suspicious and indicate that an error can occur. For
example, the usage pattern ‘ku’ indicates that a variable is
used after it has been killed which is a serious defect.

Table 1: Testing anomalies [1][6]
Anomaly Explanation

~d first define Allowed.
du define – use Allowed. Normal case.
dk define – kill Potential bug. Data is killed

without use after definition.
~u first use Potential bug. Data is used without

definition.
ud use – define Allowed. Data is used and then

redefined.
uk use – kill Allowed.
~k first kill Potential bug. Data is killed before

definition.
ku kill – use Serious Defect. Data is used after

being killed.
kd kill – define Allowed. Data is killed and then

re-defined.
dd define–define Potential bug. Double definition.
uu use – use Allowed. Normal case.
kk kill – kill Potential bug.
d~ define last Potential bug.
u~ use last Allowed.
k~ kill last Allowed. Normal case.

2.2. Static Data-flow Testing

With static analysis, the source code is analyzed
without executing it [6]. Let us consider an example of an
application to calculate the bill of a cellular service
customer depending upon on his/her usage. The following
calculates ‘Bill’ as per ‘Usage’ with the following rules

applicable. If ‘Bill’ is more than $100, 10% discount is
given.

Table 2: Billing rules
Usage(min) Bill ($)

<100 40.0

101-200
50 cents for every additional

minute.

>200
10 cents for every additional

minute.

The source code for the above application is:

public static double calculateBill (int Usage)
{
 double Bill = 0;

 if(Usage > 0)
 {
 Bill = 40;
 }

 if(Usage > 100)
 {
 if(Usage <= 200)
 {
 Bill = Bill + (Usage - 100) * 0.5;
 }
 else
 {
 Bill = Bill + 50 + (Usage - 200) * 0.1;

 if(Bill >= 100)
 {
 Bill = Bill * 0.9;
 }
 }

 }
 return Bill;
}

The control flow diagram is given in Figure 1 and the
annotated control flow diagram with define-use-kill
information for each variable is given in Figure 2.

For variable ‘Usage’, the define-use-kill patterns are

• ~ define : normal case
• define-use : normal case
• use-use : normal case
• use-kill : normal case

For variable ‘Bill’, the define-use-kill patterns are
• ~ define : normal case
• define-define: suspicious
• define-use : normal case
• use-define : acceptable
• use-use : normal case
• use-kill : normal case

NCSU CSC TR-2006-22 - 3 -

The static data-flow testing for the given application
discovered the following anomaly:

Bill: define – define

Why Static Data-flow testing is not enough?

Static Data-flow testing will fail in situations where
the state of a data variable cannot be determined by just
analyzing the code. This is possible when the data
variable is used as an index for a collection of data
elements. For example, in case of arrays, the index might
be generated dynamically during execution hence we
can’t guarantee what the state of the array element is
which is referenced by that index. Moreover, the static
data-flow testing might denote a certain piece of code to
be anomalous which is never executed and hence not
completely anomalous [7].

0. Start

1. Bill = 0

2.
Usage > 0 Y 3. Bill = 40

4.
Usage > 100

5.
Usage < 200

Y

9. Bill = Bill +
(Usage - 100) * 0.5

Y

6. Bill = Bill + 50 +
(Usage – 200) *

0.1

8. Bill = Bill + 0.9

10. return Bill

7.
Bill > 100

N

Y
N

N

N

11. End

Figure 1. Control flow Diagram

0. Start

1. define Bill

2. Y 3. define Bill

4. 5.

Y

9. use Bill
define Bill

Y

6. use Bill
define Bill

8. use Bill
define Bill

10. use Bill

7.
use Bill

N

Y
N

N

N

11. Kill Bill

Figure 2. Annotated control flow diagram for ‘Bill’

Table 3: Static analysis for variable ‘Bill’
Anomaly Explanation

~d 0-1 Allowed. Normal case
dd 0-1-2-3 Potential bug. Double definition.
du 3-4-5-6 Allowed. Normal case.
ud 6 Allowed. Data is used and then

redefined.
uk 10-11 Allowed.
dd 1-2-3 Potential bug. Double definition.
uu 7-8 Allowed. Normal case.
k~ 11 Allowed. Normal case.

Referring to Table 3, we observe that static data-flow
testing for variable ‘Bill’ discovered the following usage
0-1-2-3 as a potential bug.

NCSU CSC TR-2006-22 - 4 -

0. define Usage

1.

2.
use Usage Y 3.

4.
use Usage

5.
use Usage

Y

9. use Usage

Y

6. use Usage

8.

10.

7.

N

Y
N

N

N

11. kill Usage

Figure 3. Annotated control flow diagram for ‘Usage’

Table 4: Static analysis for variable ‘Usage’
Anomaly Explanation

~d 0 Allowed.
du 0-1-2 Allowed. Normal case.
uk 9-10-11 Allowed.
uu 5-6 Allowed. Normal case.
k~ 11 Allowed. Normal case.

Referring to Table 4, we observe that static data-flow
testing for variable ‘Usage’ did not discover any bugs.

2.3. Dynamic Data-flow Testing

The primary purpose of dynamic data-flow testing is to
uncover possible bugs in data usage during the execution
of the code. To achieve this, test cases are created which
trace every definition to each of its use and every use is
traced to each of its definition. Various strategies are
employed for the creation of the test cases [4][5]. The
definition of all strategies is followed by an example to
explain the same.

All-du paths (ADUP)
Formal Definition
‘Every du path from every definition of every variable to
every use of that definition’ [7].
It is the strongest data-flow testing strategy since it is a
superset of all other data flow testing strategies.
Moreover, this strategy requires greatest number of paths
for testing.

All-Uses (AU)
Formal Definition
‘At least one path from every definition of every variable
to every use of that can be reached by that definition’ [7].

For every use of the variable, there is a path from the
definition of that variable to the use.

All-p-uses (APU)
Formal Definition
‘APU Strategy is derived from APU+C by dropping the
requirement of including a c-use if there are no p-use
instances following the definition’ [7].

In this testing strategy, for every variable, there is path
from every definition to every p-use of that definition. If
there is a definition with no p-use following it, then it is
dropped from contention.

All-c-uses (ACU)
Formal Definition
‘ACU Strategy is derived from ACU+P by dropping the
requirement of including a p-use if there are no c-use
instances following the definition’ [7].

In this testing strategy, for every variable, there is a path
from every definition to every c-use of that definition. If
there is a definition with no c-use following it, then it is
dropped from contention.

All-p-uses/Some-c-uses (APU+C)
Formal Definition
‘For every variable and every definition of that variable,
include at least one path from the definition to every
predicate use; if there are definitions of the variable that
are not covered then add computational use test cases as
required to cover every definition’ [7].

In this testing strategy, for every variable, there is a path
from every definition to every p-use of that definition. If
there is a definition with no p-use following it, then a
c-use of the definition is considered.

NCSU CSC TR-2006-22 - 5 -

All-c-uses/Some-p-uses (ACU+P)
Formal Definition
‘For every variable and every definition of that variable,
include at least one path from the definition to every
computational use; if there are definitions of the variable
that are not covered then add predicate use test cases as
required to cover every definition’ [7].

In this testing strategy, for every variable, there is a path
from every definition to every c-use of that definition. Ibf
there is a definition with no c-use following it, then a
p-use of the definition is considered.

All-definition (AD)
Formal Definition
‘Every definition of every variable be covered by at least
one use of that variable, be that use a computational use
or a predicate use’.

In this strategy, there is path from every definition to at
least one use of that definition.

Figure 4.Annotated Control Flow diagram for
variable ‘Bill’

Let us consider our billing application and perform
dynamic data-flow testing. The control flow graph is
annotated for each variable (Figure 4 and Figure 5) by
removing references to all other variables and replacing
the contents of the nodes with ‘def’ for definition, ‘c-use’
for computational use and ‘p-use’ for predicate use. The
testing strategies are then applied to the annotated control
flow graphs and test cases are derived. Table 5 presents
the list of test paths for variables ‘Bill’ and ‘Usage’ of the
billing application.

0. def

1.

2.
p - use Y 3.

4.
p - use

5.
p - use

Y

9. c - use

Y

6. c - use

8.

10.

7.

N

Y
N

N

11.

Figure 5.Annotated Control Flow diagram for
variable ‘Usage’

NCSU CSC TR-2006-22 - 6 -

Table 5: Data-flow testing paths for each variable
Strategy Bill Usage

All uses
(AU)

3-4-5-6
6-7
6-7-8
8-10
3-4-5-9

0-1-2
0-1-2-3-4
0-1-2-3-4-5
0-1-2-3-4-5-6
0-1-2-3-4-5-9

All p – uses
(APU)

1-2-3-4-5-6-7
3-4-5-6-7
6-7

0-1-2
0-1-2-3-4
0-1-2-3-4-5

All c – uses
(ACU)

1-2-10
3-4-5-6
3-4-5-9
3-4-10
6-7-8
6-7-10
8-10
9-10

0-1-2-3-4-5-6
0-1-2-3-4-5-9

All p – use/
some c
(APU + C)

1-2-3-4-5-6-7
3-4-5-6-7
6-7
8-10
9-10

0-1-2
0-1-2-3-4
0-1-2-3-4-5

All c – use/
some p
(ACU + P)

1-2-10
3-4-5-6
3-4-5-9
6-7-8
8-10
9-10

0-1-2-3-4-5-6
0-1-2-3-4-5-9

All du
(ADUP)

(ACU+P) +
(APU+C)

(ACU+P) +
(APU+C)

All definition
(AD)

1-2-10
3-4-5-6
6-7
8-10
9-10

0-1-2

In Table 5 for variable ‘Bill’:
Path 1-2-10 depicts an all-definition path from definition
in 1 to c-use in 10.
For All c-uses, we trace a path for every definition of Bill
to at least one c-use and a path tracing from every c-use
to its definition.
The same applies for All p-uses.

In case of All c-uses/Some p-uses, we observe that the
paths are similar to All c-uses since every definition has a
corresponding c-use.
In case of All p-uses/Some c-uses, definitions in 8 and 9
don’t have a corresponding p-use, hence c-use in 10 is
considered.
For All uses, we trace a path to all the uses (c-use and p-
use).

2.4. Ordering of Strategies

For selection of test cases, we need to analyze the
relative strength of the data-flow testing strategies. Figure
6 depicts the relative strength of the data-flow strategies
and other control-flow testing strategies such as all-
branch and all-statement. According to the figure, the
strength of testing strategies reduces along the direction
of the arrow. Hence ALL PATHS is the strongest testing
strategy. Also note that ACU+P and APU+C run parallel
hence they are comparable [7].

ALL PATHS

ALL – C / SOME - P ALL – P / SOME - C

ALL USES

ALL DU PATHS

ALL – C USES ALL – P USES
ALL DEFS

STATEMENT

BRANCH

Figure 6. Relative Strength of Testing Strategies [7]

3. Test Case Creation

 After obtaining the test paths, test cases are created by
giving values to the input parameter (‘Usage’ for
application considered). We obtain different test suites for
each variable. For the application considered, we get 2
test suites for ‘Bill’ and ‘Usage’ respectively.

NCSU CSC TR-2006-22 - 7 -

Table 6. Test Suite for variable ‘Bill’

Uses Bill
Input
Usage
Value

Expected
Value

All
definition
(AD)

1-2-10
3-4-5-6
6-7
8-10
9-10

0
220
220
350
220

0.0
92.0
92.0
94.5
92.0

All c – use
(ACU)

1-2-10
3-4-5-6
6-7-8
8-10
9-10

0
220
350
350
220

0.0
92.0
94.5
94.5
92.0

All p – use
(APU)

1-2-3-4-5-6-7
3-4-5-6-7
6-7

220
220
220

92.0
92.0
92.0

All c - use
+ p
(ACU + P)

1-2-10
3-4-5-6
3-4-5-9
6-7-8
8-10
9-10

0
220
170
350
350
170

0.0
92.0
75.0
94.5
94.5
75.0

All p - use
+ c
(APU + C)

1-2-3-4-5-6-7
3-4-5-6-7
6-7
8-10
9-10

220
220
220
350
170

92.0
92.0
92.0
94.5
75.0

All uses
(AU)

3-4-5-6
6-7
6-7-8
8-10
3-4-5-9

220
220
350
350
170

92.0
92.0
94.5
94.5
75.0

Table 7. Test Suite for variable ‘Usage’

Uses Usage
Input
Usage
Value

Expected
Value

All definition
(AD)

0-1-2 0 0.0

All c – use
(ACU)

0-1-2-3-4-
5-6
0-1-2-3-4-
5-9

220
170

92.0
75.0

All p – use
(APU)

0-1-2
0-1-2-3-4
0-1-2-3-4-5

0
170
170

0.0
75.0
75.0

All c - use +
p (ACU + P)

0-1-2-3-4-
5-6
0-1-2-3-4-
5-9

220
170

92.0
75.0

All p - use +
c (APU + C)

0-1-2
0-1-2-3-4
0-1-2-3-4-5

0
170
170

0.0
75.0
75.0

All uses
(AU)

0-1-2
0-1-2-3-4
0-1-2-3-4-5
0-1-2-3-4-
5-6
0-1-2-3-4-
5-9

0
170
170
220
170

0.0
75.0
75.0
92.0
75.0

4. Conclusion

 We have presented a literature survey of data-flow
testing concentrating on data-flow testing criteria and
data-flow testing anomalies. We have presented the
concept with the help of a billing application that bills
mobile customers as per their usage. Finally, we provided
the test cases created after performing data-flow testing
on the considered application.

NCSU CSC TR-2006-22 - 8 -

5. References

[1] Tsai, B.-Y.; Stobart, S.; Parrington, N.; “Employing data
flow testing on object-oriented classes”, Software, IEEE
Proceedings, USA, April 2001, p 56-64-87.

[2] Harrold M Jean.; Rothermel Gregg.; “Performing data flow
testing on classes”, ACM SIGSOFT Software Engineering
Notes , Proceedings of the 2nd ACM SIGSOFT symposium on
Foundations of software engineering SIGSOFT’94, December
1994, pp 154 - 163.

[3] Chang Liu; “Teaching “Data Flow Testing” in an Software
Engineering Course”, School of Electrical Engineering and
Computer Science, Russ College of Engineering and
Technology, Ohio University.

[4] Rapps, Sandra, Elaine J. Weyuker; “Data Flow Analysis
Techniques for Test Data Selection”, Sixth International
Conference on Software Engineering, Tokyo, Japan, September
13-16, 1982.

[5] Parrish, A.S.; Zweben, S.H.; “On the relationships among
the all-uses, all-DU-paths, and all-edges testing criteria”,
Software Engineering, IEEE Transactions, 1995, p 1006-1009.

[6] Lee Copeland, “A Practitioner’s Guide to Software Test
Design”, STQE Publishing, 2004.

[7] Boris Beizer, “Software Testing Techniques”, International
Thomson Computer Press, 1990.

[8] Robert V. Binder, “Testing Object-Oriented Systems
Models, Patterns and Tools”, Addison-Wesley, 2000.

[9] IEEE Standard 610.12-1990, IEEE Standard Glossary of
Software Engineering Terminology, Technical Report, IEEE,
1990

6. Appendices

Appendix A: Glossary

Black-box testing – The use of specifications of a unit,
subsystem, or system to design tests. It is synonymous
with specification-based testing or functional testing. [8]

Branch coverage – Branch coverage is achieved when
every path from a control flow graph node has been
executed at least once by a test suite. [8]

Data-Flow Anomaly – A data-flow anomaly is denoted
by a two-character sequence of actions [7].

Data-Flow Testing – It selects paths through the
program’s control flow in order to explore sequences of
events related to the status of data objects [7].

State - The state of an object can be defined as a set of
instance variable value combinations that share some
property of interest. [8]

Statement coverage – Coverage achieved when all the
statements in a method have been executed at least once.
[8]

Test case – A set of inputs, execution conditions, and
expected results developed for a particular objective [8].

Testing – The process of operating a system or
component under specified conditions, observing or
recording the results, and making an evaluation of some
aspect of the system or component [8].

Test suite – A related collection of test cases [8].

White-box testing – The use of source-code analysis to
develop test cases. It is synonymous with program-based
testing or structural testing [8].

