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Abstract

Sentiments in opinionated text are often deter-
mined by both aspects and target words (or tar-
gets). We observe that targets and aspects inter-
relate in subtle ways, often yielding conflicting
sentiments. Thus, a naive aggregation of sen-
timents from aspects and targets treated sepa-
rately, as in existing sentiment analysis mod-
els, impairs performance.

We propose Octa,1 an approach that jointly
considers aspects and targets when inferring
sentiments. To capture and quantify relation-
ships between targets and context words, Octa
uses a selective self-attention mechanism that
handles implicit or missing targets. Specif-
ically, Octa involves two layers of attention
mechanisms for, respectively, selective atten-
tion between targets and context words and
attention over words based on aspects. On
benchmark datasets, Octa outperforms leading
models by a large margin, yielding (absolute)
gains in accuracy of 1.6% to 4.3%.

1 Introduction

People share their opinions about almost anything:
tourist attractions, restaurants, car dealerships, and
products. Such opinionated texts do not merely
help people make decisions in their daily life, but
also help businesses measure consumer satisfaction
to improve their offerings.

Sentiment analysis involves many aspects of Nat-
ural Language Processing, e.g., negation handling
(Zhu et al., 2014), entity recognition (Mitchell et al.,
2013), topic modeling (Zhang and Singh, 2018,
2019). Importantly, opinionated texts often convey
conflicting sentiments. Distinct sentiments may
refer to distinct aspects of the domain in question—
e.g., food quality of a restaurant or battery life of

∗Equal contribution.
1The data and source code of Octa can be found at https:

//github.com/chungweihang/octa

a smartphone. These predefined domain aspects
may or may not appear in the texts. Aspect-Based
Sentiment Analysis (ABSA) approaches (Wang
et al., 2016; Xue and Li, 2018; Liang et al., 2019)
predict sentiments from text about a given aspect.
And, Target-Based Sentiment Analysis (TBSA)
approaches (Chen et al., 2017; Fan et al., 2018; Li
et al., 2018; Du et al., 2019; Zhang et al., 2019)
predict sentiments of targets that appear in an opin-
ionated text. Targets are usually entities in a review:
e.g., a dish for a restaurant and a salesperson for a
car dealership.

We posit that aspects and targets provide subtle,
sometimes contradictory, information about sen-
timent and should therefore be modeled, not in
isolation, but jointly. Considering them separately,
as ABSA and TBSA approaches do, impairs perfor-
mance. Take this review sentence from SemEval-
15 as an example:

Conflicting Sentiments on Aspect
We both had the filet, very good, didn’t much like
the frites that came with.

If we ask about aspect Food#Quality, by disre-
garding targets during training, ABSA models fail
to address the contradiction in sentiment about filet
and frites, as do TBSA models, which focus on
targets and disregard aspects. In the following re-
view sentence from SemEval-16, the target fish is
associated with opposite sentiments: positive for
Food#Quality and negative for Food#Style options.

Conflicting Sentiments on Target
The fish was fresh , though it was cut very thin.

Opinionated text is often not structured. Users
may not always mention targets explicitly. In some
cases, the entities in a sentence are not the targets
associated with the sentiment. In other cases, users
mention multiple targets with sentiments in a sen-
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tence, but we need the overall sentiment. Consider
the following two sentences from SemEval-16:

Implicit or Missing Target
(1) You are bound to have a very charming time.
(2) Endless fun, awesome music, great staff!!!

Here, (1) contains entity You and positive senti-
ment toward aspect Restaurant#General but omits
mention of the target restaurant. And, (2) contains
positive sentiment toward aspects Ambience and
Service. It expresses a positive sentiment toward
aspect Restaurant#General albeit with no target.
How can we extract sentiments given an aspect
with or without a target?

Contributions We propose Octa, an approach
that jointly considers aspects and targets. Octa uses
a selective attention mechanism to capture subtle
Target-Context and Target-Target relationships that
reduce noisy information from irrelevant relations.
Octa uses (1) aspect embeddings with attention to
incorporate aspect dependencies and (2) a surro-
gate target with BERT sequence embeddings to
handle implicit or missing targets. Octa can clas-
sify different types of conflicting sentiments with
aspects only, targets only, both, or none.

Octa yields strong results on six benchmark
datasets including SentiHood and four SemEval
datasets, i.e., 2014 (target and aspect), 2015, and
2016. Octa outperforms 16 state-of-the-art base-
lines by absolute gains in accuracy from 1.6% to
4.3%.

Sample Results of Octa We explain the benefit
of Octa via a few examples from the SemEval-16
test set in Table 1. In case (a), the same target is
paired with different aspects. Octa detects posi-
tive sentiment toward aspect Food#Quality based
on target fish and context fresh. By attending to
different context cut very thin but the same tar-
get, Octa detects negative sentiment toward aspect
Food#Style options. In case (b) where different as-
pects paired with the same or different targets,
Octa correctly detects neutral sentiment toward
target food for aspect Food#Quality. For target
restaurant, Octa successfully detects conflicting
sentiments toward different aspects by locating dif-
ferent context words. In case (c), the same aspects
are paired with different targets. Octa correctly
detects the conflicting sentiments toward the same
aspect Ambience#General. Case (d) has aspect
with implicit target and case (e) has different as-

pects with or without target. Octa successfully
detects the sentiment toward implicit or missing
target.

2 Problem Definition

The input of our sentiment analysis task is a se-
quence of words, with an aspect, or a target, or
both. Our goal is to identify the sentiment polarity
associated with the aspect and the target. Formally,
Octa has three inputs,

• Sequence of words: W = {w1, . . . , wN},

• Target Ti = {t1, . . . , tM} where ti ∈W , and

• Aspect ai ∈ A = {a1, . . . , a|A|} where A is
a set of aspects.

The remaining words that are not part of the
target are context words C = {c1, . . . , cN−M}.

3 Octa Model Overview

Figure 1 shows the Octa architecture. To infer the
sentiment for an aspect and a target composed of
words from the sequence, first, Octa uses BERT
to generate word embeddings. Second, Octa uses
a selective attention mechanism to compute con-
text word and target attention weights and applies
them to word embeddings to generate targeted con-
textual embeddings. Third, Octa constructs aspect
embeddings and uses the embeddings to compute
aspect attention over target and context words.

Octa uses a multihead architecture to learn atten-
tion in diverse embedding subspaces. It fuses and
normalizes embeddings from each head and uses a
linear classification layer with a softmax activation
for sentiment classification. To introduce nonlin-
earity, Octa uses feed-forward networks (shown in
grey), each comprising two fully connected layers
followed by a nonlinear activation.

3.1 BERT Embeddings
Octa uses Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019) to
generate word embeddings. BERT is a contextu-
alized language representation model, pretrained
on large corpora and fine-tuned on downstream
tasks, including token-level classification (named
entity recognition and reading comprehension) and
sequence-level classification (semantic similarity
and sentiment analysis). Despite its success on var-
ious benchmarks, BERT ignores the relationships
among target words, context words, and aspects,
which are crucial for sentiment analysis.



Sentence Aspect Target Sent.

(a) The fish was fresh , though it was cut very thin. Food#Quality fish POS
Food#Style options fish NEG

(b) Food wise, it’s ok but a bit pricey for what you get considering the
restaurant isn’t a fancy place.

Food#Quality Food NEU
Restaurant#Prices restaurant NEG
Ambience#General restaurant NEU

(c)
The music playing was very hip, 20-30 something pop music, but the
subwoofer to the sound system was located under my seat, which
became annoying midway through dinner.

Ambience#General music POS
Ambience#General subwoofer to the NEG

sound system

(d) As part of a small party of four, our food was dropped off without comment Service#General — NEG

(e) Endless fun, awesome music, great staff
Ambience#General music POS
Service#General staff POS
Restaurant#General — POS

Table 1: Sample results of Octa.
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Figure 1: Architecture of Octa.

3.2 Selective Self-Attention Mechanism

Words connect with one another to form semantic
relations and create meanings in different contexts.
Self-attention (Vaswani et al., 2017) seeks to quan-
tify this process. To capture relationships between
words, it learns to represent each word using itself
and the other words in the same sentence. The flex-
ible structure of self-attention provides benefits in
capturing different relations without range restric-
tion. An ideal self-attention layer should attend to
relations differently to create contexts for different
goals. In practice, such flexibility may introduce
noisy relations that lead to less-focused attention
and confuse the decision layer.

In opinionated texts, context words carry senti-
ment. A context word can be associated with one or
more targets. Thus, capturing Target-Context rela-
tionships is pivotal. We posit that capturing Target-
Target relationships is important when targets con-
tain multiple words. Context words can carry dif-
ferent sentiment when the same target word paired
with other target words. For example, in the sen-
tences The wine list is long and The waiting list is
long, context word, long, is positive for target wine
list but negative for target waiting list.

Octa uses a selective self-attention encoder to
capture the subtle Target-Context and Target-Target
relationships. Figure 2 shows the encoding process.

Formally, given a sentence containing one tar-
get t that consists of M target words and con-
text c that consists of N context words, let Bt =
[bt1 , . . . , btM ] ∈ RM×dB , Bc = [bc1 , . . . , bcN ] ∈
RN×dB denote the BERT embedding matrices of
targets and context words, respectively, where dB
is the dimension of BERT embeddings. We use
BERT’s [CLS] token as either a target (when no
target is provided) or a context word.

Feed-Forward Networks. Octa adopts a key-
query-value attention structure (Vaswani et al.,
2017) where keys, queries, and values are projected
vectors. The structure first combines each query
with all of keys through a compatibility function
to generate attention weights. Then, it uses the
weights to combine corresponding values to gen-
erate the output. Octa uses five feed-forward net-
works to construct keys, queries, and values for tar-
get and context words. Each feed-forward network
comprises two fully connected linear layers con-
nected by a GELU (Hendrycks and Gimpel, 2016)
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activation for element-wise nonlinear projection.

Ftk =Wtk1 · (GELU(Wtk2 ·Bt)), (1)

Ftq =Wtq1 · (GELU(Wtq2 ·Bt)), (2)

Fck =Wck1 · (GELU(Wck2 ·Bc)), (3)

Fcq =Wcq1 · (GELU(Wcq2 ·Bc)), (4)

Fv =Wv1 · (GELU(Wv2 · [Bt ⊕Bc])), (5)

where Ftk , Ftq ∈ RM×dF are keys and queries of
targets, Fck , Fcq ∈ RN×dF are keys and queries
of context words, Fv ∈ R(M+N)×dF are values
for both kinds of words, ⊕ means matrix vertical
concatenation, W(·) are parameters to learn, and
we omit the bias for simplicity.
Target Word Attention. Octa constructs an affin-
ity matrix At = {αt1 , . . . , αtM } ∈ RM×(M+N)

by computing dot products of each target with each
word in the sentence.

At = softmax(Ftq · [Ftk ⊕ Fck ]
T ). (6)

At is normalized row-wise to generate a list of at-
tention weights for each target. These attention
weights quantify relations between words and de-
scribe the amount of focus the encoder should place
on other words when encoding a target. For sen-
tences with no target, Octa uses BERT’s [CLS]
token as a surrogate target to leverage the aggre-
gated sentence information.
Context Word Attention. Octa creates a mask
matrix Kc = {kc1 , . . . , kcN } ∈ RN×(M+N).

Here, kci equals 1.0 if the corresponding posi-
tion is context word ci or a target and zero oth-
erwise. Octa constructs the affinity matrix Ac =
{αc1 , . . . , αcN } ∈ RN×(M+N) by computing the
dot products of each context word with itself and
each target in the sentence masked by Kc, where ◦
denotes Hadamard product.

Ac = softmax(Fcq · [Ftk ⊕ Fck ]
T ◦Kc). (7)

Ac is normalized row-wise to generate a list of at-
tention weights for each context word. These atten-
tion weights quantify dependencies between each
context word and each target. Our mask removes
noisy dependencies between the context words.
Targeted Contextual Embeddings. Given tar-
get attention At and context word attention Ac,
Octa computes targeted contextual embeddings
P ∈ R(M+N)×dF as follows.

P = [At ⊕Ac] · Fv. (8)

3.3 Aspect Attention
How the aspects and words in a sentence relate is
vital in inferring sentiments. As the second review
sentence in Section 1 shows, one target can asso-
ciate with different sentiments for different aspects.

To incorporate aspect information, given L as-
pects, A = {a1, . . . , aL}, Octa learns a list of as-
pect embeddings FA = {fa1 , . . . , faL} ∈ RL×dE

as follows,

FA =WA1 · (GELU(WA2 · E)), (9)



where E = {ea1 , . . . , eaL}, eai ∈ RdE are a list of
randomly initialized aspect keys,WA1 andWA2 are
weights to learn, and bias is omitted for simplicity.
To capture the relationships, Octa builds the affinity
matrix Aa ∈ RM+N between aspect embeddings
fai and targeted contextual embeddings P of the
sentence.

An illustrative example of aspect attention is
shown in Figure 3.

Aai = softmax(fai · P T ). (10)

The aspect and targeted contextual embeddings
Qai for aspect ai, Qai ∈ RdE+dF , are computed as

Qai = [Aai · P ]� fai , (11)

where � denotes horizontal matrix concatenation.

3.4 Multihead Fusion

To attend in parallel to relation information from
different dimensional subspaces, Octa uses a mul-
tihead architecture with V heads. The final as-
pect and targeted contextual embeddings Hai ∈
RV ∗(dE+dF )for aspect ai is the fusion of all heads.

Hai = [Qh1
ai�, . . . ,� Q

hV
ai ]. (12)

3.5 Sentiment Classification

For sentiment classification, Octa first applies layer
normalization (Ba et al., 2016) on the multihead
fusion. Then, it uses a fully connected linear layer
followed by a softmax activation to to project Hai

to y ∈ RS , the posterior probability over S senti-
ment polarities, is y (omitting the bias):

y = softmax(Wy ·Hai), (13)

whereWy is parameter to learn. We train Octa with
cross-entropy loss.

4 Empirical Evaluation

4.1 Data

We train and evaluate Octa on six benchmark
datasets, described in Table 2, from three domains.

4.2 Parameter Settings

We set the dimension of aspect embeddings dE to
1,024. For all feed-forward networks, we use 1,024
as the dimension of both inner and outer states dF .
We train Octa with 16 attention heads and freeze
aspect embeddings during training.

We follow the literature in that we do not fur-
ther split SemEval training sets into training and
validation sets due to their size. Instead, we use
SentiHood-dev for parameter tuning. For regular-
ization, we add dropouts with a rate of 0.1 between
the two fully connected layers in each nonlinear
feed-forward network. For optimization, we use
Adam (Kingma and Ba, 2015) and set β1 = 0.9,
β2 = 0.99, weight decay = 0.01, and the learning
rate = 1e-5, with a warmup over 0.1% of training.

For all experiments, we train Octa for 10 epochs
on mini-batches of 32 randomly sampled sequences
of 128 tokens. We repeat the training and testing
cycle five times using different random seeds. Our
evaluation metrics include accuracy and macro F1

score. We perform the two-sampled t-test on the
improvement of Octa over BERT. As reported in
(Devlin et al., 2019), we observe unstable perfor-
mance for both Octa and BERT. We perform sev-
eral restarts and select best performed models. For
model size, Octa introduces 2.5% more parameters
(343M) compared with BERT sequence classifica-
tion (335M, whole word masking). Training on
SemEval-16 with single NVIDIA Tesla V100 takes
69 seconds/epoch for Octa and 65 seconds/epoch
for BERT.

4.3 Baselines
We compare the performance of Octa against the
following published models.

Feature based Baselines: NRC-Canada, DCU,
Sentiue, and XRCE require feature engineering
based on linguistic tools and external resources.
Of these, NRC-Canada and DCU achieve the best
performance on SemEval 2014 sentiment classifi-
cation for aspect category and aspect term, respec-
tively. Sentiue and XRCE are the best performing
for SemEval 2015 and 2016, respectively.

TBSA Baselines: RAM (Chen et al., 2017)
builds position-weighted memory using two
stacked BiLSTMs and the relative distance of each
word to the left or right boundary of each target.
It uses a GRU with multiple attention computed
using the memory. TNet-AS (Li et al., 2018) dy-
namically associates targets with sentence words to
generate target specific word representation and
uses adaptive scaling to preserve context infor-
mation. MGAN (Fan et al., 2018) is an atten-
tion network based on BiLSTM that computes
coarse-grained attention using averaged target em-
beddings and context words and leverages word
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Table 2: Datasets. SemEval
has restaurant review sentences.
SentiHood has sentences about
urban neighborhoods. SemEval-
14-T has sentiments for targets
without aspects and SemEval-
14-A for aspects without targets.
SemEval-15, SemEval-16, and
SentiHood have targets and
aspects.

Dataset Positive Neutral Negative
Aspects Labels Train Test Train Test Train Test

SemEval-14A 5 3 2,179 657 695 146 839 222
SemEval-14T 5 3 2,164 728 724 210 805 196
SemEval-15 13 3 1,198 454 53 45 403 346
SemEval-16 12 3 1,657 611 101 44 749 204
SentiHood-dev 12 2 2,480 616 – – 921 224
SentiHood-test 12 2 2,480 1,217 – – 921 462

similarity to build fine-grained attention. IACap-
sNet (Du et al., 2019) leverages capsule network
to construct vector-based feature representation. It
uses interactive attention EM-based capsule rout-
ing mechanism to learn the semantic relationship
between targets and context words. TNet-ATT
(Tang et al., 2019) leverages the relation between
context words and model’s prediction as supervi-
sion information to progressively refine its attention
module for aspect based sentiment classification.
ASGCN-DG (Zhang et al., 2019) builds Graph
Convolutional Networks over dependency trees
and uses masking and attention mechanisms to
generate aspect-oriented sentence representations.
TD-GAT-BERT (Huang and Carley, 2019) uses a
Graph Attention Network to capture dependency
relationship among words and an LSTM to model
target related information.

ABSA Baselines: ATAE-LSTM (Wang et al.,
2016) is based on LSTM. It uses aspect embed-
dings to learn attention weights. GCAE (Xue and
Li, 2018) is a CNN with two convolutional layers
that use different nonlinear gating units to extract

aspect-specific information. AGDT (Liang et al.,
2019) contains an aspect-guided encoder which
consists of an aspect-guided GRU and a deep tran-
sition GRU to extract aspect-specific sentence rep-
resentation. Note that GCAE and AGDT can be ex-
tended for TBSA. However, neither of them jointly
considers both aspects and targets and therefore
fails to handle conflicting sentiments.

Other Baselines: Sentic LSTM (Ma et al.,
2018) uses an LSTM with a hierarchical attention
mechanism to model both target and aspect atten-
tion. It incorporates commonsense knowledge into
sentence embeddings. BERT does not consider
aspects and targets. We compare with BERT to
evaluate the performance gain from selective atten-
tion. We use the whole world masking pretrained
BERT in our experiments. Additional results using
BERT base and large models are in Appendix A.

4.4 Results

Table 3 compares Octa with baselines on SemEval
datasets. For SemEval-14-A, AGDT outperforms
GCAE, demonstrating the benefits of aspect-guided



Model
SemEval-14A SemEval-14T SemEval-15 SemEval-16

Acc. F1 Acc. F1 Acc. F1 Acc. F1
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NRC-Canada] 82.92 – 80.05 – – – – –
DCU] – – 80.95 – – – – –
Sentiue] – – – – 78.69 – – –
XRCE] – – – – – – 88.13 –

D
ee
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B
as

ed

ATAE-LSTM] 77.20 – – – – – – –
GCAE] 79.35 – 77.28 – – – – –
AGDT] 81.78 – 78.85 – – – – –
RAM\ – – 79.79 68.86 – – – –
MGAN] – – 81.25 71.94 – – – –
TNet-AS] – – 80.69 71.27 – – – –
IACapsNet] – – 81.79 73.40 – – – –
TNet-ATT] – – 81.53 72.90 – – – –
ASGCN-DG] – – 80.77 72.02 79.89 61.89 88.99 67.48
Sentic LSTM] – – – – 76.47 – – –
TD-GAT-BERT] – – 83.00 – – – – –
BERT 86.15 78.70 80.39 69.00 83.72 65.63 88.52 74.68
Octa 86.03 78.88 84.90† 77.57† 86.27† 67.17 90.10† 76.51
p-value vs. BERT 0.64 0.72 1.16e-6 1.27e-6 9.21e-4 8.14e-2 1.64e-4 6.12e-2

Table 3: Comparing accuracy and F1 on SemEval tasks. Note that only Sentic LSTM and Octa can jointly consider
aspects and targets. Results with ] are obtained from the original papers. Results with \ are obtained from (Li et al.,
2018). Throughout, ∗ and † indicate if performance of BERT is significantly different from that of Octa at the
levels of 0.05 and 0.001, respectively, measured by the two-sample t-test (p-values for the comparison with BERT
are listed at the last row). See Appendix A for additional significance test results.

sentence representation. Octa outperforms AGDT
and NRC-Canada with accuracy gains of 4.3% and
3.1%, respectively. Since SemEval-14-A lacks tar-
get information, Octa uses the BERT [CLS] to-
ken as the target. The result shows the benefit of
selective attention to capture implicit target infor-
mation. Octa and BERT yield comparable perfor-
mance. We find that SemEval-14-A contains sen-
tences with conflicting sentiments toward the same
aspect. In the testing split, of 146 sentences labeled
NEU, 52 sentences show conflicting sentiments—
e.g., “the falafal was rather over cooked and dried
but the chicken was fine” is labeled NEU for as-
pect food but contains positive sentiment toward
target chicken and negative sentiment toward tar-
get falafal. We conjecture that such data defects
undermine the benefit of selective attention.

SemEval-14-T lacks aspect labels so Octa treats
it as one aspect. Octa outperforms all baselines
with an accuracy gain of 1.9% compared with the
best performing baseline, TD-GAT-BERT, of 4.0%
over the feature-based baseline DCU.

SemEval-15 and SemEval-16 associate senti-
ment with both aspect and targets. Octa outper-
forms all baselines. Specifically, Octa obtains a
2.6% and 1.6% accuracy improvement over BERT

on SemEval-15 and SemEval-16, respectively. The
F1 improvements over BERT are 1.5% and 1.8%.
Also, Octa outperforms the top feature-based mod-
els, Sentiue and XRCE. The results demonstrate the
benefit of jointly considering aspects and targets.

Model
SentiHood-D SentiHood-T

Acc. F1 Acc. F1

Sentic LSTM 88.80 – 89.32 –
BERT 87.60 83.76 87.09 83.02
Octa 92.17† 89.86† 91.34† 89.00†
p-value 8.32e-9 1.46e-8 5.08e-9 1.16e-8

Table 4: Comparing performance on SentiHood data.

Table 4 shows the results on SentiHood. Octa
outperforms the state-of-the-art Sentic LSTM with
accuracy gains of 3.3% and 2.0% on dev and test,
respectively. Sentic LSTM jointly considers both
aspects and targets through a hierarchical attention
mechanism. We attribute Octa’s performance to
its nonrecurrent architecture, which alleviates the
dependency range restriction in LSTM, and to its
selective attention mechanism, which reduces noisy
dependency information from irrelevant relations.

To further evaluate Octa’s capability of han-



dling sentences with conflicting sentiments, we
apply trained BERT and Octa only on the con-
flicting samples from SemEval-15, SemEval-16,
and SentiHood-test. There are 152, 96, 343 con-
flicting samples in SemEval-15, SemEval-16, and
SentiHood-test, respectively. Table 5 shows the re-
sults. We see that for all datasets, Octa outperforms
BERT with a large margin. The accuracy gains are
15.3%, 11.5%, and 19.8%, respectively.

Model SemEval-15 SemEval-16 SentiHood-T

Acc. F1 Acc. F1 Acc. F1

BERT 52.55 39.26 52.50 43.88 53.24 51.14
Octa 67.84† 51.52† 63.96* 54.71 73.00† 72.68†
p-value 1.84e-8 7.74e-7 9.97e-3 6.12e-2 1.52e-7 2.47e-7

Table 5: Comparing performance on conflicts.

4.5 Ablation Study
We evaluate variants of Octa on SemEval-15 to un-
derstand the contribution of aspects, targets, and
selective attention. The same conclusion holds for
the other datasets. As Table 6 shows, using target
selective attention (Octa-Sel) yields 1.1% better
accuracy but similar F1 as using aspect attention
(Octa-Asp). Combining aspect attention with target
self-attention (Octa-Asp-Full) hurts performance
and stability, as seen in the lower accuracy and
F1, indicating that simply applying self-attention
on targets and context words introduces noisy in-
formation. Replacing self-attention with selective
attention (Octa) yields gains in accuracy and F1 of
4.3% and 6.1% respectively, indicating that selec-
tive attention is effective in combating noise.

Model Aspect Target Acc. F1

Octa-Asp Yes – 84.09† 65.20*

Octa-Sel – Selective 85.16 65.21
Octa-Asp-Full Yes Self 82.01* 61.08
Octa Yes Selective 86.27 67.17

Table 6: Comparing model variants on SemEval-15.

5 Related Work

Sentiment analysis has received substantial atten-
tion over the last few years. We highlight here only
the works most relevant to Octa.

5.1 Aspect-Based Sentiment Analysis (ABSA)
For the ABSA task, Wang et al. (2016) concatenate
aspect embeddings with LSTM hidden states and
apply attention mechanism to focus on different

parts of a sentence given different aspects. Xue
and Li (2018) extracts features from text using a
convolutional layer and propagates the features to a
max pooling layer based on either aspects or targets.
Liang et al. (2019) uses an aspect-guided encoder
with an aspect-reconstruction step to generate ei-
ther aspect- or target-specific sentence represen-
tation. The above models do not jointly consider
aspects and targets and suffer when a target has
conflicting sentiments toward different aspects.

5.2 Target-Based Sentiment Analysis (TBSA)

For TBSA task, Tang et al. (2016) concatenate
target and context word embeddings and use two
LSTM models to capture a target’s preceding and
following contexts. Chen et al. (2017) builds
position-weighted memory using two stacked BiL-
STMs and the relative distance of each word to
the left or right boundary of each target. Li et al.
(2018) dynamically associates targets with sentence
words to generate target specific word representa-
tion and uses adaptive scaling to preserve context
information. Majumder et al. (2018) uses a GRU
with attention to generate an aspect-aware sentence
representation and a multihop memory network
to capture aspect dependencies. Fan et al. (2018)
uses BiLSTM with attention mechanism to com-
putes coarse-grained attention using averaged tar-
get embeddings and context words. It leverages
word similarity to build fine-grained attention. Xu
et al. (2019) prepend target tokens to a given text
sequence, and predict sentiment based on BERT
sequence embeddings. Du et al. (2019) leverages
capsule network and uses interactive attention cap-
sule routing mechanism to learn the relationship
between targets and context words.

6 Conclusion

The main innovation of Octa is to jointly consider
aspects and targets. It uses selective attention to
model the relationships between target and con-
text words, and aspects to attend to targeted con-
texts to predict sentiments. Users can “query” Octa
about sentiment of a particular aspect or target, or
both. Our evaluation shows that Octa outperforms
state-of-the-art models on SemEval, SentiHood,
and conflicting sentiment datasets. Our ablation
study shows that jointly modeling aspects and tar-
gets with selective attention is superior to selective
attention only, aspect attention only, and aspect
with self-attention.
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Table 7: Comparing performance of Octa, BERTBASE, and BERTLARGE on all tasks. Each experiment is repeated
five times with different random seeds. Here, “sd” indicates one standard deviation.

Model SemEval-14-A SemEval-14-T

Accuracy F1 Accuracy F1

BERTBASE 84.16, sd 0.53 76.37, sd 0.84 79.19, sd 0.62 67.88, sd 1.39
Octa-BERTBASE 84.53, sd 0.13 77.15, sd 0.48 82.93, sd 0.57 74.96, sd 1.02
p-value 0.16 0.11 9.04e-6 1.63e-05

BERTLARGE 85.17, sd 0.55 77.41, sd 0.80 79.82, sd 0.34 68.31, sd 0.84
Octa-BERTLARGE 85.17, sd 0.52 77.46, sd 0.77 83.30, sd 0.25 74.96, sd 0.25
p-value 1.00 0.91 8.21e-8 1.44e-7

Model SemEval-15 SemEval-16

Accuracy F1 Accuracy F1

BERTBASE 79.10, sd 1.03 61.09, sd 1.82 86.52, sd 0.49 70.64, sd 0.99
Octa-BERTBASE 83.15, sd 1.04 64.83, sd 2.49 89.31, sd 0.56 75.33, sd 1.46
p-value 2.63e-04 2.67e-02 3.04e-05 3.47e-4

BERTLARGE 83.81, sd 0.64 65.41 , sd 0.91 88.85, sd 0.44 74.25, sd 1.27
Octa-BERTLARGE 84.85, sd 0.46 64.96, sd 1.19 90.45, sd 0.63 74.61, sd 2.37
p-value 0.02 0.52 1.66e-3 0.77

Model SentiHood-dev SentiHood-test

Accuracy F1 Accuracy F1

BERTBASE 86.52, sd 0.60 82.33, sd 0.83 86.54, sd 0.47 82.63, sd 0.93
Octa-BERTBASE 91.55, sd 0.79 89.05, sd 1.02 91.10, sd 0.37 88.73, sd 0.45
p-value 3.39e-06 3.08e-6 1.43e-7 1.08e-6

BERTLARGE 87.38, sd 0.35 83.32, sd 0.38 87.03, sd 0.30 83.09, sd 0.41
Octa-BERTLARGE 88.48, sd 0.36 84.91, sd 4.68 91.34, sd 0.59 89.03, sd 0.79
p-value 0.51 0.47 5.03e-7 3.94e-7



Table 8: Comparing accuracy of Octa and BERT on all tasks. Each experiment is repeated five times with different
random seeds. “, sd ” indicates one standard deviation. The p-value row indicates if the accuracy of BERT is
significantly different from Octa, measured by two sample t-test. We compare each of the 25 combination of
experiments between BERT and Octa. The “BERT ≥ Octa” row counts the number of combinations where BERT
is no worse than Octa, and how many of them are significant, measured by McNemar test. Similarly, “BERT <
Octa” counts the number of combinations where BERT is worse than Octa. For example, on SemEval-14-A, BERT
is no worse than Octa in 12 combinations, none of which are significant. BERT performs worse than Octa in the
other 13 combinations, none of which are significant either.

Model SemEval-14-A SemEval-14-T SemEval-15 SemEval-16 SentiHood-dev SentiHood-test

BERT 86.15, sd 0.52 80.39, sd 0.63 83.72, sd 0.96 88.52, sd 0.49 87.60, sd 0.17 87.09, sd 0.20
Octa 86.03, sd 0.16 84.90, sd 0.45 86.27, sd 0.57 90.10, sd 0.22 92.17, sd 0.37 91.34, sd 0.31

p-value 0.64 1.16e-6 9.22e-4 1.64e-4 8.32e-9 5.08e-9
BERT ≥ Octa 12 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
BERT < Octa 13 (0) 25 (25) 25 (17) 25 (8) 25 (25) 25 (25)

Table 9: Comparing accuracy of Octa model variants on SemEval-15. Each experiment is repeated five times with
different random seeds. “, sd ” indicates one standard deviation. The p-value column indicates if the accuracy
of the variant is significantly different from Octa, measured by two sample t-test. We compare each of the 25
combination of experiments between the variants and Octa. The “variant ≥ Octa” column counts the number of
combinations where the variant is better than Octa, and how many of them are significant, measured by McNemar
test. Similarly, “variant < Octa” counts the number of combinations where the variant is worse than Octa. For
example, Octa-Sel is better than Octa in eight combinations but none of them are significant. Octa is better than
Octa-Sel in 17 combinations where nine of them are significant.

McNemar significance test
Model Aspect Target Accuracy p-value variant ≥ Octa variant < Octa

Octa-Asp Yes – 84.09, sd 0.68 2.23e-8 0 (0) 25 (14)
Octa-Sel – Selective 85.16, sd 1.24 4.65e-6 8 (0) 17 (9)
Octa-Asp-Full Yes Self 82.01, sd 1.95 5.72e-6 0 (0) 25 (14)
Octa Yes Selective 86.27, sd 0.57 – – –


