
Integrating IDS Alert Correlation and OS-Level DependencyTracking

Yan Zhai, Peng Ning, Jun Xu
Cyber Defense Laboratory

Department of Computer Science
North Carolina State University

Raleigh, NC 29695-8207
{yzhai, pning, junxu}@ncsu.edu

Abstract

Intrusion alert correlation techniques correlate
alerts into meaningful groups or attack scenar-
ios for the ease to understand by human analysts.
However, the performance of correlation is under-
mined by the imperfectness of intrusion detection
techniques. Falsely correlated alerts can be mis-
leading to analysis. This paper presents a practi-
cal technique to improve alert correlation by inte-
grating alert correlation techniques with OS-level
object dependency tracking. With the support of
more detailed and precise information from OS-
level event logs, higher accuracy in alert correla-
tion can be achieved. The paper also discusses the
application of such integration in improving the ac-
curacy of hypotheses about possibly missed attacks
while reducing the complexity of the hypothesizing
process. A series of experiments are performed to
evaluate the effectiveness of the method, and the re-
sults demonstrate significant improvements on cor-
relation results with the proposed technique.

1 Introduction

Intrusion detection has received a lot of attention
in the past two decades. However, current intrusion
detection systems (IDSs) often generate huge num-
bers of alerts as well as numerous false positives
and false negatives. These problems make the re-
ports from IDSs very hard for security administra-
tors to understand and manage. Many researchers
and vendors have proposed various alert correlation

techniques (e.g., [6, 7, 17]) to make large numbers
of IDS alerts more understandable and at the same
time reduce the impact of false positives and false
negatives.

Recent alert correlation techniques can be di-
vided into three categories: similarity-based cor-
relation (e.g., [3, 5, 15, 17]), correlation by match-
ing with pre-defined attack scenarios (e.g., [6, 7]),
and correlation based on the prerequisite (also
called preconditions) and consequence (also called
postconditions) of individual attacks (e.g., [4, 10]).
Each technique has its advantages and disadvan-
tages. However, the correctness of correlation re-
sults is strongly affected by the false positives and
false negatives among IDS alerts.

Several researchers recently investigated inte-
grating additional information sources into alert
correlation to improve its quality. In [9], a for-
mal model named M2D2 was proposed to repre-
sent data relevant to alert correlation. The tech-
nique in [12] reasons about the relevancy of alerts
by fusing alerts with the targets’ topology and vul-
nerabilities, and ranks alerts based on their relation-
ships with critical resources and users’ interests.
In [18] a statistical reasoning framework is pro-
posed to combine IDS alert correlation with local
system state information from tools such as system
scanners and system monitors. These approaches
can improve the performance of correlation by in-
tegrating different sources of security-related infor-
mation. However, the correlation results are still
not yet satisfactory. For example, neither of the ap-
proaches can deal with false negatives quite well.

1

Thus, it is desirable to find additional ways to inte-
grate other information sources to further improve
alert correlation.

In this paper, we propose to harness OS-level
event logging and dependency tracking to improve
the accuracy of alert correlation. OS-level depen-
dency tracking is a recently developed technique
to analyze the system operation history toward a
given object. It tracks dependency-causing events
such as process forking and file operations in the
system event log, and spans up a tree of system
objects connected by these events from the target
object. Though a very useful tool for forensics ap-
plications, backtracker has two limitations. Firstly,
because it is system call oriented, the complexity of
tracking and tracking results can be very high. For
example, during a normal system run, the resulting
dependency graph of such a tracking (usingBack-
tracker [8]) can contain up to tens of thousands of
objects and hundreds of thousands of edges. Such
complexity with tracking is obviously time and re-
source consuming, while the tracking results are
also hard to understand. Secondly, the tracking is
highly dependent on the availability of so-called
“detection points”, which are significant evidence
of system being attacked. However, such “detec-
tion points” are not usually available, making it in-
convenient to use in security administration. In-
tegrating event logging and dependency tracking
tools with alert correlation can potentially address
the above limitations, and at the same time improve
the performance of alert correlation.

Our integration method is based on the follow-
ing observations: Firstly, most attacks have corre-
sponding operations on specific OS-level objects.
Secondly, other than a few exceptions, if one attack
prepares for another, the later attack’s correspond-
ing operations would be dependent on the earlier
one’s. Because logging these system calls is more
straightforward than detecting attacks using rules
and signatures, such information is considerably
more accurate and trustworthy than the IDS alerts.
Utilizing such information will improve the perfor-
mance of alert correlation.

Given the alert correlation results and an OS-
level dependency tracking tool, the integration is
done in two phases. The first phase is to iden-

tify the system objects corresponding to the IDS
alerts based on their semantics. The second phase
is to verify the relationships demonstrated in the
correlation result or discover the missed relation-
ships among the alerts by tracking the dependencies
among their corresponding system objects using a
dependency tracking tool such as Backtracker.

The contribution of this paper is the develop-
ment of a framework to integrate the information
from OS-level event logging and dependency track-
ing into IDS alert correlation. With the support of
OS-level event logs, we can achieve better accu-
racy in the final result than the original alert correla-
tion method. We also discuss how such integration
can facilitate the hypotheses about possibly missed
attacks. Finally, we evaluate the effectiveness of
this scheme by performing a series of experiments.
Our experiment results show that the integration
can greatly improve the correctness of correlation
and help making hypotheses about possibly missed
attacks. For example, in our experiment, our ap-
proach can totally remove the false correlations in
all three attack scenarios.

The remainder of this paper is structured as be-
low. Section 2 briefly introduces the background of
alert correlation and OS-level dependency tracking.
Section 3 discusses the details on how to integrate
OS-level object dependency tracking into alert cor-
relation. Section 4 gives experimental results used
to evaluate our approach. Section 5 discusses re-
lated work. Section 6 concludes and points out
some future directions.

2 Background

As discussed earlier, our goal is to improve in-
trusion alert analysis by integrating OS-level event
logging and object dependency tracking into IDS
alert correlation. In this section, we give a brief
introduction to the alert correlation and OS-level
dependency tracking techniques to be used in our
method. For alert correlation, we use the method
based on attack’s prerequisite and consequence
[10], due to the ease to make connections be-
tween alert correlation and OS-level objects in this
method. The dependency tracking technique used
in this paper isBacktracker[8], which to our best

2

knowledge is the only such tool available.

2.1 Alert Correlation Based on Prerequisites
and Consequences of Attacks

Here we give a brief overview of the alert cor-
relation method in [10]. This method correlates
intrusion alerts using the prerequisites and conse-
quences of attacks. Intuitively, the prerequisite of
an attack is the necessary condition for the attack
to be successful. For example, the existence of a
vulnerable service is the prerequisite of a remote
buffer overflow attack against the service. The con-
sequence of an attack is the possible outcome of
the attack. For example, gaining the root access
from a remote machine may be the consequence
of a ftp buffer overflow attack. In a series of at-
tacks where earlier ones are launched to prepare for
later ones, there are usually connections between
the consequences of the earlier attacks and the pre-
requisites of the later ones. Accordingly, we iden-
tify the prerequisites (e.g., existence of vulnerable
services) and the consequences (e.g., gain certain
privilege) of attacks, and correlate the detected at-
tacks (i.e., alerts) by matching the consequences of
previous alerts to the prerequisites of later ones.

The correlation method uses logical formulas,
which are logical combinations of predicates, to
represent the prerequisites and consequences of at-
tacks. The correlation model represents the at-
tributes, prerequisites, and consequences of known
attacks as alert types. The correlation process is
to identify theprepare-forrelations between alerts,
which is done with the help of prerequisite sets
and expanded consequence sets of alerts. Given
an alert, its prerequisite set is the set of all predi-
cates in the its prerequisite, and its expanded con-
sequence set is the set of all predicates in or implied
by its consequence. An earlier alertt1 prepares for
a later alertt2 if the expanded consequence set of
t1 and the prerequisite set oft2 share some com-
mon predicates. Intuitively, an earlier alert pre-
pares for a later one if the consequence of the ear-
lier one “contributes” to the prerequisite of the later
one. An alert correlation graph is used to repre-
sent a set of correlated alerts. An alert correlation
graphCG = (N,E) is a connected directed acyclic

graph, whereN is a set of alerts, and for each pair
n1, n2 ∈ N , there is a directed edge fromn1 to n2

in E if and only if n1 prepares forn2.

The advantage of this method is that the corre-
lation result is easy to understand and directly re-
flects the possible attack scenarios. However, as the
correlation is solely based on IDS alerts, the result
highly depends on the quality of the IDS alerts. For
example, the result may contain false correlations
when there are false alerts.

2.2 Backtracker

Backtrackeris an OS-level dependency tracking
tool [8]. Backtracker monitors specific types of
OS-level objects, i.e., processes and files. The ob-
jects are kept in a log with their properties such
as theuid of the objects. It also monitors spe-
cific dependency-causing system calls like process
forking, file reading, and memory sharing, which
together are called “high-control events” in [8].
Given the information of a specific object such as
thepid of a process or theinode number of a file,
Backtracker identifies the previous objects and sys-
tem calls that could have potentially affected a tar-
get object, and displays chains of events in a depen-
dency graph. In a Backtracker dependency graph,
each nodeA represents an OS-level object, and
each edgeA → B represents that object B is de-
pendent on object A. Moreover, an edgeA ↔ B
is used to represent that objects A and B are po-
tentially dependent on each other. As mentioned
earlier, the major limitations of Backtracker are the
complexity of its results and the inconvenience to
use because of its dependency on the availability of
“detection points”. In its later version [14], the tool
can also track dependencies between remote hosts
by tracking the logged socket ids.

Although Backtracker does not monitor all kinds
of OS-level events, the process, file, and filename
objects are among the most important elements in
most attacks’ prerequisites and consequences. The
high-control events monitored by the Backtracker
are the essential methods to modify the system at-
tributes. Finally, although OS-level event logging
can be disrupted by kernel-level attacks, kernel-
level attacks are a lot more difficult and uncom-

3

mon. Thus, it is reasonable to assume that most at-
tacks will have their corresponding OS-level events
logged by Backtracker.

3 Integrating Alert Correlation and OS-
Level Dependency Tracking

Our integration is to identify the relevancy be-
tween the relationships among IDS alerts and the
dependencies among OS-level objects, and then use
the OS-level dependencies to verify or discover the
relationships among IDS alerts. To identify such
relationships, we first look into attacks’ OS-level
behaviors.

From the operating system’s point of view, an at-
tack is a set of OS-level events that access or mod-
ify a set of system objects. The OS-level objects
and operations corresponding to an attack can be
derived from the semantics of the attack. In our
model, such semantics consist of two parts: one is
the prerequisites and consequences of attacks, and
the other is the correspondence between the pred-
icates in attacks prerequisites or consequences and
the OS-level objects on the host. With such infor-
mation, we can identify the OS-level objects corre-
sponding to the attacks on the host. For example,
given an attack that exploits a vulnerable service
as its prerequisite and yields a shell as its conse-
quence, we can identify the corresponding service
process and shell process for this attack.

Accordingly, the OS-level objects correspond-
ing to an attack can be divided into two sets: the
prerequisite object set, which are the objects de-
rived from the attack’s prerequisite, and thecon-
sequence object set, which are the objects derived
from the attack’s consequence. These two sets may
overlap, because some attacks’ consequences may
affect their prerequisite objects. By backtracking
among the OS-level objects, we can also find de-
pendencies among those objects at the OS level.
Though different from theprepare-forrelation used
in alert correlation, such OS-level dependencies can
be utilized to verify or discover theprepare-forre-
lations among the alerts.

In our framework, we first extract necessary in-
formation from the alerts to identify the corre-
sponding OS-level objects. We then verify the

dependencies among alerts by using the OS-level
dependencies among their corresponding objects,
and thus improve the alert correlation based on the
causal relationship. Moreover, by identifying the
OS-level objects corresponding to the specific evi-
dence indicating possibly missed attacks, and gen-
erating a forest of dependent objects by tracking
back from these objects, we can improve the per-
formance of existing methods [11,18] for hypothe-
sizing about possibly missed attacks.

An attack has to have impacts on the local
system in order to be observable in the OS-level
log. Since some unsuccessful attacks do not have
the same impact on system objects as successful
ones, our method only guarantees improvement of
alert correlation for the alerts of successful attacks,
though it may provide positive results for some
failed attack attempts.

3.1 Identifying OS-Level Objects Correspond-
ing to Intrusion Alerts

Now we discuss how to find the OS-level objects
accessed by the attacks which trigger IDS alerts.
We call this process the mapping of IDS alerts to
OS-level objects.

We summarize the semantics carried by an alert
that can be used to identify the corresponding OS-
level objects. Firstly, an IDS alert comes with a
timestamp, which indicates when the attack hap-
pens. Secondly, given an alert, we have the knowl-
edge about how the attack works and how the sys-
tem should behave in response to it. For example,
given a Snort alert “FTP EXPLOIT wu-ftpd 2.6.0”,
we know that the corresponding attack exploits a
vulnerable wu-ftpd server and forks a root shell.
Finally, given local system’s configuration, we
can identify which OS-level objects correspond to
each predicate in attacks’ prerequisites and conse-
quences. For example, a predicate “Samba server”
may correspond to “/usr/sbin/smbd” process on a
given computer. Below we discuss how each type
of knowledge is used to map the alerts.

Though the number of logged events and objects
is large in system logs, the timestamp of each alert
can be used to easily narrow down the potentially
relevant system objects. In Backtracker’s log, each

4

OS-level object or event is associated with a time
period, which is the lifetime of the object or event.
(The original Backtracker toolkit does not provide
exact timestamp information. We slightly modified
Backtracker’s source code and added this function-
ality.) Given a fixed time periodT = [t1, t2], an
object o can be accessed duringT if o′s lifetime
[ts, te] overlaps withT . Given the timestamp of an
alert, we can estimate an approximate time window
during which all the relevant OS-level activities oc-
cur, and then narrow down the scope of OS-level
objects that need to be examined. Such a time win-
dow has to be relaxed to accommodate delays in
OS-level operations and the clock discrepancy be-
tween the IDS sensor and the OS.

Given the name of an alert, we have the cor-
responding attack’s prerequisite and consequence
from experts’ knowledge. According to [10], the
prerequisite of an attack is a logical combina-
tion of predicates, and the consequence of an at-
tack is a set of predicates. Each of those pred-
icates is associated with some OS-level objects
such as services, processes, and files. Thus, for
each predicate in attacks’ prerequisites and con-
sequences, we can identify the corresponding file
or process on the host computer, and represent
them as (predicate, OS-level object) pairs in
the knowledge base. For example, given a pair
(Samba service(host IP), “/usr/sbin/smbd”)
in the knowledge base, whenever there is predi-
cate ofSamba service(host IP), we can locate
its corresponding process of “/user/sbin/smbd”.
Thus, after identifying the predicates in an attack’s
prerequisite and consequence, we can identify the
OS-level objects corresponding to those predicates
on the host computer. Based on whether the corre-
sponding predicate belongs to attack’s prerequisite
or consequence, those objects can be divided into
prerequisite objects and consequence objects.

There are additional constraints for the mapped
objects. Firstly, some predicate implies con-
straints on the properties of its corresponding
OS-level objects. For example, the predicate
Root shell(host IP) implies the privilege of its
corresponding OS-level object is root, which is rep-
resented byuid = 0 for the corresponding object
in Backtracker’s log. We represent such a con-

straint along with the object mapping information
in the knowledge base in the form of (predicate,
OS-level object, constraint). In the above exam-
ple, we may have a triple (Root shell(host IP),
/usr/bin/sh, uid = 0) to indicate that the
predicate Root shell is mapped to a process
/usr/bin/sh, and the process’suid should be0.

Secondly, if we focus on successful attacks,
we expect to see the prerequisite and conse-
quence of a successful attack at the OS level.
In other words, for each predicatep in an at-
tack’s prerequisite and consequence, there must
be at least one objecto in the mapped object set
corresponding top, unless the logging tool does
not monitor objects corresponding to such predi-
cates. For example, assume the prerequisite and
the consequence of a Samba buffer overflow at-
tack areV ulnerable Samba service(dstIP) and
Root shell (dstIP), respectively. If this attack
is successful, there must be OS-level objects cor-
responding to these predicates in the object sets.
Thus, if such OS-level objects do not exist, the alert
must represent a false alert or a failed attack.

Finally, the system activities corresponding to
an attack should all be related in Backtracker de-
pendency graph. Moreover, the consequence of an
attack should be dependent on the prerequisite of
the attack at the OS-level. Thus, for each conse-
quence object corresponding to an attack, it should
be a prerequisite object, or dependent on some
prerequisite objects of the attack. Thus, we have
the dependency constraint: Given alertA and its
mapped prerequisite object setPA and consequence
object setCA, for each consequence objecto in
CA, if PA is not empty, there should exist paths
from objects inPA to o in Backtracker’s depen-
dency graph unlesso is also inPA. If such paths
do not exist, the corresponding consequence ob-
ject o should not be associated with the given alert.
For example, given an alert with prerequisite ob-
ject set{service process} and consequence object
set{shell process, file foo}, if service process
is not connected toshell process in the Back-
tracker dependency graph, the consequence object
shell process should not be included in the conse-
quence object set.

After mapping IDS alerts to OS-level objects

5

and with OS-level dependency tracking tools, the
number of false correlations can be potentially re-
duced by verifying the dependencies between the
corresponding objects. Below we discuss in detail
how to identify the OS-level dependencies among
alerts with OS-level dependency tracking, and how
to use such dependencies to achieve better accuracy
in alert correlation.

3.2 OS-Level Dependencies among IDS Alerts

After IDS alerts are mapped to groups of objects
within particular time periods in the Backtracker
dependency graph, some groups are connected with
each other through objects and events in the depen-
dency graph while others are not. It is not difficult
to see that an later object is dependent on an earlier
object if there exists a path in the dependency graph
from the earlier object to the later object. Such
paths among these object groups reveal the depen-
dencies between their corresponding alerts. How-
ever, such dependencies can be not only malicious
attack behaviors but also normal system activities,
which makes it different from the prepare-for re-
lations used in alert correlation. To find out the
security-relevant dependencies interested by alert
correlation, below we discuss in further detail about
these dependencies.

As we have mentioned, the OS-level objects cor-
responding to an alert can be divided into two sub-
sets: the prerequisite object setOP , which are de-
rived from the attack’s prerequisite, and the conse-
quence object setOC , which are derived from the
attack’s consequence. As discussed earlier, the con-
sequence objects inOC should be dependent on the
prerequisite objects inOP . Moreover, two alerts
being correlated with each other means the earlier
attack’s consequence “contributes” to the later at-
tack’s prerequisite. Thus, at the OS level, such a
prepare-for relation should be reflected by the paths
from the earlier attack’s consequence object set to
the later attack’s prerequisite object set (i.e., the
later attack’s prerequisite objects are dependent on
the earlier attack’s consequence objects). To distin-
guish such dependencies from other dependencies,
we say alertA is strongly connectedwith alertB if,
in the Backtracker dependency graph, there exists a

path from one ofA’s consequence objects to one of
B’s prerequisite objects. Thus, if alertA prepares
for alertB, A should be strongly connected withB.

3.3 Verifying the Dependencies among Corre-
lated IDS Alerts

As discussed in [8], there are several types of at-
tacks that can evade Backtracker. For example, at-
tacks exploiting modified guest kernels and attacks
utilizing hidden channels. Such attacks cannot be
accommodated by the techniques discussed in this
paper. However, other than a few exceptions, Back-
tracker is capable of tracking OS-level dependen-
cies among most other types of attacks. In other
words, in normal cases, if two alerts are not found
strongly connected with each other, there should
not be prepare-for relations between them.

Given an alert correlation graph, we can map the
alerts to OS-level objects and check whether the
correlated alerts are strongly connected in OS-level
dependency graph. If two correlated alerts are not
found strongly connected, the correlation between
the two alerts are considered a false correlation. For
example, assumeA → B are a pair of correlated
alerts. To verify this correlation, we first map the
two alerts into OS-level object sets. If the mappings
are successful, there will be corresponding prereq-
uisite and consequence object sets:PA andCA of
alertA, as well asPB andCB of alertB. By track-
ing back from the objects inPB with Backtracker,
we can verify whether the two alerts are strongly
connected. If there does not exist a path between
objects inCA and objects inPB , we consider the
correlation betweenA andB false.

Note that two alerts being strongly connected
in the dependency graph does not guarantee that
the earlier one prepares for the other. This is be-
cause OS-level dependencies can be operations of
benign programs. That being said, being strongly
connected on OS-level dependency graph indicates
that the involved attacks have higher possibility to
be causally related. Thus, we can use this informa-
tion to discover attacks missed by IDSs, which lead
to missing correlations among alerts.

6

3.4 Facilitating Hypotheses of Missed Attacks

Integrating IDS alert correlation and OS-level
event logging can also help in making hypotheses
about possibly missed attacks. Several approaches
[11, 18] have been proposed in making hypotheses
about possibly missed attacks. Given evidence of
attacks being missed, these methods search among
known attack types of attacks to fill in the gaps
between their correlation graphs and the evidence
based on attacks’ prerequisites and consequences.
However, such search processes can be computa-
tionally expensive considering the size of the attack
type knowledge base and the number of steps that
could have been missed.

Integrating IDS alert correlation with OS-level
dependency tracking can facilitate hypothesizing of
missed attacks. Since the evidence studied as sign
of missing attacks can be either IDS alerts or sys-
tem objects, such evidence can also be mapped to
groups of system objects. Assume evidenceE is
mapped to a set of OS-level objects. By tracking
backward from these objects in the OS-level log,
these objects can span a forest of system objects
connected via various events. For any missed at-
tack, unless it is one of the attacks that can evade
the OS-level dependency tracking tool, part of its
mapped objects must be in this spanned forest. Us-
ing the information of the correspondence between
predicates in attacks’ prerequisites/consequences
and OS-level objects, this forest of objects can be
converted to predicates. Then, the searching space
for possibly missed attacks can be reduced to the set
of attacks related to these predicates. Also, for each
hypothesis candidate, we can validate it by trying to
map it to OS-level objects. A hypothesis failing to
be mapped is considered as invalid.

For example, an attacker attacks a host in the fol-
lowing steps: (1) Attacker successfully launches a
buffer overflow attack toward a vulnerable Samba
server, which yields a root shell. (2) The attacker
deletes the web page files via the shell. Now as-
sume all those activities are missed by the IDS
while the file deletion is detected by some file sys-
tem integrity monitoring tool, which is taken as evi-
dence indicating previous attacks being missed. By
tracking back from the deleted file, the file is found

dependent on the following objects in the OS-level
event log: a smbd process and a shell process
forked by the smbd process. Thus, when search-
ing for possibly missed attacks, we can limit the
search within attacks related to Samba and shell.
Since only Samba is an initial system service, we
hypothesize there is a Samba-related attack missed.
By trying to map each candidate attack to OS-level
objects, we can eliminate the majority of invalid hy-
potheses. The uncertainty within the remaining re-
sults is affected by the knowledge we have about
the local system (e.g., the version of Samba) and
the attacks (e.g., the number of attack types in the
knowledge base).

4 Experimental Results

We have performed a series of experiments to
validate the effectiveness of our method. Because
our method requires that Backtracker monitor the
victim system involved in attacks, we were not able
to use the data sets available for IDS evaluation
(e.g., DARPA’s Grand Challenge Problem (GCP)
datasets), which only include either tcpdump of at-
tack traffic or simulated IDS alerts. To facilitate the
evaluation, we developed three attack scenarios in
our lab, in which an attacker launches a sequence
of attacks against a computer monitored by Back-
tracker and Snort.

Our target machine is a linux server with a mod-
ified 2.4.20 kernel to run Backtracker. The Back-
tracker was slightly modified to add timestamps of
system calls to its log. The server is configured to
run two vulnerable services: Samba 2.2.8 and ice-
cast 1.3.11. Snort 2.40 [13] was installed on the
server to monitor the network traffic as an IDS sen-
sor. To detect more attacks, we used the “Bleeding
Snort Rulesets” [2] with Snort. Because both Snort
and Backtracker are running on the same computer,
clock drifting is not considered in our experiments.
We also injected background traffic during the ex-
periments to mimic an operational network. The
background traffic was collected on the target ma-
chine when it was connected to our campus net-
work, and was manually verified to contain no at-
tacks toward the target machine. We also injected
some failed attempts of wu-ftpd buffer overflow at-

7

tacks into the background traffic.

We only discuss the experimental results on Sce-
nario 1 in detail in the main text. Description of
the other two scenarios and additional information
about these experiments can be found in the ap-
pendix.

4.1 Details of Scenario 1

Our first attack scenario exploits the vulnerable
Samba service on the target server. It includes the
following 4 steps:

1. We launched 2 remote buffer overflow attacks
exploiting the vulnerable Samba server. A re-
mote root shell session was created for each of
the attacks.

2. Through one of the root shell sessions, we
transmitted a pre-compiled server (daemon)
file for the DDoS tool TFN (Tribe Flood Net-
work) to the target host.

3. We then started the TFN server on the target
machine through the same root shell.

4. We used the TFN’s client program to commu-
nicate with the TFN server on the target server,
and directed the target to start SYN flood and
UDP flood attacks against another computer.

The above attacks took about 5 minutes. Dur-
ing this period, Backtracker logged 81,613 events.
Moreover, the Snort sensor raised 26 alerts about
these attacks:

• 9 “NETBIOS SMB trans2open buffer over-
flow attempt” alerts (No. 1–8 and No.10) for
the buffer overflow attacks toward the Samba
server,

• 15 “DDOS tfn2k icmp possible communica-
tion” alerts (No. 12–26) for the control mes-
sages sent to the TFN2K server daemon,

• 2 “ATTACK-RESPONSES id check returned
root” alerts (No.9 and No.11) for the server’s
responses to the “id” commands, and

• 2 “ATTACK-RESPONSES id check returned
userid” alerts for the server’s responses to the
“id” commands.

“DDOS tfn2k icmp possible
communication” alert No.12~26

“NETBIOS SMB
trans2open

buffer overflow
Attempt” alert No.

1~8

...

“ATTACK-
RESPONSES id
check returned
root” alert No.9

...

“ATTACK-
RESPONSES id
check returned
root” alert No. 11

“NETBIOS SMB
trans2open

buffer overflow
Attempt” alert

No. 10

FTP EXPLOIT wu-
ftpd 2.6.0 site exec

format string
overflow Linux

Figure 1. Original Correlation Graph

The background traffic triggered 32 alerts related
to the target server:

• 8 “SCAN nmap TCP” alerts,
• 23 “SNMP public access udp” alerts, and
• 1 “FTP EXPLOIT wu-ftpd 2.6.0 site exec for-

mat string overflow Linux” alert.

Among the above 3 types of alerts, the third one
is triggered by the failed attempt of wu-ftpd buffer
overflow attack injected into the background traffic.

Using the alert correlation method proposed in
[10], we generated the correlation graph shown in
Fig. 1. (The prerequisites and consequences of
these alerts are given in Appendix B.) Obviously,
it contains many false correlations due to the false
positives within the reported alerts.

Using the Backtracker’s log and the semantics of
these alerts, we mapped these alerts to a number of
OS-level objects, as listed in Table 1.

For each alert prepared by other alerts in Fig. 1,
we generated Backtracker dependency graphs by
tracking back from their prerequisite objects. In
other words, we want to find in the corresponding
Backtracker dependency graph paths from an ear-
lier alerts’ consequence objects to an later alert’s
prerequisite objects if the former prepares for the
later. An example of such paths found in our ex-
periments are shown in Fig.3. According to our
previous discussion, when there exists such a path,
the corresponding alerts are strongly connected and
thus the correlations between them are verified at

8

“DDOS tfn2k icmp possible
communication” alert No.12~26

“NETBIOS SMB trans2open
buffer overflow Attempt” alert

No. 8 “ATTACK-
RESPONSES

id check
returned root”
alert No.9

...

“ATTACK-
RESPONSES

id check
returned root”
alert No. 11

“NETBIOS SMB
trans2open

buffer overflow
Attempt” alert No. 10

(a) Without Hypothesized Attacks

“DDOS tfn2k icmp possible
communication” alert No.12~26

“NETBIOS SMB trans2open
buffer overflow Attempt”

alert No. 8“ATTACK-
RESPONSES id

check returned root”
alert No.9

...

“ATTACK-
RESPONSES id
check returned
root” alert No. 11

“NETBIOS SMB
trans2open

buffer overflow
Attempt” alert No. 10

Download tfn2k
server daemon
through ftp

Launch the tfn2k
server daemon

(b) With Hypothesized Attacks

Figure 2. New Correlation Graphs

Table 1. OS-level Objects Corresponding to the Alerts in Sce nario 1
Alert Prerequisite Objects Consequence Objects
“NETBIOS SMB trans2open buffer
overflow Attempt” No.8

{smbd2717} {sh 2720}

“NETBIOS SMB trans2open buffer
overflow Attempt” No.10

{smbd2717} {sh 2725}

“ATTACK-RESPONSE id check re-
turned root” No. 9

{sh 2722, /usr/bin/id324551} Null

“ATTACK-RESPONSE id check re-
turned root” No. 11

{sh 2727, /usr/bin/id324551} Null

“DDOS tfn2k icmp possible com-
munication” No.12 26

{td 2737} Null

smbd, sh_2720

sh, id_2722

(a)

smbd, sh_2725

sh, id_2727

(b)

sh, ftp_2732

/home/attacker/td_115486

sh, td_2736

td_2737

smbd, sh_2720

(c)

Figure 3. Paths Between Alerts’ Corre-
sponding Objects

the OS level. Otherwise, the correlation would be
considered false. In this way, we can verify each
of the correlations in the original correlation graph,
remove those that are verified to be false, and fi-
nally come up with a new correlation graph. The
new correlation graph for scenario 1 is shown in
Fig. 2(a). We can see it is the correct correlation
graph of the reported Snort alerts based on the ac-
tual attack scenario.

In the correlation graph, the “NETBIOS SMB
trans2open buffer overflow attempt” alerts prepare
for the “DDOS tfn2k icmp possible communica-
tion” alerts, because the consequence of the for-
mer (i.e., Rootshell (dstIP)) implies the prerequi-
site of the later (i.e., tfn2kserverdaemon ()). How-
ever, this implication is based on the assumption
that an attacker may install the TFN daemon if
he/she can create a root shell on a victim computer.

9

This indicates possible attacks have been missed
between these two alerts. By backtracking from
the prerequisite object set{td 2737} of the “DDOS
tfn2k icmp possible communication” alert, a tree of
OS-level objects are spanned. Because the conse-
quence object set{sh 2720} of “NETBIOS SMB
trans2open buffer overflow attempt” alert is among
them, we focus on the paths linking the two object
sets. Along the path connecting them as shown in
Fig. 3(c), we found the following OS-level objects
are involved: process object “ftp 2732”, file ob-
ject “/home/attacker/td 115486”, and process
object “td 2736”. Thus, instead of guessing all pos-
sible ways to install a TFN daemon, which are nu-
merous, we can limit the searching within the activ-
ities related to the ftp and tfn2k server program. It
is easy to hypothesize that the attacker downloaded
the tfn2k server program via ftp and launched it via
the shell. These hypotheses are shown in dotted cir-
cles and lines in Fig. 2(b).

4.2 Overall Evaluation

Assume an alert correlation method outputs that
an alertA prepares for another alertB. If both
alerts are detections of actual attacks, and the attack
corresponding to alertA is indeed used to prepare
for the later attack corresponding to alertB, we
consider this correlation as atrue correlation. Oth-
erwise, it is considered afalse correlation. More-
over, if one attack is used to prepare for another
attack, but there is no correlation corresponding to
these attacks (due to missing detection or incorrect
correlation), we say there is amissing correlation.
In our experiments, since we know the details of the
attack scenarios, we can easily identify true, false,
and missing correlations.

We use two metrics, false correlation rate and
missing correlation rate, to evaluate the overall per-
formance of alert correlation before and after inte-
grating Backtracker’s results. Given a set of cor-
related alerts, thefalse correlation rateis the ratio
between the number of false correlations over the
total number of correlations generated by alert cor-
relation. Themissing correlation rateis the ratio
between the number of missing correlations over
the total number of correlations betweenattacks.

Intuitively, false correlation rate shows how correct
the identified correlations are, while missing corre-
lation rate demonstrates how complete we can iden-
tify the correlations between attacks. Obviously,
the smaller these two metrics are, the better perfor-
mance alert correlation has.

Fig. 4(a) shows the false correlation rates in all
three attack scenarios. As we can see, our pro-
posed method reduces the false correlation rate sig-
nificantly in all three scenarios. Indeed, false cor-
relations are completely removed in all scenarios.
This is not surprising, because OS-level depen-
dency provides another way to properly verify the
correlation between alerts through trustworthy in-
formation kept in OS-level logs.

Fig. 4(b) shows the missing correlation rates in
the three attack scenarios. We can see significant
reduction in missing correlation rate in all three
scenarios. While the missing correlation rate is re-
duced to 0 in scenarios 2 and 3, the missing corre-
lation rate of the first scenario is still non-zero after
making hypotheses. This is because the DDoS at-
tack (via the tfn server) is neither detected by Snort,
nor hypothesized by our approach.

Our experiments also showed that OS-level ob-
ject dependency graphs can often be too compli-
cated to understand in reality. For example, dur-
ing the 30 minutes’ attacks in the third attack
scenario, Backtracker logged more than410, 000
events, and the resulting dependency graph con-
tains more than4, 000 nodes. Analyzing such a
complicated graph requires a lot of human experts’
time and detailed knowledge about attacks’ OS-
level behaviors. However, instead of analyzing the
Backtracker dependency graph directly, our method
uses it as complementary evidence for IDS alert
correlation. Because the methodverifiesalert cor-
relations instead ofdetects attacks, only moderate
information about attacks’ OS-level behaviors is re-
quired, and the verification of whether there exists
strong connections between correlated alerts can be
automatically done by computer programs instead
of human experts.

The experiment results also show how the pro-
posed method can help make hypotheses about pos-
sibly missed attacks. In the attack scenarios used in
our experiments, there is one type of attack that is

10

0.0 0.0 0.0

0.6667

0.88890.8989

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3
Scenario

F
al

se
 C

or
re

al
tio

n
R

at
e

Original Method Proposed Method

(a) False Correlation Rate

0.50.5

0.75

0 0

0.1667

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3
Scenario

M
is

si
ng

 C
or

re
la

tio
n

R
at

e

Original Method Proposed Method

(b) Missing Correlation Rate

Figure 4. Compare between the Original Correlation Method [10] and the Proposed Method

hard to detect by all types of IDS, which are the
attackers’ “legitimate” activities after the break-in.
Without the OS-level dependency information pro-
vided by Backtracker, it would be quite difficult to
guess about such activities that prepare for the later
attacks.

5 Related Work

Our technique is closely related to the alert cor-
relation techniques based on prerequisites (also
called pre-conditions) and consequences (also
called post-conditions) of attacks proposed in [4,
10, 16] as well as OS-level dependency tracking
techniques proposed in [8, 14]. These techniques
have been discussed in the Introduction and Section
2. The work closest to ours is [14]. In [14], King
et al. proposed to use the dependency analysis re-
sult from Backtracker to study attacks within and
across the hosts, as well as prospected the applica-
tion of Backtracker in alert correlation. Although
they demonstrated the potential benifit of combin-
ing backtracker analysis with IDS alert analysis
with some heuristic case studies, the main focus
of the paper is about backtracking among remote
hosts and they did not provide a specific method of
combining the two kinds of analyses. The proposed
analyses are done manually, which we have pointed
out to be potentially very expensive and inpracti-
cal. In our approach, after discussed the difference
and resemblance between the OS-level dependen-
cies and the dependencies among attacks, we pro-
posed a specific method to automatically combine
the analyses after the knowledge base is built.

Several techniques have also used local system
information to reason about the causal relationships
between IDS alerts. In [18], local system state in-
formation is used to reason about the correlation
of alerts. In [1], such information is used to ana-
lyze the vulnerability of the system and study the
potential attacks that could compromise the sys-
tem. These techniques are complementary to the
approach proposed in this paper.

Some approaches have been proposed in [11,18]
to make hypotheses about attacks possibly missed
by IDSs. [11] makes hypotheses based on the pre-
requisite and consequences of attack types when
similarities are found between alerts in separate
correlation graphs. [18] uses similar attack type
knowledge to make hypotheses upon inconsisten-
cies between observed facts and alert correlation
graph. Our techniques can facilitate the hypothe-
sis process by bringing additional information from
OS-level dependency tracking, thus reducing the
search space for the possibly missed attacks.

6 Conclusion and Future work

In this paper, we developed a series of techniques
to integrate the alert correlation method (based on
prerequisites and consequences of attacks) and OS-
level object dependency tracking. A critical step in
this integration is to map IDS alerts to OS-level ob-
jects, so that connections between alert correlation
and OS-level objects can be established. We also
identified a number of constraints that the OS-level
objects should satisfy if they are relevant to the
IDS alerts (or attacks) that are correlated. By us-

11

ing these constraints, we can verify the IDS alerts as
well as the correlation between IDS alerts, and filter
out false correlations. Moreover, the dependency
between OS-level objects can also facilitate the hy-
potheses of attacks possibly missed by the IDSs by
tracking OS-level objects. Our experimental evalu-
ation gave favorable results, showing that OS-level
dependency tracking can significantly reduce false
correlations when integrated with the alert correla-
tion method.

The proposed method has several limitations.
First, it depends on experts’ knowledge about at-
tacks’ OS-level behavior. Second, it is not as effec-
tive against kernel level attacks, which may corrupt
the logs kept by, for example, Backtracker. Finally,
to use OS-level information, we have to focus on at-
tacks that have impacts on OS-level objects. Thus,
it does not provide any performance guarantee for
the correlation of failed attack attempts.

Several issues are worth doing in our future re-
search. First, the current experiments were per-
formed semi-automatically. To provide a useful
tool, we will implement the proposed techniques as
a fully automated tool. Second, we will investigate
more techniques to integrate OS-level dependency
tracking with techniques to hypothesize about pos-
sibly missed attacks. Finally, we plan to perform
more experiments in large scale environments such
as the DETER test bed.

References

[1] P. Ammann, D. Wijesekera, and S. Kaushik. Scal-
able, graph-based network vulnerability analysis.
In Proceedings of the 9th ACM Conference on
Computer and Communications Security, pages
217–224, November 2002.

[2] BleedingSnort. Bleedingsnort. www.
bleedingsnort.com. Accessed on Feb.
15, 2004.

[3] F. Cuppens. Managing alerts in a multi-intrusion
detection environment. InProceedings of the 17th
Annual Computer Security Applications Confer-
ence, December 2001.

[4] F. Cuppens and A. Miege. Alert correlation in
a cooperative intrusion detection framework. In
Proceedings of the 2002 IEEE Symposium on Se-
curity and Privacy, May 2002.

[5] O. Dain and R. Cunningham. Building scenarios
from a heterogeneous alert stream. InProceedings

of the 2001 IEEE Workshop on Information Assur-
ance and Security, pages 231–235, June 2001.

[6] O. Dain and R. Cunningham. Fusing a heteroge-
neous alert stream into scenarios. InProceedings
of the 2001 ACM Workshop on Data Mining for
Security Applications, pages 1–13, Nov. 2001.

[7] H. Debar and A. Wespi. Aggregation and corre-
lation of intrusion-detection alerts. InRecent Ad-
vances in Intrusion Detection, LNCS 2212, pages
85 – 103, 2001.

[8] S. King and P. Chen. Backtracking intrusions. In
Proceedings of the 2003 Symposium on Operating
Systems Principles (SOSP), October 2003.

[9] B. Morin, L. Mé, H. Debar, and M. Ducassé.
M2D2: A formal data model for IDS alert cor-
relation. InProceedings of the 5th International
Symposium on Recent Advances in Intrusion De-
tection (RAID 2002), pages 115–137, 2002.

[10] P. Ning, Y. Cui, and D. S. Reeves. Construct-
ing attack scenarios through correlation of intru-
sion alerts. InProceedings of the 9th ACM Con-
ference on Computer and Communications Secu-
rity, pages 245–254, Washington, D.C., Novem-
ber 2002.

[11] P. Ning, D. Xu, C. Healey, and R. St. Amant.
Building attack scenarios through integration of
complementary alert correlation methods. InPro-
ceedings of the 11th Annual Network and Dis-
tributed System Security Symposium (NDSS ’04),
pages 97–111, February 2004.

[12] P. Porras, M. Fong, and A. Valdes. A mission-
impact-based approach to INFOSEC alarm cor-
relation. InProceedings of the 5th International
Symposium on Recent Advances in Intrusion De-
tection (RAID 2002), pages 95–114, 2002.

[13] M. Roesch. Snort - lightweight intrusion detection
for networks. InProceedings of the 1999 USENIX
LISA conference, 1999.

[14] D. L. S.T. King, Z.M. Mao and P. Chen. En-
riching intrusion alerts through multi-host causal-
ity. In Proceedings of the 2005 Network and
Distributed System Security Symposium (NDSS),
February 2005.

[15] S. Staniford, J. Hoagland, and J. McAlerney. Prac-
tical automated detection of stealthy portscans.
Journal of Computer Security, 10(1/2):105–136,
2002.

[16] S. Templeton and K. Levitt. A requires/provides
model for computer attacks. InProceedings of
New Security Paradigms Workshop, pages 31 – 38.
ACM Press, September 2000.

[17] A. Valdes and K. Skinner. Probabilistic alert cor-
relation. InProceedings of the 4th International
Symposium on Recent Advances in Intrusion De-
tection (RAID 2001), pages 54–68, 2001.

12

[18] Y. Zhai, P. Ning, P. Iyer, and D. Reeves. Rea-
soning about complementary intrusion evidence.
In Proceedings of the 20th Annual Computer Se-
curity Applications Conference (ACSAC ’04), De-
cember 2004.

A Additional Attack Scenarios in the Ex-
periments

A.1 Scenario 2

The attack scenario is as below:

1. Gain root shell from samba trans2open over-
flow exploit.

2. Download the pre-compiled iroffer to the tar-
get server.

3. Launch the iroffer program and turn the target
server into part of the attack’s own P2P file
sharing network.

4. Transferring files via this P2P network.

The Snort raised the following alerts toward the
attack:

• 8 “NETBIOS SMB trans2open buffer over-
flow attempt” alerts, and

• 1 “ATTACK-RESPONSES id check returned
root” alert, and

• 1 “ATTACK-RESPONSES id check returned
userid” alert, and

• 1 “BLEEDING-EDGE P2P iroffer IRC Bot
offered files advertisement” alert.

Using the same background traffic, and the orig-
inal correlation graph is as shown in Fig.5(a). Sim-
ilar to the analysis in Scenario 1, by mapping the
alerts to the Backtracker log and verifying the de-
pendencies between objectiroffer(pid = 3057)
and sh(pid = 2848), we have the new correla-
tion graph as shown in Fig.5(b). The graph with
hypotheses are shown in Fig.5(c), within which
the hypothesized attacks and correlations are rep-
resented in dotted line.

A.2 Scenario 3

The attack scenario is as below:

1. Gain root shell by exploiting the buffer over-
flow vulnerability in icecast 1.3.11. (With 1
failed attempt.)

2. Through the root shell, add a new user.
3. Change the user group to root.
4. SSH to the target server using the newly gen-

erated user account.
5. Download the gzipped source code of iroffer

to the server.
6. Extract the source code and compile it.
7. Launch the iroffer service.
8. Transfer files from the target via the iroffer ser-

vice.

The Snort raised the following alerts toward the
attack:

• 2 “SHELLCODE x86 NOOP” alerts, and
• 1 “ATTACK-RESPONSES id check returned

root” alert, and
• 1 “ATTACK-RESPONSES id check returned

userid” alert, and
• 3 “BLEEDING-EDGE P2P iroffer IRC Bot

offered files advertisement” alert.

The original correlation graph is as shown in
Fig.6(a). Similar to the analysis in Scenario 1, we
mapped the alerts to Backtracker’s log. By veri-
fying the dependencies between the shellcode alert
(icecast(pid = 2983) → sh(pid = 2996) and
iroffer alert iroffer(pid = 11671) → socket :
/5143, we have the new correlation graph as shown
in Fig.6(b). The graph with hypotheses are shown
in Fig.6(c), within which the hypothesized attacks
and correlations are represented in dotted line.

B Attack Knowledge Used in Our Experi-
ments

Table 2 gives the prerequisite and consequence
of the attacks in our experiments. Table 3 shows
the object mappings for the predicates involved in
the experiments. Table 4 presents the implication
between predicates related to our experiments.

13

“BLEEDING-EDGE P2P
iroffer IRC Bot offered
files advertisement” alert

No.11

“NETBIOS SMB
trans2open

buffer overflow
Attempt” alert

No. 1~8

“ATTACK-
RESPONSES

id check
returned root”
alert No.9

FTP EXPLOIT
wu-ftpd 2.6.0
site exec

format string
overflow Linux

(a) Original Correlation Graph

“BLEEDING-EDGE P2P
iroffer IRC Bot offered files
advertisement” alert No.11

“NETBIOS SMB
trans2open

buffer overflow
Attempt” alert No. 8“ATTACK-

RESPONSES id
check returned
root” alert No.9

(b) New Correlation Graph

“BLEEDING-EDGE P2P
iroffer IRC Bot offered files
advertisement” alert No.11

“NETBIOS SMB
trans2open

buffer overflow
Attempt” alert No. 8

“ATTACK-
RESPONSES id
check returned
root” alert No.9

Download
iroffer through

ftp

Launch the
iroffer
program

(c) New Correlation Graph With Hy-
potheses

Figure 5. Correlation Graphs in Scenario 2

“BLEEDING-EDGE P2P
iroffer IRC Bot offered
files advertisement” alert

No.4~No.6

“SHELLCODE x86
NOOP” alert No.1 &.2

“ATTACK-
RESPONSES

id check
returned root”
alert No3

FTP EXPLOIT wu-ftpd
2.6.0 site exec format
string overflow Linux

...

(a) Original Correlation Graph

“BLEEDING-EDGE P2P
iroffer IRC Bot offered

files advertisement” alert
No.4~No.6

“SHELLCODE x86
NOOP” alert No.2

“ATTACK-
RESPONSES id
check returned
root” alert No.3

...

(b) New Correlation Graph

“BLEEDING-EDGE P2P iroffer IRC
Bot offered files advertisement” alert

No.4~No.6

“SHELLCODE x86
NOOP” alert No.2“ATTACK-

RESPONSES id
check returned
root” alert No.3

useradd usermod
ssh Ftp download

iroffer sourceCompile
iroffer Launch

iroffer
...

(c) New Correlation Graph With Hy-
potheses

Figure 6. Correlation Graphs in Scenario 3

14

Table 2. Prerequisites and Consequences of Alerts (i.e., De tected Attacks) in Our Experiments.
(All alerts have two attributes: Source IP Address (srcIP) a nd Destination IP Address (dstIP).)

Attack Name Prerequisite Consequence
NETBIOS SMB trans2open
buffer overflow Attempt

VulnerableSambaservice
(dstIP)

{Root shell(dstIP)}

FTP EXPLOIT wu-ftpd 2.6.0
site exec format string over-
flow linux

Vulnerablewu-
ftpd service (dstIP)

{Root shell(dstIP)}

SHELLCODE x86 NOOP N/A {Shell(dstIP)}
ATTACK-RESPONSE id
check returned root

Root shell(srcIP) ∧
id command(srcIP)

N/A

P2P iroffer IRC Bot offered
files advertisement

iroffer service(srcIP) N/A

DDOS tfn2k icmp possible
communication

{tfn2k serverdaemon
(dstIP)}

tfn2k functions (dstIP)

SCAN nmap TCP N/A {Gain host info(dstIP)}
SNMP public access udp N/A {Gain host info(dstIP)}

Table 3. OS-Level Objects Corresponding to the Predicates A ppeared in Our Experiments
Predicate OS-level Object Constraint
VulnerableSambaservice
(hostIP)

“/usr/sbin/smbd” N/A

Root shell(hostIP) “/usr/bin/sh” uid=0
Root shell(hostIP) “/usr/bin/bash” uid=0
Shell(hostIP) “/usr/bin/sh” N/A
Shell(hostIP) “/usr/bin/bash” N/A
id command(hostIP) “/usr/bin/id” N/A
iroffer service(hostIP) “/home/attacker/iroffer” N/A
tfn2k serverdaemon “/home/attacker/td” N/A

Table 4. Implications between Predicates
Predicate Implied Predicates
Root shell(hostIP) {Shell(hostIP),

tfn2k serverdaemon(hostIP)}

15

