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ABSTRACT
Effective human-AI collaboration hinges not only on the AI agent’s
ability to follow explicit instructions but also on its capacity to
navigate ambiguity, incompleteness, invalidity, and irrelevance in
communication. Gricean conversational and inference norms facili-
tate collaboration by aligning unclear instructions with coopera-
tive principles. We propose a normative framework that integrates
Gricean norms and cognitive frameworks—common ground, rele-
vance theory, and theory of mind—into large language model (LLM)
based agents. The normative framework adopts the Gricean maxims
of quantity, quality, relation, and manner, along with inference, as
Gricean norms to interpret unclear instructions, which are: ambigu-
ous, incomplete, invalid, or irrelevant. Within this framework, we
introduce Lamoids, GPT-4 powered agents designed to collaborate
with humans. To assess the influence of Gricean norms in human-
AI collaboration, we evaluate two versions of a Lamoid: one with
norms and one without. In our experiments, a Lamoid collaborates
with a human to achieve shared goals in a grid world (Doors, Keys,
and Gems) by interpreting both clear and unclear natural language
instructions. Our results reveal that the Lamoid with Gricean norms
achieves higher task accuracy and generates clearer, more accu-
rate, and contextually relevant responses than the Lamoid without
norms. This improvement stems from the normative framework,
which enhances the agent’s pragmatic reasoning, fostering effective
human-AI collaboration and enabling context-aware communica-
tion in LLM-based agents.
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1 INTRODUCTION
Natural language is an important medium of communication be-
tween humans andAI agents [25, 31, 33]. In human-AI collaboration,
humans use natural language to issue commands, make requests,
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and provide directives [4] to coordinate with AI agents [51]. In this
paper, we refer to these pragmatics as instructions. However, human
instructions can be ambiguous, incomplete, invalid, or irrelevant,
making them difficult for AI agents to interpret [23, 29, 34, 36, 51].

An instruction is ambiguous if it lends itself to two or more
interpretations. It is incomplete when it lacks critical details, invalid
when it contains incorrect information, and irrelevant when it does
not align with task objectives. As such, for effective human-AI
collaboration, particularly in complex and dynamic environments
[23], AI agents must accurately interpret instructions to execute
them correctly [36, 51]. In this paper, we refer to these types of
instructions as unclear.

The capacity to interpret unclear instructions by inferring the
speaker’s implicit intentions based on context in human communi-
cation has been extensively studied under relevance theory [2, 8, 44,
48], theory of mind [22, 24, 40, 49], and common ground [13, 18, 39].
Today’s AI agents struggle with unclear instructions [36]. Recent
advancements, such as Large Language Models (LLMs) [36] and
Bayesian inference [51], can help AI agents interpret and execute
unclear instructions. Although these methods are promising, they
have notable limitations. For example, Qian et al. [36] found that
Mistral 7B LLM often produced suboptimal or erroneous actions
due to its inability to process ambiguous instructions effectively.

Grice’s Cooperative Principle [16], a cornerstone of communica-
tion theory, defines four maxims—quantity, quality, relation, and
manner. This principle has proven effective in human-agent inter-
actions, natural language understanding, and theory of mind tasks
[22, 23, 34, 40], yet its impact in dynamic human-agent collabora-
tion remains unexplored. We argue that integrating these maxims
into the norms governing agents can help improve how agents
identify and respond to unclear instructions, thereby enhancing
overall human-agent team effectiveness [23, 29, 34].

In this study, we present a normative framework that integrates
Gricean norms and cognitive frameworks—common ground, [13,
18, 39], relevance theory [2, 8, 44, 48], and theory of mind [22, 40]—
into LLM-powered agents. Guided by this framework, we introduce
Lamoids, agents designed to collaborate with humans. (“Lamoid”
refers to a class of mammals that includes llamas; here, it is a port-
manteau of LLM and droid.) However, humans often violate these
norms, breaching the Cooperative Principle [16, 26, 36, 51]. For in-
stance, if a person says, “Can you grab that notebook?”, they violate
the quantity maxim by failing to specify the notebook’s location
or appearance, leaving the listener to infer the intended notebook.
They likely mean the red notebook on the desk that is closer to the
listener, rather than the one in their bag. This understanding relies
on the ability to interpret context, such as the speaker’s actions or
goals. Accordingly, we introduce the Inference norm, which enables
a Lamoid to act appropriately by seeking clarification or inferring
the implied meaning from the instruction.
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The incorporation of LLM enhances a Lamoid’s ability to inter-
pret context and resolve ambiguities [5, 10, 32]. We employ Few-
shot with Chain-of-thought (Fs-CoT) prompting [6, 43]. Specifically,
by integrating cognitive frameworks into the Fs-CoT prompting
and inference mechanism, Lamoids can evaluate the environment,
interpret instructions, and infer human intent.

We evaluate two versions of a Lamoid—one with norms and
one without—using the multiagent Doors, Keys, and Gems (mDKG)
cooperative planning domain [46, 50] (Figure 1). In this domain,
a human issues instructions to retrieve a specific gem, which a
Lamoid interprets and acts upon. Our evaluation is guided by the
following research questions designed to measure the effectiveness
of Gricean norms and a Lamoid’s ability to enhance human-agent
collaboration.

Figure 1: Doors, Keys, and Gems grid world [50].

RQ1: Does incorporating Gricean norms improve effective human-
agent collaboration?

RQ2: Can a Lamoid, guided by the normative framework, accu-
rately interpret incomplete, invalid, irrelevant, or ambiguous
instructions and respond appropriately?

RQ3: How does Fs-CoT prompting in LLMs affect norm adherence
and interaction quality?

2 NORMATIVE FRAMEWORK
The normative framework builds on Gricean maxims and impli-
cature, adapting them into Gricean norms and an Inference norm.
It also incorporates cognitive frameworks, categorizes human in-
structions, and defines the Lamoid’s decision-making pipeline.

2.1 Incorporating Norms in a Lamoid
The philosopher H.P. Grice introduced the Cooperative Principle to
explain how effective communication depends on participants coop-
erating [16]. This principle defines four conversational maxims that
facilitate meaningful exchanges. In the Lamoid (with norms), we
adapt these maxims into Gricean norms, which govern its behavior
in assisting a human. These norms enable a Lamoid to interpret
instructions, infer the human’s intentions, and generate appropriate
responses. The Gricean norms are defined as follows:

Quantity: Instructions must provide sufficient detail for a Lamoid
to act accurately. If essential information is missing, the Lamoid
flags it as a Quantity violation. For instance, if two blue keys
are required but only one is mentioned in the instruction, the
Lamoid recognizes it as incomplete.

Quality: Instructions must be valid. If an instruction contains in-
correct information, the Lamoid flags it as a Quality violation.
For instance, if the instruction requests a blue key but no such
key exists on the grid, the Lamoid recognizes it as invlaid.

Relation: Instructions must be relevant to the task at hand. If an
instruction does not contribute to retrieving the desired gem,
the Lamoid flags it as a Relation violation. For example, if the
human gives an unrelated instruction (e.g., “Can you dance?”),
the Lamoid recognizes it as irrelevant.

Manner: Instructions must be clear and unambiguous. If the in-
struction is ambiguous, the Lamoid flags this as a Manner vi-
olation. For example, if there are two identical red doors and
the instruction is to “unlock a red door,” the Lamoid flags the
ambiguity, as either door could be unlocked.

When the instruction is clear, i.e. it adheres to all the Gricean norms,
the Lamoid executes the task by generating a response that aligns
with these norms. Implicature, or inference, arises when a speaker
suggests something indirectly, relying on the listener to infer the
unstated meaning based on the context, shared knowledge, and
adherence to conversational norms [16]. Grice noted that when
a speaker flouts a maxim—such as providing information that is
demonstrably untrue or seemingly irrelevant—the listener can still
infer an implicit meaning. In such cases, flouting a maxim acts as
a cue for the listener to uncover the implied meaning embedded
in the speaker’s communication. Accordingly, we incorporate an
Inference norm into the Lamoid’s normative framework.
Inference: If a Lamoid detects that an instruction violates at least
one Gricean norm, it applies the Inference norm to determine
the optimal course of action.

2.2 Cognitive Frameworks
In collaborative interactions, common ground is crucial, as it rep-
resents the mutual understanding between participants [13, 39].
In human-agent collaboration, common ground enables agents to
align with the human’s goals by leveraging a mutual understanding
of the environment and task objectives [9, 12, 17]. This mutual un-
derstanding helps the agent interpret instructions more accurately
and anticipate the human’s needs.

Relevance theory suggests that humans communicate by convey-
ing information that is most relevant to the situation or goal [8, 44].
In human-agent interactions, relevance theory helps agents discern
which parts of a conversation or instruction are essential for achiev-
ing the objective. This enables agents to focus on relevant details
while filtering out extraneous information. In our framework, both
common ground and relevance theory are incorporated into the
Fs-CoT prompting mechanism and the normative structure.

Theory of mind refers to the capacity to recognize that others
have their own mental states (e.g., beliefs and intentions) which
might differ from one’s own. LLMs have been found to perform well
in theory of mind tasks [22, 40]. Theory of mind enables agents to
assess the human’s mental state. This ability is useful in situations



where the human’s instructions are unclear. In our framework, the-
ory of mind is embedded in the Fs-CoT prompting mechanism. It is
also integrated into the normative structure of a Lamoid, particu-
larly through the Inference norm.

When paired with common ground and relevance theory, the-
ory of mind enables a Lamoid to establish a mutual understanding
between itself and the human, while also determining which pieces
of information are most relevant to the task. For instance, if the
human provides an ambiguous instruction, a Lamoid can infer what
the human likely meant based on their shared model of the envi-
ronment (common ground), the human’s goals (relevance theory),
and a model of the human’s mental states (theory of mind). This
combination of the cognitive frameworks enables Lamoid to inter-
pret both clear and unclear instructions, adapt its responses, and
execute optimal actions.

3 INSTRUCTION PROCESSING PIPELINE
We identify five types of instructions the human may issue, based
on the associated Gricean norm violations.

(1) Clear instructions contain all the necessary details for the Lam-
oid to perform the task unambiguously and without error. No
Gricean norms are violated.

(2) Incomplete instructions lack specificity, leaving gaps that the
Lamoid must infer to determine the correct course of action.
This results in a Quantity violation.

(3) Invalid instructions direct the Lamoid to carry out tasks that
are impossible or unachievable within the given constraints.
This results in a Quality violation.

(4) Irrelevant instructions have no direct connection to the task,
making them non-contributory to the human’s goals. This re-
sults in Relation a violation.

(5) Ambiguous instructions are open to multiple interpretations,
requiring Lamoid to decide between several possible actions.
This results in a Manner violation.

By classifying instructions into these five types, we systemati-
cally assess the Lamoid’s ability to address challenges in human
communication. Table 1 outlines the relationship between instruc-
tion types and violations of Gricean norms.

Table 1: Instruction types and violation of Gricean norms.

Instruction Type Violation of Gricean Norm

Clear No Violation

U
nc
le
ar

Incomplete Quantity Violation
Invalid Quality Violation
Irrelevant Relation Violation
Ambiguous Manner Violation

The Lamoid processes instructions by interpreting the human’s
instruction. Using the normative framework outlined in Section 2,
it discerns intent and extracts the most relevant information to
complete the task. The pipeline then classifies Lamoid’s responses
into two primary categories:

(1) Optimal Actions: For clear instructions or those with minor
gaps (incomplete), the Lamoid generates the most efficient se-
quence of actions by relying on the cognitive frameworks, and
the Inference norm. It ensures that its responses are contextu-
ally appropriate and aligned with both the instruction and the
environment.

(2) Clarification Actions: When faced with invalid, irrelevant, or
ambiguous instructions, the Lamoid requests clarification. In
these cases, it presents contextually relevant options, guiding
the human toward a clearer directive and maintaining focus on
the task’s objectives.

The Lamoid’s decision-making begins by interpreting the instruc-
tion through the normative framework. Based on this interpretation,
the Lamoid either generates an optimal action sequence or requests
clarification by providing alternatives that align with the task and
the human’s goals.

4 LLMS AND PROMPT DESIGN
We used GPT-4 with Fs-CoT [38] prompting techniques in a Lam-
oid’s execution model. The following sections expound on GPT-4’s
configuration and the prompt design.

4.1 GPT-4 Model Parameters
Lamoids leverage GPT-4, an LLM known for its ability to generate
coherent, contextually relevant responses [3, 10, 32]. We configure
the maximum token limit to 512 to balance between comprehensive
output and processing efficiency. We set the temperature parameter
to 0.2, reducing output variability. This configuration was chosen
to ensure the reproducibility of a response by minimizing the like-
lihood of generating irrelevant or overly creative responses [3].

4.2 Prompt Architecture
The prompt is divided into four components:

General Chain-of-Thought: The first component of the prompt
provides a Lamoid with the details of the environment, includ-
ing background, roles, objects, and objectives. This component
establishes the necessary common ground between the human
and the Lamoid. It is designed to guide the Lamoid in interpret-
ing instructions that can be clear, incomplete, invalid, irrelevant,
or ambiguous. The chain-of-thought prompting mechanism is
used to incorporate relevance theory and theory of mind into
the Lamoid’s reasoning process, enabling a more nuanced un-
derstanding of the human’s intent and objectives. Consequently,
this component incorporates cognitive frameworks to enhance
contextual interpretation.
LLMs often struggle with tasks requiring information extraction
and spatial reasoning in grid-based systems [1, 28, 45]. Given
that LLMs are inherently dependent on textual data [7, 11, 21],
a Lamoid is presented with the grid configuration in two com-
plementary formats: a visual adjacency matrix and a textual
description detailing object locations and quantities. To further
reinforce the importance of the cognitive frameworks, a set of key
rules is incorporated into the prompt to enhance the Lamoid’s
reasoning strategies.



Response Generation: With Norms

Based on your understanding of the norms, common ground, inter-
pretation strategies, grid layout, and the labeled examples provided
below, generate the norm violation type and response for the fol-
lowing human instruction, delimited by triple backticks:
```
Instruction: Pick up the red key.
Norm: <Identify the norm violation type and provide
chain-of-thought reasoning for the violation>
Response: <Generate chain-of-thought reasoning for
the response>
```

(a) With norm-aligned responses.

Response Generation: Without Norms

Based on your understanding of common ground, interpretation
strategies, layout of the grid, and, labeled examples below, generate
a response for the following human instruction delimited by triple
backticks:
```
Instruction: Pick up the red key.
Response: <Generate chain-of-thought reasoning for
the response>
```

(b) Without norm-aligned responses.

Figure 2: Third component of the prompt: norm-driven vs.
non-norm-driven response generation by a Lamoid.

Gricean and Inference Norms: The second component of the
prompt centers on the incorporation of Gricean norms and the
Inference norm, leveraging the cognitive frameworks detailed
in Section 2.2. These norms, informed with the cognitive frame-
works, evaluate instructions based on the grid configuration
(common ground), identify Gricean norm violations (relevance
theory), interpret the human’s implicit intentions (theory of
mind), and infer the most appropriate response in case of a norm
violation. When a norm violation is detected, the Lamoid applies
the Inference norm to infer the most relevant action. For example,
if an instruction is incomplete (Quantity violation), the Lamoid
infers the missing information by considering the grid’s layout
and the human’s intention of retrieving a gem. If the instruction
is ambiguous (Manner violation), the Lamoid generates clarifica-
tion options that are contextually relevant to ensure a smooth
interaction.

Response Generation: The third component of the prompt out-
lines the response generation process, detailing how a Lamoid
interprets instructions, detects Gricean norm violations, and
generates contextually appropriate responses. It also contains
the human’s instruction as input. Chain-of-thought reasoning is
employed in both generating responses and identifying norm vi-
olation types. This reasoning process integrates cognitive frame-
works and Gricean norms, ensuring coherent and contextually
relevant responses. Figure 2 shows two response generation

Few-shot CoT Exemplar with Norms

Use the following examples, delimited by triple quotes, to understand
how to generate the appropriate response for each instruction. These
examples are based on different grid configurations. Follow the
structure and format shown in these examples when generating
both the ‘Norm’ and ‘Response’.
'''
Instruction: Can you get the green key?
Norm: Quality Violation. Based on the instruction and the
grid, there is no green key, making this an invalid
instruction.
Response: There is no green key on the grid. Do you want me
to collect the yellow key, the red key, or both?
...

'''

(a) With norm-guided few-shot examples.

Few-shot CoT Exemplar without Norms

Use the following examples, delimited by triple quotes, to understand
how to generate the appropriate response for each instruction. These
examples are based on different grid configurations. Follow the
structure and format shown in these examples when generating the
‘Response’.
'''
Instruction: Can you get the green key?
Response: There is no green key on the grid. Do you want me
to collect the yellow key, the red key, or both?
...

'''

(b) Without norm-guided few-shot examples.

Figure 3: Fourth component of the prompt: few-shot CoT
exemplars with and without norm.

templates: response generation with the identification of norm
violations (Figure 2a), and response generation without explicit
reference to these norms (Figure 2b).

Few-shot with Chain-of-Thought: The fourth component of the
prompt consists of input-output pairs as few-shot demonstra-
tions, which serve as illustrative examples to guide a Lamoid
in handling clear and unclear instructions. We incorporated a
total of 14 few-shot demonstrations with chain-of-thought in
this component [30]. Prior research [6] indicates that between
10 and 32 demonstrations tends to yield optimal performance
for a few-shot learning. Through iterative experimentation, we
determined that 14 demonstrations provide the best balance be-
tween efficiency and performance for our specific task. Figure 3
highlights two forms of these few-shot examples: one set using
norm-driven interpretations (Figure 3a) and the other devoid of
such norms (Figure 3b). These different prompt configurations
were employed in distinct experimental settings, which are dis-
cussed in detail in Section 5. The full prompt, incorporating all
components, is provided in the supplement.



5 EXPERIMENTS
To evaluate the influence of Gricean norms and address our re-
search questions, we conducted an experiment using two versions
of a Lamoid: Lamoid with norms, which incorporated normative
elements in its prompts (Figures 2a and 3a), and Lamoid without
norms, which omitted these elements (Figures 2b and 3b). Compar-
ing these versions allowed us to isolate and evaluate the influence of
Gricean norms in facilitating effective human-agent collaboration.
The experiment was conducted within the multiagent Doors, Keys,
and Gems (mDKG) cooperative planning domain [51].

We used 25 grid configurations, as previously created by Zhi-
Xuan et al. [51]. However, unlike prior work, which focused solely
on ambiguous instructions, we expanded the instruction set to
include a broader range of instruction types, as outlined in Table 1.
Table 2 details the distribution of instruction types across the 25
grid problems. By testing both experimental conditions across these
25 configurations and 55 instructions, we systematically evaluated
the Lamoid’s performance in instruction interpretation and task
execution accuracy.

Table 2: Instruction type distribution.

Instruction Type Count

Clear 20
Incomplete 5
Invalid 11
Irrelevant 6
Ambiguous 13

5.1 Performance Metrics
We adopt the following metrics. For each metric, we indicate the
research question(s) it helps answer.
Instruction Interpretation Accuracy (RQ2) captures whether
the Lamoid correctly identified the norm violation associated
with a given instruction type in the experiment where the norms
were applied.

Task Accuracy (RQ1) captures the ratio of correctly predicted
actions by the Lamoid to the total number of correct actions,
reflecting its task execution performance in human-agent collab-
oration.

Mean Response Length (RQ3) captures the mean length of re-
sponses (in characters) generated by the Lamoid, reflecting its
adherence to the Quantity norm.

Mean Options (RQ3) captures the mean of the clarification op-
tions provided to the human when instructions are ambiguous,
invalid, or irrelevant. This metric reflects the Lamoid’s adherence
to the Quantity norm.

Options Accuracy (RQ1 and RQ3) captures the accuracy of the
options presented to the human, particularly in the cases of
ambiguous, invalid, or irrelevant instructions. This metric reflects
the Lamoid’s adherence to the Quality norm.

Response Relevancy (RQ1 and RQ3) captures the alignment of
the Lamoid’s response with the human’s objectives given the
grid configuration. This metric reflects the Lamoid’s adherence

Example (1) Response Generation: With Norms

Instruction: Can you pass me the red keys?
Norm: Quantity Violation. The instruction is asking to pass the
red keys, but it doesn’t specify how many. Given the grid config-
uration, there are two red doors and three red keys. If the human
wants to collect the gem at (4,8), they would need to unlock two
red doors. Therefore, two red keys are required, but the instruc-
tion doesn’t specify this, resulting in a Quantity Violation.
Response: There are three red keys and two red doors on the
grid. To collect the gem at (4,8), two red doors need to be un-
locked. I will collect the two red keys closest to me at (1,1) and
(1,3), and pass them to the human to unlock the red doors.

(a) Norm-aligned response generated by Lamoid.

Example (1) Response Generation: Without Norms

Instruction: Can you pass me the red keys?
Response: There are three red keys and two red doors on the
grid. The instruction is asking to collect red keys, which implies
that the human wants to retrieve a gem placed beyond a red door.
Considering the grid configuration, the gems at (4,8) and (6,8)
are behind the red doors. I will collect the red key at (1,1) which
is closest to me and pass it to the human. The human can then
unlock the red door at (8,4) or (9,4) to retrieve the gem.

(b) Non-norm-aligned response generated by Lamoid.

Figure 4: Responses of Lamoid with norms vs without norms.

to the Relation norm. The responses are rated on a scale: 0 (Not
Relevant), 0.25 (Minimally Relevant), 0.5 (Partially Relevant), 0.75
(Mostly Relevant), and 1 (Fully Relevant).

Response Clarity (RQ1 and RQ3) captures the clarity of the Lam-
oid’s response, ensuring it is clear, unambiguous, and free from
hallucinations or irrelevant information. This metric reflects the
Lamoid’s adherence to theManner norm. The responses are rated
on a scale: 0 (Not Clear), 0.25 (Minimally Clear), 0.5 (Somewhat
Clear), 0.75 (Mostly Clear), and 1 (Perfectly Clear).
The metrics were annotated by the primary author. To illus-

trate how response relevancy and clarity were measured, Figure 4
presents a comparison between the Lamoid’s responses with and
without norms. The instruction provided was, “Can you pass me
the red keys?” In the norm-aligned response (Figure 4a), Lamoid
correctly identifies that two red keys are needed, as the gem is
blocked by two red doors. The Lamoid then collects the two closest
red keys and passes them to the human. Conversely, in the non-
norm response (Figure 4b), the Lamoid fails to recognize that two
keys are required and only hands one red key to the human.

The response relevancy for the Lamoid with norms was rated
1 (Very Relevant), and the clarity was rated 1 (Perfectly Clear).
However, for the non-norm response, the relevancy was rated 0
(Not Relevant) because the response did not align with the human’s
goal or the grid configuration. In contrast, the clarity was rated 0.75
(Mostly Clear), as it correctly identified the need for a red key but



Table 3: Performance of the Lamoid with and without norms across the metrics.

Accuracy in Understanding Response

Experiment Task Options Mean Length Mean Options Relevance Clarity

Norms 95.27% 97.74% 227.73 2.55 96.36% 96.82%
Without Norms 74.73 % 90.74 % 400.84 2.70 76.36 % 80.91 %

Table 4: Instruction interpretation accuracy.

Precision Recall F1 Score

No Violation 1 0.85 0.92
Quantity Violation 0.63 1 0.77
Quality Violation 1 1 1
Relation Violation 1 1 1
Manner Violation 1 1 1

misinterpreted that the human’s intention for red keys was for a
single red door.

6 RESULTS AND DISCUSSION
Table 3 summarizes our results. Overall, the Lamoid with norms
outperformed the Lamoid without norms across all metrics. We use
these results to address our research questions.
RQ1: Effective collaboration. The task accuracy exhibited a no-
table relative improvement of 27.48% when Gricean norms were
applied. Additionally, options accuracy, which evaluates clarifi-
cation requests in response to invalid, irrelevant, or ambiguous
instructions, improved by 7.71% relative to the non-norm condi-
tion. These findings suggest that norms improve goal inference
and the generation of appropriate actions. Furthermore, norms con-
tributed to improvements in both response relevancy and clarity,
achieving relative gains of 26.19 % and 19.67 % respectively, over the
non-norm condition. These improvements can be largely attributed
to the Lamoid’s adherence to Gricean norms and its integration of
cognitive frameworks within its reasoning process. By leveraging
these elements, the Lamoid with norms produced responses that
were more aligned with the human’s objectives, while also minimiz-
ing instances of hallucinations and misinterpretations. Although
the Lamoid without norms also incorporated the cognitive frame-
work, it fell short of the precision and coherence demonstrated by
its norm-guided counterpart.
For task accuracy, the paired t-test yielded a highly significant
result (𝑡 (54) = 4.92, 𝑝 < 0.001), indicating that the Lamoid per-
formed better with norms than without. The effect size, measured
by Cohen’s 𝑑 (𝑑 = 0.66), reflects a moderate to large improvement
in task accuracy. Similarly, response relevancy and response clar-
ity showed significant differences, with 𝑡 (54) = 3.67, 𝑝 < 0.001,
and 𝑡 (54) = 3.33, 𝑝 = 0.002, respectively, and moderate effect
sizes (𝑑 ≈ 0.5). In contrast, options accuracy yielded a p-value
of 𝑝 = 0.064, yet demonstrated a moderate effect size (𝑑 = 0.51),
suggesting a notable but less pronounced impact. Therefore, Lam-
oid with norms generated more contextually relevant, optimal,
and clearer responses, with fewer instances of hallucinations. This

suggests that Gricean norms are crucial in promoting effective col-
laboration by ensuring more precise interpretation and execution
of instructions.
RQ2: Accurate interpretation. The instruction interpretation ac-
curacy in the Lamoid with norms exhibited strong performance,
successfully identifying 94.55 % of norm violations across different
instruction types. Table 4 presents the precision, recall, and F1-score
for each type of norm violation for the Lamoid under the norm
condition. Notably, the precision for Quantity violations is slightly
lower than other categories due to occasional misclassification of
No Violation instructions as Quantity violations. This misclassi-
fication also led to a slight decrease in recall for No Violations.
However, the F1-scores for norm violations remained consistently
high, underscoring the Lamoid’s proficiency in accurately inter-
preting different instruction types. These results indicate that when
guided by the normative framework, Lamoid effectively interprets
different instruction types, reinforcing it’s ability to process and ap-
propriately respond to incomplete, invalid, irrelevant, or ambiguous
instructions.
RQ3: Fs-CoT prompting. The Lamoid with norms used Fs-CoT
prompting to incorporate Gricean norms into its responses. Met-
rics such as mean options and response length, options accuracy,
response relevancy, and clarity reflect Lamoid’s adherence to the
Quantity, Quality, Relation, and Manner norms, respectively. The
options accuracy, response relevancy and clarity metrics exhibited
superior performance in the Lamoid with norms over the non-norm
condition, as demonstrated in RQ1. This reinforces the influence of
Fs-CoT prompting in enabling the Lamoid to adhere to the Quality,
Relation, and Manner norms. Interestingly, the mean options pre-
sented across both conditions remained similar, although slightly
lower with norms.
However, the mean response length in the Lamoid with norms was
notably lower thanwithout norms. This reductionmay be attributed
to the Lamoid’s adherence to the Quantity norm, which facilitated
more concise yet contextually relevant responses. Further, the mean
response length showed the largest effect (𝑡 (54) = 8.26, 𝑝 < 0.001),
with a substantial Cohen’s 𝑑 of 1.11, highlighting the consider-
able influence of Fs-CoT in reducing verbosity and enforcing the
Quantity norm. By prioritizing brevity without sacrificing infor-
mativeness, the Lamoid with norms generated responses that were
sufficient and without unnecessary elaboration. Therefore, the Lam-
oid with norms generated responses that were more contextually
relevant, clearer, and contained fewer errors in task execution, while
maintaining an optimal balance in response length and number of
options. By embedding Gricean norms through Fs-CoT, the Lamoid
not only improved norm adherence but also ensured responses
were truthful, complete, relevant, and unambiguous. Overall, these
findings suggest that Fs-CoT is crucial in helping the Lamoid adhere



to the norms, thereby improving the overall quality of human-agent
collaboration.

We present two examples of response generation by the Lamoid
with and without norms in Figures 4 and 5. In Figure 4 where the
instruction required collecting red keys, the Lamoid with norms
accurately identified two red keys were required. It retrieved the
two nearest red keys and passed them to the human, demonstrating
correct adherence to the task requirements. Conversely, the Lamoid
without norms erroneously collected only one red key. Figure 5
further illustrates this distinction; when tasked to retrieve a red
key, the Lamoid with norms passed the key to the human to unlock
the specified red door. In contrast, Lamoid without norms misinter-
preted the grid configuration and passed the key for a red door that
was obstructed by another door, leading to an ineffective action.

Example (2) Response Generation: With Norms

Instruction: Can you get the red key?
Norm: No Violation. The instruction is clear, truthful, relevant,
and unambiguous. The human wants to collect a gem that is
likely behind a red door, hence the request for the red key. The
grid contains a red key, so the instruction is valid and does not
violate any norms.
Response: Sure, I will collect the red key at (0, 5) and pass it
to you. You can then use it to unlock the red door at (2,1) and
retrieve your desired gem.

(a) Norm-aligned response generated by Lamoid.

Example (2) Response Generation: Without Norms

Instruction: Can you get the red key?
Response: There is one red key on the grid located at (0, 5). The
red key is required to unlock the red doors at (2, 1) and (3, 8). The
gem that the human likely wants to retrieve is at (3, 9) as it is the
only gem that is behind a red door. I will collect the red key and
pass it to the human to unlock the red door at (3, 8) to retrieve
the gem.

(b) Non-norm-aligned response generated by Lamoid.

Figure 5: Response for Lamoid with norms vs without norms.

7 RELATEDWORK
The GriceanMaxims have been widely applied in human-AI interac-
tion, multiagent decision-theoretic models, conversational agents,
and tasks such as natural language generation (NLG) and natural
language understanding (NLU). Vogel et al. [42] demonstrated that
thesemaxims naturally emerge from decision-theoretic frameworks
in multiagent systems, enhancing communication efficiency and
collaborative performance. Similarly, Panfili et al. [34] highlighted
that AI systems benefit from explicitly adhering to Gricean Maxims
in human-AI interactions, particularly when handling ambiguous
or complex user queries. Miehling et al. [29] explored the benefit of
LLMs and Gricean Maxims in human-AI conversations, discovering
that LLMs such as Llama3-8B-Instruct, Llama3-70B-Instruct, and

Mistral-7B-Instruct often violated the relevance and quality max-
ims. However, fine-tuning these models to prioritize these norms
led to better handling of ambiguous instructions, more contextually
appropriate responses, and enhanced conversational depth.

Krause and Vossen [23] provide a comprehensive survey on the
application of Gricean maxims in NLP, highlighting their potential
to improve interaction quality while noting limitations in handling
contextual and pragmatic variability. Hu et al. [19] evaluated LLMs,
including GPT-2, Flan-T5, InstructGPT-3, and text-davinci-002, find-
ing that larger models excel in pragmatic tasks but often default
to literal interpretations and miss nuanced social norms. Yue et al.
[47] confirmed that GPT-4 effectively understands conversational
implicature, whereas most smaller LLMs struggle with interpreting
nonliteral meanings in dialogue. Further, di San Pietro et al. [14]
identified GPT-3.5’s strengths in coherence but noted limitations in
humor, metaphor, and the quantity maxim, emphasizing GPT-4’s
potential to address these gaps.

Building on this, our approach leverages GPT-4 to address gaps
in pragmatic reasoning observed in smaller parameter LLMs, and
shows a promise in applying Gricean norms in goal-oriented collab-
oration. In contrast, the literature on LLM-based agents to manage
implicit user intentions is evolving. Strachan et al. [40] demon-
strated that LLMs performed equally or sometimes even better in
theory of mind tasks such as identifying indirect requests, false be-
liefs and misdirection. Additionally, Qian et al. [36] introduced the
Intention-in-Interaction benchmark to improve LLM-based agents
ability to handle implicit user intention.

8 LIMITATIONS AND FUTUREWORK
The implementation of a Lamoid within the Doors, Keys, and Gems
environment posed several challenges, primarily due to the lim-
itations of GPT-4 in spatial reasoning and pathfinding, and the
demands of prompt engineering. This section outlines the key chal-
lenges encountered and offers potential solutions to improve the
Lamoid’s overall performance.

8.1 Limitations of GPT-4
A significant challenge arose due to GPT-4’s poor performance in
spatial reasoning and information extraction [27, 45]. Despite us
providing the Lamoid with both visual and textual representations
of the grid, it occasionally struggled to accurately interpret the
spatial relationships between various objects. This hindered its
ability to infer the correct actions required for task completion
which resulted in suboptimal or incorrect responses. This limitation
is intrinsic to GPT-4’s design, as it was primarily trained on text,
not spatial or geometric reasoning tasks [32]. A potential solution
would be to integrate information extraction tools [1] that could
enhance GPT-4’s ability to interpret spatial data more effectively,
thereby improving its decision-making in tasks requiring spatial
reasoning.

Another critical limitation was GPT-4’s inadequacy in optimal
pathfinding [28]. This challenge arises from GPT-4’s lack of inher-
ent pathfinding algorithms, as its architecture is more suited for
generating natural language than solving complex navigational
problems. To address this, we shifted the model’s output from gen-
erating direct actions to generating natural language descriptions



of the actions to be taken. Although this change mitigated the is-
sue to some extent, it did not fully resolve GPT-4’s deficiency in
path optimization. Leveraging dedicated pathfinding algorithms or
incorporating hybrid models that combine GPT-4 with pathfinding
tools may offer a more robust solution.

Hallucinations are a well-known challenge in LLMs [15, 20, 41].
Our Lamoid suffered from hallucinations as well, where it would
generate actions that did not align with the actual configuration
of the environment. Given GPT-4’s reliance on text-based training,
its inability to accurately interpret spatial data likely contributed
to these hallucinations. Addressing this issue would require either
more advanced model fine-tuning or the integration of spatial rea-
soning modules, which could help the model ground its responses
in the correct physical context.

8.2 Prompt Engineering
The implementation required extensive prompt engineering [30]
to guide GPT-4’s behavior, a process that was both labor-intensive
and nontrivial. This level of manual engineering is not sustainable
for broader, more dynamic tasks, as it requires precise tuning for
each specific scenario. This raises concerns about the task-agnostic
nature of the current approach. Future work will involve designing
more concise prompts and evaluating if fewer examples can pro-
duce similar performance outcomes. Pretraining language models
on domain-specific data [35] or developing more flexible prompt
templates could reduce the need for customization, enhancing the
model’s adaptability across different tasks.

8.3 Pragmatics and User Intentions
This study advances norm-driven pragmatic reasoning in LLM-
agents but elides important aspects of pragmatics in human lan-
guage [37], such as emotions, nonverbal cues, humor, and sarcasm.
Additionally, variations in user intentions and subjective interpreta-
tions pose challenges for universal collaboration. Future work will
focus on better modeling user subjectivity by collecting and analyz-
ing data on diverse human interpretations and expectations. These
insights will inform Lamoid’s prompting mechanism, enhancing
its ability to understand varying user intentions and strengthen-
ing its theory of mind capabilities. Furthermore, incorporating
broader pragmatic elements, such as emotional intelligence and
context-aware adjustments, into the norm-driven framework offers
the potential to create more adaptable and effective AI agents. By
expanding this framework to operate in diverse and dynamic do-
mains, we aim to enhance the capacity of LLM-agents to collaborate
seamlessly with humans across varied contexts.

9 CONCLUSION
Our study demonstrates how Gricean norms enhance human-agent
collaboration. IncorporatingGricean norms through Few-shot Chain-
of-Thought (Fs-CoT) prompting, and applying the cognitive frame-
works, improves the Lamoid’s ability to generate accurate and
contextually relevant responses. The normative framework and Fs-
CoT enable the Lamoid to adhere to Gricean and Inference norms,
which substantially enhances interaction quality, as reflected in
performance metrics such as task accuracy, response clarity, and
relevance. Additionally, the Lamoid’s ability to accurately handle

various instruction types—whether incomplete, invalid, irrelevant,
or ambiguous—highlights the effectiveness of structured norms in
refining AI communication to align with human logic and expecta-
tions.

Despite these successes, challenges in spatial reasoning and path
finding persist due to inherent limitations in LLMs when applied to
spatial tasks. Directions for future work include integrating external
tools for better information extraction and spatial reasoning, and
developing a more robust Lamoid capable of handling complex
spatial tasks. Looking ahead, exploring the scalability of norm-
driven LLM applications across different operational domains is
a promising area for further research. Continual refinement of
these models is crucial for enhancing AI’s capability to interact and
innovate collaboratively with humans in achieving complex goals
in dynamic environments.
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