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ABSTRACT public health, population studies and financial research.

Privacy is a serious concern when microdata need to be released for O the other hand, the release of microdata incurs apparent pri-
ad hoc analyses. Simple de-identification has been shown to be in-v2¢y concerns. While supporting ad hoc analyses, it is paramount
adequate, since privacy can be compromised when quasi-identifierd® Prévent private information of individuals from being revealed.
in a de-identified database are linked with publicly available infor- =XiSting privacy practice relies on de-identification, i.e., removing
mation. To mitigate the problem, generalization and suppression €XPliCit identification information (e.g., name, SSN, home address
based approaches (suchiaanonymity and-diversity) have been ~ and telephone numbers) from microdata. However, it has been
proposed to weaken the linkage between the quasi-identifiers of aWeII recogrylze_d' that S|m_ple de-identification is _not sufficient to
record and its sensitive attributes in a microdata database. The pri-PrOtect an individual's privacy. One’s other attributes (so-called

vacy protection goals of these approaches are only suitable for Cat_quaS|-|de|r|1t|f|ersdsudcf; an age, Z'? code, ddatﬁ of b'rthk and ][tace&
egorical sensitive attributes. Directly applying them to numerical 2'¢ usually needed for data analyses, and thus are kept after de-

sensitive attributes (e.g., salary) may result in undesirable infor- identification. Individuals’ se_nsitive i_nforma_tion may ofte_n be re-
mation leakage. The first contribution of this paper is to propose vealed when microdata are linked with publicly available informa-

privacy goals to better capture the need of privacy protection for 0N through quasi-identifiers.
numerical sensitive attributes. k-anonymization is a technique that has been pr_oposed to'ad-
Complementing the desire for privacy of microdata is the need dréss the above privacy problem. Through domain generaliza-
to support ad hoc aggregate analyses that select subsets of recorotéon_ and record sqppressmkr,anonymlty ggarantees that publ_lcly
based on arbitrary conditions on the quasi-identifiers and compute aval_lable information cannot be related W'¥h less tha'*?F’rdS n
aggregates over sensitive attributes (e.g., what is the average salarg microdata database. In other words, given a sensitive attribute
of men over age 50 in Texas?). Approaches based on general- alue in mlcro_d_ata,_ an attacker can at r_n_os_t rglz_ate it to a group of no
ization and suppression cannot, in general, answer such aggregat ss thark entities instead of any specific individual. The concept

queries with any reasonable accuracy, thereby reducing the utility Of_ t-diversity was recently proposed to further protect privacy in
of released microdata. The second contribution of this paper is microdata. It is based on a stronger attack model where an attacker

a general framework of permutation-based anonymization to sup- is assumed to have the knowledge that both the record correspond-

port accurate answering of aggregate queries. We show that, for aing to an individual and some values of its quasi-identifiers appear
specific privacy protection goal, permutation-based anonymization " _?_k:mcrqdata datz?bakse. o d-diversity is suitabl
technigues can always answer aggregate queries more accuratel € privacy goal of -anon_ymlzatlon and- |verS|_ty IS suita e
than generalization-based approaches. We further propose severgpr ca_tegorlcal sensitive attributes, such as the dlseas_e attribute in
criteria to optimize permutations for accurate answering of aggre- & patient recort?l tatl)éea. It a_ssufmes that ::ilfferelnt atmbl.ﬁg values
gate queries, and develop efficient algorithms for each criterion. We 3¢ |(rjlccr)1mpara_ g_' i ; :Yersny,_ or exar%p e, asl ong as itis en-b
conduct comprehensive experiments on both real and synthetic dats2U'€d that an individual’s sensitive attribute value can at most be

sets to demonstrate the advantages of our proposed techniques. narrowe_d ,dOW” to a group’ of no Ies_s, thartuples with no Ies§
than ¢ distinct values, one’s privacy is protected. In practice,

however, besides categorical attributes, many sensitive attributes
1. INTRODUCTION in microdata databases are in fact numerical data, e.g., one’s salary,

Compared with traditional data dissemination in pre-aggregated investment gains or losses. Applying existing privacy goals-of
or statistical forms, the release of microdata offers significant ad- anonymity and-diversity is often not suffl_uent_ to protect numer-
vantages in terms of information availability, which make it partic- ical attributes. For example, even whéliversity is satisfied, if

ularly suitable for ad hoc analyses in a variety of domains such as the group of salary values falls into a narrow range, an attacker can

still obtain sensitive financial information of an individual. There-

fore, it is important to define new privacy goals for the protection

of numerical sensitive attributes in microdata.

Complementing the desire for privacy of microdata is the need
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cannot answer aggregate queries with any reasonable accuracy, ID Quast-identifiers Sensitive
thereby reducing the utility of the released microdata. In this paper, tuplle ID rﬁme age| zipcode] gender]| salary
. f . . ex || 35 | 27101 M $54,000
we investigate effective techniques to support accurate aggregate 2 Bob 38 | 27120 M $55.000
query answering on microdata while preserving privacy. 3 carol || 40 | 27130 M $56.000
The goal of privacy protection in microdata is essentially to 4 Debrall 41 | 27229 F $65,000
break the association between the identifiers in publicly available 5 Evan || 43 | 27269 F $75,000
information and the sensitive attributes in microdata, due to quasi- 6 Frank || 47 | 27243 M $70,000
identifiers. We observe that there is more than one way to elimi- ; ﬁean% gg gggg '\é iggggg
nate or reduce such associations. Existing generalization-based ap- '
proaches aim to weaken the link between quasi-identifiers in pub- 9 Ina 58 | 27635 M $85,000

licly available databases and microdata. In this paper, we propose
permutationbased approaches to reduce the association between
quasi-identifiers and sensitive attributes in microdata. In particular,

the contributions of the paper include the following: 2. EXAMPLES

Consider the population table shown in figure 1, which needs
to be shared for business and economic research. Among the at-
tributes of the table, “name” can be used to directly identify an in-
dividual in real life. To prevent the sensitive information (“salary”
in this example) of individuals from being disclosed, such explicit
identity attributes need to be removed before the table is disclosed.
Other attributes of individuals, such as “age”, “zip code” and “gen-
der”, often need to be disclosed, since valuable statistical analysis
relies on these attributes. For this example, we consider the follow-
ing aggregate queries:

Figure 1: An example microdata table

e We extend the concept @-anonymity, and propose a new
privacy goal to better capture privacy protection for numeri-
cal sensitive attributes. Besides requiring a group of sensitive
attribute values to have no less thadistinct values, the pro-
posed privacy goal further requires the range of the group to
be larger than a certain thresheldsuch a threshold prevents
an attacker from accurately deriving the range of sensitive at-
tribute values for an individual record.

¢ \We propose a general framework of permutation-based tech-
niques to support accurate answering of aggregate queries, e Query 1. The average salary of those with age over 50.
while protecting privacy. Given the same privacy objective, . .
we show that permutation-based anonymization techniques  * Qu(;arsySZ. The sum of salaries of those with age between 35
can always answer aggregate queries more accurately than an :

generalization-based approaches. e Query 3. The minimum salary of females.

e We design query-rewriting algorithms to ensure that exist-  Clearly, after removing the identity attribute “name” from the
ing database management systems can be used directly tdable in figure 1, we can still accurately answer these queries.
support aggregate query answering in permuted microdata. On the other hand, some public databases may also contain the

The auxiliary relations can be completely derived from an attributes “age”, “zip code” and “gender”. They may also further

anonymized microdata database. Therefore, they do not P€ associated with people’s explicit identities. Due to this rea-
compromise the privacy of microdata. son, these attributes are called “quasi-identifiers” since they may be

used to reveal one’s identity when combined with public databases.
e Building on the proposed privacy objective and the Current approaches to addressing potential privacy violations
anonymization framework, we identify several alternative Caused by quasi-identifiers generalize the domains of quasi-
criteria to Optimize permuta’[ions for accurate answering of identifiers so that many tuples will have the same quasi-identifiel’s.
aggregate queries, and develop efficient algorithms for each Figure 2 shows such a generalization, where “age” is generalized
criterion. Since the proposed permutation-based approacht0 @ range of width 10, “zip code” only keeps the first 3 dig-
is not constrained by domain generalization hierarchies, our its, and “gender” is totally suppressed. The resulting table satis-
optimization algorithms obtain partitions of microdata tables fies 3-anonymity, which means that after generalization each tuple
that can be used to Compute Very accurate answers ’[o aggre_can f|nd at |eaS'[ tWO Other tuples W|th the same Va|ueS Of quaSi-
gate queries. identifiers. It also satisfies 3-diversity since among those tuples
with the same values of quasi-identifiers there are at least 3 differ-
e We conduct comprehensive experiments on both real and ent sensitive attribute values.
synthetic data sets to demonstrate the advantages of the pro- In this paper, we propose a permutation-based approach to
posed techniques. anonymization. In our approach, tuples in the table are partitioned
into several groups such that each group has at feakfferent
The rest of the paper is organized as follows. In section 2, we sensitive attribute values. We then perform a permutation between
present a detailed example illustrating our approach and its ben-the tuples’ quasi-identifiers with their sensitive attribute inside each
efits. In section 3, we describe existing privacy goals, and show group. Figure 3 shows the table of figure 1 after permutation, where
their inadequacy to protect numerical sensitive data. We then for- each group has 3 different sensitive attribute values. In fact, the
mally define a new privacy goal for numerical sensitive attribute partition used in figure 3 is the same as the one resulting from the
protection. A permutation-based anonymization framework is pro- generalization in figure 2.
posed in section 4. Section 5 presents the query rewriting algorithm  The privacy objective of microdata anonymization is to prevent
and the design of auxiliary relations for aggregate query answering. attackers from knowing sensitive attribute values for an individual.
Criteria for permutation optimization and algorithms for each are In section 4, we will show that the permutation-based approach
described in section 6. Section 7 shows our experiments. In sec-will achieve the same privacy protection as existing generalization-
tion 8, we report closely related work in privacy protection in the based approaches. One benefit of our permutation-based approach
release of microdata. We conclude this paper in section 9. is that it will provide more accurate answers to aggregate queries.



Quasi-identifiers Sensitive group ID | hits | sum-I-b | sum-u-b| min-I-b | min-u-b
tuple ID age zipcode| gender|| salary 1 1 $54K $56K $54K $56K
1 31 — 40 271% * $56,000 1 2 | $109K | $111K | $54K $55K
2 31 — 40 271* * $54,000 1 3 | $165K | $165K | $54K $54K
3 31 — 40 271* * $55,000 2 1 $65K $75k $65K $75K
4 41 — 50 272% * $65,000 2 2 | $135K | $145K | $65K $70K
5 41 — 50 272* * $75,000 2 3 | $210K | $210K | $65K $65K
6 41 — 50 272* * $70,000 3 1 $75K $85K $75K $85K
7 51 — 60 276* * $80,000 3 2 | $155K | $165K | $75K $80K
8 51 — 60 276* * $75,000 3 3 | $240K | $240K | $75K $75K
9 51 — 60 276* * $85,000
Figure 4: An example help table
Figure 2: An example 3-anonymity microdata table after gen-
eralization. Note that this table also satisfie$-diversity
Quasi-identifiers Sensitive minimum salary of females in this table is between [$65K, $75K].
tuple ID || age | zipcode| gender|| salary Again, this is more accurate than the bounds derived from figure 2.
1 40 | 27130 M $54,000 In section 4, we will show that, given the same partitions,
2 38 | 27120 M $55,000 the permutation-based approach always produces more accurate
3 35 | 27101 M $56,000 bounds for aggregation queries than the generalization-based ap-
g f'g %;ggg ,5' ggggg In fact, since we know the exact number of tuples included in the
v 55 T 57656 M $75’000 aggregation in each group (we refer to it as the “number of hits”),
8 53 | 27686 = $80:OOO more statistics about the query result can be derived. For exam-
9 58 | 27635 M $85,000 ple, besides the lower and upper bounds for SUM and AVERAGE,
we may also compute the mean and variance among all the possi-
Figure 3: An example 3-anonymous microdata table after per- ble answers. Such statistics provide more information. This is not
mutation possible for generalized tables.

One nice property is that the lower and upper bounds for an
aggregation operation over the whole table can be computed ef-
Let’s consider the three queries previously mentioned in this sec- ficiently by combining bounds over each group of the partition. To
tion. Since both approaches introduce imprecise information into facilitate efficient query answering over a permuted table, we pro-
the original table, they cannot always get the correct answer for ag- pose to use aelp table which pre-computes the bounds for each
gregate queries. Instead, for each approach, we can get determinisgroup and all the possible numbers of hits. Given an aggregate
tic lower and upper bounds of the correct answer. We compare thequery, we can simply rewrite it to query both the permuted table,
accuracy of the bounds of each approach. determining the number of hits of each group, and then join this
Query 1: The average salary of those with age over 50This information with the help table to quickly get the bounds for the
query covers all the tuples in the third group of both figures 2 and whole query result. An example help table, for the table of fig-
3. Therefore, by using either table, we can get the exact result for ure 1, is shown in figure 4. Due to space limitations, we only show
the query, which is $80,000. the bounds for SUM and MIN in the table. It can certainly include
Query 2: The sum of salaries of those with age between 35 those for other aggregation operations.
and 55. In both tables, all the tuples in the second group should be  Both the generalized and the permuted tables saiisfiyersity.
included in the aggregation. But, by using the generalized table of In fact, they produce the same partition of tuples for anonymiza-
figure 2, we face a difficulty when dealing with tuples in the first tion. However, this partition has a problem in terms of privacy. The
and the third groups. Since only generalized ranges [31-40] and range of sensitive attribute values in the first group in the partition
[51-60] of ages are available to get a correct lower/upper bound, is only $2,000 while that of others are $10,000. As pointed out in
we have to assume that none/all of the tuples participate in the ag-[11], attackers often have external background information about
gregation. Therefore, the bounds based on figure 2 can only bequasi-identifiers of an individual, which enables inferences for the
[$210K, $615K]. existence of records in the microdata database. In the above exam-
On the other hand, in our permutation-based approach, we knowples, if an attacker knows that the age of Alex is 35 and his zipcode
exactly how many tuples are included in the aggregation from each is 27101, he is able to derive that Alex’s salary is between $54K and
group of the partition, which aids in the derivation of more accurate $56K. Though the attacker cannot know the exact salary of Alex,
bounds. For this query, based on figure 3, we know that 3 and 2 this range might be narrow enough to be considered as sensitive.
tuples in groups 1 and 3 respectively participate in the aggregation. This example shows that for numerical sensitive attributes, besides
Therefore, the bounds will be [$530K, $540K], which are much distinct values in each group of a partition, we also need to consider
more accurate than those derived from figure 2. the range of each group to prevent type of inference as the one de-
Query 3: The minimum salary of females. There is a great scribed. In this paper we introduce another privacy parameter
difficulty in answering this query using figure 2, since the “gender” and further require the range of tkedistinct values in a group to
attribute is totally suppressed in order to achieve 3-anonymity. We be no less than. We call this privacy objectivék, e)-anonymity.
do not even know whether there exists a tuple with gender female For instance, the above generalized and permuted tables only sat-
in the original table. Even if we assume that there is at least one isfy (3, 2000)-anonymity but violatg3, 10000)-anonymity.
female in the table, the best bound we can get is [$54K, $85K]. We note that several techniques already exist to protect the pri-
Based on the permuted table, we know that there is a female invacy of numerical sensitive attributes. In perturbation-based ap-
each of groups 2 and 3, but none in group 1. Since all the salaries inproaches [1, 4, 6], noise following a certain distribution is added
group 3 are higher than those in group 2, we can conclude that theto sensitive attribute of each tuple. Such an approach inevitably



changes important statistics of the marginal distributions of sen- of public information, such as county real estate databases and
sitive attributes (e.g., vairance) [14]. Further, depending on the voter registration records. The above model represents the over-
distribution of added noise (e.g., Gaussian Distribution), it is of- all public information that an attacker may derive when combining
ten difficult to derive deterministic bounds for answering aggregate information from multiple sources.
queries. Aggregate queries We consider queries that select subsets of
To some extent, permutation-based anonymization is similar to records from a microdata table based on arbitrary conditions on
data swapping techniques where privacy is achieved by exchang-the quasi-identifiers and compute aggregates over the sensitive at-
ing the sensitive attributes of pairs of randomly selected records tribute. Such aggregate queries are important during microdata
[5, 7]. Since no noise is introduced, both approaches preserve theanalysis in a variety of domains. Since the domain of the sensi-
marginal distributions of sensitive attributes. However, data swap- tive attribute is assumed to be numeric-valued, a variety of SQL
ping is done globally, which has a much larger impact on microdata aggregation operations, such as COUNT, SUM, AVERAGE, MIN
utility. Even when done in a controlled manner (e.g., rank-based and MAX, can be used in aggregate queries.
data swapping [13]), it will still produce big errors for aggregate Privacy is violated when an attacker successfully recovers one
queries. Our experimental results show this point clearly (see sec-or more tuples in the sensitive information tale Formally, we
tion 7). have the following privacy definition, which is based on the one
In the following sections, we formally descrilpk, ¢)-anonymity proposed in Yao et al. in [20].

and a permutation-based approach to anonymization of microdata. ) )
DEFINITION 3.1. Each tuple on(ID, S) is called anassocia-

tion. A setA of associations oifI D, S) is called anassociation
3. BACKGROUND coverif all the tuples inA have the saméD value andANS # 0.

3.1 Privacy in the Release of Microdata An association cover of siZeis called ak-association-cover

We introduce notations and concepts to facilitate our discussion For example, considering the microdata table in figure 1,
on potential privacy vulnerabilities in the release of microdata. {(Alez, $54, 000), (Alex, $55, 000), (Alex, $56,000)} is a 3-

Microdata. There are three types of attributes in aginal association cover.
microdata tableM: identifiers, quasi-identifiers and sensitive at-
tributes. An identifierI D is an attribute, whose value, if known, DEFINITION 3.2. A de-identified microdata databage satis-
canalwaysbe used taniquelyidentify an individual in real life. In fies k-Anonymity if from D and any given public databag@, an

practice, there may exist multiple identifiers such as one’s SSN and attacker cannot derive any association cover with size lessthan
telephone number. Quasi-identifief§11,...QI.} are a set of

attributes associated with tuples that not only appear in the micro-  The above definition captures the essence of privacy in micro-
data table but may also appear in other publicly available databasesdata, i.e., preventing the association between an individual’s 1D
Example quasi-identifiers include age, date of birth, zip code, etc. and its sensitive attribute value. The originally proposed concept
Sensitive attributes, on the other hand, are only contained in the of k-anonymity was defined specifically for generalization based
microdata table, and do not appear in public databases. The goalpproaches. It required that, after generalization, for each tuple
of privacy protection is thus to prevent attackers from knowing the in the table, there should exist no less titan 1 other tuples hav-
specific values of sensitive attributes associated with individual tu- ing quasi-identifiers equal to those of This original definition
ples. Without loss of generality, we assume there is only one sensi-can be viewed as the goal for generalization in order to achieve
tive attributeS in a microdata table. We further assume that the do- k-anonymity. Definition 3.2, on the other hand, is declarative and
main of the sensitive attribute is numeric, which is widely true in a independent of specific techniques for anonymization. Therefore,
variety of microdata databases. Examples include salary in popula-it serves as a good privacy definition for the comparison of different
tion databases, credit score in financial databases, and white bloocRnonymization techniques.

cell count and other diagnosis indicators in public health databases. As shown in section 2, for numeric-valued attributes, prevent-
Figure 1 is an example of an original microdata table where the ing attackers from deriving an association cover of size less than

identifier, quasi-identifiers, and sensitive attribute are shown. k may not be enough to protect one’s privacy, especially when the

A de-identified microdata tabl® is a projection ofM over range of attribute values in the association cover is small. There-
quasi-identifiers and sensitive attributes. We call the projection of fore, we propose the following extended definition for the protec-
M overID andS the sensitive information table, denot§d tion for numeric-valued sensitive attributes:

Note that in some situations the mere fact that there exists a
record for a specific individual Alice in the microdata table may =~ DEFINITION 3.3. A de-identified microdata databage satis-
also be considered sensitive, even though Alice’s sensitive attributefies(k, e)-anonymityif given D and any given public database,
is unknown. For example, the fact that Alice has a record in a any association cover that an attacker can derive satisfies: (1) the
microdata table released by a psychiatric hospital may seem quitesize of the association cover is no léssand (2) the range of the
sensitive. However, as stated in [11], besides public databases, atsensitive attribute values in the association cover is no lessdhan
tackers may often have external background knowledge. For ex- . . . .
ample, Bobymay physically see that AI?ce checked intoga hospital. 3-2 Anonymization Through Generalization
Thus, it will be very hard to prevent such information leakage. In Most existing works achievk-anonymity through domain gen-
this paper, revealing one’s sensitive attribute values is considered aeralization of quasi-identifiers. That is, instead of releasing the
privacy violation, but revealing the existence of a record with spe- exact values of quasi-identifiers, the values are generalized in a
cific quasi-identifiers is not. way that many tuples appear to have the same values for quasi-
Public information. Attackers may often gain access to pub- identifiers. For example, instead of disclosing one’s exact age, the
licly available information related to individuals. We model pub- microdata only shows that the age falls into a certain pre-defined
licly available information as a tabfe with the following attributes range. Thus, an individual identifier can only be associated with
{ID,QI,...,QI}. Inpractice, there may exist multiple sources those who have the same quasi-identifiers after generalization.



More specifically, following the notation introduced in [11], let Public available information

D be a domain. Ageneralized domairD* of D is a domain ‘ Identity | Quasi-identifiers
{Dx,...,D,}, such that eaclb; is a subset oD, D; N D; = 0} -
wheni # j, andJ D; = D. Letz € D. The generalization of ! Tk 1 .
underD*, denotedy(x, D*), is D; € D*, wherex € D;. \ fink 2
Let D¢);, be a generalized domain for each quasi-identiér. De-identified Microdata

ThenDg; = Dgy, x -+ x Dy, forms a generalized domain
for quasi-identifiers. Given a tuple € D, its generalization un- N
der D;);, denotedg(t, D5y;), is a tuplet’ such thatt'[QI;] = ~_ 7 A
g(t[QL], D5y,) andt'[S] = ¢[S]. The generalization oD, de- links .-~
notedg(D, Dg;), is thus{g(t, D5) | t € D}. T

In the example shown in figure 2, the generalization domains for g re 5. The association between identities and sensitive at-
the three quasi-identifiers afgl — 10], [11 — 20], ... }, the first 3 tributes through quasi-identifiers
digits of zip codes, andlx} (denoting any gender), respectively.

Given a microdata tabl®, a generalized domaiP in fact de-

‘ Quasi-identifiers| Sensitive attributes

fines a partitiof Dy, ..., D, } of D such that any two tuple's and background knowledge), he will not be able to know with certainty

t2 in D, belong to the sam®; if and only if they have the same  the exact value of the individual’'s sensitive attribute.

generalized quasi-identifiers undByy;. Letr = (qi1,...,qix)

be a value of quasi-identifiers. We saypelongs toD; if the gen- DEFINITION 4.1. Let T = {ti,...,t,} be a table with

eralization_ ofr underDy,; is the same as that of tuplesin. attributes {ai,...,an}, and p be a random permutation
Most existing works ork-anonymity only require that, aftergen-  over {1,...,n}. We define the permutation &, denoted

eralization, eactD; has no less thah tuples. However, as pointed (T, {a,, ..., a;}, {ai41,...,am}) as the set of tuplegt, |

out in [11], this requirement may not always satighanonymity VF]’, 1< j < tha;] = tila;] and V4,1 + 1 < j < m, ti[a;] =
when the attacker has background knowledge regarding the appear  a;]} T
ance of individual records in a microdata table. To fix the problem,

in [11], itis further required that there should be at lefiistinct DEFINITION 4.2. LetD be a de-identified microdata table with
sensitive attribute values in eagh after generalization. Whef attributes {Q1, ..., QIx, S}, and {D1,...,D,} be a partition
is set to bek, the partition obtained by usingdiversity techniques of D. A groupD; is (k, e)-anonymousf the projection ofD; over
will then guaranted:-anonymity. It is not hard to see that domain  the sensitive attributés contains no less thak different values,
generalization can also be used to achifvgz)-anonymity when  and the range of these different valuesiis no less thare. We
handling numeric-valued sensitive attributes. After each domain say the partition igk, e)-anonymousf everyD; in the partition is

generalization, besides checking whether every partition has no less(x ¢)-anonymous. We dendf® = p(D;, {QI4, ..., QI }, {S}).
thank tuples, we simply further check whether the partition has a p, = Uiy D} is a (k, e)-anonymous permutation &f.

range larger than or equal to

However, as shown in section 2, generalization based techniques As an example, figure 3 shows a (3,2000)-anonymous permuta-
impose challenges when answering ad hoc aggregate queries. Ijon of the table in figure 1.
general, given an aggregate query whose condition over quasi-

identifiers isc, and a microdata table generalized undky;, let THEOREM 1. Given a(k, ¢)-anonymous permutatio®, and
D; be one subset defined thg,. If for* every possibler = a public databaséP, any association cover that an attacker can
(qi1, ..., qiy) that belongs tdD; under Dg);, c(r) is true/false, derive satisfiegk, e)-anonymity.

then obviously all the sensitive attribute values in the partition o ) )
should be included/excluded when computing the aggregate. Oth- PROOF. (Sketch) Prove by contradiction that, if attacker derives
erwise, to get correct lower/upper bounds of the query result, we &N association coved of size _Iess thark or with range less than
have to act conservatively, and include none/all of the sensitive at- ¢ then we can construct a microdata ta$te such that it %, e)-

tribute values to compute the aggregate, which can be inaccurate. @0nymous permutation is the sameZ3s and the sensitive at-
tribute of that identifier is not in the association covel.]

4. PERMUTATION ANONYMIZATION
The essential reason that an attacker may recover an individual’s5' AGGREGATE QUERY ANSWERING

sensitive attribute value is the existence of the following three links: ~ Given a (k, e)-anonymous permutatio®, and an arbitrary
(1) the link between the identifier and quasi-identifiers in the pub- query condition over quasi-identifiers, since the quasi-identifiers of
lic databaseP; (2) the link between the quasi-identifiersfhand a tuple are unchanged, we know exactly how many tuples satisfy
those in the de-identified microdaf; and (3) the link between  the condition in each group; of the partition. Suppose this num-
quasi-identifiers and the sensitive attributelin Figure 5 shows ber ism;. Due to the random permutation between quasi-identifiers
the association between identities and sensitive attributes throughand the sensitive attribute ;, the actual result of the aggregate in
quasi-identifiers. Breaking or weakening the associations of any of D; may be over the sensitive attribute of any tuples in the group.
the above links will help protect privacy. Domain generalization Thus, in the worst case, there may be totallf{ D; |, m;) different
actually weakens the second and the third links. results for the aggregate. It would be too expensive to enumerate
In this paper, we propose tmly break the third link through per-  all the possible results when the size of the group is large. Instead,
mutation. Given a set of tuples in a de-identified microdata table, we are interested in efficiently computing important statistics, such
we randomly permute the association between quasi-identifiers andas the lower and upper bounds, mean, variance, of all the possible
the sensitive attribute instead of using domain generalization on the aggregates. Such statistics will be very useful for ad hoc analyses.
quasi-identifiers. Intuitively, even if an attacker can link an individ-
ual’s identifier with a tuple’s quasi-identifier (for example through 2.1~ Lower and Upper Bounds



Letm,; be the number of tuples iR; that satisfy the condition of
an aggregate querd. If the aggregation operation is monotonic,
then the lower/upper bound of the result@fin D; is the aggre-
gation of them; smallest/largest sensitive attribute valuesiin
Standard SQL aggregation functions, such as SUM, AVERAGE,
MIN, MAX and COUNT, are all monotonic. Therefore, the lower
and upper bounds of the result of an aggregate query in Pach
can be efficiently computed.

The lower and upper bounds of the query over the whole mi-
crodata table can be derived from those of eB¢hdepending on
different aggregation functions. For sum, the overall lower/upper
bound is the summation of the lower/upper bound of eB¢chre-
spectively. Since we know the total number of tuples satisfying the
query condition, the lower/upper bounds of the average function
can be directly computed from those of the sum function. It is also
easy to see that the overall lower/upper bounds of the MIN function
is the minimum among the lower/upper bounds of all the The
bounds for the MAX function can be obtained similarly.

THEOREM 2. Let{Dy,..., D,} be a partition ofD defined by

2. select sum(sum-Ib), sum(sum-ub)
from HT, R1
where HT.grouplID = R1.groupID and HT.hits = R1.hits

The processing of other aggregate queries is similar.

We emphasize that the help table can be constructed directly
from the permuted table (using the mapping table), without requir-
ing any access to the original microdata table. Therefore, the use of
the help table does not compromise the privacy of microdata in any
way. Further, we only need to compute the help table and the map-
ping table once for a released microdata database. It can be done
offline, which will not affect the performance of ad hoc analyses.

6. CRITERIA FOR
PARTITION

We have shown that, given the same partition, the anonymized
table obtained through permutation will always answer aggregate
queries more accurately than that obtained through domain gen-
eralization. However, given an arbitrary partition, even with the

(K, E)"ANONYMOUS

a generalization. Given any aggregate query, the lower and upper Permutation-based approach, it is unlikely to get satisfactory an-
bounds given by the generalized table always include that given by SWers to aggregate queries. Thus, in this section, we turn our dis-

the permuted table using the same patrtition.

cussion to the problem of generating “godd; ¢)-anonymous par-
titions which are likely to produce accurate answers to aggregate

For sum and average, other statistics besides lower and upperqueries. _ N
bounds can also be computed by combining those of each group in  Formally, letD denote a total order of the multiset of sensitive

a partition. We omit details for reasons of space.

5.2 Auxiliary Relation and Query Rewriting

attribute valuesD = zi,zs,...,2,, andP = {Gi,...,Gn}
be a partition ofD. SinceD is a totally ordered multiset, we de-
note the indices of the first and the last data point in a g@ups

We observe that, for the same aggregation operation, no mat-min; andmazx; respectively. Thus, the range Gf is obtained by
ter what the query condition is, as long as the number of tuples [Tmin;, Tmaz;]. LEt E(G;) denote an error measure defined on a

satisfying the condition in eacP; is the same, the bounds of the
aggregation irD; remain unchanged. Therefore, we do not need
to compute the bounds for ea@k on the fly when answering a
query. Instead, we propose to createedp tableto facilitate effi-
cient query answering.

The primary key of the help table is “group ID” and “hits”, where
the former indicates a group in the partition, and the latter repre-

sents the number of tuples in the group satisfying a query condition.
For each group in the partition and the number of hits, the table lists
the lower and upper bounds for each aggregation operation on the
sensitive attribute. Figure 4 shows the help table for the permuted

table in figure 3. It contains the bounds for SUM and MIN, though
in practice it should also contain the bounds of AVERAGE, MAX

and other aggregation operations supported by SQL. The number

of tuples in the help table is the same as in the microdata table.
Besides the help table, we also create a bingapping tableéhat
indicates which tuples the groups of a partition contain.
Given an aggregate query of the form “select agg(sensitive-
attribute) from permuted-table whe€®’, we rewrite it to get the

bounds of the query result. The rewritten query first selects the tu-

ple IDs of tuples that satisfy conditiofi from the permuted table
PT. The result in the first step is then joined with the mapping
table MT to count the hits of each group of the partition. Once this
information is available, it is further joined with the help talild’,

group D;, and F' be a point-wise additive function. We can now
formally define the optimal partition problem:

PROBLEM6.1 (OPTIMAL PARTITION). Given a total order
D of a sensitive attribute, obtain(@, e)-anonymous partitiod® =
{Gy,...,Gn} that minimizeF (E(G1), E(G2), ... E(Gn)) for
suitable choices of” and E ().

Given a point queryr,, if x;, € G, our scheme will return
any point insideG; as an answer. As a result, theaximumer-

ror incurred for any point query inside a grodg is E(G;)
Tmaz; — Tmin;. Therefore, intuitively, the smaller is the range
of each group, the smaller error will be introduced to the answer
of aggregate queries. Since all the groupsPoiay be used for
querying, it seems imperative to define the functibrin a way

that the error across all groups, assuming a uniform random work-
load of point queries, is minimized. It is natural to aim to mini-
mize theadditive error or themaxerror across all groups. Thus
candidate point-wise additive functions asem or mazx. We

call the optimization problems using tkeam and themaz func-
tions theminimum sum-of-error problerand theminimum max-
of-error problemrespectively. We denote the sum and the max of
errors of all the groups in a partitioR assum_of_error(P) and
max-of _error(P) respectively.

and the bounds of the aggregation of each group are combined to§.1 The Minimum Sum-of-Error Problem

compute the bounds for the final query result.
More specifically, for the SUM aggregation operation, we
rewrite the query as follows.

1. R1 ="select grouplD, count(tupleIlD) AS hits
from MT, R1
where MT.tuplelD in (select tuplelD from PT whef&
group by grouplD”

Recall that the goal of this problem is to find/a e)-anonymous
partition P = {G1,...,Gmn} of D such thatsum_of _error(P)
is minimized.  Without loss of generality, we assume that
G1,...,Gy, are ordered according to the index of the minimum
value of each group, i.ei,< j implies thatmin; < min;, which
also means that,in; < Tmin, -



LEMMA 6.1. There exists an optimal partitionP
{G1, ..., Gn} to the minimum sum-of-error problem such that for
any groups; andG;+1, we havemaz; < min;41.

PROOF. (sketch) We first observe thataxz; < max;+1. Oth-
erwise, sincemin; < min;+1, We can simply merge; i
and G; into one group, whose maximum error is Stithaz;, —
Tmin;, and obtain anothe(k, e)-anonymous partitionP’. We
havesum_of error(P') = sum_of range(P) — (Lmaz;y, —
Tmin;, ), CONtradicting the fact thak is optimal.

Second, ifmaz; > min;y1, we can still merges; andGi41.
The maximum error of the new groupas.az; ., — Tmin;, Which
is less than or equal to the sum of the maximum error& poand
Git1. O

Lemma 6.1 shows that the ranges of groups in an optimal par-
tition are disjoint. It suggests that this problem has the optimal
substructure property, thus it is amenable to dynamic program-
ming solutions. Leif (i) denote the minimum cost way to partition
z1,...,x; iINto a number of groups, say ™, such that the partition
is (k, e)-anonymous foty, ..., z;. Then

@) = mini<a<: F(f(d = 1), E{za, ..., xi})) (1)

Thus, the optimal solution for partitioning the data points. . . z;
intom™ groups is equal to the minimum cost way of extending (ac-
cording to the point wise additive functidf) the optimalm™ — 1
partitioning ofz1, ... zq4—1 (for somed, 1 < d < 7) with the group
{z4,...,x:}. Algorithm 1 presents the dynamic programming so-
lution for the sum-of-error problem. The algorithm considers all
values ofi, 1 < i < n, and for each value af, 1 < d < i, assesses
the sum of errors using equation 1. The index of the minimum item
of each group is stored in the arrpgrtition. A linear scan of this
array at the end of the algorithm (starting from partition[n] and go-
ing backwards) will extract the optimal group descriptions. The
algorithm makes use of the arrdystinct that returns irO(1) the
number of distinct elements iR between the arguments supplied.
The size of this array i®)(n?) and can be populated in a prepro-
cessing step i®(n?) time, so that access to it remai@g1). It is
evident that Algorithm 1 runs i®(n?).

Algorithm 1 Optimal partition for the minimum sum-of-error
problem
£10] = infinity
partition[0] = 0
for i=1ton do
f1Z] = infinity
partition[i] = partition[i-1]
ford=1toido
if distinct{za,...,z;}) > k andz; — zq > e then
error =r; — Tq
else
error = infinity
end if
temp = max(f[d-1],error)
if temp < f[i] then

fli] = temp
partitionfi] = d
end if
end for
end for

THEOREM 3. Given a total order of a sensitive attribufe of
n items, withO (n?) preprocessing and(n?) space, we can com-
pute inO(n?) time, the optimal partition oD for the sum-of-error
problem.

6.2 The Minimum Max-of-Error Problem

Though seemingly similar to the minimum sume-of-error prob-
lem, the minimum max-of-error problem turns out to be much more
complex. We have shown that the groups of an optimal partition in
the sum-of-error problem are disjoint, i.e., the ranges of different
groups are not overlapping (except possibly the boundary where
Tmaz; = Tmin;,, ). 10Erefore, each group can be described com-
pletely by using the indices of its first and last attribute valugs,;
andmaz;, and every attribute value with index between them be-
longs to the group. This property significantly reduces the search
space for an optimal partition.

The non-overlapping property, however, does not hold for op-
timal partitions for the minimum max-of-error problem. As
a simple example, consider the following set of sensitive at-
tributes{1, 2, 3, 5, 5, 6, 6, 8}, the only optimal partition fof4, 5)-
anonymity isG1 = {1, 2,5,6} andG: = {3, 5, 6,8}, whereG:’s
range(1, 6) overlaps withG>’s range(3, 8).

On the other hand, we observe that the minimum max-of-error
problem has the following property.

LEMMA 6.2. There exists an optimdk, e)-anonymous parti-
tion P = {G.,...,Gn} for D such that there are no more than
two groups whose ranges overlap with each other. In other words,
there is no value in the domain of the sensitive attribute such that
the value falls into the ranges of more than two groups.

PROOF (sketch) First, by a similar proof to that of lemma 6.1,
no group’s range is included by that of another.

Second, given any optimal partition, suppose there are three
groupsG;, Gj and Gy, i < j < [, whose ranges overlap with
each other. Then we must hawg,..; > Zmin, . Otherwise, since
Tmaz; < Tmaz;, WE have the ranges 6f; andG are not overlap-
ping. We thus can divide all the items @ into two groupsG;1
including those less thann,:»,, andG;» including those greater
than or equal t@min,. We mergeG;: with G; andG,2 with G;.

The ranges of; andG; do not change, which means the new par-
tition is still optimal. By repeating this step, we will get an optimal
partition where the ranges of no three groups overlap with each
other. [

LetP = {G4,...,Gn} be an optimalk, e)-anonymous parti-
tion that satisfies the above property. Consider the first two groups
G andG.. If the ranges of7; andG» do not overlap, their,
contains all the values from, i, = 1 {0 Zmaz, IN D. Then the
remaining groups in fact form an optimal partition for the rest of
the itemsemaz,+1, -+, Tn.

On the other hand, suppose the ranges/ofand G» overlap,
which meansnin, < maz:. We divide G» into two parts, the
former partGzy which includes those items less than or equal to
Tmaz,, and the latter par&s; which includes those items greater
thanz,..,. Lett be the smallest index of items B such that
Tt > Tmaz,- According to lemma 6.2G; and Gay combined
together include all the values ih that are less tham;. Further,
we haver; € Go. Otherwise, suppose; € G;,7 > 2. Thenz,
must be the smallest value 6%. This allows us to merg€'s; with
G1 andG5; with G;. The resulting partitiod®’ is still optimal, and
there is no overlap between the first two group#in

Based on the above observation, we have tHat Gs, ...,
G, forms a partition ofz¢, z¢41,...,x,. EXceptGa, every
group is (k, e)-anonymous. FolGy, it has at leask — d dis-
tinct values whered is the number of distinct values i6/sy.
Further, the width of the range dfs; is no less thare — r,
wherer Ti — Tming. IN Other words, given any partition
P ={G,...,G.}ofz,...,z,, suchthaG} is (k —d,e —r)-
anonymous and the rest afg, ¢)-anonymous, if the maximum



Algorithm 2 Optimal partition for the minimum max-of-error
problem

for i=nto1do
for d = 0 todistinct(1,n) do
for j=0toido
r=r; —Tj
if distinct({zi,..
then
gli[d)r]=INF
continue
end if
glilldllr)=2, — z:
or maxri1 =iton —1do
if distinct({zi,...,ZTmaz,) < k — dthen
continue;
end if
for mins =i+ 1tomax: +1do
dy = #(i,maz1, mina, d)
" = Tmaz1+1 — Tminsg
m = maz(Tmaz, — Ti + 1, g[mazi + 1][d1][r1])

LEn})<k—dorx, —x; <e—r

if m < g[[i d][r] then
glil[d][r] =m
end if
end for
end for
end for

end for
end for

of BE(G}) + r, E(G%), ..., E(G%) is minimized, then the parti-
tion {G1, G2 U G1,GY, ..., G} also forms an optimalk, e)-
anonymous partition ab.

Therefore, we study the following more general optimization
problem:

PROBLEM 6.2. Given d and r, obtain a partiton P =
{G1,...,Gn} of D, whereG, is (k — d, e — r)-anonymous and
the rest groups arék, e)-anonymous, such thataz(E(G1) +

r, E(G2),...,E(Gn)) is minimized.

Clearly, the minimum max-of-error problem is a special case of the
above problem wheré = 0 andr = 0.

The above argument shows that the above problem has the opti
mal substructure property. Intuitively, for each possillexr, and
mins, We move as many values between;,, andz.,q, as pos-
sible toGsy, the first part of72, as long a&+: still hask—d distinct
values. After this step, we denote the number of distinct values in
G2y as#(miny, maz, miny, d), asitis determined by these four
parameters. Lej(d, r, ) denote the minimum cost way to partition
Zi, ..., Zn such that the first group (& —d, e —r)-anonymous and
the rest groups argk, e)-anonymous. Then we havgd,r,i) =
Mini<u<n,i<v<u—1Mmaz(g(d—#0,u,v,d),r—(Tut1—2s), ut
1),z —x; +7)

Algorithm 2 shows the dynamic programming solution to the
minimum max-of-error problem. For simplicity, algorithm 2 only
returns the maximum error of an optimal partition. With some sim-
ple bookkeeping, the algorithm can be easily modified to return the
items contained in each group.

The purpose of our discussion so far is to show that the minimum
max-of-error problem is in fact tractable. However, with complex-
ity of O(n®), it is far from practical. Instead, it is very desirable
to design efficient approximation algorithms for the problem. For

this purpose, we limit our search space to those partitions whose

groups do not overlap with each other. In other words, we consider
the following problem:

PROBLEM 6.3. Obtain a (k, e)-anonymous partitionP

{G1,...,Gn} of D, where the ranges of any two groups in the
partition do not overlap, such thataz(E(G1),...,E(Gn)) is
minimized.

We call the above problem the non-overlapping minimum max-
of-error problem. With a similar argument to that of the optimal
solution to the minimum sum-of-error problem, it is not hard to see
that this problem also has the optimal substructure property, and
thus can be solved by dynamic programming wittwe?) in both
space and time complexities.

THEOREM 4. Let P and P’ be the optimal partitions ofD
of the minimum max-of-error problem and the non-overlapping
minimum max-of-error problem. Thenin_maz_error(P') <
2 - min-mazx-error(P).

PROOF (sketch) LetP = {G1,..., G }. According tolemma
6.2, overlapping ranges can only happen between adjacent groups.
We examine each group by order. If the rang&g@fdoes not over-
lap with that of G2, we continue toG,. Otherwise,G»> can be
divided into two groups(»y which includes those no less than
Tming, and Gz; which includes those greater thatn.in, (G2
may be empty if the ranges @f» and Gs do not overlap). We
merge Gz into G1 and G into Gs. Note that the range of
G5 does not change, while the range@f is at most increased
by maz_of_error(P). We next move taGs and check whether
it overlaps withG4. We continue this process unt¥,,. The
resulting partitionP’ does not contain overlapping groups, and
maz_of_error(P') is at most twicenaz_of _error(P). [

7. EXPERIMENTS

Our experiments are conducted on the Adult Database from
the UCI Machine Learning Repository [19]. The database is ob-
tained from the US Census data, and contains 14 attributes and
over 48,000 tuples. The same database has been used in previ-
ous works onk-anonymity and¢-diversity [10, 11]. We choose
the same quasi-identifiers (which contain 8 attributes) in our ex-
periments as that used in previous works. Since our approach fo-
cuses on numerical-valued sensitive attributes, in the experiments
we choose "capital loss” as the sensitive attribute. In particular,
we are interested in those people who do have capital loss. There-
fore, we remove those tuples whose capital loss attributes are 0 or
NULL. That leaves us with 1427 tuples. The range of capital loss
in these tuples is from 155 to 3900, with 89 distinct values.

We also conduct experiments on a synthetic data set, so that we
can adjust a variety of parameters to comprehensively evaluate the
properties of the proposed permutation-based approach. The syn-
thetic data set uses the same schema as the Adult Database. We
populate the database with different numbers of tuples, assuming
certain distribution of the capital loss attributes. We also con-
sider the correlation between the capital loss attribute and quasi-
identifiers. The details of the synthetic data set will be described
later when we present the experimental results.

We design three sets of experiments to study the following as-
pects of differenk-anonymity techniques.

Query Answering Accuracy. In this set of experiments, we
compare the accuracy of the bounds derived from the generalized
table and the permuted table. Specifically,lleind« be a lower
and an upper bound of an aggregate query res@spectively. We
defineerror = (u — 1) /r to be the relative error of the bounds.
The smallerrror is, the more accurate the bounds are.

We also compare the accuracy of those bounds when using dif-
ferent optimization criteria to g€k, e)-anonymous partitions.

Query answering overhead.As described in section 5, to an-
swer an aggregate quey over a permuted database, we first
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rewrite it into a queryQ’ which queries the permuted table, the
mapping table and the help table. Our second set of experiments | N——
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problem and the approximation algorithm for the minimum max-
of-error problem are of complexit@(n”). In this set of experi- oo
ments, we empirically show their scalability when increasing the 0 20 40 500 800 1000 1200 1400

. . Number of tuples selected
size of the microdata table.
Next, we describe each set of experiments in detail.

ive errol
@
S
o
8
=

relat

50.00%

Figure 6: The relative errors of arbitrary queries when using

7.1 Accuracy the generalized table and the permuted table respectively
We first compare the relative error of the bounds derived from

the generalized table and the permuted table, given the same par- 1o
tition. Specifically, the partition, which satisfi¢4, 0)-anonymity 160.00%
(the same as 4-diversity in thediversity work), is obtained by 140.00% \
using the/-diversity algorithm and the same generalization hierar- ;.
chies reported in [11]. We note that the experiments in the work of
{-diversity actually computed 6-diverse partitions. However, after
generalization using those 6-diverse partitions, a majority of quasi-
identifiers (6 out of 8) including “age”, “race”, “native country”,
etc., are all generalized to “*”, which essentially removes these at-
tributes from the microdata table. This significantly limits the type | s—3—_
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of queries the generalized table can answer. To make the com- *™*] o » M M ot %
parison more meaningful and in favor of the generalization-based Spanof range query
approach, we instead choose 4-diverse partitions so that interesting i Senesizaion = femus

attributes such as “age” can be generalized to reasonable domains.

In fact, in order to prevent “age“ from being genera"zed to “*” Figure 7: The relative errors of range qUerieS when USing the
when using the-diversity algorithm, we also have to remove some generalized table and the permuted table

of the outliers (6 tuples with age over 80). Otherwise, the “age”

attribute will still be suppressed even with 4-diversity.

The resulting 4-diverse partition is composed of 25 groups. We issue aggregated queries over a certain range of the age attribute.
first consider a general model of aggregate queries. Note that noln particular, we issue a sequence of queries of the form “select
matter what the query condition is, the result of the condition is to avg(capitalloss) from adult-table where age X and age< Y”,
select a set of tuples in each group of the partition. Therefore, a and vary the ranggX, Y]. Clearly, for the generalized table, if the

query can be viewed afl1, ..., T,}, where eacl; is a subset generalized value of the age attribute of a group falls completely
of D;. By selecting different tuples in each group, we may model in [X,Y], then all the tuples in the group should be selected for
arbitrary aggregate queries. the aggregation. Otherwise, we have to derive the lower and upper

In the first experiment, we issue queries that randomly touch an bounds of the group as in the first experiment. For the permuted
arbitrary number of tuples from the table, and compute the averagetable, we will still know the exact number of tuples selected in each
of their sensitive attribute values. We call these queaidstrary group. The relative errors for range queries are shown in figure
queries Arbitrary queries are representative of various disjunctive 7. We see that the accuracy of the bounds derived from both the
queries. From a generalized table, we cannot know for sure how generalized table and the permuted table improve for range queries.
many tuples are actually selected by a query in each group. ToIn particular, the relative error computed from the permuted table
get deterministic lower and upper bounds, we have to assume ei-is less than 20% even when the span of the range query is only 5,
ther no tuples are included in the query, or only the tuple with the which does not completely cover any groups in the partition. For
maximum capital-loss is selected. On the other hand, from a per- the generalized table, the error is still very high when the range of
muted table, we can always know exactly the number of tuples in the query is small, because some groups are only partially covered
each group that are selected by the query. Figure 6 shows the relaby the query. Since we do not know exactly how many tuples are
tive errors of the bounds derived from the generalized table and the selected by the range query in a partially covered group, the lower
permuted table. We see that the relative errors introduced by theand upper bounds will be quite coarse. When the span of the range
generalized table is significantly higher than that by the permuted query increases, more and more groups are completely covered by
table. In fact, the bounds from the generalized table are often overthe query. Thus, we observe a dramatic drop of relative errors for
two times of the actual query results. Further, as the total num- the generalized table. However, the error for the generalized table
ber of tuples selected increases, the relative error introduced byis still always higher than that for the permuted table.
the permuted table drops dramatically, while that introduced by the  The adult database contains 9 attributes as quasi identifiers.
generalized table does not drop at all. When we have less attributes, the hierarchy of generalization may

We recognize that, since the arbitrary query is a very general be less coarse and lead to smaller partitions. To study the impact of
model, the generalized table will not be able to take advantage of dimensions on accurate query answering, we have also conducted
the semantics of a query condition. In the next experiment, we experiments when assuming "age” is the only quasi identifier. We
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Figure 8: The relative errors of range queries when using the
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Figure 11: The relative errors of range queries using partitions
from different partitioning algorithms

have observed very similar trends to that in Figures 6 and 7 (seerange queries in this experiment are the same as in the first two
figure 8 and 9). Our observation suggests that the poor query an-experiments.
swering accuracy from the generalized table is often not caused by The relative errors corresponding to the above algorithms are
high dimension of quasi-identifiers. Instead, it is intrinsic to the shown in figure 10 (for arbitrary queries) and figure 11 (for range
domain generalization approach. queries). It is clear that the three optimization algorithms intro-
The way the microdata table is partitioned has a great impact on duce significantly less relative errors than the other two algorithms
the accuracy of the bounds derived from the permuted table. Next, for arbitrary queries. This can be easily explained since the two
we compare the relative errors of permuted tables when using par-optimization algorithms are not constraint by pre-defined domain
titions generated by the following algorithms (see section 6): (1) hierarchies. They have more flexibility to partition the table and
{-diversity based on domain generalization; (2) Min Max: the ap- achieve better accuracy. We also observe that the partition from
proximation algorithm for the minimum max-of-error problem; (3)  generalization is even worse than the random partition for arbitrary
Min Sum: the optimal algorithm for the minimum sum-of-error  queries. This shows that the partition derived from pre-defined gen-
problem; (4) Max Group: an algorithm that generates the max- eralization hierarchies greatly reduces the utility of microdata, even
imum number of groups in the partition. Similar to the minimum if we use permutation-based anonymization. The rank-based data
sum-of-error proble, the optimal algorithm can be obtained through swapping algorithm, though with better accuracy than that from
dynamic programming; (5) a random algorithm: this algorithm se- the partitions obtained through generalization hierarchy, still intro-
quentially scans each tuple. As long as the scanned tupleskhave duces much large relative errors than the the three optimization al-
distinct sensitive attribute values, and its range is no lessd¢han  gorithm.
they form a group of the partition. The random algorithm serves  Intuitively, if there is a strong correlation between quasi-
as a baseline for comparison; and (6) the rank-based data swappingdentifiers and the sensitive attribute, the tuples in the same group
algorithm [13]. To be comparable {&, ¢) anonymity, given a tu- tend to have similar values in the partition generated through do-
ple ¢ whose rank is-ank(t), we select such that the set of tuples  main generalization. This may result in more accurate bounds for
with ranks in[rank(t) — [, rank(t) + 1] satisfie k, e) anonymity. answering range queries. Our next experiment is to investigate the
We then swap with a random tuple whose rank is in the range. impacts of correlation on the accuracy of query answering. We
We setk = 4 as before, and set= 100 for the two optimiza- compare the partitions obtained by the above four algorithms when
tion algorithms and the random patrtitions. To be in favor of the varying the correlation between quasi-identifiers and the sensitive
generalization-based approach, the groups in the partition gener-attribute. We run range queries that select tuples whose age at-
ated by¢-diversity algorithm is only required to have no less than tributes are in the rangeX, Y] whereY — X = 30. In the syn-
4 distinct values. The parameters of the arbitrary queries and thethetic data set, we introduce a correlation between “age” and “cap-
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Figure 12: The relative errors of range queries using partitions Figure 13: The relative errors of range queries using partitions
from different partitioning algorithms, when the strength of the from different partitioning algorithms
correlation between quasi-identifiers and the sensitive attribute
varies. s000%
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ital loss”. The larger a tuple’s age attribute, the larger its capital-
loss, with a certain variance, which controls the strength of the cor-
relation.

Figure 12 shows the relative errors of the six algorithms when
the strength of correlation varies. We observe that as the correla-
tion is strong(variance=5), tuples with the same age often have the
same capital loss. Thus a higher generalization is needed, which
causes the partition from generalization to yield a large error. As ~ *** o s P P e - w 0
the variance goes up to 10, a lower generalization is sufficient since error bound &
it is more likely for tuples in the same domain to have different ‘ fon slgo | ~=-op(imization aigo 2 - fandom pariion
capital loss values. That explains the quick drop of the error when
variance=10. As the variance keeps increasing, tuples in the samé-igure 14: The relative errors of range queries using partitions
group tends to have quite different sensitive attribute values, which from different partitioning algorithms
will cause the error to increase. Since “age” is the only quasi iden-
tifier in the synthetic data set, a range query may completely cover )
many groups in the partition obtained through domain generaliza- 13 shows the experiment's results. We see that the accuracy for the
tion. Therefore, it yields comparable accuracy with the partitions Partitions obtained by the three optimization algorithms are essen-
generated by the two optimization algorithms. The randomly al- tially the same, and do not deteriorate much as we increa$his
gorithm does not take advantage of the correlation between “age” Suggests that the optimization algorithms are capable to generate
and “capital” loss, and thus performs poorly as expected. The rank- Partitions that preserve high privacy while still supporting accurate
based data swapping algorithm does not perform very well because@dgdregate query answering. Meanwhile, we see that the accuracy
itis hard to deterministically reason the bounds of a query after data Of the range-based data swapping approach decreases significantly,
swapping. Only when a long sequence of consecutive sensitive at-Since it does not prov_lde a mechanism to minimize the error intro-
tribute values are covered by a query, can we say for sure that someduced by data swapping. _
tuples are definitely included in the original query answers. This  We next evaluate the impact of the other privacy parameter
only happens frequently when a large portion of tuples are touched this experimentf is fixed to be 10, and varies from 40 to 200.
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by a query. Figure 14 shows the same trend as in figure 13: a much larger pri-
Finally, we study the tradeoff between privacy and query an- Vacy requirement does not impact the accuracy of the partitions
swering accuracy. Intuitively, the largérande are, the more tu-  obtained by the two optimization algorithms. As for the random

ples each group in &, e)-anonymous partition tends to include, algorithm, the increase_ @_fdoes not affect the generated partition
which will in turn introduces more errors when answering aggre- Much, since random distinct values in the same group usually re-
gate queries. To see the tradeoff more clearly, we run experimentsSult in & range much larger than the privacy parameteet by

over a synthetic random data set, whose quasi-identifier and sen-the experiment. The range-based data swapping approach does not
sitive attribute are "age” and "capital-loss” attributes respectively. Perform well due to the same reason as explained in the previous
The ranges of them are the same as in the adult database. We is€xperiment.

sue range queries over “age” attribute. The span of range querie .
is set to 30 as before. To examine the impact of the privacy pa-s7'2 Query Execution Overhead

rameterk, we fix e = 50, and varyk from 4 to 40. We measure Given an aggregate quefy, we compare its execution time over
the relative errors of the partitions obtained by the two optimiza- the 0“95“3| un-permuted microdata table with that of the rewritten
tion algorithms and the random partitioning for edeh. Figure query@" which performs selection and joins over the permuted ta-

— S _ ~ ble, the mapping table and the help table. To make the comparison
!Partitions from generalization is not studied because the original more clearly, we run the experiments on the synthetic data set with

(-diversity does not have the parameterMoreover, we observe 10000 tuples. The partition 20, 0)-anonymous, and is obtained
that when we requiré-diversity, in the real database "age” is al-

ready generalized to "*”, and it cannot tell any information about a query on "age”.
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Figure 15: The execution time of the constrained query and
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Figure 16: The execution time of the original range query and
the rewritten range query when the span of the range varies

by the first optimization algorithm. There are totally 38 groups in
the partition. Both arbitrary queries and range queries are tested.
In order to study the impact of the number of tuples and par-
titions involved in a query on query execution overhead, we use
constrained arbitrary queries in this experiment: we vary the num-
ber of partitions involved in the query while having the percentage
of tuples selected in each group fixed to be 30%. In figure 15, we
show the time of the two steps when executing a rewritten query.
The first step is to query the permuted table and join it with the

mapping table so that the number of tuples selected in each parti-
tion is obtained. In the second step, the result from the first step is
joined with the help table and the lower and upper bounds are com-

puted. We also show the total running time of the rewritten query
and compare it with the case if we run the original query directly
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Figure 17: The running time of an optimal partitioning algo-
rithm when the microdata table size scales up

We study the scalability of the optimization algorithms presented
in section 6. All of them have computational complexity@fn?),
and have similar performance. Figure 17 shows the running time
of the first partitioning optimization algorithm while the database
size is varied from 100 tuples to 2000 tuples.

8. RELATED WORK

The privacy vulnerability of the release of de-identified micro-
data was first discussed by Sweeney [16, 18]. It has been shown
that, after linking a de-identified medical database with voter reg-
istration records, some individual’'s medical record can be uniquely
identified. Sweeney further proposgéeanonymity as a model for
protecting privacy of microdata. Domain generalization and record
suppression have been introduced as two techniques to adhieve
anonymity [17].

In [15], Samarati presented a framework for generalization and
suppression basdganonymity, where the concept of generaliza-
tion hierarchies was formally proposed. Given a pre-defined do-
main hierarchy, the problem &fanonymity is thus to find the min-
imal domain generalization so that, for each tupie the released
microdata table, there exist at leési other tuples which have the
same quasi-identifiers as Samarati also designed a binary search
algorithm to identify minimal domain generalizations. The con-
cept of-diversity is introduced by Machanavajjhala et al. in [11]
to prevent attackers with background knowledge.

It has been shown that the problem of genérahonymity with
suppression and arbitrary domain generalizations (instead of pre-
defined generalization hierarchies) is NP-complete [12, 3, 9]. Sev-
eral approximation algorithms have been proposed [2, 12]. In [20],

on the un-anonymized microdata table. We see that, when the num-Ya0 et al. show that, when several microdata tables are disclosed,
ber of involved groups increases, so does the running time of both €ven if each of them satisfidgsanonymity, by pooling them to-
steps. For the first step, it is because the number of tuples selected€ther,k-anonymity may be violated. They further design algo-

in the first steps grows. For the second step, the more groups in-

volved, the longer it takes to finish the join with the help table. The
overall execution time of the rewritten query is about four times
that of the original query.

The range query takes the same form as in the previous experi-

ments. We increase the span of its range from 10 to 50. Intuitively,

rithms to detect such violations.

Recently, many works have been done to efficiently compute
minimal and optimal generalizations [8, 10]. In [8], Bayardo and
Agrawal presented a general model of the problem of finding opti-
mal generalization and suppressions to achieamonymity. The
model can accommodate a variety of cost metrics. Pruning tech-

the larger the span of the range, the more groups of the partition Niques have been proposed to reduce the search space of optimal
and tuples will be selected by the query. Figure 16 presents the 9eneralization and optimization. In the Incognito approach of [10],

experiment’s result, which is consistent with the experiment using
constrained queries.

7.3 Scalability

12

generalization hierarchies are explored in a vertical way. It first
computes the minimal solution te-anonymity in the generaliza-

tion hierarchy for each quasi-identifier. These solutions are then
combined to form the candidate generalizations for the domain hi-



erarchies of quasi-identifier pairs. This process continues until a [9] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Multidimensional

set of minimal domain generalizations are obtained for the full do-
mains of quasi-identifiers. All the above works focus on introduc-

ing less imprecise information to microdata. But their impacts on (10]

the accuracy of aggregate queries are not discussed.

[11]

9. CONCLUSION

Privacy is a serious concern when sensitive information is re-

leased together with quasi-identifiers in microdata databases. A[12]

majority of previously proposed works focus on anonymizing mi-
crodata through domain generalization. Though privacy can be ef-

fectively protected by previous works, the impact of anonymiza- (13]

tion on ad hoc microdata analyses is rarely studied. We observe

that in many situations, after domain generalization, the microdata (14

becomes so general that it often has difficulty to answer aggregate

queries with reasonable accuracy. [
In this paper, we propose an extended privacy objective to better

capture the protection of numeric-valued attributes in microdata.

We also propose permutation based anonymization techniques. We16]

show that we can achieve the same privacy guarantee as existing
work when we partition a microdata table and perform random per-
mutation between quasi-identifiers and sensitive attributes inside
the groups of the partition. Further, since the quasi-identifiers of
tuples remains in the anonymized table, aggregate queries can be

answered much more accurately. We also design auxiliary rela- [18]

tions and query rewriting algorithms to facilitate efficient ad hoc
analyses over anonymized tables.

There are many interesting issues to be explored in the future. In[1°]
[20

particular, we are interested in investigating the use of permutation
to achieve privacy under other privacy objectives. For example,

instead of constraining the ranges of groups in a partition, another
attractive objective is to require the difference between any two
elements in a group to exceed a certain threshold. It is interesting
to investigate efficient optimal or approximation algorithms under

such privacy objectives, and study their impact on the accuracy of
aggregate query answering.
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