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1 Introduction

Microarrays are one of the latest breakthroughs in experimental molecular biol-
ogy. It provides a powerful tool by which the expression patterns of thousands of
genes can be monitored simultaneously and are already producing huge amount
of valuable data. Analysis of such data is becoming one of the major bottlenecks
in the utilization of the technology. The gene expression data are organized as
matrices — tables where rows represent genes, columns represent various samples
such as tissues or experimental conditions, and numbers in each cell characterize
the expression level of the particular gene in the particular sample. Application
of microarray technology to biological problems, ranges from understanding of
metabolic responses of microbes, to cancer in humans.

The main challenge of analyzing microarray is the virtual explosion in the
volume and complexity of gene expression data. Thousands of different research
groups generate tens of thousands of microarray gene expression profiles. Differ-
ent experiments utilize different tissue types, examine different treatment strate-
gies, and consider different stages of disease development. This, along with dif-
ferences in microarray platform, technology and protocols used in different labs,
leads to difficulties in integrating microarray data across experiments.

How to combine the data (gene expression levels) in different microarrays
is a challenging problem since these gene expression levels are not necessarily
directly comparable.The same gene may exhibit different bias at different data
sets. For instance, a gene in the liver tissue may have higher expression level
(higher values in a microarray) than that in the skin tissue (lower values in an-
other microarray) by the nature. As a result, directly integrating the microarrays
according to the gene ids would result in inconsistency. In addition, microarrays
may contain different (overlapping) sets of genes. This increases the difficulties
in the integration of the microarray data sets.

The focus of this work is on building a unified data model for microarray
data, which allows coherent interpretation of the independently generated het-
erogeneous microarray experimental data. In order to address this problem, we
propose a novel correlation signature method. The correlation signature cap-
tures the data-set-wise characteristics of a gene in terms of its correlations to a
set of landmark genes. Various methods can be used to choose the landmarks,
e.g., genes from a particular pathway or deemed important by domain experts,
etc. The expression level of a gene at a microarray table can be converted into
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Input : Microarray table M (n×m, n genes and m conditions),
set of k landmark genes L = {l1, ..., lk}

Output: Set of gene signature vectors S ={−→sig(g1),...,
−→
sig(gn)}

for each gene gi in M do
for each gene lj in L do

dj ← dist(−→gi ,
−→
lj )

end−→
sig(gi) ← [d1, d2, ..., dk]

end

Fig. 1. SigCalc: signature computation algorithm.
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Fig. 2. Example of signature vector computation. Assume l1 and l2 are regulator genes
with similar functions.

the similarity (or correlation) to the set of landmark genes. For example, if there
were 10 landmark genes, then at each microarray table, a gene will have 10 corre-
lation values each of which corresponds to a landmark. We call these correlation
values as the correlation signature vector of the gene. The signature vector re-
moves the bias in the expression values and can be used to compare genes across
heterogeneous experiments.

2 Unified Data Model for Gene Expression Profiles

Figure 1 shows an overview of our signature calculation algorithm, SigCalc,
and Figure 2 illustrates the signature computation process through an example.
SigCalc takes as input a microarray table M and a set of k landmark genes. The
landmark genes can be selected either manually by the user or automatically
by the system. If user did not provide landmarks, system can automatically
select candidate landmark genes. Different techniques can be used. For example,
depending on the application, system may run a feature selection algorithm [60,
62] to choose a set of representative genes in the table, or simply choose a
random set of genes and use them as landmarks. With random landmarks, the
correlation signature model behaves similar to the random projection, a popular
dimensionality reduction method [1, 3, 22, 31, 32, 45], except that the random
projection projects the original high-dimensional space onto a random subspace
while the correlation signatures project the original space onto a subspace whose
coordinates correspond to the landmark genes (See Section 3 for more details).
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When users provide landmarks to the system, they can either explicitly pass
a hand-selected genes to the system, or they can just state what kinds of genes
they want the system to use. For the latter case, system can guide users to
make their choices on the group of genes, by providing information about gene
annotations, functional groups, known regulator genes, or genes that are in-
volved in a certain pathway, retrieved from some external sources such as GO
ontology database (http://www.geneontology.org) and KEGG pathway database
(http://www.genome.jp/kegg/).

Once landmark genes are selected, system calculates signature vectors of all
genes in the table as shown in Figure 1. SigCalc uses a distance function, dist,
to measure similarities and dissimilarities between gene vectors (rows of M).
Any conventional distance metric can be used including standard metrics such
as Euclidean or cosine distance, or some variants that are popular in microarray
analysis such as correlation distance or mean-expression distance, as defined
below.

– Euclidean Distance: Given two gene vectors−→x and−→y , where−→x = [a1, ..., an]
and −→y = [b1, ..., bn], respectively, the Euclidean distance is : euc(−→x ,−→y ) =√

(a1 − b1)2 + ... + (an − bn)2.
– Cosine Correlation: Given two gene vectors −→x and −→y , the cosine correla-

tion is: cos(−→x ,−→y ) =
Pn

i=1 aibi√Pn
i=1 a2

i

√Pn
i=1 b2i

. The cosine correlation measures

the similarity between gene vectors. For a dissimilarity measure, simply
1− cos(−→x ,−→y ).

– Pearson Correlation: Given two gene vectors −→x and −→y , Pearson correla-
tion is: cor(−→x ,−→y ) = covariance(−→x ,−→y )√

covariance(−→x ,−→x )×covariance(−→y ,−→y )
. For a dissimilarity

measure, 1− cor(−→x ,−→y ).
– Mean-Expression Distance: Given two gene vectors, the mean-expression

distance is defined as: dist(−→x ,−→y ) = mean(−→x )−mean(−→y ).

Note that the correlation and mean-expression distances are not metrics in
a strict sense (e.g., do not satisfy triangular inequality) but introduced here
because they are commonly used in practice for microarray analysis. Although
Euclidian distance is a common method to represent the similarity or dissim-
ilarity between two vectors, it does not take into account the natural bias of
expression level of different types of genes. Some house-keeping genes may nat-
urally express highly while some other genes may always express at a low level.
Thus, the distance measure may appear larger for these two types of genes. If we
are interested in the fluctuation of the expression levels rather than the absolute
gene expression values, then the Euclidian distance measure may not be proper
to use. In this case, the correlation metrics could be used.

The mean-expression distance is somewhat simplistic but popular in practice
because it gives a natural interpretation of the expression level differences, and
can be applicable to the gene vectors with different dimensions. In reality, gene
vectors (rows) from different microarray tables almost always have different di-
mensions (e.g., one table has columns of lymphoblastic leukemia samples and
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the other has myeloid leukemia samples; number of columns also may differ.)
The first three metrics will not work for such comparison. In contrast, all four
distance metrics can be used with our model, after transforming the original
gene vectors into the corresponding signature vectors.

Now, consider the example in Figure 2. On the left, it shows an input microar-
ray data table M . Suppose the user selected g1 and g3 as the two landmarks, l1
and l2, respectively. SigCalc transforms the original table into a 7×2 table whose
rows represent the signature vectors of the corresponding genes in the original
table. In this example we used the correlation distance (0.5× (1− cor(−→x ,−→y )) to
calculate the signatures. For example, consider

−→
sig(g7) in the signature vector

table. It has two entries [0.91, 0.94] representing correlation distances of gene g7

to the two landmark genes, g1 and g3, respectively.
How do we interpret the distance to the landmarks from a gene? What does

it exactly mean that the distance is 0.91 or 0.19? The correlation distance ranges
from [0, 1], and a distance close to zero implies the two vectors are correlated
and a distance close to one implies the two vectors are inversely correlated.
If it is 0.5 it means there is no correlation. Now, let us assume that the two
landmark genes, l1 and l2, are known regulator genes with similar functions. In
this example, if a gene’s signature vector contains close-to-zero values, it may
mean that the gene is activated by the two regulator genes. The opposite also
holds. The third table from the left of Figure 2 shows the heat map visualizing
the activation/repression relations. In our example, g7 is repressed while g4 is
activated (

−→
sig(g1) and

−→
sig(g3) are also low but they are the landmark genes, and

thus ignored.)
A critical precondition that needs to hold to make the proposed approach

work is that some genome-wide dependency relations between genes exist and
that the relations are conserved across the different experiments, samples, organs,
or even across different organisms. In fact, this is a general belief in the biology
community. Genes do not act alone: one gene’s expression triggers another gene’s
expression. While most of the dependency relation will remain unchanged, some
statistically meaningful changes may be detected from a comparison like normal
cells vs. cancerous counterparts.

One of the main strengths of our approach is the flexibility in landmark
selection. The signatures can be further tuned for a specific analysis by choosing
landmarks from only the genes that are relevant to the current analysis. For
example, suppose one tries to identify how genes behave differently in two sets
of cancer samples (e.g., Leukemia and B-cell lymphoma), with respect to only the
genes of certain functions (e.g., cell cycle or metabolism). Using our approach,
such comparisons become straightforward; we just need to choose landmarks
from the genes with cell cycle or metabolism functions.

Our approach also allows flexible cross-validation and analysis. Virtually any
expression data sets can be compared provided that the signatures are generated
over the common landmarks. One can compare the properties of genes across
different tissues (e.g., skin, liver, blood etc.), different clinical stages of cancers
(e.g., metastasis vs. primary, recurrent vs. non-recurrent etc.), or can compare



5

across even different organisms (e.g., mouse vs. human; mice and men share 99%
of genes [58]).

In order to validate the model, we need to answer the following two important
questions: 1) How much information is captured and how much is lost during
the signature projection? and 2) Are the projected signatures really comparable
across datasets if common landmarks are chosen? In what follows, we present
the results of our empirical validation addressing these questions using the real
microarray data sets [9, 55].

3 Measuring Information Loss

When the raw microarray data is transformed (or projected) into a set of gene
signatures, certain information would be lost. The amount of the information loss
during the transformation is crucial to the success of the gene signature method.
To quantify the information loss, we measured how well the pairwise distances
between all pairs of genes are preserved after transformation. The Following is
the metric that we used:

(Global Distortion Rate) Let ||.||F =
√∑

a2
ij be the Frobenius norm

of a matrix, A be a distance matrix whose entries aij = dist(−→gi ,
−→gj )

where −→gi and −→gj are two gene vectors in the original space, and B be
a distance matrix with bij = dist(f(−→gi ), f(−→gj )) where f is a signature
projection. Then, the distortion rate is defined as: ||A−B||F

|||A|+|B|||F .

In other words, A is an n × n distance matrix that contains all pairwise
distance of genes, −→gi and −→gj (1 ≤ i, j ≤ n), in the original space, and B is a
corresponding n×n distance matrix containing all pairwise distances of the same
gene pairs in the projected space. We compute Frobenius norm of the differential
of the two matrices, normalized by the Frobenius norm of the absolute sum of the
two. We used the cosine correlation (cos(−→gi ,

−→gj )) as the distance function. Unlike
Euclidean distance, the cosine correlation measures the similarity of the two
vectors and it is invariant to the magnitudes of the input vectors. In Microarray
data analysis, it is often more important to preserve the pattern similarity among
genes than their expression magnitudes.

Figure 3 shows the result of our preliminary investigation. Figure 3(a) com-
pares the error (distortion) produced by three methods: Signature with Random
Landmarks (SR), Signature with Semi-Orthogonal Landmarks (SO), and Ran-
dom Projection (RP). Suppose we are projecting gene vectors in the original
n-dimensional space onto a k-dimensional subspace. For SR, we randomly select
k landmark genes, l1, . . . , lk, from the original space. Each gene gi is then trans-
formed in to a k-dimensional signature vector

−→
sig(gi)= [dist(gi, l1), dist(gi, l2), . . . , dist(gi, lk)].

For SO, we do the same except the landmark genes are carefully chosen from
a set of semi-orthogonal genes. Orthogonal gene vectors are orthogonal to each
other in the original n-dimensional space. Semi-orthogonal genes represent a
group of genes in which all pairwise cosine similarities are less than a certain
threshold θ (we used θ = 0.2 in the experiments).
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(b) Myeloma Patients (173 Samples) [55]

Fig. 3. The error produced by RP, SR, and SO on two microarray datasets. Test
performed on a sample of 2000 genes. For each landmark size, iterated 20 times and
averaged the result.

Random projection and correlation signatures: RP is a popular dimen-
sionality reduction method proven to be useful in many application areas in-
cluding text retrieval [3, 45], image processing [3], clustering [14, 29, 46], motif
discovery in bioinformatics [6], multimedia indexing [37], just to name a few. Our
signature projection method has strong similarity with RP-based approaches. In
fact, the signature projection is reduced to an RP problem if the cosine similarity
is used as the distance metric (for both signature and global distortion computa-
tion), with only difference being that RP projects the original high-dimensional
space onto a random subspace while the correlation signatures project the origi-
nal space onto a subspace whose coordinates correspond to the landmark genes.
We make this explicit in the following definition:

(Random Projection) Let Xm×n be an m × n matrix whose rows
are vectors and columns are dimensions, and Rn×k be an n× k random
matrix whose columns have unit lengths. Then, XRP

m×k = Xm×nPn×k is
a random projection of Xm×n using a projection matrix Rn×k.

Strictly speaking, RP is not a projection because the projection matrix Rn×k

is rarely orthogonal. However, in a sufficiently high dimension space, vectors with
random directions are likely to be close to orthogonal [28], thus making Rn×k an
approximate orthogonal matrix. Although RP is known to be generally effective
in embedding high-dimensional data into a row-dimensional subspace, it may not
solve our problem because it projects the original data into a random subspace,
and as a result, the projected subspaces from different datasets are not generally
comparable. We use RP as guideline to compare against the performance of our
approach. The following lemma gives a bound on the distortion that RP may
produce during the projection.

(Johnson-Lindenstrauss Lemma) [32] Given ε > 0 and a projection
f , if a set of n points p1, ..., pn ∈ S in Euclidean space are projected onto
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(b) Distribution of correlation and P-values

Fig. 4. Two sets of signatures are generated from two disjoint subsets of the leukemia
samples. Signatures are aligned based on their gene ids and then compared. (RP -
Random Projection, SR - Signature w/ Random Landmarks, SO - Signature w/ Semi-
Orthogonal Landmarks, with 10, 30, 50 dimensions.)

a random k-dimensional space where k = O((log n)/ε2), then with high
probability, for all pi, pj ∈ S

(1− ε)||pi − pj ||2 ≤ ||f(pi)− f(pj)||2 ≤ ||pi − pj ||2(1 + ε)

The above lemma states that if points in a vector space are projected onto a
random subspace with sufficiently large dimensions, then all pairwise distances
between the points are approximately preserved. Unlike RP, in SR and SO,
the projection matrix is an n × k matrix whose columns are landmark gene
vectors either selected randomly (SR) or selected from a set of semi-orthogonal
gene vectors (SO). Although we draw a small number of genes (typically 10-50)
randomly from a large pool of genes (>10K), it is quite possible that some genes
in the landmarks have some correlations. This will introduce some distortion
in the projected subspace. In order to avoid that, in SO, we preprocessed the
input tables to find a maximal set of genes (Q) that are semi-orthogonal (i.e.,
for all −→gi ,

−→gj ∈ Q, cos(−→gi ,
−→gj ) < θ), and chose the landmarks only from the

set. In order to find the semi-orthogonal gene set, we reduced the problem to
a maximal clique problem as follows: (1) compute a distance matrix D whose
entry dij = cos(−→gi ,

−→gj ), (2) set all dij ≥ θ to 0 and all dij < θ to 1, and (3)
solve the maximal clique problem using D as a connectivity graph. There exist
some polynomial time approximation algorithms for this problem [4, 13] (The
maximal clique problem is NP-hard). However, the size of the graph (#of nodes
> 10K) may still be problematic even for a good approximation algorithm. In
order to address this problem, we employed the following simple strategy: (1)
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select a random subgraph D′ of k nodes (k � 10K) from D, (2) compute the
maximal clique QD′ for D′, and (3) perform monotonic greedy search using QD′

as a starting point.
Turning back to Figure 3, the result confirmed our expectation. In both

datasets, RP performed the best, followed by SO and SR. RP and SO improved
as more numbers of landmarks were used, while SR didn’t show any significant
changes over the range of different landmarks. It appears that, unlike SR, the pro-
jection matrices of RP and SO were close enough to orthogonal and adding more
dimensions to the projection matrix, following Johnson-Lindenstrauss Lemma,
improved the result. RP achieved 5% and 8% distortion rate in leukemia and
myeloma datasets, respectively, while SO achieved 10% and 12%, respectively.
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(b) Distribution of correlation and P-values

Fig. 5. Two sets of signatures are generated from two independent data sets (leukemia
and myeloma). Signatures are aligned based on their gene ids and then compared.
(RP - Random Projection, SR - Signature w/ Random Landmarks, SO - Signature w/
Semi-Orthogonal Landmarks, with 10, 30, 50 dimensions are compared.)

4 Comparing Signatures across Datasets

As shown in Figure 3, RP clearly outperformed the signature methods with
respect to preserving the pairwise distances. However, RP can not be used for
comparing or integrating microarray data from different sources because RP
projects onto a random subspace which can not be shared by multiple datasets.
On the other hand, signature methods choose a set of landmark genes from its
own dataset and use them as the coordinates of the subspace on which all gene
vectors of the dataset will be projected. As a result, if the same set of genes are
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selected as landmarks, the projected subspaces, even if they are from different
datasets, are comparable. In order to test this, we performed the following two
experiments:

– Comparing Disjoint Subsets: (1) We split a dataset A vertically into two dis-
joint subsets, A1 and A2, so that two sets have disjoint samples (columns),
(2) select k landmark genes l1, ..., lk, let the set of gene vectors correspond-
ing to the chosen landmarks in A1 and A2 be L1 and L2, respectively, (3)
compute signatures for all genes in each dataset independently using the cor-
responding sets of landmark vectors, L1 and L2, and then finally (4) compute
the correlations between all pairs of matching signatures.

– Comparing Different Datasets: We do the same as above except that here
we use two independent datasets, A and B, instead.

Figure 4 shows the result of the first test using the leukemia dataset (10K
genes, 120 samples). In the test the original dataset is split into two 60 column
tables and then compared. If the model really captures the information, the
signature vectors of corresponding genes across the two sets should be very
similar because they are generated from the same type of samples. Figure 4(a)
shows the average correlation of all matching signatures across the two sets using
different sizes of landmarks (iterated 20 times for each data point and averaged
result). Interestingly, SR outperformed SO with a big margin throughout the
entire test range. It struck us as a surprise. In the previous experiment shown
in Figure 3, SO preserved much more information than SR (more than 100%
better in both datasets). We can think of two possible reasons: 1) First, the set
of semi-orthogonal gene vectors from which the SO landmarks are chosen, may
not have been a representative set covering broad range of gene functions. If the
set contains genes that represent only a small fraction of biological functions,
the signatures computed against them will be skewed toward that functions
represented in the set. 2) Second, SO may be overfitting. Microarray data is
very noisy. If SO preserved too much information it might fail to generalize the
real signal. We are leaning toward the first explanation but it is not conclusive
at this stage with currently available evidences.

Figure 4(b) shows two boxplots illustrating the distributions of correlations
and p-values between all matching pairs of signatures. It shows that the distribu-
tions of correlations for SRs (10,30,50 landmarks) are highly skewed toward 1.0
(perfect correlation), while, as expected, that of RPs are close to zero (no corre-
lation). The second boxplot shows the p-value distributions. In our context, the
p-value states the probability of observing a correlation between two signature
vectors by chance at the level greater than or equal to the observed correlation.
If the pair’s p-value is low we can assume that the correlation value between
the pair is statistically significant. On the other hand, a high p-value may sug-
gest that no statistically significant correlation exists between the two signature
vectors. As shown in Figure 4(b), the p-values of SR gradually improves (be-
come smaller) as more numbers of landmarks are used, while those of RP and
SO did not change. This implies that more numbers of landmarks, although did
not improve the correlation, helped strengthen the statistical confidence of the
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measured correlations. The median correlation of SR with 50 landmarks was 9.8
(in Figure 4(b) top) and its median p-value was less than 10−10 (in Figure 4(b)
bottom).

Figure 5 shows a similar result using the two different datasets (leukemia and
myeloma [9, 55]). The average of all pairwise correlations for SR was less than
the previous test. It ranged from 0.5 to 0.6 throughout the test. The median
correlation for SR with 50 landmarks was 0.76 and median p-value was 1.17 ×
10−10. In both tests, the result showed the clear differences in the correlations
and p-values between SR and RP, suggesting that the signature models indeed
capture some statistically significant information about each individual gene and
that the signatures can be compared across the disjoint datasets.

5 Conclusion

In this work, we introduced a novel data model, correlation signature model, for
integrating heterogeneous microarray gene expression profile data. This model
allows the coherent interpretation of the independently generated heterogeneous
microarray experimental data. The proposed model exploits the dependency
structure among data elements within a table to make the comparison.
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