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Abstract

Stochastic Automata Networks (SANs) are high-level formalisms for modeling very large
and complex Markov chains in a compact and structured manner. To date, the exponential
distribution has been the only distribution used to model the passage of time in the evolution
of the different SAN components. In this paper we show how phase-type distributions may be
incorporated into SANs thereby providing the wherewithal by which arbitrary distributions
can be used which in turn leads to an improved ability for more accurately modeling numerous
real phenomena.

The approach we develop is to take a SAN model containing phase-type distributions and
to translate it into another, stochastically equivalent, SAN model having only exponential
distributions. In the SAN formalism, it is the events that are responsible for firing transitions
and our procedure is to associate a stochastic automaton with each event having a phase-type
distribution. This automaton models the distribution of time until the event occurs. Events
having phase-type distributions are called phase-type events. In translating the original
SAN model with phase-type events, into a new equivalent SAN model, all phase-type events
are eliminated and replaced with exponential events which translate the interactions among
automata associated with phase-type events and the remaining automata, as well as the
scheduling policy of the phase-type distribution. In this way, the size of the elementary
matrices remain small, because the size of the automata are small: the automata are either
those of the original SAN, or are those associated with the phase-type events and are of size
k, the number of phases in the representation of the distribution.

The major difficulty in transforming a PH-SAN into a regular SAN arises from the fact
that the firing of some events may censor (or disable) certain phase-type events: worse,
certain types of disabling event behave differently in different circumstances, in the sense
that different sets of censored events can result from the firing of a single disabling event in
a given state. The first step of the transformation procedure of a PH-SAN to a SAN is to
remove this difficulty. Later, a second stage converts a PH-SAN without such events into a
regular SAN.

*This work is supported in part by ACI Sure-Paths project, in part by the NSF under research grant number
ACI 0203971 and, in part by CAPES/Brazil.



1 Introduction

Stochastic Automata Networks (SANs) [2, 8, 13] are high-level formalisms for modeling very large
and complex Markov chains in a compact and structured manner. To date, the exponential
distribution has been the only distribution used to model the passage of time in the evolution
of the different SAN components: a mathematical expediency that facilities our ability to model
many SAN activities concurrently. Nevertheless, the use of more general distributions remains a
desirable objective for more accurately modeling numerous real phenomena. It is in this regard
that phase-type distributions fill an important role. Such distributions are usually structured
as a passage through a set of exponential phases and may be used to approximate, arbitrarily
closely, any other distribution. Phase-type distributions have been used by Neuts [12] and
others for modeling queueing networks, and by many authors in modeling stochastic Petri nets
[1,4-6,9, 10].

Previous research on the use of phase-type distributions in stochastic Petri nets (SPN), have
followed two different paths. The first approach [1, 5] determines the conditions under which the
stochastic process of a SPN is regenerative and defines a set of regeneration points. The behavior
of the system between two regeneration points is then analyzed and with the identification of an
embedded Markov chain, the stationary distribution may be computed. However, this approach
lack generality, a result of the conditions imposed upon the SPN to make it regenerative.

The second approach is to introduce phase-type distributions into the SPN and to directly
generate and analyze the Markov chain without resorting to regeneration points and an em-
bedded chain. Among the research carried out along this second direction, one possibility is
that represented by the work of Molloy and others [4,10] whereby phase-type transitions in an
SPN model are replaced by sub-nets that mimics their stochastic behavior. A second possibility
is to introduce phase-type distributions directly into a model, which yields a stochastic Petri
nets and separately described phase-type distributions, and to compute required solutions from
the generated Markov chain. In this case, the phase-type characteristics are taken into account
during the generation of the reachability graph of the model [6] by considering the semantic of
each phase-type transition and directly analyzing the chain. However, this method is ineffective
when the state space is very large, because the chain is explicitly described.

Recent research [7,9], instigated by the increased complexity of the Markov chain generated
from a stochastic Petri net having phase-type distributions, has sought to form a compact tensor
representation of the generator of the Markov chain, thereby avoiding the necessity of forming
the transition rate matrix explicitly. The construction of a tensor representation is based on a
partition of the state space according to what have been called Symmetric Structural Conflicts
(SSC) between transitions. Two transitions are said to be in symmetric structural conflict if
and only if the firing of one renders the other unfireable. However, this approach can result in
the undesirable effect of causing the elementary matrices to become large if the partitions of the
state space contain multiple phase-type transitions, especially when these phase-type transitions
are in structural conflict with each other.

The approach we develop in this paper is similar to the approach above in the sense that
we give a compact tensor representation of the Markov chain defined by a SAN with phase
type distribution. Our approach is to take a SAN model containing phase-type distributions
and to translate it into another SAN model having only exponential distributions and additional
automata. In the SAN formalism, it is the events that are responsible for causing transitions
to occur and we shall associate a stochastic automaton with each event having a phase-type
distribution. This automaton models the distribution of time until the event occurs. Events
having phase-type distributions are called PH events. In translating the original SAN model with



PH events into a new model, all PH events are eliminated and replaced with exponential events
which translate the interactions among automata associated with PH events and the remaining
automata and also take the scheduling policy of the phase-type distributions into account. In
this way, the size of the elementary matrices remain small, because the size of the automata are
small: the automata are either those of the original SAN, or are those associated with the PH
events which are of size k, the number of phases in the representation of the distribution.

A general algorithm which implements this translation procedure is presented in this paper.
A complexity analysis is also provided. The algorithm itself is currently being incorporated into
the PEPS software package.

2 Stochastic Automata Networks

2.1 Informal Description

Stochastic Automata Networks, SANs, were first proposed by Plateau in 1985 [13]. The SAN
formalism enables a complete system to be represented as a collection of interacting subsystems.
Each subsystem is represented by an automaton which is simply a directed and labeled graph
whose states are referred to as local states, being local to that subsystem, and whose edges,
relating local states to one another, are labeled with probabilistic and event information. The
different subsystems apply this label information to enable them to interact with each other and
to coordinate their behavior.

The states of a SAN are defined by the cartesian product of the local states of the automata
and are called the global states of the SAN. Thus, a global state may be described by a vector
whose i*" component denotes the local state occupied by the i*" automaton. The global state of
a SAN is altered by the occurrence (referred to as the firing) of an event. Each event has a unique
identifier and a firing rate. At any moment, multiple events may be enabled to fire (we shall
also use the word fireable to describe events that are enabled): the one which actually fires is
determined in a Markovian fashion, i.e., from the relative firing rates of those which are enabled.
The firing of an event changes a given global source state into a global destination state. An
event may be one of two different types. A local event causes a change in one automaton only,
so that the global source and destination states differ in one component (local state) only. A
synchronizing event, on the other hand, can cause more than one automaton to simultaneously
change its state with the result that the global source and destination states may differ in
multiple components. Indeed, each synchronizing event is associated with multiple automata
and the occurrence of a synchronizing event forces all automata associated with the event to
simultaneously change state in accordance with the dictates of this synchronizing event on each
implicated automata. Naturally, a synchronizing event must be enabled in all of the automata
on which it is defined before it can fire.

Transitions from one local state to another within a given automaton are not necessarily
in one-to-one correspondence with events: several different events may occasion the same local
transition. Furthermore, the firing of a single event may give rise to several possible destinations
on leaving a local source state. In this case, routing probabilities must be associated with the
different possible destinations. Routing probabilities may be omitted only if the firing of an
event gives rise to a transition having a single destination. Also, automata may interact with
one another by means of functional rates: the firing rate of any event may be expressed, not
only as a constant value (a positive real number), but also as a function of the state of other
automata. Functional rates are defined within a single automaton, even though their parameters
involve the states of other automata.
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Figure 1: Example of a SAN model

As an example of the previous discussion, Figure 1 presents a SAN model with two automata,
AW and A@ | the first with 3 local states, 01, 1) and 2(V) and the second with two local states,
0® and 1. The model contains four local events, e1, 2, 3 and e and one synchronizing event,
e4. When automaton A() is in local state 01, and .A®) is in local state 0, (global state [0, 0]),
two events are eligible to fire, namely e; and e5. The event e; fires at rate 7;. This is taken to
mean that the random variable which describes the time ¢ from the moment that automaton .4 %)
moves into state 0() until the event e; fires, taking it into state 11, is exponentially distributed
with probability density function given by 71~ ™. Similar remarks hold for the firing rate of the
other events. The firing of e; when the system is in global state [0,0] moves it to global state
[1,0] in which e5 is still eligible to fire, along now with event es. The event e; cannot fire from
this new state. The synchronizing event e4 is enabled in global state [2,1] and when it fires it
changes automaton A from state 12 to state 0(2) while simultaneously changing automaton
AW from state 21 to either state 0, with probability 71, or to state 1M with probability
1 — 1. Observe that two events are associated with the same edge in automaton AM), namely
ez and ey4. If event eg fires, then the first automaton will change from state 2 to state 0); if
event ey fires the first automaton to change from state 2(V) to either state 0 or state 11 as
previously described. There is one functional rate, f5, the rate at which event es fires, defined

as
A if AD s in state 0V

fs= 0 if AD is in state 1V

Ao if AD is in state 21

Thus event es, which changes the state of automaton A®? from 02 to 1), fires at rate A; if the
first automaton is in state 0V or at rate Ao if the first automaton is in state 2. The event es
is prohibited from firing if the first automaton is in state 1(!). Functional transitions are written
more compactly, e.g.,

fi = [(51(A0 == 0] + [(s1(A® == 2 2]

in which conditions such as st(A(1) == 2(1) (which means “the state of A is 2(1)”) have the
value 1 if the condition is true and are equal to 0 otherwise. This is the notation used to describe



functions in the PEPS software tool [3]. In this setting, the interpretation of a function may be
viewed as the evaluation of an expression in the C programming language. The use of functional
expressions in SANs is not limited to the rates at which events occur; indeed, probabilities also
may be expressed as functions. Figure 2 shows the equivalent Markov chain transition rate
diagram for this example.

A1

T2 T2

Figure 2: Transition rate diagram of corresponding Markov chain.

We now proceed to give a formal description of a SAN model.

2.2 Formal Description

Formally, a stochastic automata network [2, 8, 13] is defined as the quadruplet, M = (N, A, &, f ),
where

e N is the number of automata in the SAN, M.

o A = {A(l),A(2),...,A(N)} is the set of automata of the model: each automaton is
a directed, labeled graph. Specifically, the it automaton, A® | is defined as AW =
{SW), Edge, Label ™} where

— S is the set of states of automaton .A®. Their number is given as n("), the cardinality
of the set S@. A state () € S is called a local state of automaton A®. It follows
that the product state space (PSS) of the model is S = S x §@) x ... x SN) and
a global state, z € S is given by z = (¢, 2®) ... 2™ where 2 € {1,2,...,n®}
fori=1,2,...,N.

— Edge® is a set of directed edges within automaton A®. An edge is a directed arc
connecting a local source state (V) to a local destination state y(* and is written as
(a;(i),y(i)). The automaton A® can only change from one local state (V) to another
local state y@ if there is an edge from z® to y(®.

— Label ™ is the set of labels associated with automaton A®). Each edge must have at
least one label, and may have several; labels do not exist without an associated edge.
Each label on an edge (2, y() is written as Label @) (2@, y)) = {(e, P, (z®, y(i))) },
where e is the identifier of a particular event and P.(z(®,y()) is a function from S
(the state space) into [0, 1] (a probability). Thus each label specifies an event e whose



firing permits a transition along the edge (ac(i), y(i)) and provides the probability that
A actually changes from state (9 to y(® when the event fires. This does not
exclude the possibility of having several labels on the edge (z (i),y(i)), each associated
with a different event.

e & is the set of events that can occur in the model. As well as having a unique identifier,
an element of £, i.e., an event e € £, has three defining characteristics, its type, its master
and its rate, collected together as the triple: (type, master, rate). These characteristics
are as follows.

— an event’s type may be either local or synchronizing, i.e., type(e) = loc|syn.

— an event’s master is the index of the automaton that is master of the event: i.e.,
master(e) = {1,2,...,N}. Each event has a special relationship with a single au-
tomaton, called the master of the event.

— an event’s rate is the rate at which the event e occurs and may be a function from S
into R™.

. f is the reachability function of the SAN. Its domain is the product state space, {z € S},
and its range is the set {0,1}. The set of reachable states, RSS, denoted by S, is defined
as

S={zes| f(z)=1}

This completes our formal description of a SAN model. We now turn our attention to
transitions that result from the occurrence (or firing) of events. For all events e, we shall let
T@W(e),i=1,2,...,N, denote the set of transitions that can occur in automaton A" as a result
of the event e firing. Thus

T (e) = {(ac(i),y(i)) e 5@ x 50 | (e,Pe(:c(i),y(i))> € Label(i)} ,

which simply says that 7 (e) is the set of all edges (), y(®) in automaton A® that are labeled
by the event e. It follows that the set of all automata that are affected by an event e, denoted
O, is given by

O(e) = {i € {1,2,....,N} | TO(e) £0}.

Notice that, an event e is a local event if and only if O(e) is a singleton set; otherwise e is a
synchronizing event. The set of all global transitions that can result from the occurrence of an
event e, denoted by T'(e), may now be given as

T(e) = {(m,y) eSx S| (2D yD)eTW(e) forie O(e)} .

We have now defined the set of transitions, T(i)(e)7 within a specific automaton A that can
occur as a result of an event e firing, and also the set of all transitions that can occur as a result
of an event e firing, namely T'(e).

We shall distinguish events according to whether they are local events or synchronizing events.
The sets of local and synchronizing events are denoted respectively by

— & ={ee€ & |loc} and
— & ={ee&|syn}



It follows that £ = & U &E;. We also define the successors of local and global states as follows:
For any event e, any local state (9 € S() and any global state z € S, we define

— succe(z®) = {yD e SO | (2, yD) e TO(e)} and
— succe () ={ye S| (r,y) € T( )}

In words, succ,(z(?) is the set of local states of automaton A® which can be reached from local
state () when the event e fires and succ,(z) is the set of global states that can be reached from
global state x when e fires.

Finally, a SAN is said to be coherent if the following conditions hold

e Forallic {1,2,...,N} and for all z() ¢ §®):

Y ROy =1

y(® Esucce (x(D)

The probabilities for choosing local destination states, y( e succe(an(i)), when leaving a
local state, (9, must sum to one.

e For all e € &, there exists a unique i € O(e) such that master(e) = i (by definition) and
T(Z)(e) is not empty. In other words, each event e has a unique master automaton, AW,
and the set of transitions generated by e in that master automaton is not empty.

e Forallic {1,2,...,N}, for all z(), ¢y € SO and for all e1, e; € £ such that (ey, Py, (z,
y D)), (e2, Pey(z®, yD)) € Label(z®,y®), we have e; # ez. Events must not be multiply
defined.

o Sis strongly connected. This last condition places a restriction on the reachability function
of the SAN.

When, as is generally assumed to be the case, the distribution of firing time of all events in a
SAN is exponentially distributed, then the underlying Markovian infinitesimal generator matrix
of the SAN, @), may be written as a sum of Kronecker products [2,8, 13]. We have

N
Q = @Q“ + Z(X)Q + Qe
ecs i=1 i=1

In this representation, Q) is the local transition matrix of the automaton A® and is of size
n® . Each matrix Q® is formed from & and the corresponding sets Label® and S®). The value
of the element Q) (2, y(®) of the matrix Q¥ is given by:

Q) (211, = 3 rate(e) - Po(a,y ).

(e,Pe(z(D ,y(D)))€ Label ()

For a synchronizing event, e € £, the elements, Qg (a;(i), y(i)) of the matrix Qg of size n() are
formed as follows. If i € O(e), in other words if automaton A® is affected by event e, then

rate(e) - P(z®,y@)  if master(e) =i

P, (2, 4@) if master(e) # i



In all other cases, i.e., when i € O(e), then the matrix Qg is the identity matrix:
Qﬁfl =1L,-

The (negative) matrix QS,) is a diagonal matrix whose function is that of normalization. Indeed,
for all 29 € SO we must have

Qe+ Y Q) o

y( esucc e (x(D)
It therefore follows that

@ () () — 2 2es® Qi’l (2@, 20) if y@ = £
Qel (x v ,y v ) =

3 Phase—Type Distributions

The exponential distribution is widely used in performance modeling. The reason, of course,
is the exceptional mathematical tractability that flows from the memoryless property of this
distribution. But sometimes, mathematical tractability is not sufficient to overcome the need to
model processes for which the exponential distribution is simply not adequate. This leads us to
explore ways in which we can model more general distributions while maintaining some of the
mathematical advantages of the exponential. This is precisely what phase-type distributions
permit us to do. Additionally, phase type distributions prove to be very useful when it is
necessary to form a distribution having some given expectation and variance.

Phase-type distributions (the word “stage” is also used) get their name from the fact that
they can be represented as the passage through a succession of exponential phases or stages.
More precisely, a phase-type distribution is defined as the time, from some initial distribution,
to absorption in a Markov chain in which all states except one are transient. The states of the
Markov chain constitute the phases of the phase-type distribution. Different distributions are
obtained by varying the number of phases, by varying the transition structure of the Markov
chain and/or by varying the initial distribution. Popular examples of phase-type distributions
include the Erlang distribution, the hyperexponential distribution and the Coxian distribution.
Indeed, any distribution having a rational Laplace transform can be modeled arbitrarily closely
with a Coxian distribution. In representing phase-type distributions, the single absorbing state
is frequently omitted; it is implicitly understood that a departure from any state towards the
exterior is meant to indicate a transition to the absorbing state. Graphically, an r-phase Coxian
distribution is usually represented as in Figure 3.

Figure 3: The Coxian Distribution



If this distribution represents a service process, then after providing service at phase 1,
i1 =1,2,...,r — 1, at rate u;, the process, with probability «;, continues on to phase ¢ + 1 to
continue the service process, or with probability 1 — «;, the service process terminates which
simply means that the process enters the (implicitly represented) single absorbing state. In
terms of the general description of a phase-type distribution, the initial distribution for this
process is defined such that with probability 1, the process begins in phase 1. However, this
is not exactly the representation we shall use. For reasons that will become clear later, when
modeling phase-type distributions in a SAN, we shall number the phases of the distribution from
0 through r—1. In one sense, phase 0 represents the exterior because a transition from any phase
to phase 0 represents the termination of the process. Thus, when a phase-type distribution is in
phase 0, it may mean that the process has terminated and is waiting to begin again. However,
this is not the only meaning that may be associated with a phase-type distribution being in
phase 0. Additionally, as with every other phase in the representation, the distribution of time
spent in phase zero is exponential and is an integral part of the distribution. It is therefore
necessary to understand which of the two possibilities applies, whether the process is waiting to
begin or whether it is already underway. In our SAN model, a function is used to differentiate
these possibilities on the basis of the context in which they are found.

In many modeling scenarios, it is necessary to interrupt certain processes at certain times
and to allow these same processes to continue at a later time. Different preemption policies
make the decision as to whether an interrupted process can continue from the point at which it
was interrupted (called Preempt-Resume) while others force the process to begin all over again
(called Preempt-Restart). The memoryless property of the exponential distribution facilitates
the modeling of these policies, since at any point of time, the remaining lifetime in an exponential
distribution is equal to the distribution itself and hence both policies are identical. Phase-
type distributions on the other hand, do not possess this memoryless property and therefore
it becomes necessary to take elapsed time into account when computing the remaining lifetime
of a distribution. However, each exponential phase of a phase-type distribution does possess
this property and so during an interruption of a phase-type service, it suffices to remember the
particular phase in which the interruption occurred. If the scheduling policy permits the process
to continue from the point of interruption, then the phase-type distribution is restarted in the
phase at which it was interrupted. If the preemption policy forces a process to begin from the
beginning again, then the phase-type distribution is begun from the initial distribution.

4 SANs and Phase—Type Distributions.

Having thus described both regular SAN and phase-type distributions, we are now in a position to
introduce phase-type distributions into SANs, the result of which we shall refer to as a PH-SAN.
It is important to remember that phase-type distributions apply only to events: they define the
probability distributions of the random variables that represent the time between the moment
certain events become enabled and their firing. This means that we must now distinguish
between events with exponentially distributed firing rates and those with phase-type firing rates.
Thus, in a PH-SAN, events have an additional attribute, a probability distribution characteristic
denoted by dist, which is equal to M if the associated firing distribution is exponential, and
is equal to PH if it is phase-type. It follows that the set of events in a PH-SAN, &, may be
partitioned into two sets, those having exponential firing distributions, called £;;, and those
with PH distributions, called Epg. We have £ = £y U Epy. Since events may also be local or
synchronizing, this gives rise to subsets, £y;_;: local events having an exponential distribution;
Eni_s: synchronizing events having an exponential distribution, and similarly for Epy_; and



Epu_s: local and synchronizing events having a PH distribution. Thus, & = €y, U Ey_s U
Epa_1UEPH 5.

A PH-SAN must contain a description of each phase-type event. This description must
include the number of phases needed to represent the distribution, the service rate at each of
these phases and the probabilities of transition among the phases. In other words, an automaton
complete with its own set of events. These events are internal to the representation of the phase-
type event, and their firing moves the representation from phase to phase. The description of
a PH event must also specify the policy to be adopted in the case of an interruption: either
preempt-resume or preempt-restart. This will be denoted by PP, for preemption policy, with
PP = B for begin again (i.e., preempt-restart), or PP = C for continue on (i.e., preempt-
resume). To present this more formally, let h be a PH event, i.e., h € Epg. Then h is described
by D) where

ph) — ( AD gh). Pp(h)> _

In this description, A is an automaton with all the attributes of automata as defined formally
in Section 2.2, i.e., AP = (S(h),Edge(h),Label(h)); the set £ is a set of events, again with
all the attributes of events as defined in Section 2.2, and PP specifies the preemption policy
of h, as just outlined. The set of states of A ie., S contains one special state, state 0,
which is taken to correspond to the first phase. Nothing happens when A is in this state and
the PH event h is disabled. Once h is enabled, the exponential sojourn time to be spent in this
phase can begin. At the end of the phase-type distribution, the automaton returns to this state.
The automaton also returns to this state when the event h is interrupted and the preemption
policy is B, preempt-restart.

The events that are internal to a PH event h, i.e., the elements of the set €M), are local
events and have firing distributions that are exponentially distributed. Since they are local and
all belong to the same automaton, the master of each is the automaton A itself. Furthermore,
each e® e £M has its own rate, given by rate(e(™). Therefore the triple that defines all
e ¢ £ the events internal to a PH event, may be written as (loc7 A(h),rate(e(h))). Let us
now consider some of the implications of introducing PH events into a SAN.

e Since each PH event gives rise to a new automaton, it behooves us to differentiate be-
tween the automata of the base SAN, those automata whose purpose is to represent the
components of the system being modeled, and automata whose purpose is to represent
phase-type distributions. We shall call the former base automata, and the latter induced
automata.

e In the formal description of a regular SAN, events were defined as having three components,
namely type, master and rate: type being either local or synchronizing, master being the
identity of a particular base automaton and rate being a constant or a function of the state
of several base automata. A PH event must have these same three components. The type
and master of a PH event are defined identically to those of exponential events. The rate
of a phase-type event on the other hand, is given, not as a constant nor as a function, but
instead is specified through the behavior of an automaton. We point out that it remains
possible to associate a function with the rate of a PH event, by multiplying the rate of
each phase in its representation by the value of the function. To differentiate between
phase-type and exponential events, events in a PH-SAN are defined with four components:
[(exponential or phase-type), (local or synchronizing), master, rate].

Formally, a PH-SAN may be defined as M = (N, A€, f, K, D), where
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N is the number of base automata in the model.

A= (A(l),.A(Q), o AW )) is the set of base automata. The product state space generated
by this set of base automata is denoted by S.

£ is the set of events defined on the base automata. It includes both exponentially dis-
tributed and phase-type events.

f is a reachability function defined on the product state space S.

K is the number of PH events in the model. They are all defined on the set of base
automata and are denoted by hi, ho,..., hi.

D = (D(hl),D(hQ), e ,D(hK)) is the set of phase-type event definitions, one for each PH
event.

Observe that when K = 0, this definition reverts to that of a normal SAN as defined in Section
2.2. In a manner similar to that used to define the product state space S and a global state x
of a regular SAN, we define the product state space of a PH-SAN, denoted by S, as

S = W 9@ «...x gV « gh1) o gha) o ... g(hK)
S x S 5 gh2) o ... 5 glhK)

where S is the state space of the automata induced by the i PH event, i = 1,2,..., K; and
a global state of a PH-SAN, as

T = <ZE(1),£L'(2),...,:Z}(N), l'(hl),l'(hz),...di(hK))

= (z, 2P gh2) g
(. 0,000,

where (") is the local state of the it" induced automaton, the automaton that represents the
it PH event. Consider the example of the PH-SAN shown in Figure 4.

A(hl)
glh) .
e(h1)
event | rate
e(h1) ,u,.f;”
pp) =B
Aha)
g(hz) .
he
Eg =) (p) event rate

i -
~ ! e el 7, 02) - Jhy
e3 i ) |
) :: " A | g
A®) e ;: @ () | (1-p) e 70 e
I
~ I
€4 ' eéh'z)(l -q)

f(hz) = (St .A(Q) == )H(St .A(S) == )

Figure 4: Example of a PH-SAN model
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It consists of 3 base automata, AM, A2 and A®), the first having four local states and the
second and third having 2 local states each. A total of 6 events, all of which are local events,
are defined on these three base automata: eq, es, e3 and e4 are exponential events while hq
and ho are PH events. The firing rates of these events are specified within the table denoted
£. The rates associated with the two PH events give rise to two induced automata, A1) and
A2) - The first of these represents an Erlang-3 distribution in which the rate at each of the
three phases is equal to p. If the event h; is interrupted, the preemption policy is PPh) = B,
i.e., preempt-restart. The second, A("2), represents a 3-phase Coxian distribution with rate \;
at phase i, i = 0,1,2 and probabilities of exiting at the end of phases 0 and 1 given by p and
q respectively. The preemption policy of the PH event hy is PP("?) = C, i.e., preempt-resume.
Additionally, the induced events associated with each PH event have a functional rate (functions
fhl and fhz). These induced events are eligible to fire only if the corresponding PH event is
fireable. Finally, this model contains one functional transition: event ho can fire only if one or
both of A®? and A®) are in local state 1.

To proceed, it is important to understand the manner in which events fire and the effect that
these events have on one another. At any instant of time, events may be divided into those that
are able to fire (enabled events) and those that are not (disabled events). In any given state x,
one of the enabled events will eventually fire and this can have a number of consequences on the
other events. After an event e fires:

e some events that were previous disabled may now be enabled.

e other events that were previously disabled will continue to be disabled.

e some events that were previously enabled will continue to be enabled.

e other events that were previously enabled may now be disabled.

In the example just presented, suppose that the base automaton AW is in state 2. At this point
we need not be concerned about the other two base automata since the events defined on them,
es and ey, affect A0 only through the function f(*2) which is applicable only when A™M is in
local state 3. Therefore, given that A1) is in state 2, only one event in A®) can fire, namely
e1 and so, after an exponentially distributed amount of time spent in state 2, event ey fires and
automaton A1) moves to state 1. The moment that this happens, three events in A1) become
enabled, i.e., eligible to fire, namely eq, es and hq. This sets up a race condition among these
three events and the one which fires first will move A() into a state in which the other two may
no longer be enabled. If e; fires first, A has the possibility of moving either back to state 2
or on to state 4 with probabilities p and 1 — p respectively. If A® moves back to state 2 then
eo and hq are no longer enabled. On the other hand, if e fires first, then A® moves to state 4.
In this case e; is disabled but h; continues to be eligible to fire. Since the interruption policy of
hy is preempt-restart, its firing process must begin again from its first phase, no matter which
phase it was in when event es fired. Now however, since hy is the only event that is enabled
when AWM is in state 4, it will not be interrupted but instead will proceed to complete all 3
phases in its Erlang representation. Finally, if h; is the first to fire, A() moves to state 3, a
state in which ey is prohibited from firing, es is enabled and hs is enabled if one or both of the
automata A2 and A®) is in state 1. If this condition is true, then event hy continues from the
point at which it was previously interrupted, since its preemption policy is preempt-resume.

Due to the memoryless property of the exponential distribution, the only situation requiring
special attention occurs when the event or events that are disabled are PH events. Hence we
shall use the term “disabling event” to designate an event e whose firing disables phase-type
events that were enabled prior to the firing of e. The term “disabling event” will not be applied
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to events which disable only exponential events. An enabled phase-type event which is disabled
by the firing of an event e is said to be a censored event. The set of all phase-type events disabled
by the firing of e in state z is called the censored set of the event e in state x. This censored set
will be denoted L, (e), where the current state of the system is specifically identified.

In certain contexts, events such as e; and ey in AWM are said to be in symmetric structural
conflict: structural since the disabling condition (or conflict) arises from the diagrammatic (or
structural) layout of the edges on which the events are defined, and symmetric since if ey fires
first then es becomes disabled, and vice versa, if es fires first, then e; becomes disabled. Observe
that in SANs, it is not necessary for disabling conditions to be symmetric. It is possible to have
a state in which two events a and b are both enabled and from which the firing of a leads to a
state in which b is disabled, but the firing of b leads to a state in which a is still enabled. In this
situation we could say that a is in conflict with b, but b is not in conflict with a. However, the
word conflict itself has an inherent concept of symmetry and for this reason, we avoid using it,
choosing instead to use the terminology of disabling events and censored sets. When an event
e fires in some state x and phase-type events are subsequently disabled as a result of this firing
and the structural layout of the edges, we shall say that e is a structurally-disabling event. The
set of events disabled by the firing of e is called the set of structurally-censored events of e in
the state z and is denoted by Ly, (e).

Definition 4.1 Let M = <N, A,E,f, K, D) be a PH-SAN. Lete € £ be an event, h € £ o« PH

event and x € S a global state of the base automata. Then e is said to be a structurally-disabling
event in x and h € Ly, (e) a structurally-censored event in x if and only if there exists an
i€{1,2,...,N} with a®, 0@ € SO such that (@, a®) € TO(e), (z®,b0) € T (L) and for
all 9 € SO (a® @) g TE(h).

In words, this means that it is possible for the PH-SAN to arrive at a state x such that within
automata A there are events e and h which are both enabled in the same local state = and
that if e fires first and moves A® to state a?, there is no edge (a(i),c(i)) labeled with the event
h, i.e., the event h is disabled after the firing of e. Returning to the example, we see that

hi1 € L. (e1) for 2= (1, 2, )
ha € L (g, (e2) for 2= (3, 2, )
h1 € L) (e2) for all z.

The event e also (structurally) disables event ez but we do not write ez € 1 (,), (e1) since ez is
not a PH event.

With SANs, structurally is not the only way in which the firing of certain events may disable
other events: events may also be functionally-disabling. Let us return to the example and
consider the situation in which A® is in local state 3, A® is in local state 1 and A®) is in
local state 2. In this case events ez and hy are enabled. The event e is also enabled but this is
not relevant to the situation we are studying. If the event eg fires before the event ho, then the
function f("2) assumes the value 0 and the event hs is interrupted. It is no longer enabled. The
event eg is said to functionally-disable the event hy: ho is a functionally-censored event. The
firing of the event e3 has the effect of changing the value of the function f(2) and consequently
to imposing a restriction on hs. More formally, we have:

Definition 4.2 Let M = <N, A,E,f, K, D) be a PH-SAN. Lete € £ be an event, h € £ o« PH
event and x € S a global state of the base automata for which f(h)(x) # 0. Then e is said to be
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a functionally-disabling event in x and h € Ly, () a functionally-censored event in x if and
only if there exists a y € succe(x) such that fM(y) = 0.

In words, this means that it is possible for the PH-SAN to enter a state x in which events e
and h are defined and for which there is no functional impediment to the firing of the phase-
type event h (i.e., f(h)(ac) # 0). If the firing of event e leads to a global state y of the base
automata in which the event h is disabled due to the fact that the function in this state y now
has a value 0, then we say that the event e functionally-disables the event h. The event e is
a functionally disabling event and h, a functionally-censored event. The set of events that are

functionally-censored by the firing of e in state  is denoted by L (s), (e).

We now wish to define the sets containing all the phase-type events in a PH-SAN, M =
<N JAE LK, D), that are structurally or functionally disabled by an event e € £ in some

global state x of the base automata. We have the following;:

o 1, (6) = —L(s)r (e) U J-(f)r (6)
o Ly (e)= Uses Ligya (€); Lp (6) = Uzes Lip)a (e)
o L ()= Uges Lo (e) = J_(s) (e)U J_(f) (e)

Given that the set Ly, (e) contains all PH events that are structurally-censored by the event e
in z and that the set Ly, (e) contains all PH events that are functionally-censored by event e
in z, it follows that the set of all PH events that are censored (either structurally or functionally)
by e in x is the union of these and is denoted by L, (e). The set Ly (e), (respectively Lz (e))
is the set of all PH events which are structurally- (respectively functionally-) censored by e
in any global state defined on the base automata, while the set L (e) contains all PH events
that are disabled by e in any global state of the base automata. In the previous example, the
non-empty censored sets are

L (1) ={m}, L (e2) ={ha}, Ly (es) ={h2}, Ly (ea) = {ha}.

Additionally, within each of these sets, we distinguish their elements, the phase-type events,
based on whether their preemption policy is preempt-restart, PP = B, or preempt resume,
PP = C. For example the set Ly, (e)|B (respectively Ly, (e)|C) is the set of all PH
events which are structurally-censored by the firing of e in z and whose preemption policy is
preempt-restart (respectively preempt-resume).

We now turn our attention to the definition of the Markov chain described by a PH-SAN. We
shall denote the transition of the Markov chain from a global state & = (a;, zh) gh2) ,:c(hK))
of the PH-SAN to another global state g = (y, y(h) yh2) ,y(hK)) by (Z,7). When it becomes
necessary to identify the individual automata that change when this transition occurs, we shall
use the notation

(%,9) = <x(z’1>/y(z’1), o atin) i) () py(h) w(hk)/y(hk))

to signify that changes have occurred in n of the N base automata, namely iq,is,...,17, and
in k of the K induced automata, namely those corresponding to PH events hq, ha, ..., hi. We
consider first, transitions that occur due to the firing of an exponential event, e. We identify these
by the letter M for Markovian. Later we shall address the case of transitions that result from
the firing of a PH event h. When the exponential event e is a local, as opposed to synchronizing,
event, the only possibilities are the following:

14



M;.(a) Event e is a local event for which the set L, (e) is empty.
In other words, no PH event is disabled when e fires. Then the only change in moving
from state & to g occurs in the automaton on which the event e is defined. We write this

change as (29 /y®)) where {i} = O(e).

M;.(b) Event e is a local event for which the set L, (e)|B is empty but L, (e)|C is not.
In this case there are PH events which are disabled when e fires but these PH events all
have the preempt-resume policy. This gives rise to exactly the same change of state as
before, namely (:E(i) /y(i)) where {i} = O(e), since the firing of e will leave the status of
the PH events unaltered.

M;.(c) Event e is a local event for which the set L, (e)|B is not empty, and there exist preempt-
restart PH events hy, ho, ..., hx ({h1,h2,...,h} C L, (e)|B) enabled in = but disabled
in the destination state y. When e fires, it will force the induced automata corresponding

to these PH events to move to state 0, i.e., to restart. This transition is written as
(x(i)/y(i), =)o, x(hk)/O) where {i} = O(e).

In all three cases, the rate at which the transition occurs from state Z to g is the same and is
given by

Qi (z,7) = rate(e) x P, (x(i)yy(i)> ]

Obviously, if a local event e is not responsible of the occurrence of the transition (Z,7) then
Qs (&,7) = 0.

The same three situations arise when e is a synchronizing event with an exponential fir-
ing time, but now additional automata, those concerned by the synchronization, must become
involved. We follow the same procedure as before:

M;.(a) When the set 1, (e) is empty, no PH events are disabled by the firing of e so the only
automata affected are the base automata involved in the synchronization. This gives the
transition (:L'(il)/y(il),:U(iz)/y(iz), e ,m(i")/y(i7l)) where n > 1 and {iy,i9,...,i,} € O(e).

M;.(b) When L, (e)|B is empty but L, (e)|C is not, we obtain exactly the same situation as
M;.(a) for the same reasons as cited for local exponential events above, i.e., case M;(b).
We have (x(il)/y(il),w(iQ)/y(i2), - ,w(i”)/y(i”)) where n > 1 and {i1,42,...,i,} € O(e).

M;.(¢) The final case to consider occurs when L, (e)|B is not empty, and there exist preempt-
restart PH events hy, ho, ..., hx ({h1,h2,...,hx} C L, (e)|B) enabled in = but disabled
in the destination state y.
Following a similar reasoning to that used in the local event case, M;(c), we obtain
(2@ jy) o glin) fyln) - g(h) jo g (he) /0) where {i1, 40, ... ,ip} € O(e) and n > 1.

Again, in all three cases, the rate at which the transition occurs from state Z to g is the same
and is given by
Q(Z,y) = rate(e) x H P. (x(i),y(i)> .
1€0(e)
Once again, it is apparent that, if a synchronising event e is not responsible of the occurrence
of the transition (z,7) then Q%(z,7) = 0.

Consider now the case in which the event which fires is a PH event. Like an exponential
event, a PH event can be a local event or a synchronizing event and when it fires, it can give
rise to exactly the same types of situation described above for an exponential event. As we have
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seen, a PH event h defined on the set of base automata, is represented by an induced automaton,
A®) | which contains its own internal events, denoted e, and one special state, state 0. Only
one type of internal event can possibly affect the base automata, those internal events which take
A®) into the special state 0. We shall refer to this kind of event as an “End of Service” (EoS)
event for it is precisely this event that signals the completion of the firing time distribution and
invokes changes in the states of the base automata: in other words, an EoS event triggers the
firing of the PH event hA. It is an “End of Service” event which generates situations similar to
those just defined for an exponential event. Other events defined on A move it from phase to
phase, but have no effect whatsoever on the base automata. To distinguish such events from an
FoS event, we shall refer to them as a “CoS” events, for “Continuation of Service”. CoS events
occasion transitions within the induced automaton only. The list of all possible transitions that
can emanate from PH events may now be given. As before, we seek to identify the global states
7 that can be reached from a global source & = (a:(l),x(z), e a M gh) p(h2) ,:c(hK)) =
($,:B(h1),:v(h2), .. ,x(hK)).

For all CoS PH events e e £M) whether h is local or synchronizing, and independent of
whether the sets of PH events disabled by the firing of h, namely L, (h)|B and L, (h)|C,
are empty or not, the only change in z is given by (x(h) /y(h)) for y" £ 0. This is the only
possibility for CoS PH events. The rate at which this transition occurs is given by

Q@quh) (z,7) = rate(e™) x P, (x(h),y(h)) ‘

For all CoS PH events e®, which do not cause the transition (Z,7), the value of Q}éﬁ;h) (Z,7) is
equal to zero (Q}(}’s;h) (z,9) = 0).

As concerns EoS PH events, the following possibilities arise and correspond to those defined
previously for exponential events: the first three corresponding to the case when the event h is
a local event and the second three when it is a synchronizing event. Bear in mind that it is the
firing of the EoS event e") which triggers the event h, causing it to fire.

PH;.(a) When the set L, (h) is empty, no PH events are disabled when h fires and the only change
in moving from state Z to § occurs in the automaton on which the event h is defined and
within the automaton induced by h. We write this change as (az(i) /y(i), Al / 0) where

{i} = O(h).

PH;.(b) When only PH events having the preempt-resume preemption policy are disabled by the
firing of a local PH event h, then L, (h)|B is empty but L, (h)|C is not. This gives rise to
exactly the same change of state as before, namely (x(i)/y(i), :c(h)/O) where {i} = O(h),
since the firing of A will leave the status of the censored PH events unaltered.

PH;.(c) The final possibility for a local PH event h is that the set L, (h)|B is not empty, and there
exist preempt-restart PH events hy,ho,..., hx ({h1,he,...,hx} C L, (h)|B) enabled
in z but disabled in the destination state y. It makes no difference whether L, (h)|C
is empty or not. When h fires, it will force the induced automata corresponding to

these phase-type events to move to state 0, i.e., to restart. This transition is written
as (x(i)/y(i), =M /0, =) /o, ..., x(hk)/O) where {i} = O(e).

In all three cases, the rate at which the transition occurs from state  to g is the same and is
given by

Q%Os,l(fc,gj) = rate(e(h)) X P, n (x(h),y(h)) x Py, (x(i),y(i)) .
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PH;

For all EoS PH events e® which do not cause the transition (Z,%), the value of Q%S;;( ,J) is

equal to zero (Q}(}’s;h) (z,9) = 0).

Lastly, when A is a synchronizing event with a phase-type firing distribution, the same three
situations arise, and again additional automata, those concerned by the synchronization, must
become involved. We follow the same procedure as before:

.(a) When the set L, (h) is empty, no PH events are disabled when h fires so the only au-
tomata that are affected are the base automata involved in the synchronization. We have
the following transition (x(il)/y(il),:U(i2)/y(i2),...,:E(i7l)/y(i"), ZL'(h)/O) where n > 1 and
{i1,i2,...,in} C O(h).

PH,.(b) When L, (h)|B is empty but L, (h)|C is not, we obtain exactly the same situation as if

no PH are disabled by the firing of h, for reasons previously cited.

PH;.(c) The final case to consider occurs when L, (h)|B is not empty, and there exist PH events

hi,ha, ..., hg ({h1,he,...,hx} C L, (h)|B) enabled in x but disabled in the destination
state y. Following a similar analysis to that used in the local event case, we obtain

(2 fy g ln) ) ) o, () jo, L) 2(%) /0) where {i1, 42, . .. ,in} € O(h) and
n > 1.

Again, in all three cases, the rate at which the transition occurs from state Z to ¢ is the same
and is given by

Qbos, s, ) = rate(e™) x P (1 H Py (1, @)
1€O(h

. . .. ~ o~ (h) , . .
Again, for EoS PH events e, which do not cause the transition (z,7), the value of Q%’SS (Z,9)

(h) , . . . . .
is equal to zero (Q Fos,s(Z,7) = 0). Notice that in all these cases, if the “presence” of the PH

event h does not cause the transition (Z,7), then

heM het . he) . .
1 (@9) = Qs (2, 0) = QEys (T,9) =0 Ve,

It follows then that the Q(Z,y) element of the transition rate matrix of the Markov chain
representing a PH-SAN is given by

QE7) = Y, Qi&y + Y. Qi&7)

e€€nr—1 e€€n—s

+ 3 Y Qb @

he€pyg \elh)cg(h)

+ > Y @@

he€fpp e(h)gg(h)

+ 3 Y k@)

he€ppr_s \elh)cg(h)

It is worthwhile examining some global states of the matrix ) that arises from our earlier
PH-SAN example and listing all the transitions that can occur from these states along with the
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corresponding rates of transition. Consider first the state & = (z, ("), z(*2)) = [(1,1,1),0,0] in
which the three base automata are each in local state 1, and the two induced automata are in
state 0. Within this global state, 3 events are candidates for firing within A®), namely e;, es
and hy; and one event is fireable in each of A® and A®), namely e3 and ey respectively. We
shall determine the state reached when each of these five events fires.

1.

Event e; fires: z =1[(1,1,1),0,0] — [(2,1,1),0,0] =7 at rate 7., x (1 —p), or
z=1[(1,1,1),0,0] — [(4,1,1),0,0] =g at rate 7., x p. Case M;.(c).

Since L, (€1)|C = 0 and L, (e1)|B = {h1}, only h;y can be disabled by e; but since h;
has the preempt-restart preemption policy and is already in local state 0, the only change
is to move AM from local state 1 to local state 2 at rate 7., x (1 — p), or to local state 4
at rate 7., X p.

. Event ey fires: 2 =[(1,1,1),0,0] — [(3,1,1),0,0] =7 at rate 7,. Case M;.(a).

No PH events are disabled by es since hy continues to be enabled after es fires.

. Event hy initiation: z = [(1,1,1),0,0] — [(1,1,1),1,0] = g at rate u. Case PH;.(a).

Event hi begins its firing procedure. Once h; becomes eligible to fire, the CoS event (1)
also becomes eligible to fire and when e("?) fires, the induced automaton A" moves from
local state O to local state 1. No PH events are disabled by hj.

. Event e3 fires: £ =[(1,1,1),0,0] — [(1,2,1),0,0] =7 at rate 7.,. Case M;.(a).

No PH events are disabled by es in state Z. In particular, ho is not functionally-disabled
since A®) is in local state 1.

. Event e4 fires: 2 =[(1,1,1),0,0] — [(1,1,2),0,0] =7y at rate 7,. Case M;.(a).

No PH events are disabled by e4 in state Z since ho remains eligible to fire (A(2) is in local
state 1).

These are the only global states attainable from Z and therefore, along with the diagonal element,
they constitute a row of the transition rate matrix Q.

Consider now the transitions that are possible from the global state z = [(1,1,1),2,0] in
which the PH event h is in its third service phase. The events that can fire in this state are eq,
e, elh) (an EoS event whose firing triggers the firing of the PH event, h1), e and ey4.

1.

Event e; fires: Z =(1,1,1),2,0] — [(2,1,1),0,0] =g at rate 7., x (1 —p), or
z=1[(1,1,1),2,0] — [(4,1,1),2,0] =g at rate 7., x p. Case M;.(c).

If, when e; fires in automata A(M), the local destination state is state 2, then the PH
event hy is disabled and since the preemption policy of h; is preempt-restart, the induced
automaton A1) is forced to move from local state 2 to local state 0. The resulting global
state is then [(2,1,1),0,0] and the rate of transition is 7., x (1 — p). On the other hand,
if the local destination state in automata A() is state 4, hy remains fireable and the only
change is to move A from local state 1 to local state 4 and the rate of transition this
time is 7,, X p.

. Event ey fires: 2 =[(1,1,1),2,0] — [(4,1,1),2,0] =7y at rate 7,. Case M;.(a).

The PH event hq continues to be eligible to fire after e fires: hq is not disabled by the
firing of es.

. Event e™) fires: # = [(1,1,1),2,0] — [(3,1,1),0,0] =§ at rate u. Case PH,.(a).

The firing of e®) when A" is in local state 2 announces the end of the phase-type
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distribution and causes the PH event hy to fire, taking A®) from local state 1 to local
state 3. The induced automaton A1) returns to local state 0.

4. Event eg fires: # =[(1,1,1),2,0] — [(1,2,1),2,0] =7 at rate 7.,. Case M;.(a).
No PH events are disabled by the firing of eg3 in state . In particular, hs is not functionally-
disabled by eg since A®) is in local state 1.

5. Event ey fires: 7 =[(1,1,1),2,0] — [(1,1,2),2,0] =g at rate 7.,. Case M;.(a).
No PH events are disabled by ey in state Z. In particular, hs is still eligible to fire (A®) is
in local state 1).

Finally, to show the effect of functionally-disabling events, consider transitions from the
global state = [(3,1,2),0,1]. When the PH-SAN is in this state, four events are eligible to fire,
namely e, e3, e4 and e("2)  The transitions are as follows

1. Event eg fires: £ =[(3,1,2),0,1] — [(4,1,2),0,1] =y at rate 7,. Case M;.(b).
As e fires and A1) moves from local state 3 to local state 4, the PH event hs is no longer
able to fire. It is structurally-disabled by e,. However, since the preemption policy of ho
is preempt-resume, the state of the induced automaton A("2) remains unchanged.

2. Event eg fires: z =1[(3,1,2),0,1] — [(3,2,2),0,1] =7y at rate 7.,. Case M;.(b).
In this case ho is no longer able to fire, but this time it is because it is functionally-disabled
by es: the value of the function is zero in global state .

3. Event ey fires: #=1(3,1,2),0,1] —[(3,1,1),0,1] =g at rate 7.,. Case M;.(a).
The event hy remains enabled in global state g.

4. Event e("2) fires: Two transitions are possible:

),0,1] — [(1,1,2),0,0] =g at rate g\;. Case PH;.(a).
e ©=1(3,1,2),0,1] — [(3,1,2),0,2] =y at rate (1 —¢g)A\;. Case PH;.(a).

When e"2) fires, then with probability ¢, automaton A®2) moves to local state 0, thereby
signaling that e("2) is an EoS event which triggers the PH event ho and gives rise to the
first transition. On the other hand, with probability 1— ¢, automaton A"2) moves to local
state 2, thereby signaling that e("2) is an CoS event which means that hs is not yet ready
to fire: hence the second transition.

5 Transformation procedure for a PH-SAN Model

In the previous section we saw how to define a SAN which incorporates events whose firing
time is distributed according to a phase-type probability law. To distinguish between a SAN
having only exponentially distributed events and one with both exponential and PH events, we
refer to the first as an ordinary (or regular, or standard) SAN and the second as a PH-SAN.
However, the actual specification, or definition, of a PH-SAN only takes us so far. The real
interest in developing stochastic automata networks lies, not so much in their specification,
although this can be extremely useful in certain circumstances, but rather in the fact that the
transition matrix of the underlying Markov chain of a SAN can be represented compactly, and
hence manipulated, as a compact sum of tensor products. It remains for us to show that a
PH-SAN has this same representational property. Of course, it is known that any matrix may
be represented as a sum of tensor products: it simply suffices to choose each individual element
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of the matrix, to represent each as a tensor product and to form the sum of all such products.
Since we have already shown how to form the infinitesimal generator of the Markov chain that
underlies a PH-SAN, its representation as a sum of tensor products is immediate. However, this
is not what we need. We seek a compact tensor representation in which the number of terms in
the sum is of the order of the number of automata, not of the order of the number of elements
in the matrix. This is the objective of this section. We shall show that the transition matrix of
the underlying Markov chain of a PH-SAN has a compact tensor representation. Our approach
is to show that a PH-SAN can be transformed into a regular SAN that reproduces stochastically
the behavior of the PH-SAN. This transformation is a two-stage process. In the first stage, we
shall transform an arbitrary PH-SAN into a stochastically equivalent PH-SAN in which certain
types of events have been eliminated. The second stage is to take this modified PH-SAN and to
transform it into a stochastically-identical regular SAN. Since a regular SAN has the compact
representation property that we seek, it follows that a PH-SAN also has this property.

Previously we defined a disabling event, e, as one whose firing disables PH events that were
enabled prior to the firing of e. We also defined a censored set as the set of PH events disabled
when such an event fires. It should be apparent that the censored set obtained when e fires
in one global state x is not necessarily the same as that obtained when it fires in some other
state y. Less apparent perhaps, is that different censored sets may be obtained when e fires
on different occasions from the same global state . This arises when transition probabilities
are associated with different destination states. The firing of e may, with probability p, lead to
a state in which a PH event h is disabled, or with probability 1 — p, lead to a state in which
h is still enabled. Thus, a PH event h may be disabled in one destination states but not in
another and consequently the censored sets obtained will not be the same. In transforming a
PH-SAN to a regular SAN, we need to be aware of instances in which the firing of a disabling
event e is guaranteed to disable a PH event h. In this case, the PH event h is an element of all
censored sets obtained by the firing of e from a state x. A disabling event which is guaranteed
to disable a PH event is called a surely-disabling or monoform event. Otherwise it is called a
possibly-disabling or multiform event.

Definition 5.1 Let M = (N,A,S,f, K,D) be a PH-SAN. Let e € £ be an arbitrary event
defined on A, let h € £ be a PH event, and let x € S be a global state in which both e and h
are enabled. The event e is said to be a surely-disabling or monoform event if and only if h is
disabled in all successor states, y € succe(x). The event e is said to be a possibly-disabling or
multiform event if there exist states y1,ys € succe(x) where h is enabled in y; but disabled in

Y2.

Consider the PH-SAN model previously presented in Figure 4. Events e¢; and h; are both
enabled in state x = (1,IE(2),1‘(3)). When the event e; fires, then with probability p, the des-
tination state is (2, (), 20), a state in which h; is disabled and with probability 1 — p the
destination state is (4, @, :c(?’)), a state in which h; is enabled. Thus, e; is a possibly-disabling
event. On the other hand, events ey and hy are both enabled in state (3, z®, x(g)). When e-
fires, only one state can be reached, (4, @, :c(?’)), a state in which hs is disabled. Thus es is a
surely-disabling event.

The procedure we adopt is to decompose multiform events into monoform events and events
that are not disabling at all. This allows us to develop an intermediate PH-SAN model that
contains only monoform and non-disabling events which we can then transform into a regular
SAN.
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5.1 The intermediate model: A monoform PH-SAN

As we have just seen, one difficulty in transforming a PH-SAN into a regular SAN arises from
the fact that certain types of disabling events behave differently in different circumstances, in
the sense that different sets of censored events can result from the firing of an event e in a
given state x. Hence, the first step of the transformation procedure of a PH-SAN to a SAN
is to remove this difficulty. This leads us to distinguish among the events in the set £ of a
PH-SAN based on the censored sets obtained when the event fires, i.e., to distinguish between
multiform (possibly-disabling) events and monoform (surely-disabling) events. At the moment
we need only be concerned with multiform events whose censored sets contain PH events having
the preempt-restart preemption policy, (PP = B). A PH-SAN model which contains only
monoform (surely-disabling) and non-disabling events is called a monoform PH-SAN. A PH-
SAN model containing multiform (possibly-disabling) events is called a multiform PH-SAN.

To transform a PH-SAN containing multiform events into a PH-SAN containing only surely-
disabling and non-disabling events, all multiform events are replaced by a number of surely-
disabling and non-disabling events. The number of events (monoform and non-disabling) that
replace a multiform event is equal to the number of different censored sets generated by the
multiform event. For example, the equivalent monoform model to that of Figure 4 is given in
Figure 5. Notice that the single multiform event of the model, e; in state z = (1, x(z),x(g)), has
been replaced by two monoform events, el and e?. The firing of e; moves the system from state
x to state 1 = (2,22, () at rate 7., (1 — p), while the firing of e? moves the system from state
x to state yo = (4,23, 23)) at rate 7, (p).
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Figure 5: The equivalent monoform PH-SAN to that of Figure 4

If the multiform event e is exponential, then each newly generated event will be an expo-
nential event; if e is a PH multiform event then each newly generated event will also be a PH
event. To replace an exponential multiform event e, the only change that occurs to the PH-SAN
is that the labels of the event are modified. In particular, the number of automata and the local
states and arcs within automata, are unaffected. Even within the specification of the exponential
multiform event, its type, master and rate are unchanged. Only the labels are affected for this
is the means by which the behavior of the event is specified. The original labels concerning the
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multiform event e are removed and replaced by new labels, one for each of the different censored
sets that can arise by the firing of e. Each new label is imposed on the arc or arcs that represent
the particular instance in which the firing of e gives rise to the associated censored set.

The situation is somewhat more complicated if e is a PH multiform event. A multiform event
having r different censored sets gives rise to  new events, each of which is a PH event, and each
must be associated with a descriptor to represent its firing distribution. However, all r events
are associated with the same induced automaton, the one which represents the distribution of
the original multiform PH event. This must be done to enforce the delay semantics of the
distribution and moreover, it avoids useless state space explosion. This is illustrated in the
following example.
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Figure 6: Model with a multiform PH event.

Figure 6 (a), represents a PH-SAN model having a multiform event, namely the PH event
hi. The censored set obtained when hy fires in the state z = (1,1) is {h2}, while the censored
set obtained when hy fires in state x = (3,1) is the empty set. In Figure 6 (b), we present
the corresponding monoform PH-SAN model. In the monoform model, the event h; is replaced
by the two events hl and h?, one for each of the two different censored sets. Notice that in
the situation where h; is not a disabling event, it is kept without replacement. The firing time
distribution of each of all these events must be identical and equal to the firing time distribution
of the original multiform event hy. Therefore each has the same description. We may write

plh1) — phl) — ph3) — p(hihlh? ( Avhihg) o) eh?) [ gh) p P(h1)> '

In particular, we do not introduce additional automata to represent additional PH events that
are created during the transformation of a multiform PH event. The automaton that represents
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the firing time distribution of a multiform PH event is unchanged in every way, except that the
labels on its arcs are replaced with others that relate to the newly defined events. Thus this
single automaton can function as the description of all the newly created events. For example,
the arcs of automaton A(1:11:12) are labeled with the events of & () & (h1) and £(h2) respectively.
For each of the events hy, hi and h?, we associate within the description D(huhihd) ts own set
of events, M) for hy, M) for h} and £M) for h?. The events eghi), e;hi) € &™) and egh%), egh%)
€ £ are the events that correspond to the event (") € £) in the multiform PH-SAN. To
ensure that k1 and h? can fire only if hy is enabled in the base automata, two functions are used,
namely fhi and fh? for h} and h? respectively. The probabilities of choice are multiplied with
the rate of each EoS (End of Service) event of these two new PH events. Observe that when the
two events hi and h? are enabled or disabled at the same time and if h is enabled (respectively
disabled) the event h; is not monoform. Thus, we can write that in the monoform model fh%

= fh% # fn,. Automaton ARuhihs) hehaves as follows: when hi and h? are enabled, only the

1 2 1 2
events eghl) and eghl) (respectively eghl) and e;hl)) can fire in automaton A’1"1:53). The event

(M) is not enabled when h} (and h?) is enabled but only if h; is enabled.

The association of the same set of states and arcs with the events h1, h} and h? is a necessary
part of the transformation process. Consider the situation that arises if h1 (or h?) is interrupted
while in state 1 (2"¢ service stage of its firing distribution) by the event hs. Since pph) =
C, this state must be preserved so that the distribution can continue from this point. Suppose
now that hy is enabled when A®) is in state 3. Since hy, h} and h} essentially represent the
same multiform event, the distribution must continue from the state in which it was interupted,
which is state 1, even though it is the event hy rather than ki that is now enabled.

Consider a global state of the monoform model [(z(), z(2)), g(huhhd) 2("2)] corresponding
to state [(a:(l), w(2)), z(h), x(hQ)] of the multiform model and let us, by way of example, explore
some possibilites. From state [(1,1),0,0] of the monoform PH-SAN model of Figure 6 (b),
the events h% and h% are both enabled. Suppose that, after some time, the first phase in the
activation of egh%) finishes. The automaton A("1:41:51) therefore moves to state 1, and the global
state is given by [(1,1),1,0]. Suppose now that hy, which is enabled in state z(!) = 1, actually
fires and that it PH duration finishes before the second stage of hi finishes. The firing of hoy
interrupts h} whose preemption policy is preempt-resume, which implies that the current phase
of hi must be saved. This takes us to state [(2,1),1,0]. After the firing of event ey, the event hy
is now enabled in state [(3,1),1,0]. The work of the PH distribution of h; (which is the same
as that of hi and hd) is therefore restarted at the second phase (state 1 of automaton A®"1) =
A(hl’h%’h%)), which leads, at the end of its service, to state [(1,2),0,0], the result of the firing
of event e("). Tt is easy to see that this scenario is the same as that of the multiform PH-SAN
model.

The general procedure to be adopted for the transformation of any multiform PH event is
similar to that just described. As was the case for a multiform exponential event, a multiform
PH event h with r different censored sets of disabled PH events, gives rise to  PH events, all r
having the same firing time distribution, the same preemption policy and all described on the
same induced automaton, the automaton induced by the multiform PH event, h. Within this
automaton, the set of states and the set of arcs are not altered in any way. The arcs on this
automaton bear the labels of all » newly created events and it is by the use of functions that
we distinguish among the r different possibilities. The firing indicator function associated with
the multiform PH event is replaced with r firing indicator functions, one for each of the newly
created events. A newly created event is enabled only if the value of its indicator function is 1
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and only one of these r indicator functions can have the value 1 at any given time.

Theorem: Equivalence between Multiform and Monoform Models

Let M = (N, A, &, f, K, D) be a multiform PH-SAN and let M" = (N, A', £, f, K, D') be
the monoform PH-SAN derived from M by replacing multiform events having r censored sets
with 7 monoform events as described above. Then M and M’ define the same Markov chain.

Proof:

The only difference in the two models concerns the events which are defined on them. These
events give rise to transitions that constitute the Markov chain. From the manner in which the
multiform PH-SAN is transformed into a monoform PH-SAN, each transition of M generated by
a multiform event in state z is also generated by a monoform or non-disabling event from the
same state z in M’ and vice versa. In other words,

= For each transition that occurs from state # in M, the same transition occurs from the
same state in M.

< Similarly, for each transition that occurs from state Z in M, the same transition occurs
in state T of M.

A straightforward, but somewhat long, formal proof can be obtained by a simple rewriting of
events.

5.2 Convertion of a monoform PH-SAN to a SAN

Let M = (N, A, &, f, K, D) be a monoform PH-SAN with K PH events. Our goal in this

section is to show how M may be transformed into an equivalent regular SAN, M = (]\7 JALE, f ).
Let us consider each of these components separately, so that we may observe the effects of this
transformation process.

e N = N + K is the number of automata in M. It is equal to the number of automata in

M (N base automata and K induced automata).

o A= {f{(l),.., ./Zl(N), jl(hl),.., fi(hK)} is the set of automata that constitute M.

The first N of these correspond to the N base automata of M and they differ from those
of M in one respect only: labels corresponding to monoform events in M are replaced by
others in A. The set of local states and the set of arcs are identical in both cases.

The K automata corresponding to induced automata have the same set of states as their
counterparts in M, but the set of arcs in A contain those of A in M and possibly additional
arcs introduced to handle interruptions of PH events with the preempt-restart policy. Also,
as is the case for the IV base automata, the labels in the K induced automata may need
to be altered.

e & is the set of events in M and is not the same as the set of events in M. New events are
introduced in M to replace PH events, to replace events that disable PH events and to
replace events in the descriptions of PH events.

e f is the reachability function of M.

It should be apparent that we need to consider the construction of: (a) the set of events, E;

(b) the set of labels in the base automata, Laubel(i); (c) the set of labels in the induced automata,
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Label™

v (h
shall denote Int( ). The construction of these four sets may be accomplished by considering the
different types of events that occur in the PH-SAN and the preemption policies of PH events.

; and (d) the additional arcs that need to be added into induced automata, a set that we

Events defined on induced automata.

Let us consider changes to the automata that result from the transformation of events defined
on an induced automaton, i.e., on an automaton that represents the firing time distribution of a
PH event. Previously, in an induced automaton A that describes a phase-type distribution in
a PH-SAN, we distinguished two types of events, namely CoS (Continuation of Service) events
and EoS (End of Service) events. We first consider CoS events and the changes that arise
from the transformation of CoS events in M to corresponding events in M. The changes that
occur in this case can affect only the labels of the induced automaton. On the other hand, the
transformation of EoS events in M may affect the labels in those base automata associated with
the event as well as the labels in the induced automaton itself.

(a) CoS (Continuation of Service) events:

The label of a CoS event e on an arc from any node z( to any other node y™ (other than
the node zero) gives rise to a local event ¢ in the SAN model with rate equal to that of ()
multiplied by the probability P, ) (ac(h) y(h)). More precisely,

For all h € Epyy, ™ € S = M) and y™ ¢ s — {0}:

For all PH-SAN CoS events e (loc, A, rate(e™)) € £M such that
(e Py (z) yM)) € Label™ (M, M) construct the SAN event:

e = (loc, AW, rate(e™)x P (), yM)) € £
with the label (6, 1) € Label™ (z(®), y®).

Observe that the set of all automata affected by the event (") is simply the singleton set consist-
ing of the automaton AWM jtself, i.e., we have (’)(é(h)) =AM 1t is important to understand why
the firing rate of the event e(™ in the PH-SAN M is multiplied by the probability P (ac(h) , y(h))
to form the firing rate of ¢ in the SAN M. Consider, for example, the case of a PH-SAN where

there exists a state (") such that (e, p;) € Label™ )(:U(h) yM)Y, g™ £ 0, and (e™ 1 — p)

€ LaNbel(h) (a;(h), 0), meaning that the two edges exiting from the same state 2z are both la-
belled by e™. In this case ™ is simultaneously a CoS event and an EoS event and in the SAN

model, this event will be replaced by two different events, namely & gh) for the edge (x(h), y(h))

and é;h) for the edge (z(", 0). Now, if we associate the label (égh), p1) with the edge (z(M, y(M),
the model no longer conforms to the conditions (in particular, condition 3) of a coherent SAN
presented in Section 2.2. It is therefore necessary in the SAN model to multiply the probability
by the firing rate. Multiplying the rate by the probability P,) (SC(h), y(h)) guarantees the correct
probabilistic behavior since an event in the PH-SAN may be replaced by several events according
to the number of labels containing that event. Finally, notice that the transitions of the PH-SAN
which occur when the event e(™) fires, are equivalent to the transitions of the SAN model that
occur upon the firing of the event &,

(b) EoS (End of Service) events:
Let us now move onto the transformation of EoS events in M. The transformation is specified
precisely as

For all h € Epy, =W € s = g and yM =0
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For all PH-SAN EoS events e® (loc, AW, rate(e™)) € £M such that
(e®, Py (@™, y™M)) € Label”

e

)(ac(h), yM),  construct the SAN event:

9

e = (syn, AP rate(e™)x P (x®, y M) e &

with the label (6™, 1) € Label™ (2, y®).

Furthermore, for all i € O(h) and for all (z(®, ) € T (h) such that
(h, Pp(z®, y))) € Label® (z®, y@),  construct the label:

@™, Py(z®, yD)) € Label®(z®, y®).

In this case, the set of automata affected by the event ") includes not only the induced automa-
ton, A, but also, all base automata affected by the event h, i.e., O(EM) = O(h) U AM Notice
that the event ¢ in the SAN which corresponds to an EoS event () in a PH-SAN model, is a
synchronizing event, whereas the original event e(") is a local event. This is due to the fact that
an event representing the end of service of a phase-type distribution must be synchronized with
the occurrence of the transition generated by the actual firing of h. Once again, it is easy to
show that the transitions generated by the firing of e(®) in the PH-SAN are equivalent to those
generated by the firing of ) in the SAN.

Events defined on the base automata.

Let us now consider events that are defined on the base automata. To examine this more closely,
consider the effect of disabling a PH event h whose preemption policy is preempt-resume. A
function fh is associated with CoS events in the induced automaton of the PH-SAN and has
the value 1 when the PH-SAN is in any state in which h may fire. Suppose that A is in its k%"
service stage where the firing of an event ¢ will signal the end of this service phase. If an
event that disables h should happen to fire at this moment, then the service is disrupted because
the function fh, which in the SAN model controls the firing of the event ¢, is now equal to
0. The work done to this point is therefore saved at the k¥ service phase. The next time that
h is enabled the value of the function fh will be equal to 1, and the work continued from the
k' phase by restarting the exponential delay at that phase. For this reason, exponential events
in the PH-SAN, M, having censored sets that are either empty or containing only PH events
with the preempt-resume policy, are replicated in the SAN, M. Exponential events that disable
PH events with the preempt-resume policy simply postpone the evolution of the phase-type
distribution and do not reset the associated automata to zero. As we have just seen, this is
modeled by a function and does not affect the exponential event.

In the case of the interruption of a PH event h having a preempt-restart policy, the inter-
ruption of the work of A may be expressed in terms of a synchronization between the firing
of the disabling event and a return to phase 0 in the automaton that models the phase-type
distribution. At this point, new edges may have to be added to this automaton, to represent
the interruption of service and the return to phase 0.

Exponential Events which disable PH-R events

We now consider the case when the event which disables a PH event with a preempt-restart
policy is an exponential event. For all events e € £ such that L (e)|R # (), we construct the
event € such that:

¢ : (syn, master(e), rate(e)) € &, and
for all i € O(e), ¥ (z@,y®) € T (e) such that (e, Po(z@,yD)) € Label™” (2@, y®),
construct the label (&, P.(z(*),y")) e Laubel(l) (@, y@).
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Additional Edges and Labels:
For all h € L(e)|R and for all z(® € S — {0}, Construct:

(h)

e Edge: (™, 0) if (™, 0) ¢ Edge Label: (€, fie.n)) € Laber™ (™, 0).

(h)

o Edge: (™, 2M)Yif (W), M) ¢ Edge Label: (&1~ f(e,n)) € Label™ (M), (M),

(h)

e Edge: (0, 0) if (0, 0) ¢ Edge™. Label: (¢,1) € Label™(0,0).

We have O(€) = O(e) Upe i (e)|r A

Corresponding to each exponential event e of the PH-SAN, which disables a PH-R event h,
there corresponds an event € which synchronizes the end of the exponential delay represented
by e and the interruption of the progress of the phase-type distribution, represented by a return
to phase 0. This interruption depends on the boolean function f ;) whose value is equal to
1 for states in which e can disable h. Let S(e) be the set of states of the model in which the
event e can fire. Among these states, we distinguish those in which the event e can disable the
PH event h. We denote this set by S(e,h). The value of the function f( ) is equal to 1 for
these states. More precisely we write f(. p)(z) = 1 for all z € S(e, h), and f( p)(z) = 0 for z €
S(e) - S(e, h). The construction of the function f. ) consists in exploring all the states of the
PH-SAN where e and h are enabled, and in which the firing of e can disable h (which allows us
to construct the set S(e, h)). This search may be carried out in parallel with the construction
of the censored sets (L(e)) of an event e. Now suppose that in the SAN model, the system is
in a state x of S(e, h) and that the automaton induced by A is in local state z(*). In this case,
the firing of the event & implies the interruption of the event h because f(. p)(z) = 1 and the
automaton induced by h must return to phase 0. Hence the need for an edge between phase
™ and 0. On the other hand, if the system is in a state # where e cannot disable h whose
induced automaton is in local state (", fie,ny(®) = 0, a self-loop on state (™ (") is needed
to synchronize with the firing of €. In this case € does not interrupt h.

It is important at this stage of the translation to underline the interest in passing first by a
monoform PH-SAN. If the event e is multiform in a state, then the interruption of the progress
of a PH event must depend on the successor state after the firing of e, which is impossible to
effect without decomposing the event. Furthermore, the use of a function to model this situation
is impossible, because this would involve the evaluation of a future state. Since the event e is
monoform, then, if it can disable an event h in some state z, it will interrupt » no matter what
the successor state. Again, transitions generated by the firing of the exponential event e in the
PH-SAN are equivalent to those generated by the firing of the event € in the SAN model. This
observation amy be verified by examining the set of effects caused by these events.

Phase-type Events which disable PH-R events

The final part of the construction concerns the case of a PH event v, of a PH-SAN, which may
disable a PH-R event h. Indeed, in this case, it is the EoS events of the induced automaton for
v that interrupt the progress of the phase-type distribution of h. The analysis is similar to that
performed for the exponential disabling event just described. More precisely,
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For all events v € Epy such that L(v)|R # (0, construct the event © such that:

Additional Edges and Labels:
For all h € L(v)|R, for all events ¢® that correspond to EoS events, and for all z(®) ¢
S — {0}, Construct:

™ Label: (6®, o) € Label™ (2™, 0).

(h)

e Edge: (™, 0) if (), 0) ¢ Edge

. Label: (&™), 1—flen) € Label™ ()| (),
(h)(

o Edge: (™, M) if (z™, M) ¢ Edge

(h)

e Edge: (0, 0) if (0, 0) ¢ Edge Label: (¢(*),1) € Label " (0,0).

We have Q&) = O(e™)) Uhe L(w)|R A

Again, it is not difficult to see the equivalence between transitions in the PH-SAN and SAN
models after this transformation. Figure 7 represents the SAN model that corresponds to the
monoform PH-SAN model of Figure 5.
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Figure 7: The SAN model that corresponds to the PH-SAN model of figure 5

Observe in this model that

e Exponential events that do not disable PH-B events are conserved (Events: e%, e1, €3, €3
and ey).

e Events defined on induced automata representing phase-type distributions are replaced
with new events whose rates are equal to the rates of the corresponding events in the PH-
SAN, multiplied by the associated probability. The EoS events of hy (respectively hs) are

replaced by synchronizing events éghl) (respectively ég{ 2) egiz) and éghz))

which synchronize
the EoS edges of A1) (respectively A("2)) and the edges of A" which correspond to the

edges labelled by hy (respectively hy) in AM).

e Finally, the event e%, being an event which disables hi in the PH-SAN, is replaced in the
SAN model by the sychronizing event ¢1 which also appears in the automaton A1) for
the purpose of interrupting the phase-type distribution modeled by Alh) (Observe the
additional dashed edges that have been added to the automaton). Notice that the states
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in which é1 can interrupt the progress of A1) are in which automaton A1) is in its local
state 1. This phenomenon is modeled by the function f1 ;) whose construction is evident
for this model.

Let us examine some transitions of the Markov chain of the SAN model of Figure 7. Re-
call that in Section 4, we previously displayed all the transitions possible from states & =
[(1,1,1),0,0], z = [(1,1,1),2,0] and Z = [(3,1,2),0,1] of the PH-SAN. In the context of the
SAN model of Figure 7, we shall only consider transitions from state & = (1,1,1,0,0). The event

that are enabled from state & are é%, e% and es in automaton ./Zl(l), the event es in ./{(2), the

event e4 in A® and the event éghl) in A" since the function fhl () is equal to 1.

e The firing of event ¢1 leads to state (2,1,1,0,0) at rate 7., x (1 — p).

e The firing of event e? leads to state (4,1,1,0,0) at rate 7., x (p).

( )

( )

e The firing of event es leads to state (4,1,1,0,0) at rate 7,.

e The firing of event es leads to state (1,2,1,0,0) at rate 7,.
( )

e The firing of event ey leads to state (1,1,2,0,0) at rate 7,.

e The firing of event éghl) leads to state (1,1,1,1,0) at rate p.
Observe that the transitions exiting state (1,1,1,0,0) of the SAN model and those exiting state
[(1,1,1),0,0] of the PH-SAN model are the same: same successor state and same firing rate.

6 Complexity

The transformation of a PH-SAN model into a SAN model is based on identifying situations
in which certain events are disabled. Consider an arbitrary event e € £ (either exponential or
PH) and a PH event h € £. As previously stated, if the preemption policy of h is preempt-
resume, then no change need be made to the representation of the event e nor to the automaton
induced by the event h. It follows that we really do not need to know if e disables a preempt-
resume PH event or not. On the other hand, if the preemption policy of h is preempt-restart,
the representation of the event e must be replaced by an event which synchronizes with the
automaton induced by h. Thus, only events which disable PH-B events need be identified. We
show below that structurally-disabling events can be detected rather easily, but that functionally
disabling events are more costly to detect and the complexity of the algorithm in this case is
related to the function associated with the PH-B event.

We begin with structurally-disabling events. Our goal is to identify the states in which a
given event e structurally disables a PH-B event h. This must be done for every e € £ and h
€ Epg_p. From among all states x in which both these events are enabled, we can identify
the successor states obtained from the firing of e in which A is no longer enabled. Since our
concern at this point is with structurally-disabling events, such a state has, in each automaton

AW i e O(e) N O(h),

e an edge (), y) € Edge® labeled with e, and an edge (¥, 2)) € Edge” labeled with
h.

e after the firing of e, a successor state y® of (¥, (3 € succ.(z?)), in which h is not
enabled, which implies that in automaton A® there is no edge out of y(* labeled with .
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For each automaton AW, i € O(e) N O(h), let S®(e,h) be the set of local states z(?) that
satisfy these two conditions. The construction of the sets S (e, h) is relatively simple. For each
i € O(e)NO(h), it suffices to check the set of local states S of automaton A® to identify states
2@ which satisfy the first condition, and for each z(®, it is sufficient to check the successor states
of () to see if they satisfy the second condition. The complexity of the first part is of order
n®, the number of local states of A®. The complexity of the second part is, at most, also of
n(® (if all the states of A® are reachable from any other local state x(i)). Thus, the complexity
of the construction of all the sets S (e, h) is O( Z (n")?). Thus the complexity for all
i€0(e)NO(h)
possible pairs (e, h), is given by

ofy ¥ 3wy

ec€ hefpy_pB ZEO(e ﬂo )

In the case of functionally-disabling events, the analysis is more complex. Consider a func-
tional PH-B event h and let w(f®™) = {i1,ia,...,iu} € {1,2,...,N} be the set of automata
whose current state is an argument of the function f(). Let S«(/ ")) be the subspace of states
defined by the cartesian product of all local spaces S such that i € w(f (h)). The size of the
state space S@(™)) is then equal to HiEW(f(h)) n® . For each global state x = (a:(l), @),

M) € S, let @) = ()] gG2) | gle)) ¢ S@(F™) he the vector of states needed to
evaluate the function f. Tt is evident that, for an event e to functionally-disable an event
h, it is necessary that it be defined on at least one automaton of w(f(), which means that
O(e) Nw(f™) cannot be empty. In order to specify this more formally, we need the following
definition. If v is a vector defined on a space A and w is a vector defined on space B for which
B C A, then w is the image of v on B if and only if, for all i € B, v(¥ = w®. Now, for each
such event e, and for each state z whose image on w(f") is 2@ with fM(z) =1 (ie., h
is enabled), two conditions must be satisfied if e is to functionally disable h, namely:

e ¢ must be enabled in state z©(f™))

o after the firing of e, there must be a successor state of ac(‘”(f(h))), ie., a y@(™) ¢
succe(z®@)), such that M) (y@™Ny = o

If these two conditions hold, then e functionally disables h in all states x where e and h are
enabled and for which the image of z on w(f®) is 2@/ ")), However, for each event e, it is
necessary to traverse the set of states S« ™)) to identify those states z“(f ™)) in which e is
enabled (first condition). Then, for each of these z(“(f (h))), another traversal is needed to test
for the second condition. Therefore, for each pair (e, h) with non-empty O(e) N w(f ™) and
PH-B event h, the complexity of this identification operation is given by

[T =

icw(fM)

While in the process of identifying disabling situations in a model, it is possible at the same
time to mark those states in which a disabling event is a multiform event. In this manner, the
process of replacing multiform events with other monoform events is relatively easy to perform
and its complexity is of the order of the number of automata edges on which a multiform event
is defined.
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To summarize, once we know which events are disabling events and the states in which these
disabling actions occur in the PH-SAN model, then to transform a PH-SAN into a SAN, the
complexity of the four transformation steps previously presented is a function of the number of
events, edges and states of each of the automata in the model, and is at most

N
O [IELD D)2+ > ("),
i=1

helpy

where k(" is the number of phases in the phase-type distribution associated with event h.

7 Conclusion

In this paper we have shown how phase-type probability distributions may be incorporated into
stochastic automata networks, (SANs). The key step is in realizing that it is the events defined
on the various automata that are responsible for generating the transitions of the Markov chain
that underlying a SAN. The distribution of the time between the enabling of an event and its
firing is either exponentially distributed or else it has a phase-type distribution. In this later
case, it has been necessary to model the distribution as the passage of time though a sequence of
exponential phases, which implies that each phase-type event must be modeled as an automaton,
i.e., each phase-type event gives rise to an induced automaton.

A major emphasis of this paper has been to show that the Markov chain of a SAN with
phase-type events (which we called a PH-SAN) has a compact tensor representation. This was
accomplished by showing that it is possible to derive a regular, yet stochastically-equivalent, SAN
from a PH-SAN. In a first step, a single event that can disable different multiple sets of phase-
type events is replaced with multiple events that do not have this property. This is followed by
a second step which completes the reduction of the original PH-SAN to a regular SAN.

The techniques which we propose in this paper lay the groundwork for the development of
hierarchical SANs. In this paper we have shown how the base automata must interact with
the induced automata: induced automata are essentially subservient to the events that happen
at a higher level, namely those defined on the base automata. Similarly, events that occur at
one level of a hierarchical SAN need conform to the effects of the firing of events at a higher
level in the hierarchy. This opens the way for a formal definition of hierarchical SANs and its
representation as compact sum of tensor products.
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