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ABSTRACT
Privacy is a serious concern when microdata need to be released for
ad hoc analyses. Simple de-identification has been shown to be in-
adequate, since privacy can be compromised when quasi-identifiers
in a de-identified database are linked with publicly available infor-
mation. To mitigate the problem, generalization and suppression
based approaches (such ask-anonymity and̀ -diversity) have been
proposed to weaken the linkage between the quasi-identifiers of a
record and its sensitive attributes in a microdata database. The pri-
vacy protection goals of these approaches are only suitable for cat-
egorical sensitive attributes. Directly applying them to numerical
sensitive attributes (e.g., salary) may result in undesirable infor-
mation leakage. The first contribution of this paper is to propose
privacy goals to better capture the need of privacy protection for
numerical sensitive attributes.

Complementing the desire for privacy of microdata is the need
to support ad hoc aggregate analyses that select subsets of records
based on arbitrary conditions on the quasi-identifiers and compute
aggregates over sensitive attributes (e.g., what is the average salary
of men over age 50 in Texas?). Approaches based on general-
ization and suppression cannot, in general, answer such aggregate
queries with any reasonable accuracy, thereby reducing the utility
of released microdata. The second contribution of this paper is
a general framework of permutation-based anonymization to sup-
port accurate answering of aggregate queries. We show that, for a
specific privacy protection goal, permutation-based anonymization
techniques can always answer aggregate queries more accurately
than generalization-based approaches. We further propose several
criteria to optimize permutations for accurate answering of aggre-
gate queries, and develop efficient algorithms for each criterion. We
conduct comprehensive experiments on both real and synthetic data
sets to demonstrate the advantages of our proposed techniques.

1. INTRODUCTION
Compared with traditional data dissemination in pre-aggregated

or statistical forms, the release of microdata offers significant ad-
vantages in terms of information availability, which make it partic-
ularly suitable for ad hoc analyses in a variety of domains such as
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public health, population studies and financial research.
On the other hand, the release of microdata incurs apparent pri-

vacy concerns. While supporting ad hoc analyses, it is paramount
to prevent private information of individuals from being revealed.
Existing privacy practice relies on de-identification, i.e., removing
explicit identification information (e.g., name, SSN, home address
and telephone numbers) from microdata. However, it has been
well recognized that simple de-identification is not sufficient to
protect an individual’s privacy. One’s other attributes (so-called
quasi-identifiers, such as age, zip code, date of birth and race)
are usually needed for data analyses, and thus are kept after de-
identification. Individuals’ sensitive information may often be re-
vealed when microdata are linked with publicly available informa-
tion through quasi-identifiers.
k-anonymization is a technique that has been proposed to ad-

dress the above privacy problem. Through domain generaliza-
tion and record suppression,k-anonymity guarantees that publicly
available information cannot be related with less thank records in
a microdata database. In other words, given a sensitive attribute
value in microdata, an attacker can at most relate it to a group of no
less thank entities instead of any specific individual. The concept
of `-diversity was recently proposed to further protect privacy in
microdata. It is based on a stronger attack model where an attacker
is assumed to have the knowledge that both the record correspond-
ing to an individual and some values of its quasi-identifiers appear
in a microdata database.

The privacy goal ofk-anonymization and̀-diversity is suitable
for categorical sensitive attributes, such as the disease attribute in
a patient record table. It assumes that different attribute values
are incomparable. Iǹ-diversity, for example, as long as it is en-
sured that an individual’s sensitive attribute value can at most be
narrowed down to a group of no less thank tuples with no less
than ` distinct values, one’s privacy is protected. In practice,
however, besides categorical attributes, many sensitive attributes
in microdata databases are in fact numerical data, e.g., one’s salary,
investment gains or losses. Applying existing privacy goals ofk-
anonymity and̀ -diversity is often not sufficient to protect numer-
ical attributes. For example, even when`-diversity is satisfied, if
the group of salary values falls into a narrow range, an attacker can
still obtain sensitive financial information of an individual. There-
fore, it is important to define new privacy goals for the protection
of numerical sensitive attributes in microdata.

Complementing the desire for privacy of microdata is the need
to support ad hoc aggregate analyses that select subsets of records
based on arbitrary conditions on the quasi-identifiers and compute
aggregates over sensitive attributes (e.g., what is the average salary
of men over age 50 in Texas?). Since most existing approaches
achieve privacy through generalization of quasi-identifiers, they
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cannot answer aggregate queries with any reasonable accuracy,
thereby reducing the utility of the released microdata. In this paper,
we investigate effective techniques to support accurate aggregate
query answering on microdata while preserving privacy.

The goal of privacy protection in microdata is essentially to
break the association between the identifiers in publicly available
information and the sensitive attributes in microdata, due to quasi-
identifiers. We observe that there is more than one way to elimi-
nate or reduce such associations. Existing generalization-based ap-
proaches aim to weaken the link between quasi-identifiers in pub-
licly available databases and microdata. In this paper, we propose
permutation-based approaches to reduce the association between
quasi-identifiers and sensitive attributes in microdata. In particular,
the contributions of the paper include the following:

� We extend the concept ofk-anonymity, and propose a new
privacy goal to better capture privacy protection for numeri-
cal sensitive attributes. Besides requiring a group of sensitive
attribute values to have no less thank distinct values, the pro-
posed privacy goal further requires the range of the group to
be larger than a certain thresholde; such a threshold prevents
an attacker from accurately deriving the range of sensitive at-
tribute values for an individual record.

� We propose a general framework of permutation-based tech-
niques to support accurate answering of aggregate queries,
while protecting privacy. Given the same privacy objective,
we show that permutation-based anonymization techniques
can always answer aggregate queries more accurately than
generalization-based approaches.

� We design query-rewriting algorithms to ensure that exist-
ing database management systems can be used directly to
support aggregate query answering in permuted microdata.
The auxiliary relations can be completely derived from an
anonymized microdata database. Therefore, they do not
compromise the privacy of microdata.

� Building on the proposed privacy objective and the
anonymization framework, we identify several alternative
criteria to optimize permutations for accurate answering of
aggregate queries, and develop efficient algorithms for each
criterion. Since the proposed permutation-based approach
is not constrained by domain generalization hierarchies, our
optimization algorithms obtain partitions of microdata tables
that can be used to compute very accurate answers to aggre-
gate queries.

� We conduct comprehensive experiments on both real and
synthetic data sets to demonstrate the advantages of the pro-
posed techniques.

The rest of the paper is organized as follows. In section 2, we
present a detailed example illustrating our approach and its ben-
efits. In section 3, we describe existing privacy goals, and show
their inadequacy to protect numerical sensitive data. We then for-
mally define a new privacy goal for numerical sensitive attribute
protection. A permutation-based anonymization framework is pro-
posed in section 4. Section 5 presents the query rewriting algorithm
and the design of auxiliary relations for aggregate query answering.
Criteria for permutation optimization and algorithms for each are
described in section 6. Section 7 shows our experiments. In sec-
tion 8, we report closely related work in privacy protection in the
release of microdata. We conclude this paper in section 9.

ID Quasi-identifiers Sensitive
tuple ID name age zipcode gender salary

1 Alex 35 27101 M $54,000
2 Bob 38 27120 M $55,000
3 Carol 40 27130 M $56,000
4 Debra 41 27229 F $65,000
5 Evan 43 27269 F $75,000
6 Frank 47 27243 M $70,000
7 Gary 52 27656 M $80,000
8 Henry 53 27686 F $75,000
9 Ina 58 27635 M $85,000

Figure 1: An example microdata table

2. EXAMPLES
Consider the population table shown in figure 1, which needs

to be shared for business and economic research. Among the at-
tributes of the table, “name” can be used to directly identify an in-
dividual in real life. To prevent the sensitive information (“salary”
in this example) of individuals from being disclosed, such explicit
identity attributes need to be removed before the table is disclosed.
Other attributes of individuals, such as “age”, “zip code” and “gen-
der”, often need to be disclosed, since valuable statistical analysis
relies on these attributes. For this example, we consider the follow-
ing aggregate queries:

� Query 1. The average salary of those with age over 50.

� Query 2. The sum of salaries of those with age between 35
and 55.

� Query 3. The minimum salary of females.

Clearly, after removing the identity attribute “name” from the
table in figure 1, we can still accurately answer these queries.

On the other hand, some public databases may also contain the
attributes “age”, “zip code” and “gender”. They may also further
be associated with people’s explicit identities. Due to this rea-
son, these attributes are called “quasi-identifiers” since they may be
used to reveal one’s identity when combined with public databases.

Current approaches to addressing potential privacy violations
caused by quasi-identifiers generalize the domains of quasi-
identifiers so that many tuples will have the same quasi-identifiers.
Figure 2 shows such a generalization, where “age” is generalized
to a range of width 10, “zip code” only keeps the first 3 dig-
its, and “gender” is totally suppressed. The resulting table satis-
fies 3-anonymity, which means that after generalization each tuple
can find at least two other tuples with the same values of quasi-
identifiers. It also satisfies 3-diversity since among those tuples
with the same values of quasi-identifiers there are at least 3 differ-
ent sensitive attribute values.

In this paper, we propose a permutation-based approach to
anonymization. In our approach, tuples in the table are partitioned
into several groups such that each group has at leastk different
sensitive attribute values. We then perform a permutation between
the tuples’ quasi-identifiers with their sensitive attribute inside each
group. Figure 3 shows the table of figure 1 after permutation, where
each group has 3 different sensitive attribute values. In fact, the
partition used in figure 3 is the same as the one resulting from the
generalization in figure 2.

The privacy objective of microdata anonymization is to prevent
attackers from knowing sensitive attribute values for an individual.
In section 4, we will show that the permutation-based approach
will achieve the same privacy protection as existing generalization-
based approaches. One benefit of our permutation-based approach
is that it will provide more accurate answers to aggregate queries.
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Quasi-identifiers Sensitive
tuple ID age zipcode gender salary

1 [31� 40] 271* * $56,000
2 [31� 40] 271* * $54,000
3 [31� 40] 271* * $55,000
4 [41� 50] 272* * $65,000
5 [41� 50] 272* * $75,000
6 [41� 50] 272* * $70,000
7 [51� 60] 276* * $80,000
8 [51� 60] 276* * $75,000
9 [51� 60] 276* * $85,000

Figure 2: An example3-anonymity microdata table after gen-
eralization. Note that this table also satisfies3-diversity

Quasi-identifiers Sensitive
tuple ID age zipcode gender salary

1 40 27130 M $54,000
2 38 27120 M $55,000
3 35 27101 M $56,000
4 41 27229 F $65,000
5 43 27269 F $70,000
6 47 27243 M $75,000
7 52 27656 M $75,000
8 53 27686 F $80,000
9 58 27635 M $85,000

Figure 3: An example3-anonymous microdata table after per-
mutation

Let’s consider the three queries previously mentioned in this sec-
tion. Since both approaches introduce imprecise information into
the original table, they cannot always get the correct answer for ag-
gregate queries. Instead, for each approach, we can get determinis-
tic lower and upper bounds of the correct answer. We compare the
accuracy of the bounds of each approach.

Query 1: The average salary of those with age over 50.This
query covers all the tuples in the third group of both figures 2 and
3. Therefore, by using either table, we can get the exact result for
the query, which is $80,000.

Query 2: The sum of salaries of those with age between 35
and 55. In both tables, all the tuples in the second group should be
included in the aggregation. But, by using the generalized table of
figure 2, we face a difficulty when dealing with tuples in the first
and the third groups. Since only generalized ranges [31-40] and
[51-60] of ages are available to get a correct lower/upper bound,
we have to assume that none/all of the tuples participate in the ag-
gregation. Therefore, the bounds based on figure 2 can only be
[$210K, $615K].

On the other hand, in our permutation-based approach, we know
exactly how many tuples are included in the aggregation from each
group of the partition, which aids in the derivation of more accurate
bounds. For this query, based on figure 3, we know that 3 and 2
tuples in groups 1 and 3 respectively participate in the aggregation.
Therefore, the bounds will be [$530K, $540K], which are much
more accurate than those derived from figure 2.

Query 3: The minimum salary of females. There is a great
difficulty in answering this query using figure 2, since the “gender”
attribute is totally suppressed in order to achieve 3-anonymity. We
do not even know whether there exists a tuple with gender female
in the original table. Even if we assume that there is at least one
female in the table, the best bound we can get is [$54K, $85K].

Based on the permuted table, we know that there is a female in
each of groups 2 and 3, but none in group 1. Since all the salaries in
group 3 are higher than those in group 2, we can conclude that the

group ID hits sum-l-b sum-u-b min-l-b min-u-b
1 1 $54K $56K $54K $56K
1 2 $109K $111K $54K $55K
1 3 $165K $165K $54K $54K
2 1 $65K $75k $65K $75K
2 2 $135K $145K $65K $70K
2 3 $210K $210K $65K $65K
3 1 $75K $85K $75K $85K
3 2 $155K $165K $75K $80K
3 3 $240K $240K $75K $75K

Figure 4: An example help table

minimum salary of females in this table is between [$65K, $75K].
Again, this is more accurate than the bounds derived from figure 2.

In section 4, we will show that, given the same partitions,
the permutation-based approach always produces more accurate
bounds for aggregation queries than the generalization-based ap-
proach.

In fact, since we know the exact number of tuples included in the
aggregation in each group (we refer to it as the “number of hits”),
more statistics about the query result can be derived. For exam-
ple, besides the lower and upper bounds for SUM and AVERAGE,
we may also compute the mean and variance among all the possi-
ble answers. Such statistics provide more information. This is not
possible for generalized tables.

One nice property is that the lower and upper bounds for an
aggregation operation over the whole table can be computed ef-
ficiently by combining bounds over each group of the partition. To
facilitate efficient query answering over a permuted table, we pro-
pose to use ahelp table, which pre-computes the bounds for each
group and all the possible numbers of hits. Given an aggregate
query, we can simply rewrite it to query both the permuted table,
determining the number of hits of each group, and then join this
information with the help table to quickly get the bounds for the
whole query result. An example help table, for the table of fig-
ure 1, is shown in figure 4. Due to space limitations, we only show
the bounds for SUM and MIN in the table. It can certainly include
those for other aggregation operations.

Both the generalized and the permuted tables satisfy3-diversity.
In fact, they produce the same partition of tuples for anonymiza-
tion. However, this partition has a problem in terms of privacy. The
range of sensitive attribute values in the first group in the partition
is only $2,000 while that of others are $10,000. As pointed out in
[11], attackers often have external background information about
quasi-identifiers of an individual, which enables inferences for the
existence of records in the microdata database. In the above exam-
ples, if an attacker knows that the age of Alex is 35 and his zipcode
is 27101, he is able to derive that Alex’s salary is between $54K and
$56K. Though the attacker cannot know the exact salary of Alex,
this range might be narrow enough to be considered as sensitive.
This example shows that for numerical sensitive attributes, besides
distinct values in each group of a partition, we also need to consider
the range of each group to prevent type of inference as the one de-
scribed. In this paper we introduce another privacy parametere,
and further require the range of thek distinct values in a group to
be no less thane. We call this privacy objective(k; e)-anonymity.
For instance, the above generalized and permuted tables only sat-
isfy (3; 2000)-anonymity but violate(3; 10000)-anonymity.

We note that several techniques already exist to protect the pri-
vacy of numerical sensitive attributes. In perturbation-based ap-
proaches [1, 4, 6], noise following a certain distribution is added
to sensitive attribute of each tuple. Such an approach inevitably
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changes important statistics of the marginal distributions of sen-
sitive attributes (e.g., vairance) [14]. Further, depending on the
distribution of added noise (e.g., Gaussian Distribution), it is of-
ten difficult to derive deterministic bounds for answering aggregate
queries.

To some extent, permutation-based anonymization is similar to
data swapping techniques where privacy is achieved by exchang-
ing the sensitive attributes of pairs of randomly selected records
[5, 7]. Since no noise is introduced, both approaches preserve the
marginal distributions of sensitive attributes. However, data swap-
ping is done globally, which has a much larger impact on microdata
utility. Even when done in a controlled manner (e.g., rank-based
data swapping [13]), it will still produce big errors for aggregate
queries. Our experimental results show this point clearly (see sec-
tion 7).

In the following sections, we formally describe(k; e)-anonymity
and a permutation-based approach to anonymization of microdata.

3. BACKGROUND

3.1 Privacy in the Release of Microdata
We introduce notations and concepts to facilitate our discussion

on potential privacy vulnerabilities in the release of microdata.
Microdata . There are three types of attributes in anoriginal

microdata tableM: identifiers, quasi-identifiers and sensitive at-
tributes. An identifierID is an attribute, whose value, if known,
canalwaysbe used touniquelyidentify an individual in real life. In
practice, there may exist multiple identifiers such as one’s SSN and
telephone number. Quasi-identifiersfQI1; : : : QIkg are a set of
attributes associated with tuples that not only appear in the micro-
data table but may also appear in other publicly available databases.
Example quasi-identifiers include age, date of birth, zip code, etc.
Sensitive attributes, on the other hand, are only contained in the
microdata table, and do not appear in public databases. The goal
of privacy protection is thus to prevent attackers from knowing the
specific values of sensitive attributes associated with individual tu-
ples. Without loss of generality, we assume there is only one sensi-
tive attributeS in a microdata table. We further assume that the do-
main of the sensitive attribute is numeric, which is widely true in a
variety of microdata databases. Examples include salary in popula-
tion databases, credit score in financial databases, and white blood
cell count and other diagnosis indicators in public health databases.
Figure 1 is an example of an original microdata table where the
identifier, quasi-identifiers, and sensitive attribute are shown.

A de-identified microdata tableD is a projection ofM over
quasi-identifiers and sensitive attributes. We call the projection of
M overID andS the sensitive information table, denotedS.

Note that in some situations the mere fact that there exists a
record for a specific individual Alice in the microdata table may
also be considered sensitive, even though Alice’s sensitive attribute
is unknown. For example, the fact that Alice has a record in a
microdata table released by a psychiatric hospital may seem quite
sensitive. However, as stated in [11], besides public databases, at-
tackers may often have external background knowledge. For ex-
ample, Bob may physically see that Alice checked into a hospital.
Thus, it will be very hard to prevent such information leakage. In
this paper, revealing one’s sensitive attribute values is considered a
privacy violation, but revealing the existence of a record with spe-
cific quasi-identifiers is not.

Public information . Attackers may often gain access to pub-
licly available information related to individuals. We model pub-
licly available information as a tableP with the following attributes
fID;QI1; : : : ; QIkg. In practice, there may exist multiple sources

of public information, such as county real estate databases and
voter registration records. The above model represents the over-
all public information that an attacker may derive when combining
information from multiple sources.

Aggregate queries. We consider queries that select subsets of
records from a microdata table based on arbitrary conditions on
the quasi-identifiers and compute aggregates over the sensitive at-
tribute. Such aggregate queries are important during microdata
analysis in a variety of domains. Since the domain of the sensi-
tive attribute is assumed to be numeric-valued, a variety of SQL
aggregation operations, such as COUNT, SUM, AVERAGE, MIN
and MAX, can be used in aggregate queries.

Privacy is violated when an attacker successfully recovers one
or more tuples in the sensitive information tableS. Formally, we
have the following privacy definition, which is based on the one
proposed in Yao et al. in [20].

DEFINITION 3.1. Each tuple on(ID;S) is called anassocia-
tion. A setA of associations on(ID; S) is called anassociation
coverif all the tuples inA have the sameID value andA\S 6= ;.
An association cover of sizek is called ak-association-cover.

For example, considering the microdata table in figure 1,
f(Alex; $54; 000); (Alex; $55; 000); (Alex; $56; 000)g is a 3-
association cover.

DEFINITION 3.2. A de-identified microdata databaseD satis-
fiesk-Anonymity if from D and any given public databaseP, an
attacker cannot derive any association cover with size less thank.

The above definition captures the essence of privacy in micro-
data, i.e., preventing the association between an individual’s ID
and its sensitive attribute value. The originally proposed concept
of k-anonymity was defined specifically for generalization based
approaches. It required that, after generalization, for each tuplet
in the table, there should exist no less thank � 1 other tuples hav-
ing quasi-identifiers equal to those oft. This original definition
can be viewed as the goal for generalization in order to achieve
k-anonymity. Definition 3.2, on the other hand, is declarative and
independent of specific techniques for anonymization. Therefore,
it serves as a good privacy definition for the comparison of different
anonymization techniques.

As shown in section 2, for numeric-valued attributes, prevent-
ing attackers from deriving an association cover of size less than
k may not be enough to protect one’s privacy, especially when the
range of attribute values in the association cover is small. There-
fore, we propose the following extended definition for the protec-
tion for numeric-valued sensitive attributes:

DEFINITION 3.3. A de-identified microdata databaseD satis-
fies(k; e)-anonymityif givenD and any given public databaseP,
any association cover that an attacker can derive satisfies: (1) the
size of the association cover is no lessk; and (2) the range of the
sensitive attribute values in the association cover is no less thane.

3.2 Anonymization Through Generalization
Most existing works achievek-anonymity through domain gen-

eralization of quasi-identifiers. That is, instead of releasing the
exact values of quasi-identifiers, the values are generalized in a
way that many tuples appear to have the same values for quasi-
identifiers. For example, instead of disclosing one’s exact age, the
microdata only shows that the age falls into a certain pre-defined
range. Thus, an individual identifier can only be associated with
those who have the same quasi-identifiers after generalization.
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More specifically, following the notation introduced in [11], let
D be a domain. Ageneralized domainD� of D is a domain
fD1; : : : ; Drg, such that eachDi is a subset ofD, Di \ Dj = ;
wheni 6= j, and

S
Di = D. Let x 2 D. The generalization ofx

underD�, denotedg(x;D�), isDi 2 D�, wherex 2 Di.
LetD�

QIi
be a generalized domain for each quasi-identifierQIi.

ThenD�
QI = D�

QI1
� � � � � D�

QIk
forms a generalized domain

for quasi-identifiers. Given a tuplet 2 D, its generalization un-
der D�

QI , denotedg(t;D�
QI), is a tuplet0 such thatt0[QIi] =

g(t[QIi]; D
�
QIi

) and t0[S] = t[S]. The generalization ofD, de-
notedg(D; D�

GI ), is thusfg(t;D�
QI) j t 2 Dg.

In the example shown in figure 2, the generalization domains for
the three quasi-identifiers aref[1� 10]; [11 � 20]; : : : g, the first 3
digits of zip codes, andf�g (denoting any gender), respectively.

Given a microdata tableD, a generalized domainDQI in fact de-
fines a partitionfD1; : : : ;Drg ofD such that any two tuplest1 and
t2 in D, belong to the sameDi if and only if they have the same
generalized quasi-identifiers underDQI . Let r = (qi1; : : : ; qik)
be a value of quasi-identifiers. We sayr belongs toDi if the gen-
eralization ofr underD�

QI is the same as that of tuples inDi.
Most existing works onk-anonymity only require that, after gen-

eralization, eachDi has no less thank tuples. However, as pointed
out in [11], this requirement may not always satisfyk-anonymity
when the attacker has background knowledge regarding the appear-
ance of individual records in a microdata table. To fix the problem,
in [11], it is further required that there should be at least` distinct
sensitive attribute values in eachDi after generalization. Wheǹ
is set to bek, the partition obtained by using̀-diversity techniques
will then guaranteek-anonymity. It is not hard to see that domain
generalization can also be used to achieve(k; e)-anonymity when
handling numeric-valued sensitive attributes. After each domain
generalization, besides checking whether every partition has no less
thank tuples, we simply further check whether the partition has a
range larger than or equal toe.

However, as shown in section 2, generalization based techniques
impose challenges when answering ad hoc aggregate queries. In
general, given an aggregate query whose condition over quasi-
identifiers isc, and a microdata table generalized underD�

QI , let
Di be one subset defined byD�

QI . If for every possibler =
(qi1; : : : ; qik) that belongs toDi underD�

QI , c(r) is true/false,
then obviously all the sensitive attribute values in the partition
should be included/excluded when computing the aggregate. Oth-
erwise, to get correct lower/upper bounds of the query result, we
have to act conservatively, and include none/all of the sensitive at-
tribute values to compute the aggregate, which can be inaccurate.

4. PERMUTATION ANONYMIZATION
The essential reason that an attacker may recover an individual’s

sensitive attribute value is the existence of the following three links:
(1) the link between the identifier and quasi-identifiers in the pub-
lic databaseP; (2) the link between the quasi-identifiers inP and
those in the de-identified microdataD; and (3) the link between
quasi-identifiers and the sensitive attribute inD. Figure 5 shows
the association between identities and sensitive attributes through
quasi-identifiers. Breaking or weakening the associations of any of
the above links will help protect privacy. Domain generalization
actually weakens the second and the third links.

In this paper, we propose toonlybreak the third link through per-
mutation. Given a set of tuples in a de-identified microdata table,
we randomly permute the association between quasi-identifiers and
the sensitive attribute instead of using domain generalization on the
quasi-identifiers. Intuitively, even if an attacker can link an individ-
ual’s identifier with a tuple’s quasi-identifier (for example through

De−identified Microdata

Public available information

link 3

link 2link 1

Sensitive attributesQuasi−identifiers

Quasi−identifiersIdentity

Figure 5: The association between identities and sensitive at-
tributes through quasi-identifiers

background knowledge), he will not be able to know with certainty
the exact value of the individual’s sensitive attribute.

DEFINITION 4.1. Let T = ft1; : : : ; tng be a table with
attributes fa1; : : : ; amg, and p be a random permutation
over f1; : : : ; ng. We define the permutation ofT , denoted
p(T; fa1; : : : ; alg; fal+1; : : : ; amg) as the set of tuplesft0i j
8j; 1 � j � l; t0i[aj ] = ti[aj ] and 8j; l + 1 � j � m; t0i[aj ] =
tp(i)[aj ]g.

DEFINITION 4.2. LetD be a de-identified microdata table with
attributesfQI1; : : : ; QIk; Sg, and fD1; : : : ;Dng be a partition
ofD. A groupDi is (k; e)-anonymousif the projection ofDi over
the sensitive attributeS contains no less thank different values,
and the range of these different values inDi is no less thane. We
say the partition is(k; e)-anonymousif everyDi in the partition is
(k; e)-anonymous. We denoteD0

i = p(Di; fQI1; : : : ; QIkg; fSg).
Dp =

S
i=1;:::;nD

0
i is a (k; e)-anonymous permutation ofD.

As an example, figure 3 shows a (3,2000)-anonymous permuta-
tion of the table in figure 1.

THEOREM 1. Given a(k; e)-anonymous permutationDp and
a public databaseP, any association cover that an attacker can
derive satisfies(k; e)-anonymity.

PROOF. (Sketch) Prove by contradiction that, if attacker derives
an association coverA of size less thank or with range less than
e, then we can construct a microdata tableM such that its(k; e)-
anonymous permutation is the same asDp, and the sensitive at-
tribute of that identifier is not in the association cover.

5. AGGREGATE QUERY ANSWERING
Given a (k; e)-anonymous permutationDp and an arbitrary

query condition over quasi-identifiers, since the quasi-identifiers of
a tuple are unchanged, we know exactly how many tuples satisfy
the condition in each groupDi of the partition. Suppose this num-
ber ismi. Due to the random permutation between quasi-identifiers
and the sensitive attribute inDi, the actual result of the aggregate in
Di may be over the sensitive attribute of anymi tuples in the group.
Thus, in the worst case, there may be totallyC(jDij;mi) different
results for the aggregate. It would be too expensive to enumerate
all the possible results when the size of the group is large. Instead,
we are interested in efficiently computing important statistics, such
as the lower and upper bounds, mean, variance, of all the possible
aggregates. Such statistics will be very useful for ad hoc analyses.

5.1 Lower and Upper Bounds
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Letmi be the number of tuples inDi that satisfy the condition of
an aggregate queryQ. If the aggregation operation is monotonic,
then the lower/upper bound of the result ofQ in Di is the aggre-
gation of themi smallest/largest sensitive attribute values inDi.
Standard SQL aggregation functions, such as SUM, AVERAGE,
MIN, MAX and COUNT, are all monotonic. Therefore, the lower
and upper bounds of the result of an aggregate query in eachDi

can be efficiently computed.
The lower and upper bounds of the query over the whole mi-

crodata table can be derived from those of eachDi, depending on
different aggregation functions. For sum, the overall lower/upper
bound is the summation of the lower/upper bound of eachDi, re-
spectively. Since we know the total number of tuples satisfying the
query condition, the lower/upper bounds of the average function
can be directly computed from those of the sum function. It is also
easy to see that the overall lower/upper bounds of the MIN function
is the minimum among the lower/upper bounds of all theDi. The
bounds for the MAX function can be obtained similarly.

THEOREM 2. LetfD1; : : : ;Drg be a partition ofD defined by
a generalization. Given any aggregate query, the lower and upper
bounds given by the generalized table always include that given by
the permuted table using the same partition.

For sum and average, other statistics besides lower and upper
bounds can also be computed by combining those of each group in
a partition. We omit details for reasons of space.

5.2 Auxiliary Relation and Query Rewriting
We observe that, for the same aggregation operation, no mat-

ter what the query condition is, as long as the number of tuples
satisfying the condition in eachDi is the same, the bounds of the
aggregation inDi remain unchanged. Therefore, we do not need
to compute the bounds for eachDi on the fly when answering a
query. Instead, we propose to create ahelp tableto facilitate effi-
cient query answering.

The primary key of the help table is “group ID” and “hits”, where
the former indicates a group in the partition, and the latter repre-
sents the number of tuples in the group satisfying a query condition.
For each group in the partition and the number of hits, the table lists
the lower and upper bounds for each aggregation operation on the
sensitive attribute. Figure 4 shows the help table for the permuted
table in figure 3. It contains the bounds for SUM and MIN, though
in practice it should also contain the bounds of AVERAGE, MAX
and other aggregation operations supported by SQL. The number
of tuples in the help table is the same as in the microdata table.

Besides the help table, we also create a binarymapping tablethat
indicates which tuples the groups of a partition contain.

Given an aggregate query of the form “select agg(sensitive-
attribute) from permuted-table whereC”, we rewrite it to get the
bounds of the query result. The rewritten query first selects the tu-
ple IDs of tuples that satisfy conditionC from the permuted table
PT . The result in the first step is then joined with the mapping
tableMT to count the hits of each group of the partition. Once this
information is available, it is further joined with the help tableHT ,
and the bounds of the aggregation of each group are combined to
compute the bounds for the final query result.

More specifically, for the SUM aggregation operation, we
rewrite the query as follows.

1. R1 = “select groupID, count(tupleID) AS hits
from MT, R1
where MT.tupleID in (select tupleID from PT whereC)
group by groupID”

2. select sum(sum-lb), sum(sum-ub)
from HT, R1
where HT.groupID = R1.groupID and HT.hits = R1.hits

The processing of other aggregate queries is similar.
We emphasize that the help table can be constructed directly

from the permuted table (using the mapping table), without requir-
ing any access to the original microdata table. Therefore, the use of
the help table does not compromise the privacy of microdata in any
way. Further, we only need to compute the help table and the map-
ping table once for a released microdata database. It can be done
offline, which will not affect the performance of ad hoc analyses.

6. CRITERIA FOR (K;E)-ANONYMOUS
PARTITION

We have shown that, given the same partition, the anonymized
table obtained through permutation will always answer aggregate
queries more accurately than that obtained through domain gen-
eralization. However, given an arbitrary partition, even with the
permutation-based approach, it is unlikely to get satisfactory an-
swers to aggregate queries. Thus, in this section, we turn our dis-
cussion to the problem of generating “good”(k; e)-anonymous par-
titions which are likely to produce accurate answers to aggregate
queries.

Formally, letD denote a total order of the multiset of sensitive
attribute valuesD = x1; x2; : : : ; xn, andP = fG1; : : : ; Gmg
be a partition ofD. SinceD is a totally ordered multiset, we de-
note the indices of the first and the last data point in a groupGi as
mini andmaxi respectively. Thus, the range ofGi is obtained by
[xmini ; xmaxi ]. LetE(Gi) denote an error measure defined on a
groupDi, andF be a point-wise additive function. We can now
formally define the optimal partition problem:

PROBLEM 6.1 (OPTIMAL PARTITION). Given a total order
D of a sensitive attribute, obtain a(k; e)-anonymous partitionP =
fG1; : : : ; Gmg that minimizesF (E(G1); E(G2); : : : E(Gm)) for
suitable choices ofF andE().

Given a point queryxq, if xq 2 Gi, our scheme will return
any point insideGi as an answer. As a result, themaximumer-
ror incurred for any point query inside a groupGi is E(Gi) =
xmaxi � xmini . Therefore, intuitively, the smaller is the range
of each group, the smaller error will be introduced to the answer
of aggregate queries. Since all the groups ofP may be used for
querying, it seems imperative to define the functionF in a way
that the error across all groups, assuming a uniform random work-
load of point queries, is minimized. It is natural to aim to mini-
mize theadditiveerror or themaxerror across all groups. Thus
candidate point-wise additive functions aresum or max. We
call the optimization problems using thesum and themax func-
tions theminimum sum-of-error problemand theminimum max-
of-error problemrespectively. We denote the sum and the max of
errors of all the groups in a partitionP assum of error(P ) and
max of error(P ) respectively.

6.1 The Minimum Sum-of-Error Problem
Recall that the goal of this problem is to find a(k; e)-anonymous

partitionP = fG1; : : : ; Gmg of D such thatsum of error(P )
is minimized. Without loss of generality, we assume that
G1; : : : ; Gm are ordered according to the index of the minimum
value of each group, i.e.,i < j implies thatmini < minj , which
also means thatxmini � xminj .
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LEMMA 6.1. There exists an optimal partitionP =
fG1; : : : ; Gmg to the minimum sum-of-error problem such that for
any groupsGi andGi+1, we havemaxi < mini+1.

PROOF. (sketch) We first observe thatmaxi < maxi+1. Oth-
erwise, sincemini < mini+1, we can simply mergeGi+1

andGi into one group, whose maximum error is stillxmaxi �
xmini , and obtain another(k; e)-anonymous partitionP 0. We
havesum of error(P 0) = sum of range(P ) � (xmaxi+1 �
xmini+1), contradicting the fact thatP is optimal.

Second, ifmaxi > mini+1, we can still mergeGi andGi+1.
The maximum error of the new group isxmaxi+1 � xmini , which
is less than or equal to the sum of the maximum errors ofGi and
Gi+1.

Lemma 6.1 shows that the ranges of groups in an optimal par-
tition are disjoint. It suggests that this problem has the optimal
substructure property, thus it is amenable to dynamic program-
ming solutions. Letf(i) denote the minimum cost way to partition
x1; : : : ; xi into a number of groups, saym�, such that the partition
is (k; e)-anonymous forx1; : : : ; xi. Then

f(i) = min1�d�iF (f(d� 1); E(fxd; : : : ; xig)) (1)

Thus, the optimal solution for partitioning the data pointsx1; : : : xi
intom� groups is equal to the minimum cost way of extending (ac-
cording to the point wise additive functionF ) the optimalm� � 1
partitioning ofx1; : : : xd�1 (for somed, 1 � d � i) with the group
fxd; : : : ; xig. Algorithm 1 presents the dynamic programming so-
lution for the sum-of-error problem. The algorithm considers all
values ofi; 1 � i � n, and for each value ofd; 1 � d � i, assesses
the sum of errors using equation 1. The index of the minimum item
of each group is stored in the arraypartition. A linear scan of this
array at the end of the algorithm (starting from partition[n] and go-
ing backwards) will extract the optimal group descriptions. The
algorithm makes use of the arraydistinct that returns inO(1) the
number of distinct elements inD between the arguments supplied.
The size of this array isO(n2) and can be populated in a prepro-
cessing step inO(n2) time, so that access to it remainsO(1). It is
evident that Algorithm 1 runs inO(n2).

Algorithm 1 Optimal partition for the minimum sum-of-error
problem

f [0] = infinity
partition[0] = 0
for i = 1 ton do
f [i] = infinity
partition[i] = partition[i-1]
for d = 1 to i do

if distinct(fxd; : : : ; xig) � k andxi � xd � e then
error = xi � xd

else
error = infinity

end if
temp = max(f [d-1],error)
if temp < f [i] then
f [i] = temp
partition[i] = d

end if
end for

end for

THEOREM 3. Given a total order of a sensitive attributeD of
n items, withO(n2) preprocessing andO(n2) space, we can com-
pute inO(n2) time, the optimal partition ofD for the sum-of-error
problem.

6.2 The Minimum Max-of-Error Problem
Though seemingly similar to the minimum sum-of-error prob-

lem, the minimum max-of-error problem turns out to be much more
complex. We have shown that the groups of an optimal partition in
the sum-of-error problem are disjoint, i.e., the ranges of different
groups are not overlapping (except possibly the boundary where
xmaxi = xmini+1). Therefore, each group can be described com-
pletely by using the indices of its first and last attribute valuesmini
andmaxi, and every attribute value with index between them be-
longs to the group. This property significantly reduces the search
space for an optimal partition.

The non-overlapping property, however, does not hold for op-
timal partitions for the minimum max-of-error problem. As
a simple example, consider the following set of sensitive at-
tributesf1; 2; 3; 5; 5; 6; 6; 8g, the only optimal partition for(4; 5)-
anonymity isG1 = f1; 2; 5; 6g andG2 = f3; 5; 6; 8g, whereG1 ’s
range(1; 6) overlaps withG2 ’s range(3; 8).

On the other hand, we observe that the minimum max-of-error
problem has the following property.

LEMMA 6.2. There exists an optimal(k; e)-anonymous parti-
tion P = fG1; : : : ; Gmg for D such that there are no more than
two groups whose ranges overlap with each other. In other words,
there is no value in the domain of the sensitive attribute such that
the value falls into the ranges of more than two groups.

PROOF. (sketch) First, by a similar proof to that of lemma 6.1,
no group’s range is included by that of another.

Second, given any optimal partition, suppose there are three
groupsGi, Gj andGl, i < j < l, whose ranges overlap with
each other. Then we must havexmaxj � xminl . Otherwise, since
xmaxi � xmaxj , we have the ranges ofGi andGl are not overlap-
ping. We thus can divide all the items inGj into two groups,Gj1

including those less thanxminl , andGj2 including those greater
than or equal toxminl . We mergeGj1 with Gi andGj2 with Gl.
The ranges ofGi andGl do not change, which means the new par-
tition is still optimal. By repeating this step, we will get an optimal
partition where the ranges of no three groups overlap with each
other.

Let P = fG1; : : : ; Gmg be an optimal(k; e)-anonymous parti-
tion that satisfies the above property. Consider the first two groups
G1 andG2. If the ranges ofG1 andG2 do not overlap, thenG1

contains all the values fromxmin1 = x1 to xmax1 in D. Then the
remaining groups in fact form an optimal partition for the rest of
the itemsxmax1+1; : : : ; xn.

On the other hand, suppose the ranges ofG1 andG2 overlap,
which meansmin2 < max1. We divideG2 into two parts, the
former partG2f which includes those items less than or equal to
xmax1 , and the latter partG2l which includes those items greater
thanxmax1 . Let t be the smallest index of items inD such that
xt > xmax1 . According to lemma 6.2,G1 andG2f combined
together include all the values inD that are less thanxt. Further,
we havext 2 G2l. Otherwise, supposext 2 Gi; i > 2. Thenxt
must be the smallest value ofGi. This allows us to mergeG2f with
G1 andG2l withGi. The resulting partitionP 0 is still optimal, and
there is no overlap between the first two groups inP 0.

Based on the above observation, we have thatG2l, G3, . . . ,
Gm forms a partition ofxt; xt+1; : : : ; xn. ExceptG2l, every
group is(k; e)-anonymous. ForG2l, it has at leastk � d dis-
tinct values whered is the number of distinct values inG2f .
Further, the width of the range ofG2l is no less thane � r,
where r = xt � xmin2 . In other words, given any partition
P 0 = fG0

1; : : : ; G
0
zg of xt; : : : ; xn, such thatG0

1 is (k� d; e� r)-
anonymous and the rest are(k; e)-anonymous, if the maximum
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Algorithm 2 Optimal partition for the minimum max-of-error
problem

for i = n to 1do
for d = 0 todistinct(1; n) do

for j = 0 to i do
r =xi � xj
if distinct(fxi; : : : ; xng) < k � d or xn � xi < e� r
then
g[i][d][r]=INF
continue

end if
g[i][d][r]=xn � xi
for max1 = i to n� 1 do

if distinct(fxi; : : : ; xmax1) < k � d then
continue;

end if
for min2 = i+ 1 tomax1 + 1 do
d1 = #(i; max1;min2; d)
r1 = xmax1+1 � xmin2
m = max(xmax1 � xi + r; g[max1 + 1][d1][r1])
if m < g[i][d][r] then
g[i][d][r] = m

end if
end for

end for
end for

end for
end for

of E(G0
1) + r, E(G0

2), . . . ,E(G0
z) is minimized, then the parti-

tion fG1; G2f [ G0
1; G

0
2; : : : ; G

0
zg also forms an optimal(k; e)-

anonymous partition ofD.
Therefore, we study the following more general optimization

problem:

PROBLEM 6.2. Given d and r, obtain a partition P =
fG1; : : : ; Gmg of D, whereG1 is (k � d; e� r)-anonymous and
the rest groups are(k; e)-anonymous, such thatmax(E(G1) +
r; E(G2); : : : ; E(Gm)) is minimized.

Clearly, the minimum max-of-error problem is a special case of the
above problem whered = 0 andr = 0.

The above argument shows that the above problem has the opti-
mal substructure property. Intuitively, for each possiblemax1 and
min2, we move as many values betweenxmin2 andxmax1 as pos-
sible toG2f , the first part ofG2, as long asG1 still hask�d distinct
values. After this step, we denote the number of distinct values in
G2f as#(min1;max1; min2; d), as it is determined by these four
parameters. Letg(d; r; i) denote the minimum cost way to partition
xi; : : : ; xn such that the first group is(k�d; e�r)-anonymous and
the rest groups are(k; e)-anonymous. Then we haveg(d; r; i) =
mini�u�n;i�v�u�1max(g(d�#(i;u; v; d); r�(xu+1�xv); u+
1); xu � xi + r)

Algorithm 2 shows the dynamic programming solution to the
minimum max-of-error problem. For simplicity, algorithm 2 only
returns the maximum error of an optimal partition. With some sim-
ple bookkeeping, the algorithm can be easily modified to return the
items contained in each group.

The purpose of our discussion so far is to show that the minimum
max-of-error problem is in fact tractable. However, with complex-
ity of O(n6), it is far from practical. Instead, it is very desirable
to design efficient approximation algorithms for the problem. For
this purpose, we limit our search space to those partitions whose
groups do not overlap with each other. In other words, we consider
the following problem:

PROBLEM 6.3. Obtain a (k; e)-anonymous partitionP =

fG1; : : : ; Gmg of D, where the ranges of any two groups in the
partition do not overlap, such thatmax(E(G1); : : : ; E(Gm)) is
minimized.

We call the above problem the non-overlapping minimum max-
of-error problem. With a similar argument to that of the optimal
solution to the minimum sum-of-error problem, it is not hard to see
that this problem also has the optimal substructure property, and
thus can be solved by dynamic programming withO(n2) in both
space and time complexities.

THEOREM 4. Let P and P 0 be the optimal partitions ofD
of the minimum max-of-error problem and the non-overlapping
minimum max-of-error problem. Thenmin max error(P 0) �
2 �min max error(P ).

PROOF. (sketch) LetP = fG1; : : : ; Gmg. According to lemma
6.2, overlapping ranges can only happen between adjacent groups.
We examine each group by order. If the range ofG1 does not over-
lap with that ofG2, we continue toG2. Otherwise,G2 can be
divided into two groups,G2f which includes those no less than
xmin3 , andG2l which includes those greater thanxmin3 (G2l

may be empty if the ranges ofG2 andG3 do not overlap). We
mergeG2f into G1 and G2l into G3. Note that the range of
G3 does not change, while the range ofG1 is at most increased
by max of error(P ). We next move toG3 and check whether
it overlaps withG4. We continue this process untilGm. The
resulting partitionP 0 does not contain overlapping groups, and
max of error(P 0) is at most twicemax of error(P ).

7. EXPERIMENTS
Our experiments are conducted on the Adult Database from

the UCI Machine Learning Repository [19]. The database is ob-
tained from the US Census data, and contains 14 attributes and
over 48,000 tuples. The same database has been used in previ-
ous works onk-anonymity and̀ -diversity [10, 11]. We choose
the same quasi-identifiers (which contain 8 attributes) in our ex-
periments as that used in previous works. Since our approach fo-
cuses on numerical-valued sensitive attributes, in the experiments
we choose ”capital loss” as the sensitive attribute. In particular,
we are interested in those people who do have capital loss. There-
fore, we remove those tuples whose capital loss attributes are 0 or
NULL. That leaves us with 1427 tuples. The range of capital loss
in these tuples is from 155 to 3900, with 89 distinct values.

We also conduct experiments on a synthetic data set, so that we
can adjust a variety of parameters to comprehensively evaluate the
properties of the proposed permutation-based approach. The syn-
thetic data set uses the same schema as the Adult Database. We
populate the database with different numbers of tuples, assuming
certain distribution of the capital loss attributes. We also con-
sider the correlation between the capital loss attribute and quasi-
identifiers. The details of the synthetic data set will be described
later when we present the experimental results.

We design three sets of experiments to study the following as-
pects of differentk-anonymity techniques.

Query Answering Accuracy. In this set of experiments, we
compare the accuracy of the bounds derived from the generalized
table and the permuted table. Specifically, letl andu be a lower
and an upper bound of an aggregate query resultr respectively. We
defineerror = (u � l)=r to be the relative error of the bounds.
The smallererror is, the more accurate the bounds are.

We also compare the accuracy of those bounds when using dif-
ferent optimization criteria to get(k; e)-anonymous partitions.

Query answering overhead.As described in section 5, to an-
swer an aggregate queryQ over a permuted database, we first
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rewrite it into a queryQ0 which queries the permuted table, the
mapping table and the help table. Our second set of experiments
measure the running time ofQ0, and compare it with the time that
it takes to executeQ over the un-permuted microdata table. The
difference shows how much overhead our technique introduces to
answer aggregate queries.

Scalability of partitioning algorithms. We have shown in sec-
tion 6 that the optimal algorithm for the minimum sum-of-error
problem and the approximation algorithm for the minimum max-
of-error problem are of complexityO(n2). In this set of experi-
ments, we empirically show their scalability when increasing the
size of the microdata table.

Next, we describe each set of experiments in detail.

7.1 Accuracy
We first compare the relative error of the bounds derived from

the generalized table and the permuted table, given the same par-
tition. Specifically, the partition, which satisfies(4; 0)-anonymity
(the same as 4-diversity in thè-diversity work), is obtained by
using thè -diversity algorithm and the same generalization hierar-
chies reported in [11]. We note that the experiments in the work of
`-diversity actually computed 6-diverse partitions. However, after
generalization using those 6-diverse partitions, a majority of quasi-
identifiers (6 out of 8) including “age”, “race”, “native country”,
etc., are all generalized to “*”, which essentially removes these at-
tributes from the microdata table. This significantly limits the type
of queries the generalized table can answer. To make the com-
parison more meaningful and in favor of the generalization-based
approach, we instead choose 4-diverse partitions so that interesting
attributes such as “age” can be generalized to reasonable domains.
In fact, in order to prevent “age” from being generalized to “*”
when using thè-diversity algorithm, we also have to remove some
of the outliers (6 tuples with age over 80). Otherwise, the “age”
attribute will still be suppressed even with 4-diversity.

The resulting 4-diverse partition is composed of 25 groups. We
first consider a general model of aggregate queries. Note that no
matter what the query condition is, the result of the condition is to
select a set of tuples in each group of the partition. Therefore, a
query can be viewed asfT1; : : : ; Trg, where eachTi is a subset
of Di. By selecting different tuples in each group, we may model
arbitrary aggregate queries.

In the first experiment, we issue queries that randomly touch an
arbitrary number of tuples from the table, and compute the average
of their sensitive attribute values. We call these queriesarbitrary
queries. Arbitrary queries are representative of various disjunctive
queries. From a generalized table, we cannot know for sure how
many tuples are actually selected by a query in each group. To
get deterministic lower and upper bounds, we have to assume ei-
ther no tuples are included in the query, or only the tuple with the
maximum capital-loss is selected. On the other hand, from a per-
muted table, we can always know exactly the number of tuples in
each group that are selected by the query. Figure 6 shows the rela-
tive errors of the bounds derived from the generalized table and the
permuted table. We see that the relative errors introduced by the
generalized table is significantly higher than that by the permuted
table. In fact, the bounds from the generalized table are often over
two times of the actual query results. Further, as the total num-
ber of tuples selected increases, the relative error introduced by
the permuted table drops dramatically, while that introduced by the
generalized table does not drop at all.

We recognize that, since the arbitrary query is a very general
model, the generalized table will not be able to take advantage of
the semantics of a query condition. In the next experiment, we
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Figure 6: The relative errors of arbitrary queries when using
the generalized table and the permuted table respectively
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Figure 7: The relative errors of range queries when using the
generalized table and the permuted table

issue aggregated queries over a certain range of the age attribute.
In particular, we issue a sequence of queries of the form “select
avg(capitalloss) from adult-table where age� X and age� Y”,
and vary the range[X;Y ]. Clearly, for the generalized table, if the
generalized value of the age attribute of a group falls completely
in [X;Y ], then all the tuples in the group should be selected for
the aggregation. Otherwise, we have to derive the lower and upper
bounds of the group as in the first experiment. For the permuted
table, we will still know the exact number of tuples selected in each
group. The relative errors for range queries are shown in figure
7. We see that the accuracy of the bounds derived from both the
generalized table and the permuted table improve for range queries.
In particular, the relative error computed from the permuted table
is less than 20% even when the span of the range query is only 5,
which does not completely cover any groups in the partition. For
the generalized table, the error is still very high when the range of
the query is small, because some groups are only partially covered
by the query. Since we do not know exactly how many tuples are
selected by the range query in a partially covered group, the lower
and upper bounds will be quite coarse. When the span of the range
query increases, more and more groups are completely covered by
the query. Thus, we observe a dramatic drop of relative errors for
the generalized table. However, the error for the generalized table
is still always higher than that for the permuted table.

The adult database contains 9 attributes as quasi identifiers.
When we have less attributes, the hierarchy of generalization may
be less coarse and lead to smaller partitions. To study the impact of
dimensions on accurate query answering, we have also conducted
experiments when assuming ”age” is the only quasi identifier. We
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Figure 8: The relative errors of range queries when using the
generalized table and the permuted table with only one QI
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Figure 9: The relative errors of range queries when using the
generalized table and the permuted table, with only one QI

have observed very similar trends to that in Figures 6 and 7 (see
figure 8 and 9). Our observation suggests that the poor query an-
swering accuracy from the generalized table is often not caused by
high dimension of quasi-identifiers. Instead, it is intrinsic to the
domain generalization approach.

The way the microdata table is partitioned has a great impact on
the accuracy of the bounds derived from the permuted table. Next,
we compare the relative errors of permuted tables when using par-
titions generated by the following algorithms (see section 6): (1)
`-diversity based on domain generalization; (2) Min Max: the ap-
proximation algorithm for the minimum max-of-error problem; (3)
Min Sum: the optimal algorithm for the minimum sum-of-error
problem; (4) Max Group: an algorithm that generates the max-
imum number of groups in the partition. Similar to the minimum
sum-of-error proble, the optimal algorithm can be obtained through
dynamic programming; (5) a random algorithm: this algorithm se-
quentially scans each tuple. As long as the scanned tuples havek
distinct sensitive attribute values, and its range is no less thane,
they form a group of the partition. The random algorithm serves
as a baseline for comparison; and (6) the rank-based data swapping
algorithm [13]. To be comparable to(k; e) anonymity, given a tu-
ple t whose rank isrank(t), we selectl such that the set of tuples
with ranks in[rank(t)� l; rank(t)+ l] satisfies(k; e) anonymity.
We then swapt with a random tuple whose rank is in the range.

We setk = 4 as before, and sete = 100 for the two optimiza-
tion algorithms and the random partitions. To be in favor of the
generalization-based approach, the groups in the partition gener-
ated by`-diversity algorithm is only required to have no less than
4 distinct values. The parameters of the arbitrary queries and the
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Figure 10: The relative errors of arbitrary queries when using
different partitioning algorithms
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Figure 11: The relative errors of range queries using partitions
from different partitioning algorithms

range queries in this experiment are the same as in the first two
experiments.

The relative errors corresponding to the above algorithms are
shown in figure 10 (for arbitrary queries) and figure 11 (for range
queries). It is clear that the three optimization algorithms intro-
duce significantly less relative errors than the other two algorithms
for arbitrary queries. This can be easily explained since the two
optimization algorithms are not constraint by pre-defined domain
hierarchies. They have more flexibility to partition the table and
achieve better accuracy. We also observe that the partition from
generalization is even worse than the random partition for arbitrary
queries. This shows that the partition derived from pre-defined gen-
eralization hierarchies greatly reduces the utility of microdata, even
if we use permutation-based anonymization. The rank-based data
swapping algorithm, though with better accuracy than that from
the partitions obtained through generalization hierarchy, still intro-
duces much large relative errors than the the three optimization al-
gorithm.

Intuitively, if there is a strong correlation between quasi-
identifiers and the sensitive attribute, the tuples in the same group
tend to have similar values in the partition generated through do-
main generalization. This may result in more accurate bounds for
answering range queries. Our next experiment is to investigate the
impacts of correlation on the accuracy of query answering. We
compare the partitions obtained by the above four algorithms when
varying the correlation between quasi-identifiers and the sensitive
attribute. We run range queries that select tuples whose age at-
tributes are in the range[X; Y ] whereY � X = 30. In the syn-
thetic data set, we introduce a correlation between “age” and “cap-
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Figure 12: The relative errors of range queries using partitions
from different partitioning algorithms, when the strength of the
correlation between quasi-identifiers and the sensitive attribute
varies.

ital loss”. The larger a tuple’s age attribute, the larger its capital-
loss, with a certain variance, which controls the strength of the cor-
relation.

Figure 12 shows the relative errors of the six algorithms when
the strength of correlation varies. We observe that as the correla-
tion is strong(variance=5), tuples with the same age often have the
same capital loss. Thus a higher generalization is needed, which
causes the partition from generalization to yield a large error. As
the variance goes up to 10, a lower generalization is sufficient since
it is more likely for tuples in the same domain to have different
capital loss values. That explains the quick drop of the error when
variance=10. As the variance keeps increasing, tuples in the same
group tends to have quite different sensitive attribute values, which
will cause the error to increase. Since “age” is the only quasi iden-
tifier in the synthetic data set, a range query may completely cover
many groups in the partition obtained through domain generaliza-
tion. Therefore, it yields comparable accuracy with the partitions
generated by the two optimization algorithms. The randomly al-
gorithm does not take advantage of the correlation between “age”
and “capital” loss, and thus performs poorly as expected. The rank-
based data swapping algorithm does not perform very well because
it is hard to deterministically reason the bounds of a query after data
swapping. Only when a long sequence of consecutive sensitive at-
tribute values are covered by a query, can we say for sure that some
tuples are definitely included in the original query answers. This
only happens frequently when a large portion of tuples are touched
by a query.

Finally, we study the tradeoff between privacy and query an-
swering accuracy. Intuitively, the largerk ande are, the more tu-
ples each group in a(k; e)-anonymous partition tends to include,
which will in turn introduces more errors when answering aggre-
gate queries. To see the tradeoff more clearly, we run experiments
over a synthetic random data set, whose quasi-identifier and sen-
sitive attribute are ”age” and ”capital-loss” attributes respectively.
The ranges of them are the same as in the adult database. We is-
sue range queries over “age” attribute. The span of range queries
is set to 30 as before. To examine the impact of the privacy pa-
rameterk, we fix e = 50, and varyk from 4 to 40. We measure
the relative errors of the partitions obtained by the two optimiza-
tion algorithms and the random partitioning for eachk 1. Figure

1Partitions from generalization is not studied because the original
`-diversity does not have the parametere. Moreover, we observe
that when we require6-diversity, in the real database ”age” is al-
ready generalized to ”*”, and it cannot tell any information about a
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Figure 13: The relative errors of range queries using partitions
from different partitioning algorithms
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Figure 14: The relative errors of range queries using partitions
from different partitioning algorithms

13 shows the experiment’s results. We see that the accuracy for the
partitions obtained by the three optimization algorithms are essen-
tially the same, and do not deteriorate much as we increasek. This
suggests that the optimization algorithms are capable to generate
partitions that preserve high privacy while still supporting accurate
aggregate query answering. Meanwhile, we see that the accuracy
of the range-based data swapping approach decreases significantly,
since it does not provide a mechanism to minimize the error intro-
duced by data swapping.

We next evaluate the impact of the other privacy parametere. In
this experiment,k is fixed to be 10, ande varies from 40 to 200.
Figure 14 shows the same trend as in figure 13: a much larger pri-
vacy requiremente does not impact the accuracy of the partitions
obtained by the two optimization algorithms. As for the random
algorithm, the increase ofe does not affect the generated partition
much, since random distinct values in the same group usually re-
sult in a range much larger than the privacy parametere set by
the experiment. The range-based data swapping approach does not
perform well due to the same reason as explained in the previous
experiment.

7.2 Query Execution Overhead
Given an aggregate queryQ, we compare its execution time over

the original un-permuted microdata table with that of the rewritten
queryQ0 which performs selection and joins over the permuted ta-
ble, the mapping table and the help table. To make the comparison
more clearly, we run the experiments on the synthetic data set with
10000 tuples. The partition is(20; 0)-anonymous, and is obtained

query on ”age”.
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Figure 15: The execution time of the constrained query and
the rewritten controlled query when the percentage of selected
groups in the partition varies
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Figure 16: The execution time of the original range query and
the rewritten range query when the span of the range varies

by the first optimization algorithm. There are totally 38 groups in
the partition. Both arbitrary queries and range queries are tested.

In order to study the impact of the number of tuples and par-
titions involved in a query on query execution overhead, we use
constrained arbitrary queries in this experiment: we vary the num-
ber of partitions involved in the query while having the percentage
of tuples selected in each group fixed to be 30%. In figure 15, we
show the time of the two steps when executing a rewritten query.
The first step is to query the permuted table and join it with the
mapping table so that the number of tuples selected in each parti-
tion is obtained. In the second step, the result from the first step is
joined with the help table and the lower and upper bounds are com-
puted. We also show the total running time of the rewritten query
and compare it with the case if we run the original query directly
on the un-anonymized microdata table. We see that, when the num-
ber of involved groups increases, so does the running time of both
steps. For the first step, it is because the number of tuples selected
in the first steps grows. For the second step, the more groups in-
volved, the longer it takes to finish the join with the help table. The
overall execution time of the rewritten query is about four times
that of the original query.

The range query takes the same form as in the previous experi-
ments. We increase the span of its range from 10 to 50. Intuitively,
the larger the span of the range, the more groups of the partition
and tuples will be selected by the query. Figure 16 presents the
experiment’s result, which is consistent with the experiment using
constrained queries.

7.3 Scalability

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of tuples in a microdata table

ru
n

n
in

g
 t

im
e

(m
s

)

Figure 17: The running time of an optimal partitioning algo-
rithm when the microdata table size scales up

We study the scalability of the optimization algorithms presented
in section 6. All of them have computational complexity ofO(n2),
and have similar performance. Figure 17 shows the running time
of the first partitioning optimization algorithm while the database
size is varied from 100 tuples to 2000 tuples.

8. RELATED WORK
The privacy vulnerability of the release of de-identified micro-

data was first discussed by Sweeney [16, 18]. It has been shown
that, after linking a de-identified medical database with voter reg-
istration records, some individual’s medical record can be uniquely
identified. Sweeney further proposedk-anonymity as a model for
protecting privacy of microdata. Domain generalization and record
suppression have been introduced as two techniques to achievek-
anonymity [17].

In [15], Samarati presented a framework for generalization and
suppression basedk-anonymity, where the concept of generaliza-
tion hierarchies was formally proposed. Given a pre-defined do-
main hierarchy, the problem ofk-anonymity is thus to find the min-
imal domain generalization so that, for each tuplet in the released
microdata table, there exist at leastk-1 other tuples which have the
same quasi-identifiers ast. Samarati also designed a binary search
algorithm to identify minimal domain generalizations. The con-
cept of`-diversity is introduced by Machanavajjhala et al. in [11]
to prevent attackers with background knowledge.

It has been shown that the problem of generalk-anonymity with
suppression and arbitrary domain generalizations (instead of pre-
defined generalization hierarchies) is NP-complete [12, 3, 9]. Sev-
eral approximation algorithms have been proposed [2, 12]. In [20],
Yao et al. show that, when several microdata tables are disclosed,
even if each of them satisfiesk-anonymity, by pooling them to-
gether,k-anonymity may be violated. They further design algo-
rithms to detect such violations.

Recently, many works have been done to efficiently compute
minimal and optimal generalizations [8, 10]. In [8], Bayardo and
Agrawal presented a general model of the problem of finding opti-
mal generalization and suppressions to achievek-anonymity. The
model can accommodate a variety of cost metrics. Pruning tech-
niques have been proposed to reduce the search space of optimal
generalization and optimization. In the Incognito approach of [10],
generalization hierarchies are explored in a vertical way. It first
computes the minimal solution tok-anonymity in the generaliza-
tion hierarchy for each quasi-identifier. These solutions are then
combined to form the candidate generalizations for the domain hi-
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erarchies of quasi-identifier pairs. This process continues until a
set of minimal domain generalizations are obtained for the full do-
mains of quasi-identifiers. All the above works focus on introduc-
ing less imprecise information to microdata. But their impacts on
the accuracy of aggregate queries are not discussed.

9. CONCLUSION
Privacy is a serious concern when sensitive information is re-

leased together with quasi-identifiers in microdata databases. A
majority of previously proposed works focus on anonymizing mi-
crodata through domain generalization. Though privacy can be ef-
fectively protected by previous works, the impact of anonymiza-
tion on ad hoc microdata analyses is rarely studied. We observe
that in many situations, after domain generalization, the microdata
becomes so general that it often has difficulty to answer aggregate
queries with reasonable accuracy.

In this paper, we propose an extended privacy objective to better
capture the protection of numeric-valued attributes in microdata.
We also propose permutation based anonymization techniques. We
show that we can achieve the same privacy guarantee as existing
work when we partition a microdata table and perform random per-
mutation between quasi-identifiers and sensitive attributes inside
the groups of the partition. Further, since the quasi-identifiers of
tuples remains in the anonymized table, aggregate queries can be
answered much more accurately. We also design auxiliary rela-
tions and query rewriting algorithms to facilitate efficient ad hoc
analyses over anonymized tables.

There are many interesting issues to be explored in the future. In
particular, we are interested in investigating the use of permutation
to achieve privacy under other privacy objectives. For example,
instead of constraining the ranges of groups in a partition, another
attractive objective is to require the difference between any two
elements in a group to exceed a certain threshold. It is interesting
to investigate efficient optimal or approximation algorithms under
such privacy objectives, and study their impact on the accuracy of
aggregate query answering.
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