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Abstract

As more information becomes available to users, there is an increasing number of complex
tasks that motivate the need for computer-assisted interaction, such as the exploration of a large
multidimensional information space. In order to assist users with achieving their goals, com-
puters need to accurately model the preferences of their users. Preference elicitation techniques
attempt to collect important information about the user’s preferences and interests. This sur-
vey describes various preference elicitation techniques and systems. Furthermore, the survey
explores the potential for integrating preference elicitation techniques into an existing assisted
navigation system designed to aid users with data exploration. The navigation system assists
users by identifying and locating interesting elements within the visualization of a multidi-
mensional dataset. The survey will also discuss how the incorporation of preference elicitation
techniques could potentially benefit the navigation assistant.



Figure 1: A visualization of a weather dataset composed of perceptual texture elements (orpexels). Dense areas
represent high cloud cover, irregular areas represent high precipitation, and red and pink colors correspond to
high temperature values. Elements of interests have been identified and clustered (shown in blue). The underlying
navigational graph framework is also shown.

1 Introduction

As computers play a larger role in the lives of their users, it is becoming increasingly important
for computers to understand and represent users’ preferences. Today there is an abundance of
complex tasks that motivate the need for mixed-initiative and computer-aided interaction. Ex-
amples of such tasks include managing e-commerce interactions such as auctions and elaborate
planning tasks such as scheduling a vacation.

With the increasing amount of information that can be collected, the development of more
systems to assist with data exploration and knowledge discovery is a high priority. The area of
visualization provides techniques to create meaningful graphical displays of information from
which users may build a deeper knowledge and understanding about a dataset. However, for
many modern multidimensional datasets, recent visualization systems are unable to create a
comprehensible representation that can be displayed as a single, unified image on a computer
screen.

Navigation concepts were combined with scientific and information visualization tech-
niques to build a navigation assistant to aid users with finding interesting elements within a
multidimensional dataset. Its goal was to help users seek out and explore data that was located
“offscreen,” i.e. beyond the user’s current field of view [DH02]. Interesting elements were
explicitly identifieda priori by the user with a set of interest rules built using a simple boolean
and mathematical grammar. The navigation assistant then tagged these elements of interest and
built an underlying framework in order to create automated camera paths between them. Figure
1 shows the visualization of a weather dataset with elements of interest identified and incorpo-
rated into the navigation assistant’s graph framework. Figure 1 also shows how the elements
of interest were then clustered together to form areas of interest. Using the graph framework,
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the navigation assistant can also construct automated tours between or within areas of interest.
This scheme should be improved on for several reasons. First, it is potentially difficult

for users to accurately describe their interests using the above language. Second, the users’
interests may change over time or during the exploration process thus requiring a halt of the
exploration process in order to revise the set of interest rules. Similarly, users may discover
new interests during the exploration process which should be incorporated into the existing rule
base without interrupting exploration. Finally, analyzing existing user interests may enable the
assistant to build additional rules describing new and unexpected elements or trends the user
may wish to explore. By observing how the user interacts with the visualization, we hope to
develop techniques for theimplicit identification of interesting elements. We hope to better
integrate the exploration process with the task of maintaining a model of the user’s interests.
Determining which elements of a dataset are interesting to a user is a task that seems closely
related to determining the preferences of the user.

The acquisition of user preferences is the goal ofpreference elicitation. Decision support
systems rely on preference elicitation to provide them with accurate and useful information for
the construction of accurate and effective user models. As opposed to other existing techniques
such as collaborative filtering, preference elicitation makes no assumptions about the existence
of any initial user information. If no information is available at the start of interaction, pref-
erence elicitation must attempt to quickly collect as much preference data as possible so that
users can begin working toward their goals. Furthermore, they must also be able to resolve
potential conflicting preferences, discover hidden preferences, and make reasonable decisions
about tradeoffs with competing user goals.

2 Decision Theory

The goal of preference elicitation is to facilitate the construction of an accurate user model
that can be used by a decision support system to assist a user with the completion of a task.
Preference elicitation is usually designed to provide the necessary data for a particular decision
support framework. The theoretical foundation that forms the basis of these models is found in
decision and utility theory [KR76, Fre86]. Decision and multi-attribute utility theory focus on
the evaluation of choices and outcomes for a decision problem or scenario.

Outcomes are defined by the assignment of values to a set of attribute variables,X =
{X1, ..., Xn}. Attribute variables are either discrete,xi ∈ {xi,1, ..., xi,m}, or continuous,xi ∈
[a, b]. The set of outcomesO considered for a decision problem is contained by theoutcome
spaceΩ which is defined by the Cartesian product ofX. Thus,O ⊆ Ω whereΩ = {X1 ×
X2 × ... × Xn}. It is common forO to be very large. Even an outcome space composed of
discrete attribute variables can potentially be combinatorially large. It is often the case thatΩ
contains outcomes that are infeasible with respect to the current decision problem. Consider
an allocation decision problem composed of two attribute variables,X = {Xα, Xβ}, each
variable corresponding to one of two separate auction agents,α andβ. The value of one of
these variables is a possible assignment of goods from a set of goods,{A, B}, to a particular
agent,xα ∈ {∅, A, B, AB} wherexα is a particular assignment for the attribute variableXα.
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An outcome inΩ is of the formo = {xα, xβ} and a potential value could beo = {∅, AB},
corresponding to agentα receiving nothing and agentβ receiving everything. Obviously, any
allocation where both agents acquire the same good is infeasible (e.g. o = {A, AB}) and
should not be considered by a decision maker. However, in practice,Ω remains very large even
with the removal of infeasible outcomes.

In order to make decisions based on a set of outcomesO, a decision maker often simply
needs an ordering of the outcomes determined by the user’s preferences. This is called a
preference relationand is denoted by�. Given oi, oj ∈ O, if oi � oj, oi dominatesor is
preferredto oj. Typically, the preference relation is induced by avalue function, v(o) : O → R.
For a given value functionv and its induced preference relation,�, the following is true,

∀oa, ob ∈ O, oa � ob ⇐⇒ v(oa) ≥ v(ob).

Value functions can operate on the set of outcomes or the attribute variables themselves.
The value for a given attribute variable dominates another value if the following holds true,

∀a, b ∈ Xi, a � b ⇐⇒ v(a) ≥ v(b).

Value functions reflect how much a user values acquiring a particular outcome. However,
in many decision scenarios there may exist a degree of uncertainty. Performing a given action
could result in achieving outcomeo1 with probabilityp1 or achieving outcomeo2 with proba-
bility p2. In cases of uncertainty, the value function alone is not enough to make appropriate
decisions. Since a particular action no longer guarantees a particular outcome, a more complex
function is needed to evaluate the “utility” of a decision. Utility theory provides techniques
that will incorporate the user’s attitudes about risk [KR76].

A main contribution of utility theory is a theorem which proves the existence of autility
function, u(x) : O → R, that will induce a unique preference relation,�, overO. Unfortu-
nately, a preference relation can not induce a utility function over the set of outcomes because
the utility function must also account for the user’s attitudes about risk. The utility function
is often confused with the value function and the literature will often interchange their names.
In decision theory, the utility function represents the user’s attitudes about risk as well as the
user’s value of the outcomes. Therefore, it induces a preference ordering on the probabil-
ity distributions (orlotteries) over the outcome space. IfPri andPrj correspond to the two
probability distributions over the outcomes by the invoking of two actionsai andaj then

ai � aj ⇐⇒
∑

o∈O

Pri(o)u(o) ≥
∑

o∈O

Prj(o)u(o)

for the utility functionu. When assigning values for an outcomeo, the utility functionu must
consider the uncertainty of attainingo and the user’s attitudes toward risk to correctly preserve
the user’s preference relation for actions. The above relation implies that users prefer the action
resulting with themaximum expected utility(MEU). The utility function is important to elicitor
systems because they assume that the user isrational, i.e. the user prefers the outcome with the
maximum expected utility over all other outcomes. For a given situation, there could exist a
single utility function for a group of users or each user might require a unique utility function.
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Since at the start of interaction the utility function for the user is often unknown, construct-
ing the utility function is the initial goal of many decision support systems. However, this
is a difficult task since a complete description of a user’s preferences is often not available
or practical to attain. Acquiring this description for building an accurate utility function and
preference relation for a user is the main goal of preference elicitation.

3 Challenges of Elicitation

Despite the difficulties of building an accurate and effective user model, eliciting preference
information from a user is itself a non-trivial task. Many considerations should be made by a
system, orelicitor, during the elicitation of preference information. Otherwise, systems may
erroneously model the user, collect false information, or unintentionally influence the user’s
preferences [BF95].

Having a user completely describe his preference order upon initial interaction is often
impractical. First, the number of potential pairs of outcomes for comparison by the user is a
function of the size of the outcome space. In the best case, an outcome space with discrete
variables, the outcome space grows combinatorially with respect to the number of attribute
variables and values. Outcome spaces composed of even a small number of variables can gen-
erate far too many possible pairs for users to compare, requiring excessive amounts of time and
effort on a user’s behalf. This consideration assumes that infeasible outcomes have previously
been removed from the set of outcomes for the user’s consideration. The presence of infeasible
outcomes only increases the amount of work required of the user. Research has shown that
acquiring the right partial preference information can be nearly, if not just as, successful in
finding optimal outcomes [HS02, HH99].

Furthermore, preferences are not always fixed. It is very common that different users have
different preferences. There are some scenarios where there exist common preferences that
can be used as a reference or starting point for elicitation. Elictors must be prepared to deal
with each user on an individual basis. Another important factor is users might change their
preferences during interaction with the system. As the user performs a task, old preferences
may give way to new ones. Elicitors should be able to determine when this occurs and make
the appropriate adjustments.

Puet aldescribe another issue that should be addressed by preference elicitation techniques
[PFT03]. Given the elicitation scheme, a particular choice of attributes may force users to state
their preferences viameansobjectives instead offundamentalobjectives. For example, con-
sider a traveler who is looking to take a long weekend trip to New York. He wishes to restrict
the amount of money he spends on airline tickets to only 300 dollars (his fundamental objec-
tive). If an elicitation scheme asks him how much he is willing to spend on his departure ticket,
the traveler is forced to form a means objective. If he estimates to spend equal amounts of
money on both departure and return flights, specifying 150 dollars would exclude a potentially
optimal outcome of a 200 dollar flight into New York on Thursday afternoon paired with a 75
dollar red-eye return flight on Sunday night.

Furthermore, it has been shown that the method of elicitation can influence how users
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respond to elicitation [BF95]. Users may unintentionally misinform the system about their
preferences. Elicitors should elicit the user as infrequently as possible with queries that will
provide the highest yield of preference information while simultaneously reducing any error
about the user’s preferences.

Incremental preference elicitation attempts to satisfy the above criteria by intelligently de-
ciding how to next elicit the user based on information already collected. Incremental elicita-
tion techniques may or may not have any initial preference information about the user. This is
often the case with many scenarios. Incremental elicitation will also allow users to revise their
preferences as they interact with the decision support system. Such capability is not possible
with a system that requires full elicitation from the beginning or during a decision task.

4 Types of Queries

In order to improve the navigation assistant in [DH02], integrating new techniques for acquiring
user preferences is a primary goal. In order to emphasize the exploration process, we plan
to reduce the amount explicit responses to preference queries by the user. Instead, we hope
to acquire preference information from the user by the observation of how the user interacts
with the visualization. Is it possible to interpret the user’s behavior in ways that will provide
important preference information? For example, if the user spends significant time examining
a particular element, does that imply the user is very interested in that element? Since querying
the user is the primary mechanism for acquiring preference information for many elicitation
systems, a review of many common types of queries is given below.

The first step to eliciting preference information is to determine the form of the questions
submitted to the user. Elicitation queries should provide additional preference information that
can allow an elicitor system to tighten its understanding of a user’s preferences. Furthermore,
elicitation queries should be simple to promote an accurate collection of information.

The most simplistic way to discover a user’s preference relation is to task the user with
pairwise comparisons of the possible outcomes. Suchorder queries may have the form of “Do
you preferoa or ob?” Many models assume that preferences aretransitive: if oa � ob andob �
oc thenoa � oc. If transitivity holds across the user’s preferences then order queries can reveal a
great deal about preference. Otherwise, order queries are not an efficient elicitation query since
they will only reveal local relationships among different outcomes. Another disadvantage to
order queries is that they only provide an ordering of the outcomes. There is no qualitative
metric to describe how much a user prefers one outcome to another. Order queries can only
provide information about the user’s preference relation and not the user’s value or utility
function. However, it is often easier for users to specify which outcome is preferred over
another without having to compute an absolute and accurate numeric value for a particular
outcome.

Rank queries are a more specific type of order query. They request the user to explicitly
assign a rank to an outcome among all other outcomes. Rank queries may have the form “What
is the rank ofa or what outcome has rankr?” These type of queries are not always feasible
since the set of outcomes may be too large for the user to produce accurate rank values. Used
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with order queries, rank queries provide a helpful mechanism for approximating where a given
outcome resides in the preference relation.

Value queries help provide a quantitative measure of preference between outcomes. They
establish how much a user prefers one outcome to another. They might be of the form “What
is the value for outcomea?” The ability of a user to truthfully answer a value query is often
dependent on the size of the set of outcomes. It is difficult for a user to compute accurate values
for individual outcomes among a large number of outcomes.

A variation of the value query is thestandard gamblequery. The standard gamble query
measures how strong a user’s preference is for an outcome by evaluating the risks the user is
willing to make in order to attain this particular outcome [NM47]. The standard gamble query
is common among decision theory research because it provides information that allows for
very accurate modifications to a user’s preference model. Consider three outcomesoa, ob, and
oc. The user’s preference ordering hasoa � ob � oc. A standard gamble query asks if the user
prefers to definitely acquireob or accept a gamble (orlottery) where the user acquiresoa with
probabilityπ or oc with probability(1 − π). Utility theory guarantees a value forπ where the
user is indifferent between acquiringob and attempting the gamble. The value ofπ for which
the user is indifferent between the gamble and the outcomeob determines the utility value of
ob: u(ob) = πu(oa) + (1 − π)u(oc). Typically, the best and worst case outcomes are used for
oa andob. If u(obest) = 1 andu(oworst) = 0 the aforementioned formula easily shows thatπ is
the value of the utility function forob.

Potential outcomes or solutions are another form of queries used to determine the prefer-
ences of the user. This type of elicitation is often search-driven. Users move through a solution
space evaluating possible candidates chosen by the system. How the user responds to poten-
tial candidates determines the selection of other potential optimal outcomes. Search is driven
by having the user point out specific properties that are preferred or disliked from the given
examples. Providing example solutions is already a part of the navigation assistant, although
in a non-incremental fashion. Since the assistant functions in a visualization environment, the
use of example queries integrates easily into the navigation assistant making it an ideal tool for
elicitation.

Most of these query formats require explicit responses from the user. However, the majority
of these queries may be potentially translated by the navigation assistant from direct questions
to interpreted behavior. For the value query, the length of time spent examining a data element
might be an indication of the user’s value of that particular element. For order queries, the
sequence a user decides to view potentially interesting elements which are in close proximity of
one another might be an indication of which ones are more preferred to the others. Approximate
rank information could be collected by considering how a user previously ignored a particular
element only to return to it at a later time. Standard gamble queries are perhaps the hardest to
translate into an observable behavior which is unfortunate given their efficiency for providing
preference information.

6



5 Preference Structure

Given that the size of outcome spaces with only a few attributes can be potentially large, deci-
sion support systems must take advantage of any structure inherent to the user’s preferences in
order to facilitate an effective interaction between both the system and the user. Decision theory
describes various forms of structure that can be found in preferences. Research has identified a
variety ofindependencesthat potentially allows decision makers to consider the components of
a given decision problem piecemeal [KR76, BG95]. In other words, identifying independence
allows for the reduction of the number of outcomes for consideration by reducing the number
of independent combinations of attributes. Independence also allows for the construction of
less complicated and more structured utility functions. Determining the structure of the user’s
preference is potentially useful for the navigation assistant because it could provide insight
about how certain attributes may affect user behavior towards a particular data element.

The most basic form of independence ispreferential independence. Preferential indepen-
dence considers only the preference ordering over the individual outcomes for a decision prob-
lem. A set of attributesY ⊂ X is preferentially independentof X − Y when the preference
order over outcomes with varying values of the attributes inY does not change when the at-
tributes ofX − Y are fixed to any value,i.e. the preference order of outcomes with attribute
values inY does not depend on the values of attributes inX − Y . Let α be an assignment of
values to the attributes inY andγ be an assignment of values to attributes inX − Y . If Y and
X − Y are preferentially independent then everyx ∈ X has the formx = (α, γ). Formally,
preferential independence is defined as

∀γ, γ′ ∈ (X − Y ) : (α, γ) � (β, γ) ⇐⇒ (α, γ′) � (β, γ′)

with α, β ∈ Y .
Utility independenceis another form of independence concerned with the utility function

as well as the user’s preferences among the outcomes. Not only must the induced preference
relation remain the same, but the user’s attitude about risk or the relative strength of preference
between outcomes must also remain the same. To understand utility independence, the notion
of conditional preferencemust be described. For a conditional preference relation� with
Y ⊂ X, let α andα′ be two assignments of values to the attributes inY . If Z ⊆ X − Y ,
let γ be an assignment of values to the variables inZ. α is conditionally preferred toα′ with
respect toγ if α � α′ ⇐⇒ (α, γ) � (α′, γ). Conditional preference can also be applied to
probability distributions over outcomes. Using the same assignments forY andZ described
above, consider a probability distributionPr overX. There exists a unique distributionPrγ

such that the marginal probability ofPrγ (the probability that the attributes ofZ take the values
of γ regardless of the values of the attributes inY ) overY is Pr andPrγ gives the probability
of 1 to the values ofγ. Given a utility function with its associated preference order�, the
conditional preference overX givenγ, �γ , is defined as

Pra �γ Prb ⇐⇒ Prγ
a � Prγ

b

for two probability distributionsPra andPrb over X.
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With the definition of conditional preference established for probability distributions over
the set of outcomes, a concrete notion of utility independence can be described. IfX = (Y, Z),
Y is said to be utility independent ofZ if the conditional preferences for distributions overY
given an assignment of valuesγ to the attributes inZ do not depend on the particular values
of γ. Moreover, it is known thatY is utility independent ofX − Y if and only if the induced
preference structure’s utility function has the form,

u(X) = f(X − Y ) + g(X − Y )h(Y )

for a positive functiong [BG95]. Having a utility function of this form can be an improvement
since the number of independent numbers to record is far fewer than the number required of
preference structures with dependent structure.

A stronger independence can identified in a preference structure if the following condition
is met. LetX be partitioned intoX1, . . . , Xk and letp1 andp2 be any two probability distri-
butions that share the same marginal probabilities forXi for all i. If p1 andp2 are indifferent
over the preference structure (p1 � p2 andp2 � p1) thenX1, . . . , Xk are said to beadditive in-
dependent. A set of variables for an outcome space which is additive independent has a utility
function of the form

u(X) =

k∑

i=1

fi(Xi)

wherefi could be considered the utility function for the attributeXi or thesubutility functions.
How independence among attributes contributes to preference elicitation is important to

create more efficient elicitation techniques and interfaces. Given the large number of outcomes
a decision problem can potentially create, independence among attributes allows elicitors to
refine the set of potential queries needed to build an accurate representation of the user’s pref-
erences. For preference structures with additive independence, Keeney and Raiffa provide a
procedure for reducing the number of queries by creating scales for each of the components of
the utility function and querying the user about the behavior of each subutility function [KR76].
Variations of the standard gamble and value queries are then used to construct the appropriate
scaling constants,ki.

Chajewska and Koller work to construct more generalized factorizations of a utility func-
tion. They treat utility functions as random variables and create a statistical model of an ex-
pected utility function. Their model assumes that the population of users can be segmented
into subpopulations. Members of the subpopulations typically have similar utility functions
allowing the creation of a probability density function over a subset of the variables ofX. If
C is a set of clusters of variables fromX, C = {C1, . . . , Cm} whereCi andCj for everyi and
j are not necessarily disjoint, a utility function is said to befactored according to Cif there
exists a functionui : Dom(Ci) → R such that the utility value ofo ∈ O is u(o) =

∑
i ui(ci)

whereci is an assignment of values to the variables inCi. These functions are thesubutility
functions. Note, that this “factorization” allows for multiple clusters to share variables inX, a
condition not permitted with additive independence. The statistical model creates a subutility
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function for each subpopulation and then uses this function for guiding the elicitation process.
Unfortunately, this work depends on the existence of a pre-existing database of user utility
functions.

Perhaps the most important contribution of independence from an intuitive aspect is that it
allows the construction of simple and manageable utility functions. For additive independent
attributes, the user’s utility for any given outcome can be broken down to the sum of values
for individual attributes. Instead of a utility function withn parameters, the system now has
n utility functions with one parameter. Revision of the utility function takes place at the most
atomic level: the attributes. It can be accomplished by manipulating scaling constants and
the value of the utility function for a given attribute value. Changing the utility function with
respect to one attribute has no impact on the other attributes’ utility functions, allowing systems
to revise one attribute at a time. Not only does this simplify interface design, but it is also easier
for users to differentiate their values between two outcomes.

6 Preference Representation

The elicitation process often depends on how a user’s preferences are represented in the system.
The representation structure can determine what information is needed by the elicitor and the
order that information should be collected. The representation of a user’s preferences is usually
associated with representing the user’s utility function. Since most decision scenarios deal with
multi-attribute decision problems, all of these representations are capable of expressing the
preferences of a user over multidimensional datasets used by the navigation assistant. These
representations tend to be either vector-based or graphically (or network) based.

Vectors are fundamentally simple representations of preferences. The content of vector
representations depends on the particular elicitor. Some systems create a vector of length|O|
in which to store the values or utilities of every potential outcome. Evaluating the utility of
a particular outcome involves referencing the correct index of the vector. In order to adjust
the value of the utility function, the vector’s values are updated accordingly. These types of
implementations model the entire domain and range of the utility function [Bou02, CKP00,
CGNS98, HH98]. This type of vector provides a determinate representation of the utility func-
tion, offering little information about how a utility value was computed for a given outcome.
As a consequence of this, such vectors do not intuitively represent any structure that might
exist within the preference relation. However, this is not to say that vector representations can
not be used to discover preference structure as this was done in [CK00].

Sometimes vectors store components which are then used to compute the utility value of
an outcome. The Automated Travel Assistant maintains a vector of constraints and a vector of
weights. Each constraint is a functionCi(x) : dom(Xi) → [0, 1], whereCi(x) = 0 means the
constraint is fully satisfied andCi(x) = 1 means the constraint is fully unsatisfied. ATA makes
the assumption that the preference structure’s attributes are additive independent. The authors
use these definitions to construct anerror function which provides an antipodal utility function
measuring how un-useful a given outcome is for a user,
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error((x1, . . . , xn)) =

n∑

i=1

wiCi(vi)

wherewi is a weight ranging from [0, 1] forCi. As the user provides additional information
about the values ofCi andwi, the vector is updated and the error function begins to approach
zero, i.e. the constraints more accurately represent the user’s preferences. ATA’s represen-
tation is very similar to the navigation assistant’s interest rule set. However, ATA allows for
revisions and additions to the existing set of constraints during interaction. It is very possible
to incorporate several of ATA’s representation concepts into the rule scheme of the navigation
assistant.

ATA models user preferences as a Constraint Solving Problem (CSP). CSP preference rep-
resentations have been used in a variety of systems [BBGP97, BHY97, LHL97, SL01, TF99].
Once an appropriate set of constraints,C, has been acquired, constraint solving routines can
determine potentially optimal solutions. IfC is not tight enough to narrow the set of can-
didates, then additional constraints must be elicited from the user. In many traditional CSP
solvers, constraints arehard, i.e. either fully satisfied or not. If no outcome can satisfy every
constraint inC, CSP solvers resort to relaxing constraints until determining an optimal solu-
tion. Hard constraints alone are not adequate for describing preferences since it is possible
for users to have preferences that conflict with one another. Ranking a set of hard constraints
helps to assist with determining the user’s importance of particular preferences and which con-
straints should be relaxed first. However, there could still be cases where a user’s utility for a
few highly-ranked constraints could be superseded by the utility of a larger number of lower-
ranked constraints. This situation is hard to capture by simple ranking techniques. The use of
softconstraints offers greater flexibility because soft constraints reflect how well an outcome
satisfies a given constraint. The degree an outcome satisfiesC is typically a sum of the prod-
ucts of an importance weight with a soft constraint value, very similar to the error function of
ATA. When paired with importance weights, certain soft constraints can be emphasized over
others.

Various types of network and graph structures are also used to represent user preferences
[BG95, Bou01, CS01b, CS01a, HHR+03]. An attractive feature about networks is that their
topology lends itself to aid with the realization of structure in preferences and visually under-
stand how outcomes come to dominate other outcomes. Graphical models can provide a more
intuitive representation than do vectors.

Graphical models can support the representation of preference structures withintransitive
structure [DM94]. Preference structures tend to be transitive,i.e. if oa � ob andob � oc

thenoa � oc. However, some decision scenarios might allow foroc � oa. It is very difficult to
construct a single consistent numeric utility function that successfully represents an intransitive
set of preferences. Graphical models can also reveal independence in a preference structure.
Bacchus and Grove explored a graphical representation of utilities with the weaker form of
additive independence, calledconditional additive independence[BG95]. Their work helps
facilitate the decomposition of a utility function into somewhat independent components.

Boutilier et al created a network to capture and represent conditional preferential indepen-
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dence [Bou01]. Aconditional preference network(or CP-network) creates a node for every
attributeXi. For every attributeXi, the user must identify a set of parent attributes whose
values will influence the user’s preference for the value ofXi. Each node,ni, has an associated
table describing how the parents’ values will affect the preference for the value ofXi. With a
set of initial conditional preference information, a CP-network can be used to rapidly decide
which of two outcomes dominates the other or if there is an insufficient amount of information
to determine the dominant outcome. In the case of the latter situation, the CP-network will
identify an outcome whose preference information should be elicited from the user.

Conen and Sandholm make use of graphical structures to store preference information for
a combinatorial auction setting [CS01b, CS01a]. They build anaugmented order graphwhich
is composed of a node for every possible bidder and bundle (i.e. a subset of the items up
for auction). A feasible allocation (an outcome) is a set of nodes from the augmented or-
der graph where no two nodes represent the same agent and no two nodes have bundles con-
taining the same item. Algorithms use the augmented order graph to determine the set of
Pareto-optimal allocations. An allocationA is Pareto efficient if there is no other allocation
B wherevi(Ai) ≥ vi(Bi) for each bidderi andvj(Aj) > vj(Bj) for at least one bidderj
(hereAi represents the bundle allocated to agenti by A). The graph can also be used to col-
lect welfare-maximizing allocations, where the welfare-maximizing allocationA is one such
that

∑n
i=1 vi(Ai) is maximized among all other allocations. Value, order, and rank information

can then be elicited from the user from this computed set of allocations to reduce the set of
candidate allocations to determine the optimal solution.

7 Picking the Next Query

The potential queries that an elicitor can present to a user have already been discussed. They
were designed to reveal relevant information about the preferences of the user. However, elici-
tation should be an efficient process. Elicitors should try to collect the largest amount of pref-
erence information with the smallest number of questions. Therefore, elicitors should chose
the next question with consideration and planning.

7.1 Metric Techniques

The most intuitive technique is to create a metric that evaluates the usefulness of potential ques-
tions. Various research projects have adopted avalue of informationmetric which measures the
expected improvement in preference information with the answer to a given query. The value
of information function takes different forms for different decision support systems. For a pos-
sible query, Chajewskaet al define an average of new expected utilities computed with each
possible answer to the query factored into the utility function [CKP00]. The new utility values
are also weighted by the likelihood of a particular answer from the user which is specified by
a statistical model of the user. This average minus the current expected utility connotates their
value of information function. Unfortunately, this function will only compute amyopicvalue
of information,i.e. inconsiderate to the consequences with regard to future queries. The full
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value of information is an intractable problem, requiring the look-ahead consideration of all
possible future combinations of questions and answers. [Bou02] extends this work by building
a partially-observable Markov decision process (or POMDP) model of the elicitation process
to improve on the myopic scope of the value of information function in [CKP00].

Boutilier et al adopt a similar metric technique for their decision scenarios [Bou01]. For
a given decision scenario with potential actionsai, they examine the amount ofregreta given
action might receive. Factoring uncertainty into their model, the expected value of a given
actionai is defined as

EV (ai, w) =
∑

o∈O

Pri(o)u(o, w)

for a given a distribution of tradeoff weightsw for the utility function. Definea∗
w as the action

with the highest expected value,i.e. a∗
w is currently the best action to take for this decision

problem. The regret ofai with respect tow is defined as,

R(ai, w) = EV (a∗
w, w) − EV (ai, w)

which is a measurement for the loss incurred by performingai instead of the optimal action
a∗

w. UCP-networks are used to form a set of linear constraints for the possible tradeoff weight
values. These constraints define a subset of the distributions over outcomesO denoted asC.

For a givenC, themaximum regretof actionai with respect toC is defined as

MR(ai, C) = maxw∈CR(ai, w)

The set of constraints are then modified using queries with a finite number of responses in order
to minimize the maximum regret value forC. The system submits to the user the query with
the smallest maximum regret value. The answer to this query is then used to reviseC. [WB03]
improved on this work by removing the assumption that queries had a finite number of answers
and fine tuning the regret-based query selection process.

Ha and Haddawy use a metric in their work called therank correlation coefficient[HH97].
They needed a technique to measure the difference in the importance rankings of attributes
between two different strategies. Considering permutations of the forma = a1, a2, . . . , an and
b = b1, b2, . . . , bn, the rank correlation coefficient is defined as

ρ(a, b) = 1 − 6
∑

i = 1n(ai − bi)
2

n3 − n

where the range ofρ is−1 ≤ ρ(a, b) ≤ 1. A value of 1 corresponds to two permutations being
identical, while a value of -1 corresponds to complete reversal. The rank correlation coefficient
was used to identify two strategies which differed the most from one another in terms of their
rankings. The system then elicited the user for the proper information so that it could merge
the attitudes of these two strategies into a single new strategy, thus reducing the number of
candidate strategies for the user’s consideration.

Value of information functions provide elicitors with an important tool for determining the
next query to be posed to the user. However, the navigation assistant is trying to identify user
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preferences without explicitly querying the user. Value of information functions appear to be
of little use when omitting direct questioning of the user. However, the navigation assistant
attempts to provide a degree of automation to assist with the exploration process. Boutilier’s
concept of regret may provide a tool for evaluating possible forms of automation within the
visualization. Certain automated actions may have higher expected regret values (e.g. imme-
diately taking control away from the user to bring an element to his attention) than do others
(e.g. determining the order to visit potential points of interest for a user-requested automated
tour). The primary mechanism for querying the user’s interest in the navigation assistant is
the presentation of candidate elements of interest. Using a value of information function to
determine which elements would make good candidates is a type of exemplification discussed
in the following section.

7.2 Providing Examples

A major disadvantage of valuation techniques are that they force the user to consider prefer-
ences via a fine granularity. The user must decide on exact numeric values that will accurately
reflect his preferences. Coarse granularity considerations are often easier for a user to describe
but might not always successfully generate the optimal outcome. An overall (or coarse) de-
scription can be provided by a user to create a subset of potential solutions. Then the system
can start providing candidate solution examples to the user. Modification to the user model is
based on the user responses to the candidates.

Providing example solutions to, or exampling, the user is perhaps the most intuitive way
to elicit preference information. Users have the ability to rapidly and accurately return feed-
back about candidate solutions. They can inform the system about what attributes they like or
dislike about a particular candidate. Furthermore, providing examples can alleviate possible
interaction difficulties between the user and the decision support system. It is sometimes hard
for a user to articulate preferences in a language that a decision support system can also com-
prehend. Most exampling systems operate using constraint solving techniques to determine
candidate solutions.

O’Sullivanet aladdress exampling by considering it as an interactive constraint acquisition
problem [OFO01]. They construct ahypothesis spacefor a given decision problem where user
preferences are defined as constraints in their system. The hypothesis space’s structure allows
efficient pruning of potential outcomes based on the user’s responses to suggested solutions.
This structure also aids with the choice of the next example to suggest to the user.

The Automated Travel Assistant uses constraints to determine the appropriate solutions to
present a user [LHL97]. Lindenet alkeeps the number of candidate solutions presented to the
user small, only five. Therefore, when an undeveloped set of constraints produces a large can-
didate set, ATA needed to implement guidelines for effective solution selection. ATA always
excluded dominated solutions from the candidate set. It prefers to present significantly differ-
ent solutions by finding the candidates that minimize the error function but maximize the sum
of the differences of attribute values. A follow-up guideline was to suggest extrema solutions
because such solutions tend to optimize one attribute and tend to elicit more information about
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the relative weighting of user preferences. This also allows ATA to potentially inform the user
of the full range of solutions that meet the current set of preferences.

Exampling provides two types of mechanisms to allow elicitors to acquire additional pref-
erence information. The first istweaking. TheFindMesystem allows users to explicitly define
preference values via an interface for a set of attributes [BHY97].FindMe then attempts to
find solutions that are similarly based on the current set of preferences. Once presented with
these candidates, users can then “tweak” their preference values to narrow their search until an
optimal target solution has been located.

Instead of tweaking, other systems implementexampleor candidate critiquing[LHL97,
SL01, TF99, PFT03]. These systems acknowledge that users are very efficient at recognizing
violations of their preferences. Example critiquing can also help users discover new hidden
preferences that were previously unknown to the user. This is important because users often
have a difficult time with detailed refinement about their preferences. Users have a much easier
time describing general, fundamental preferences. Example critiquing provides a mechanism
that allows a system to determine the small quantitative differences among a user’s values for
similar solutions.

Most exampling systems depend on explicit user input for revising the set of candidate
solutions. Users must either adjust some interface feature (tweaking) or describe the merits or
flaws of a solution (candidate critiquing). Our navigation assistant is trying to reduce explicit
interaction on the user’s part. The navigation assistant already implements a form of exampling
without any incremental revision of the candidate solution set, thus the exampling techniques
described above could provide a great deal of benefit to the navigation assistant. Another
important aspect of exampling systems is that they determine which solutions from a candidate
set to display. Often, the solutions are displayed in a single view, side by side. This technique
allows users to more easily make comparisons between candidate solutions and determine
their true preferences. However, such displays can remove a solution from its meaningful
context, potentially misleading the user about his value of a solution. The navigation assistant
aims to avoid this by leaving candidates in context and smoothly moving the user through a
visualization to the appropriate viewing locations. However, it is unclear how the efficiency of
exampling is affected by how candidates are displayed to the user.

8 Conclusions

The navigation assistant in [DH02] aims to assist users with the exploration of a large data set.
A major function of this system is to identify interesting data elements for the user and then
assist the user with navigating to such elements. We hope to improve on the navigation assistant
by allowing the implicit identification of elements of interest by observing user behavior within
a visualization. Preference elicitation techniques attempt to acquire information about users’
interests in an efficient and productive manner. It is possible for many ideas in preference
elicitation to improve our navigation assistant.

The way many elicitation systems represent user preferences can easily be applied to a
multidimensional dataset. Preference and utility independence may enable a system to bet-
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ter understand how a user’s behavior reflects his interests with particular groups of attributes.
Common preference queries can provide helpful insight about how best to interpret user be-
havior to collect accurate preference information. Exampling is very similar to the current
non-incremental implementation of the navigation assistant. However, most other exemplifica-
tion elicitation systems require explicit response from the user in order to support incremental
elicitation of the user’s preferences.

From this survey of preference elicitation techniques, we hope to identify techniques and
ideas that will potentially improve the effectiveness of our existing navigation assistant. We
hope that these preference elicitation concepts will help with the identification of user interests
while simultaneously facilitating the exploration process.
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