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Abstract—

We envision a new integrated suite of multimodal sensing and artificial intelligence techniques that
can incorporate advances in health psychology to produce effective solutions for long-term
healthful living. We discuss challenges and opportunities arising in realizing this vision.

1. Introduction

Healthful living involves not occasional con-
tact between a person and a health provider but
constant attention to health and persistent healthful
behaviors. It largely succeeds or fails with respect
to chronic conditions. We focus on obesity, a
serious public health concern whose prevalence
is rising. The Centers for Disease Control and
Prevention (CDC) reported that in March 2020
42% of US adults could be classified as obese
(https://stacks.cdc.gov/view/cdc/106273). The obe-
sity epidemic has serious negative effects, includ-
ing a rise in Type II diabetes and preventable
death; it inflicts an annual medical care cost of
$147 billion in the US. At an individual level,
obesity affects one’s engagement in physical and
social activities and can be difficult to get out of.
To address obesity, users must constantly be on
their guard against lapses into unhealthy behaviors.

Our envisioned solution, DyalLog, addresses
healthful living via three interwoven research ad-
vances. Low-power sensors with power vs. accu-
racy and other tradeoffs controlled by Al. User
modeling to model a user’s behavior and health for
providing dynamically personalized interventions.
Social context modeling to enhance and apply
existing psychological techniques for healthful
interventions.
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The problem is challenging but within reach
of current technology. First, health psychology
explains how people may be motivated to achieve
their goals through nudges toward a growth mind-
set [1], which encourages sustained motivation
and adaptive self-regulatory responses in the face
of obstacles. Second, multimodal sensor platforms
that support physico, chemo, and mechano capabil-
ities to jointly capture user data are now possible.
Small, ultra-low-power sensors can be employed
unobtrusively in long-running monitoring of a
user’s context, activity, and physiological state.
Third, AI enables intelligent agents that model a
user’s context, produce interventions adaptively,
and continually learn from how a user responds.

2. Scenario

Imagine a Dyal.og user, Alice, who wears the
Dyal.og device linked to an agent on her phone,
to which it continually sends data. With the device
being small, self-powered, and never having to be
taken off, Alice could almost forget that she is
wearing it. Through sensors of the device and the
phone (e.g., ambient sound, location, app usage),
Alice’s agent creates a user model of her and
detects her social context. Her model incorporates
her changing physiological state (e.g., heart rate)
and her baseline health (e.g., heart rate variation
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over a day). Alice’s agent would initialize (and
revise) its model based on a short questionnaire
detailing her feelings and goals (e.g., the amount
of exercise she will do daily and weekly). The
social context includes whom Alice is interacting
with, in what activity, and how she may align her
behavior to that of her companions.

Alice’s Dyal.og agent thus doesn’t begin tab-
ula rasa. It learns explicit biomarkers such as
her heart rate and implicit concepts composed
from attributes of her environment. It learns how
well Alice progresses toward her health goals in
changing circumstances. The agent intervenes via
gentle nudges, such as telling Alice of her recent
exercise success, showing her data about her health
rate, explaining how her goals remain within her
reach, and so on.

3. Sidebar: Psychology

Bandura [2] introduced self-efficacy as a
key element in behavior change: in simple
terms, to have a shot at success, people must
believe they can succeed.

An individual’s mindset is a belief sys-
tem regarding the malleability of personal at-
tributes [1]. People’s mindsets—their beliefs
about the stability of an attribute—guide how
they think, feel, and act. A belief that per-
sonal traits (e.g., intelligence, athletic ability,
weight) are fixed is called a fixed mindset,
and a belief that traits can be improved is
called a growth mindset. When they face
obstacles and setbacks, as inevitably happens
in working toward long-term goals such as
weight loss, people with growth mindsets
believe they can recover—and adaptively self-
regulate to work toward their goal [1].

Briefly, a person with a growth mindset
believes that body weight and health are
something they can improve with effort and
hard work, whereas a person with a fixed
mindset does not. Importantly, a mindset can
be taught and can help individuals overcome
inevitable challenges to their weight, health,
nutritional, and exercise goals through effec-
tive self-regulation.

Burnette and Finkel [3] evaluated the ef-
fect of mindset and knowledge messages

on weight gain. Most participants in the no-
treatment and knowledge intervention groups
gained weight, as in other studies of dieting.
However, participants who received growth
mindset messages adopted beliefs in their
weight being controllable, which buffered
against dieting setbacks—and they recovered
to continue to lose weight.

An adaptive intervention is dependent
upon some observable attribute of a human’s
behavior or environment. Nahum-Shani et al.
[4] provide a conceptual framework for just-
in-time interventions for health. Adaptive
interventions are expressed as IF-THEN deci-
sion rules in which the conditions are based
on directly observed, low-level attributes, e.g.,
heart rate being above or below a preset
threshold. These decision rules are prespeci-
fied. However, decision boundaries are gen-
erally not easy to capture at scale, and such
rules become unwieldy if made adaptive to
context.

4. Sidebar: Sensing for Obesity

Studies have shown that obesity is a com-
plex problem not simply the consequence of
overeating and low physical activity. Key fac-
tors include (i) baseline health, such as heart
rate variability and metabolic rates, (ii) (psy-
chosocial) stress, (ii) physical exercise, and
(iv) food intake. No single sensor can mea-
sure these accurately and precisely. What is
called for is multimodal (physico/mechano/chen
sensing that enables data from different modal-
ities to be correlated and converted to desired
metrics.

Baseline health refers to a user’s overall health;

it comprises baseline heart rate, heart rate
variability, sleep, and metabolic rate. Obese
individuals have higher respiratory rates and
lower tidal volume, as obesity causes com-
pression of the diaphragm, lungs, and chest
cavity, and have higher heart rates (HR) and
heart rate variability (HRV). Further, excess
fat reduces respiratory muscle strength.
Psychosocial stressors: Obese individuals ex-
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perience stigma, depression, low self-esteem,
and anxiety. Galvanic skin response (GSR)
measures autonomic nervous responses to
stress, other psycho-physiological stimuli, and
respiration rates. An increased stress (en-
docrine) response results from sympathetic
nervous activity, which can be monitored via
GSR and HRYV to assess the effect of personal
social status. Also, speech is an indicator of
social interaction.

Physical activity is measured directly via
HR, HRV, and accelerometer readings. Blood
lactate accumulates faster during incremen-
tal exercise in obese animals and correlates
with decreased exercise performance. Lactate
changes due to obesity appear measurable in
sweat [5].

Food intake can be tracked through jaw and
larynx sensors and images (to identify what is
being eaten). Sensing swallowing frequency
and duration is potentially unintrusive yet
precise.

These obesity metrics correlate in subtle
ways. Whereas cardiovascular disease (CVD)
in obese individuals is affected by baseline
HRYV, regular exercise can offset the negative
effect of obesity on HRV. Gutin et al. [6]
show that HRV increased over four months
when obese children were engaged in physi-
cal training and declined when they stopped
training. Moreover, HRV is reduced in obese
subjects, indicating depression in parasym-
pathetic activity. Frequency domain analysis
of HRV shows a depression in sympathetic
activity—i.e., obesity presents an autonomic
function disturbance in both parasympathetic
and sympathetic activity. Psychosocial stress
moderates these factors. Night eating can
impair sleep and result in weight gain. Re-
search suggests that eating patterns, body
temperature, and indirect measures of sleep
[7] can inform behavior interventions.

5. Envisioned Solution

As Figure 1 shows, we imagine a wearable
device coupled with an Al agent. The device is
low-powered; most computation, communication,
storage, and user interaction reside on the phone
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where the Al agent lives. The agent continually
monitors a user’s health status, activities, and
context to produce interventions optimizing for
form and frequency.

Figure 2 shows Dyal.og’s conceptual model
of interventions, mediating variables, intentions,
behaviors, and outcomes. The context moderates
most influences but is elided for readability. A
growth mindset reduces the stress response to
health information.

As Figure 3 shows, a few sensors are enough
to compute our obesity metrics. We adopt the
form factor of a chest patch as it provides access
to all the above signals and is easy to use, thus
promoting compliance.

For the device, a printed circuit board is housed
in a 3D-printed plastic shell (Figure 4). The plat-
form can be built on a self-adhesive, flexible,
and highly stretchable polymer to maintain good
contact with the skin in daily motions. A device
of ~3cm X 4cm X lcm is within reach of current
technology.

6. Challenges and Opportunities
We now describe challenges and opportunities
in realizing our vision.

6.1. Multimodal Sensors for Obesity

We describe sensing capabilities along with the
needed Al control of them to be effective despite
low power.

Advances in Sensors
Heat flux can be used to determine the metabolic
rate, especially when correlated with motion data
provided by accelerometry. Changes in body tem-
perature correlate with metabolic rate changes and
the pathophysiology of obesity Landsberg et al.
[8]. A thermoelectric generator (TEG) module can
accurately measure heat flux coming off the human
body as a Seebeck voltage across the device.
GSR’s simple circuitry and lack of parasym-
pathetic interference make it a valuable sensor
for stress. Monitoring GSR with HR and HRV
measures sympathetic nervous activity and may
provide an early indication of cardiovascular dis-
ease associated with obesity. The essential factor
in signal quality is a low-impedance electrode. To
achieve long-term monitoring, we need a highly
conformal and flexible GSR electrode that avoids
signal degradation and increases shelf-life.
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Figure 2. Dyalog’s conceptual model. The + and — symbols indicate positive and negative influences,
respectively. The Dyalog agent observes the variables to determine which intervention to apply and when.

We need to go beyond current photoplethys-
mography (PPG) sensors [9] to accommodate obese
individuals since tissue components such as melanin
and fat affect the absorption of light and require
adjustment of PPG wavelength.

Sweat lactate sensing is attractive because it
is noninvasive yet correlates well with blood lac-
tate. Physical exercise activates lactate-producing
eccrine sweat glands on the chest, indicating im-
provements in the exercise efficiency of obese
individuals.

Al Control of Sensors

A wearable chest platform that supports commu-
nications, e.g., through Bluetooth Low Energy,
must rely on low-power technologies. The power
consumption for some sensors (e.g., PPG) is heavy
and depends on the user’s personal traits. For
example, PPG uses an LED to shine light through
the skin and needs additional power for obese or
dark-skinned users.

Thus, we need ways to adaptively determine
sampling rates to satisfy sensing needs with the
lowest power load. An approach might be to adapt
power-sensitive active learning where the uncer-
tainty of an inference is traced back to different
sensors and the least power combination of sensors
chosen to gain sufficient certainty.

Challenge 1. Sensor power management

How can we develop and integrate sensors
with Al such that the sensors have tunable
power profiles and Al techniques optimally
control the power profile of a set of sensors
depending on the need for information to
make a judicious health intervention?

6.2. Context-Adaptive Interventions
Self-regulation means that a user monitor, as-
sess, and regulate their cognitive, affective, metacog-
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Figure 4. Existing sensor platforms: (a) chest patch and wrist-band containing ECG, PPG, sensors for pulse
oximetry, motion, coughing, and wheezing, and undersides of the optical sensors, (b) armband ECG for cardiac
monitoring, (c) wristbands for PPG and ozone detection, (d) potentiostat wristwatch with connectors that (e)
connect to PDMS sweat collection and sensing, (f) ASSIST health watch, (g) chest ECG with electrodes, (h)
self-powered ECG shirt powered by body heat, (i) flexible TEGs modules used for heat flux measurements, and

(j) the envisioned Dyalog platform.

nitive, and motivational processes to accomplish
health objectives. The user’s strategy may be sim-
ple (e.g., tracking one’s diet and exercise) or cogni-
tively demanding (e.g., seeking an exercise partner
or creating a meal plan). Mapping and capturing
strategies in real-world settings is difficult due to
an explosion of choices, especially across contexts.

Our agents must put the user in charge while
helping the user. For example, a user may focus
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on exercise or diet, and for exercise, choose a time
and location. The agent can help the user make
the choices that are best for the user and help the
user comply with those choices. The agent could
help identify if a user has set up unrealistic health
goals, especially if it is a repeating concern. The
agents could share their users’ experiences in a
privacy-preserving manner.



Intelligent Nudges

People make many decisions every day, including
200 food-related decisions per day on average
[10]. Accordingly, we can model a user’s daily ac-
tivities (of interest) as sequential decision-making
under uncertainty. Reinforcement learning (RL) is
a popular machine learning paradigm for decision
making under uncertainty. An RL agent seeks to
induce a policy for choosing an action in any
situation that would maximize the cumulative
reward.

RL is challenged by delayed rewards since
delay complicates attributing an outcome to a
specific choice. Health improvements arise over
durations of weeks. Thus, tactics such as crash
dieting, which give immediate rewards, can be
counterproductive. This problem demands meth-
ods for long-term temporal credit assignment [11]
under noisy data.

Figure 5 shows how the framework relates a
user, their agent, and the world. The user’s reward
function and view of the state are not known to the
agent; the actions of relevance are decisions about
diet and exercise and are observable. The agent
views the state based on readings of the user’s
physiological state, context, and activity, and the
reward as improvements in baseline health. Its
decision is whether and how to nudge.

We adopt mixed-initiative decision making to
balance giving a user a true feeling of control
over their own health and helping them progress
toward their goal. The user is the main decision
maker, and the agent has a supporting function.
When the user makes a suboptimal choice on a
critical decision, the agent determines when and
how to intervene based on the user model; there
is no intervention except for critical decisions.

Different users follow different progression
trajectories in healthful living. Since users gener-
ally make decisions based on tradeoffs between
complex factors, e.g., time, social pressure, and
current environment, it is nontrivial to infer a
user’s intentions—their reported health goals (e.g.,
target weight and amount of weekly exercise) may
not reflect their actual decision making. Model-
ing users based on heterogeneous trajectories is
challenging because of complex context, hidden
preferences, and temporal dynamics. But doing
so is essential in producing effective nudges that
promote good health and a growth mindset.

Challenge 2. Adaptive nudges

How can an agent determine a user’s
current strategy and produce effective tac-
tical nudges to follow through on a given
strategy and strategic nudges to consider
alternative strategies?

A possible approach is to adopt Inverse Re-
inforcement Learning (IRL) to produce nudges.
Whereas RL assumes a reward function for policy
induction, IRL infers a reward function from a set
of trajectories to feed into RL. The agent would
infer users’ strategies based on sensed behaviors
and use them in its subsequent reasoning.

Applying the Social Context

Social context influences healthful strategies, such
as “have a light lunch since you have a big dinner
later” or “take a hike with a friend.” Therefore, a
challenge is to recognize the social contexts (e.g.,
friends, family, colleagues, and so on) that influ-
ence health-related activities. Not only is compan-
ionship crucial for one’s mental health, but social
talking and eating are also relevant to obesity.

Whereas an agent may be able to proceed
standalone to infer its user’s context, there are
natural limitations to how much it can accomplish
based only on its local data. For example, it may
be able to infer if the agent is carrying out a
conversation at home or is in a crowded place
but not tell who the user has gone on a run
with. Imagine users link their DyalLog agents with
a buddy, i.e., a family member or friend. The
respective agents can detect each other’s proxim-
ity via sensors such as Bluetooth Low Energy.
The agents share minimal information about their
user’s activity with a nearby buddy. Thus, they can
detect if their user is talking, eating, or walking in
the company of a buddy. These can be combined
with time to identify or recommend a regular walk
schedule with a buddy.

IRL was designed to tackle a single strategy,
but our users follow diverse strategies. Therefore,
a challenge is to federate the agents to learn from
each other to help their respective users, incorpo-
rating methods such as expectation maximization
[12].
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Figure 5. Our reinforcement learning—based framework for nudges.

Challenge 3. Incorporating social context

How can agents cooperate to incorporate
social context in their decision making
regarding their respective users in a way
that respects the privacy of each of the
users?

6.3. User Interaction and Evaluation

Although we have framed the above motivation
in terms of mindsets for healthful living, it is better
understood as a stand-in for any psychological
approach. Recognizing that health psychology is a
changing field and that current research is mainly
conducted in offline settings, it is plausible that
previous findings might not hold up in the present
use case of real-time sensing and intervention.

Unlike in an offline study, the DyalLog agent
may query a user about the user’s mindset at
random intervals to identify a better sample of
their mindset as they lead their life. Specifically,
the agent can apply a standard scale including
mindset beliefs (e.g., “No matter who you are,
you can change your health”) and a scale for self-
reported setbacks and their severity [13].

Accordingly, we envision DyalLog as an experi-
mental platform to consider alternative approaches
from health psychology. Specifically, the agent
may provide its user information about their health
condition, including biometrics such as heart rate
and activity (number of steps walked) along with
encouragement to report their health goals and
strategies.

Below is an example evaluation we may con-
duct through Dyal.og agents. In the knowledge
condition, the agent merely provides the informa-
tion. In the growth mindset condition, it provides
the information along with advice on the malleable
nature of one’s health and how to lose weight.
The following hypotheses are pertinent to the
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evaluation of whether real-time interactions via
Dyal.og conform to traditional interventions.

Stress. With growth mindset interventions, users
(1) exhibit lower stress responses to knowl-
edge about their own health performance and
(2) report greater engagement in health behav-
iors than those in the knowledge condition.

Engagement. Individuals in the growth mindset
condition will (1) achieve better health out-
comes (including weight loss) than those
in the knowledge condition, who will (2)
achieve better health outcomes (including
weight loss) than those in the no-treatment
control condition.

Unintrusive metrics based on observable behavior,
even if less accurate, are preferable to intrusive
ones. Possible ideas include using social engage-
ment and physical exercise as surrogates for (lack
of) stress, and user input of weight. Indeed, it’s
even possible to combine this information with the
relevant social contexts to determine the effects of
social interaction on, e.g., stress and engagement.

Challenge 4. Continual evaluation

How can we continually improve the
health psychology underpinnings of Dya-
Log, identify new interventions by agents,
and personalize these interventions to
users?

7. Discussion

Adopting healthful habits is a long-term pro-
cess. People are liable to lapse from time to time
by choosing the wrong diet or skipping exercise.
What differentiates success from failure often is
being open to learning about one’s performance,
recognizing one’s lapses, trying again after a lapse,
and self-regulation to adopt good habits. This
simple idea motivates our approach to healthful



connected living.

An overarching challenge is of achieving trust-
worthy Al [14]. DyalLog supports an unobtrusive
device along with an intelligent agent that helps a
user maintain their health state, learns the user’s
individual behaviors and social interactions, and
provides interventions inspired by health psychol-
ogy. Dyal.og is inherently decentralized and archi-
tecturally supports privacy: all user context stays
with their agent, which serves the user’s interest
and avoids relying on a service provider with
control over the user’s data.

To realize DyalLog in practice presuppose cor-
related advances in Al and sensors. These ad-
vances are plausible but potential challenges in-
clude producing low-power and unintrusive sen-
sors that provide accurate measurements of social
context and behaviors such as swallowing, user
modeling in context with small amounts of data,
and continual evaluation. Factors such as usability
and the price of the sensors and the software,
which are not in our scope, are also clearly rele-
vant.
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