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Abstract

We model a multiagent system (MAS) in socio-technical terms, combining a social layer
consisting of norms with a technical layer consisting of actions that the agents execute. This
approach emphasizes autonomy, and makes assumptions about both the social and technical
layers explicit. Autonomy means that agents may violate norms. In our approach, agents are
computational entities, with each representing a different stakeholder. We express stakeholder
requirements of the form that a MAS is resilient in that it can recover (sufficiently) from a
failure within a (sufficiently short) duration. We present RENO, a framework that computes
probabilistic and temporal guarantees on whether the underlying requirements are met or,
if failed, recovered. RENO supports the refinement of the specification of a socio-technical
system through methodological guidelines to meet the stated requirements. An important
contribution of RENO is that it shows how the social and technical layers can be modeled
jointly to enable the construction of resilient systems of autonomous agents. We demonstrate
RENO using a manufacturing scenario with competing public, industrial, and environmental
requirements.
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1 Introduction

Models of social interaction are central to artificial intelligence (AI) and have long drawn
interest from the research community, especially in the field of multiagent systems (MAS) [9,
20,40, 52]. Socio-technical systems (STS) are a powerful way of expressing social interaction
among agents and provide a way of governing MAS [11, 29]. In a socio-technical system
(STS), autonomous agents act on behalf of the stakeholders and represent their needs [13, 17,
26]. We adopt a conception of an STS [27, 28] in which agents interact with each other and
with the underlying technical architecture. Such an STS can be represented as a multiagent
system (MAS) and governed via norms [51] that regulate interactions among the agents and
help guide the agents towards the achievement of their stakeholders’ needs.

This paper falls into the broad area of socio-technical systems. It goes beyond previous
research by introducing the notion of resilient socio-technical systems. A resilient STS is
one that seeks to meet stakeholder requirements and can recover from requirement failures.
In this way, resilience is an essential element of the trustworthiness of an STS, especially in
regards to its ability [54].

Our intuitive reading of the resilience of an STS takes the following form: Within some
deadline, if an undesirable condition, or a condition that flags a departure from normal
operating states, comes to pass, then within k steps a desirable state (or one that represents
a return to normal operating conditions) can be achieved with a probability higher than a
specified threshold. We identify three important aspects of resilience: (1) Resilience involves
recovery from an undesirable state; (2) Resilience involves recovery within a deadline (or a
pre-specified number of steps); (3) Resilience involves recovery with a probability exceeding
some (sufficiently high) threshold.

We tackle the above intuitions by extending STS specifications to include time and quanti-
ties, providing a formalization and algorithm for automatically translating STS specifications
to models that can be input into model-checking tools such as PRISM [30], introducing prob-
abilistic model-checking to STS specifications to reason about the probability of meeting
requirements, providing a means to evaluate trade-offs between achieving technical objec-
tives and meeting social regulations, and finally, implementing a prototype of the entire
framework.

1.1 Research objectives and contributions

Our goal is to aid the design of resilient STSs by providing a technique and tooling for
evaluating alternative STS specifications with respect to the stated requirements. Specifically,
we have the following objectives:

01 To incorporate a rich model (time and quantities) of computational norms into STS
specifications as a means to regulate agent behavior and guide which actions an agent
should take.

0> To verify at a specified level of likelihood that an STS meets its stakeholders’ require-
ment and can recover from a requirement failure within a specified period of time.

03 To develop techniques (supported by methodological guidelines) for leveraging prob-
abilistic model checking to explore the trade-off space involving alternative STS
designs and alternative formulations (particularly relaxations) of stakeholder require-
ments.

Accordingly, we present RENO (short for Resilience via Norms), a probabilistic framework
that evaluates how resilient an STS specification is by verifying to what extent the MAS meets
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its stakeholders’ requirements and evaluating the speed and extent to which the MAS recovers
from a requirement failure.

Our contributions include (i) a formal STS specification including social norms and tech-
nical actions, and associated requirements expressed with quantities and time—achieves Oy;
(ii) a transformation algorithm that takes a given STS specification and associated require-
ments, and produces a PRISM (Probabilistic Symbolic Model Checker) [30] model and
associated properties in Probabilistic Computation Tree Logic (PCTL) [1, 25]—provides the
means to achieve O;; and (iii) a formal probabilistic verification process stating how likely
a given STS specification meets stakeholder requirements and recovers from requirements
failures—achieves O, and O3.

1.2 Practical usage, as envisioned

We envision RENO being deployed in practice via the following steps. First, the designer
specifies an initial version of the STS specification. Second, the stakeholder provides the
requirements expressed in PCTL. The requirements may include resilience requirements
(formalized in Sect.3 as system properties) where we show how the specified MAS world
recovers from requirement failures. Third, RENO generates a PRISM model from the given
STS specification. Fourth, the designer runs the verification process. Fifth, RENO produces an
output demonstrating how likely the STS specification meets the stated requirements. Sixth,
the designer refines the STS specification based on the output produced by RENO. The process
iterates until the requirements are satisfied. If there is a situation where the requirements are
not satisfied, the stakeholders would have the option to relax the requirements suitably.
Seventh, the STS designer and stakeholders can analyse the various state variables or other
parameters to produce a new relaxed requirement based on the output produced by RENO.

1.3 Organization

The rest of the document is organized as follows. Section2 defines socio-technical systems
(STSs) and introduces the relevant background. Section 3 describes the computational ele-
ments of RENO. Section4 describes the methodological guidelines. Section5 presents our
prototype implementation and verification experiments. The complete replication package,
which encompasses all the artifacts and experimental data, including the outcomes of actions
and their corresponding execution probabilities can be accessed at [34]. Section 6 describes
the related work. Section 7 concludes the paper.

2 Background

2.1 Socio-technical systems

Our overarching objective is to develop a framework for handling resilience requirements in
multiagent systems (MAS) composed of agents that are afforded autonomy and self-interest
and where these interests might conflict with those of other agents. This notion is a departure
from traditional work on engineering multiagent systems, where a significant body of work
assumes that the agents involved have the same interests and have limited autonomy [55].
An important challenge in such settings is managing the aggregate behaviour of the par-
ticipating agents and, in particular, ensuring that the aggregate behaviour meets certain
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requirements imposed on the MAS. One effective strategy for addressing this challenge
involves incorporating norms. Norms constrain the behavior of individual agents in group
settings (e.g., societies and communities), and regulate the interactions between those indi-
viduals. Norms in multiagent systems specify social controls on an agent’s actions and can
help achieve the overall objectives of the system.

We conceive of a multiagent system in normative terms and, in particular, as a socio-
technical system (STS) consisting of a social and a technical layer.

The technical layer of an STS is composed of software components supporting various
agent actions. The social layer comprises the stakeholders and, for our purposes, the agents
who represent those stakeholders. Norms regulate the interactions among the entities (agents
and humans) in the social layer. For our purposes, the stakeholders are not formally modeled
and the agents (which are formally modeled) capture all the relevant actions. Specifically, the
norms here are directed from one agent to another and state what one agent may legitimately
expect of another and under what conditions. That is, the agents, being autonomous parties,
can violate any norm that applies to them but if they do so, they are identified as being in
violation of the norm. Sometimes, an agent must violate a norm to achieve a greater objective
[50]. The technical layer (actions) and social layer (norms) are specified by an STS designer,
in accordance with stakeholders’ requirements.

The distinction between the social and technical layers is important throughout the techni-
cal development we present below. The Methodological guidelines (in Sect.4) are provided
that support the design and implementation of resilient STS. In methodological guidelines,
it is demonstrated that updating the STS can involve changes to both the social and techni-
cal layers in order to meet stakeholder requirements. Changes at the technical layer involve
substantial changes to agent capabilities while changes in the social layer involve changes
to the norms guiding agent interactions. For example, if a given STS specification does not
meet the stated requirements then either the STS specification can be refined by adding or
removing agents’ actions at the technical layer or adding or removing norms at the social
layer.

To explain what we mean by an STS, let’s describe a simple use case that illustrates how
the social and technical layers arise and interplay in a practical multiagent scenario.

Example of an STS with agents, norms, and software components

Consider a scenario involving the manufacture of personal protective equipment (PPE) where
different stakeholders have potentially conflicting functional and sustainability requirements.
Imagine there are two textile companies for manufacturing PPE units, one (CompanyNear)
located near a population center and the other company (CompanyFar) located far from the
population center. This STS has four agents: (1) a textile manufacturing firm CompanyNear;
(2) another textile manufacturing firm CompanyFar; (3) a Hospital with a requirement for
varying quantities of PPE units (this demand can go up if there is an outbreak of a virus
such as Covid-19); (4) an environmental Regulator that imposes rules governing the extent
of permitted pollution and which it enforces through occasional inspections.

The companies have different kinds of environmental impacts. The regulator imposes
stricter prohibitions on CompanyNear relative to CompanyFar since CompanyNear is located
near the city and pollution generated by it will have a potentially greater adverse impact on
the health of city residents. These norms govern this STS:

e A norm governing the amount of pollution CompanyNear is permitted to generate.
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e A similar norm governing the amount of pollution CompanyFar is permitted to generate
(which, in general, can be higher than for CompanyNear since CompanyFar is farther
from the population center).

e Norms governing the quantities of PPE that CompanyNear and CompanyFar are commit-
ted to producing for the Hospital (in our example, both companies commit to producing
equal quantities of PPE, but these amounts could be different in general).

Both CompanyNear and CompanyFar can act to manufacture varying quantities of PPE units
(we provide details on how these actions are represented in Sect.3.3). The Hospital agent
performs only one action which involves creating demand for PPE units, which is manifested
via the commitments that CompanyNear and CompanyFar make to the Hospital. In order to
mitigate the potential increase in pollution associated with increased production of PPE units.
The CompanyNear and CompanyFar agents execute actions that involve decreasing pollution.
These actions are manifested via the commitments that CompanyNear and CompanyFar make
to the Regulator. The Regulator agent performs a variety of actions including specifying
regulatory limits on the permitted pollution level for each company, occasional monitoring
of pollution levels, and fining firms that violate pollution limits. For the purposes of our
example, we focus on the specification of regulatory limits on pollution, and this action
manifests only in the form of prohibitions that the PPE manufacturers must abide by.

In contrast to norms, requirements are distinct as they are specific conditions or constraints
that must be met to achieve a particular goal or objective. In our work, we evaluate whether
the stated requirement will be satisfied based on the norms and actions involved. Given the
above STS specification, we can assert a variety of requirements. An example requirement is
that both CompanyNear and CompanyFar should produce 1000 units of PPE per week and
both companies should not exceed a pollution level of 50 ppm (parts per million). Another
example requirement, regarding the resilience of the STS, is that both CompanyNear and
CompanyFar should reduce the pollution level from above 100 ppm (an unacceptable level
of pollution) to below 60 ppm (an acceptable level of pollution) of the chemical in question.

2.2 PCTL

Our goal is to create a practical framework to govern multiagent systems that meet specified
resilience requirements (along with functional requirements). A practical approach to speci-
fying such requirements is to state them in probabilistic rather than absolute terms. With the
probability as a tunable parameter set to a high value, it is possible to require that a system
be resilient most of the time even if not all the time.

There is a growing realization in the literature that for reasons similar to those that make
it worthwhile to consider actions with uncertain outcomes, it is important to support prob-
abilistic goals [33]. Properties such as resilience are especially amenable to a probabilistic
specification since they do not concern the object-level behaviour of the system (even if these
must meet hard, non-probabilistic, requirements).

Our framework emphasises STS specifications to understand the probability of meeting
requirements and recovering from a requirement failure within a specified time. PCTL is
used for specifying properties of discrete-time models such as discrete-time Markov chains
(DTMC:s) [31]. In RENO, a PRISM model is generated from the given STS specification and
is also a discrete-time model, whose state space is discrete and transitions are discrete steps
between states. Therefore, we use temporal PCTL to specify the properties of the system to
be checked.
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We operationalize an STS via Probabilistic Computation Tree Logic (PCTL). PCTL is
derived from CTL and includes a probabilistic operator P [25]. PCTL is equipped with
temporal operators with time bounds where time is discrete and one time unit corresponds to
one transition along an execution path. In PCTL, each atomic proposition is a state formula,
which involves assertions that are true in a single state (i.e., state properties). Path formulas
describe properties of paths (i.e., sequences of states). Formally, state and path formulas in
PCTL are defined as follows:

State formulas ¢::=true |a | —¢ | P AN | Peprob(¥)
Path formulas V:=X¢ | pU="¢ | pUg

Where a is an atomic proposition and W represents a path formula, ¢ represents a state
formula and P is a probabilistic operator (details below), ~ is an inequality (i.e., ~€ {<, <,
>, >}), and prob € [0, 1] is a probability bound and t € N.

Path formulas W use the Next (X), Bounded Until U=, and Unbounded Until (U) operators.
Similar to “always [J” and “eventually ¢’ operators in CTL, there are temporal operators in
PCTL [1]. In the literature, the temporal operators [] and G have been interchangeably used
for “always” and ¢ and F have been interchangeably used for “eventually”. Here, we use G
and F to align with PRISM syntax.

[trueUslqb]Np
—-[trueUSt—-ti)]N(l_p)

[F='$]-,
(G='¢]-,

A state formula is used to express the property of a model. A path formula may occur only
as the parameter of the probabilistic path operator P~ -0 (W). Intuitively, a state s satisfies
P~ pro» (W) if the probability of taking a path from s satisfying W is in the interval specified
by ~ prob.

PRISM is a probabilistic model checker [30]. Properties of the system are represented
formally in a probabilistic temporal logic (such as PCTL) and automatically verified against
an input probabilistic state transition model. PRISM takes two inputs: (i) a probabilistic model
(such as a Markov decision process (MDP)) and (ii) a property specification. PRISM then
conducts model checking to determine which states of the system satisfy the specification.
PRISM supports path properties that can be used inside the P operator such as [F=10¢]=¢.6
states that with at least 60% probability ¢ will become true within 10 time units, while
[G=20 r]>0.99 states that with at least 99% probability r will hold at least for 20 time units.

The syntax of the PRISM property specification language includes various probabilistic
temporal logics, including PCTL, within PRISM. In the informal PRISM property specifi-
cation language, a property is written as Ppouna[pathprop], stating that the probability of
being satisfied by the paths from the current state meets the bound bound.

An example of a bound would be Pg 75[ pathprop] which means that the probability that
the path property pathprop is satisfied by the paths from state s is greater than 0.75. To con-
sider the nondeterministic behaviour of a system then the meaning of Ppounq|pathprop] is
that the probability of pathprop being satisfied by the paths from the current state meets the
bound bound for all possible resolutions of the nondeterminism. Therefore, we need to reason
about minimum and maximum probability over all the possible resolutions of the nondeter-
minism. The minimum and maximum probabilities are calculated using Py,in=2[ pathprop]
and Py qax=2[pathprop], respectively. Additionally, we need to include parentheses when
using logical operators in a path property (pathprop) because logical operators have prece-
dence over temporal ones. An example of a property is Py.90[(G “A”)&(F “B")].
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Fig.1 The RENO Framework

3 The RENO framework

Figure 1 shows RENO’s main components, each of which is explained below:

Stakeholders Stakeholders define the requirements that the STS must satisfy. How they do so
isnotin our present scope but can involve a combination of creativity [37] or argumentation
[39]. If it turns out that satisfying a given set of requirements is not possible, then the
stakeholders would have little choice but to relax their requirements (ideally as little as
possible) to make it feasible to design an STS that satisfies these (relaxed) requirements.
The reason for this, e.g., the number of steps being too small, is something that is hard to
know ahead of time and is explored under the methodological guidelines as an iterative
process in Sect.4. In addition to the usual achievement and maintenance requirements,
we introduce a new class of resilience requirements. Using the syntax of PCTL described
above, a resilience requirement takes the following general form:

(UStateCond) — Pineq) probabilisticConst [F 1M e8¢ €M D State Cond)]

Here (ineq) is an operator (such as <, <, >, or =). probabilisticConst is any real
number between 0 and 1, representing a probability value. Here, integer Const is, as the
name suggests, an integer constant, used to denote the number of steps. U StateCond
abbreviates a condition representing an undesirable state (such as a state in which the
level of pollution exceeds an acceptable threshold). DStateCond abbreviates a condi-
tion representing a desirable state (such as one in which pollution levels are below an
acceptable threshold). The generic resilience requirement thus states that if an undesir-
able state (denoted by U StateCond) transpires, then the system can return to a desirable
state (denoted by DStateCond) at some future state but before or after, depending on
the nature of the inequality, the system has transitioned through integerConst states,
with a probability that satisfies (ineq) probabilisticConst. The above equation captures
the essence of resilience requirements, ensuring that the system has both the timing and
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the probability factors considered to facilitate the transition from an undesirable state to
a desirable state. It provides a quantifiable measure for assessing the system’s ability to
recover and adapt in the face of undesired conditions. We provide concrete examples of
resilience requirements later in the paper.

STS Designer The designer specifies an STS as two layers. The social layer describes the
agents and the norms among them, whereas the technical layer provides the operational
actions by which the agents act. The social layer consists of a set of norms that govern the
interactions among the agents. Note that norms [53] in our model are directed from one
party to another. In our example, each PPE manufacturer would commit to the Regulator
to meet certain pollution standards. That is, the norms are pair-wise, even with multiple
agents. Actions in the technical tier allow or restrict specific agent actions as they represent
hard constraints. Actions describe relevant facts about the operating environment, e.g.,
what will (potentially) happen when an action is executed.

Translation of an STS Specifcation to a PRISM Model RENO takes the STS specification
as input to generate a PRISM model. A PRISM model is a probabilistic state transition
model. A probabilistic state transition model associates a transition probability with each
transition. What we generate is a small variation in the form of augmented probabilistic
state transition models explained in Sect.3.3.1. In this case, an augmented probabilistic
state transition model takes into account both the probability of selecting an action and the
probability of executing an action. The process of translating an STS specification into a
PRISM model is explained in Sect.3.3.2.

Analysis RENO verifies the STS against the requirements to understand how the STS would
fare, i.e., with what probability it would violate or satisfy each requirement. If the analysis
suggests that refinement is required, the STS designer leverages this understanding to
refine the STS specification. If the analysis determines that it is not possible to modify
the STS in a way that would satisfy the requirements, the stakeholder proceeds to analyze
the various state variables or parameters to identify relaxed requirements, as explained in
Sect.4.2.

3.1 RENO Syntax

The RENO uses a language for specifying norms and actions. Table 1 shows RENO’s
syntax for specifying STSs. AG = {«y, a2, ...,®,} is a finite set of agents and & =
{Attry, Attrp, ..., Attr,,} is a finite set of attributes. Here, attributes are variables that are
assigned values or appear in inequalities used in action specifications or in the antecedent
and consequent conditions used in the various norm types (PPE and pollution in the discus-
sion below are examples of attributes). A superscript of + indicates one or more repetitions
whereas superscript * indicates zero or more. The operator 4= and —= can be best under-
stood with the following example: x+=y updates x by adding y to its current value while
x—=y updates x by subtracting y from its current value. If y is a numeric range (NRange)
as opposed to a single value, then we update x by adding (resp. subtracting) a value chosen
from NRange. L; represents the line number corresponding to the ith line in Table 1. Table 1
begins with the core concepts of RENO and ends with primitive concepts such as Num.

Lg Stmt can be either the update of the value of Attr using them += or —= operators,
the assignment of a value val to Attr or a reference to Attr in isolation. For example,
if Stmt is PPE+=[100,220] where PPE is an attribute, then the current value of PPE
is increased by adding a value between 100 and 220.
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Table 1 RENO Syntax

Ly Specification — Norm™ | Action™

Lo Norm — Commitment | Prohibition

L3 Commitment — c(AG, AG, Cond, Cond)

Ly Prohibition — p(AG, AG, Cond, Cond)

Ls Action — m(Cond, Stmt™, Stmt™)

Lg Cond — Expr | Cond A Cond | Cond Vv Cond |~ Cond
Ly Expr — T | L | Attr > Num | Attr < Num | Attr = Val
Lg Stmt — Attr += NRange | Attr —= NRange | Attr = Val | Attr
Lo NRange — Num | [Num, Num]

Lio Val — Num | T | L

Ly Num — Any numeric literal (drawn from R)

L7 An expression Expr evaluates to the logical true or false constant or an inequality
involving Attr and Num.

Le A condition Cond can be an expression (Expr) or a conjunction or disjunction of
expressions.

Ls An action m consists of condition Cond and two lists (as discussed later, these are
the DeleteList and AddList, respectively). The elements of each list are comma-
separated. An example of an action is m(true, { PPE, pollution}, {PPE+=[50, 100],
pollution+=PPE%[0.2, 0.4]}). Here the condition is the logical constant true. The
DeleteList consists of the prior values of PPE and pollution. The AddList consists of
the updated values of PPE and pollution. For example, let’s assume the current state s
has a PPE value of 10. After executing the action, the new value of the state variable
PPE can be updated with any value in the range [50, 100], plus the previous value. If
we consider a PPE value of 60 from the range, the next PPE value in the next state s’
would be 70.

L3-L4 A commitment consists of two agents (debtor and creditor) and a pair of conditions,
with the debtor promising the creditor that it will make the second condition true
if the first condition is made true. Similarly, a prohibition involves the debtor agent
promising the creditor agent to not let the second condition become true if the first
condition is made true. Consider the following example prohibition: p(CompanyNear,
Regulator, true, pollution > 60). Here, the debtor is CompanyNear and the creditor is
Regulator. CompanyNear promises Regulator that it will always (the first condition
is always true) ensure that the second condition does not become true (pollution
exceeding 60ppm).

L, A norm may be a prohibition or a commitment.

L1 An STS specification consists of one or more norms and one or more actions.

We will use Listing 1 to explain the technical and social layers of an STS specification in
the following sections.

3.2 Social layer: norms

Following Kafalietal. [27] and Singh [51], we define anorm as atuple (n, SBJ, OBJ, ant, con),
where n represents the norm type from {c, p}; SBJ € AG is its subject; OBJ € AG is its
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object; ant and con are conditions (Cond in Table 1 above) that represent the antecedent and
consequent of the norm, respectively. The set of norm types {c, p} consists of commitments
(c¢) and prohibitions (p).

A commitment indicates that the subject is committed to its object to making the con-
sequent true if the antecedent holds. Consider the following commitment from Listing 1:
Cj(CompanyNear, Hospital, true, PPE > 100). The CompanyNear is committed to the Hos-
pital to always (note that the antecedent is true) producing 100 units of PPE or more. The
company is the “debtor” for this commitment, and it would violate its commitment if it fails
to produce the specified amount of PPE.

A prohibition (p) indicates that its subject is prohibited by its object from making the
consequent true when the antecedent holds. Consider the following prohibition from Listing 1:
P;(CompanyNear, Regulator, true, pollution > 60). For example, the regulator prohibits
the company from polluting above 60 ppm at any time. CompanyNear would violate its
prohibition if pollution goes above the specified level of the chemical in question.

As seen in Listing 1, we have used a subscript number with each norm type, where
the subscript denotes the instance of each norm type (e.g., C; and C, are two instances of
commitments). For example, in Listing 1 each company has one commitment, so we have
defined commitment C;(CompanyNear, Hospital, true, PPE > 100) for CompanyNear and
C,(CompanyFar, Hospital, true, PPE>100) for CompanyFar. Similarly, each company has
one prohibition, so we have defined P;(CompanyNear, Regulator, true, pollution>60) for
CompanyNear and P>(CompanyFar, Regulator, true, pollution>80) for CompanyFar.

3.3 Technical layer: actions and state transitions

The technical layer consists of a finite set of operational actions A = {ay, aa, ..., ar} that
agents can execute. The technical layer consists of a finite set of operational actions A =
{ay, aa, ..., ax} for each agent to execute. In our use case, CompanyNear can choose to
manufacture 100 PPE units (a11) or 120 PPE units (¢12) and similarly, CompanyFar can
choose to manufacture 100 PPE units (a21) or 120 PPE units (a22).

An action is represented as m(condition, DeleteList, AddList), where condition is a Cond
(in the sense of Table 1) while each of AddList and DeleteList is a List (also in the sense of
Table 1). If an action is applicable (i.e., the condition holds in the current state), the action is
executed, leading to a transition to a new state where the old values of the attributes contained
in DeleteList are removed and the new values of the attributes specified in AddList are added.
The outcome of an action can be either deterministic or nondeterministic. The AddList can
specify deterministic or nondeterministic outcomes. The use of a range indicates that the
outcome of the execution of that action can lead to a state where the variable in question is
assigned any value within its range. In Listing 1 below, the execution of the action all can
lead to a state where the new value of the state variable PPE can be any value in the range
[50,100] and the new value of the state variable pollution is the value of PPE multiplied by
any step-size in the real interval [0.2, 0.4].

3.3.1 Selection probability

The RENO should support agent autonomy; agents are free to select which action they wish to
execute, but this choice is informed by the applicable norms. We would like to select an action
which has the most compliant behaviour. We consider how likely an action is compliant to
each norm. Because an action may be more compliant to a particular norm but at same time,

@ Springer



Autonomous Agents and Multi-Agent Systems (2023) 37:46 Page 110f40 46

Listing 1 STS specification for PPE manufacturing.

1 P (CompanyNear , Regulator, true, pollution>60)
» Ci (CompanyNear , Hospital, true, PPE>100)

3 Po(CompanyFar , Regulator, true, pollution>80)
4+ Cp (CompanyFar , Hospital, true, PPE>100)

sall: m(true, {PPE, pollution}, {PPE+=[50, 100],
pollution+=PPE*[0.2, 0.4]})

7 al2: m(true, {PPE, pollution}, {PPE+=[80, 120],
pollution4+=PPE*[0.5, 0.7]})

s al0: m(true, {PPE, pollution}, {PPE+=[0, 017,
pollution+=PPEx[0.0, 0.0]1})

0w a2l: m(true, {PPE, pollution}, {PPE+=[50, 100],
pollution+=PPE*[0.2, 0.41})

n a22: m(true, {PPE, pollution}, {PPE+=[80, 120],
pollution+=PPE*[0.5, 0.711})

2 a20: m(true, {PPE, pollution}, {PPE+=[0, 0],
pollution+=PPE*[0.0, 0.01})

not compliant to any other norms. Our framework RENO helps the agent to select an action
from a set of actions that has the most compliant behaviour. For instance, in a given state,
CompanyFar can execute either a21 and a22 to manufacture 100 PPE. In a given state, let’s
assume that there is a 100% chance of action a21 complying with a commitment, while there
is a 10% chance of action a21 complying with a prohibition. Similarly, let’s assume that
there is a 50% chance of action a22 complying with a commitment, while there is an 80%
chance of action a21 complying with a prohibition. In this scenario, the RENO will select
action a21, which demonstrates the highest level of compliant behavior by considering both
commitment and prohibition for execution in that particular state.

Therefore, we wish to model both agent choice (i.e., which action to execute) and transi-
tion probabilities (uncertain outcomes accruing from the execution of an action). We make
a distinction between selection probability and execution (or transition) probability. The
selection probability is important because we use selection probability to determine the
norm-compliant behaviour.

We use the common mathematical form “softmax” to map weights to probabilities. Soft-
max or normalized exponential function is a mathematical function used to convert a vector
of R real numbers into a probability distribution of R possible outcomes. The softmax func-
tion normalizes the input vector, making sure that the resulting values range between 0 and
1 and that their sum adds up to 1, which is a requirement for a probability distribution.
Consequently, the output vector obtained from softmax can be interpreted as a probability
distribution over the different classes or categories. The essential intuition is that selection
is a means to deal with autonomy while execution probabilities are a way to deal with a
stochastic environment. Here, a stochastic environment means one in which instructing an
agent to take a particular action does not necessarily lead to that action being carried out.

We define a function prob(ax, s, A, N) (Eq.(1)) which calculates the likelihood of an
agent choosing an action from a given state (i.e., selection probability). This function com-
putes the propensity of an agent selecting an action for execution, given the impact of one
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execution of the action on compliance with the applicable set of norms. When propensity is
computed for all actions, we transform the resulting probabilities into a probability distribu-
tion for the set of actions.

[N| sat(ag,n;)
prob(ak,s,A,N):Hm (1)

i=1 2uaeA W;
where prob(ay, s, A, N) indicates the probability of selecting action a; from a set of actions
A in a state s, sat(ax, n;) indicates the probability that action a; satisfies the current target
set out by norm n;, and w is a parameter that indicates our willingness to permit the norms
that instantiate n; to be violated (e.g., a higher w indicates that a norm violating action is less
likely to be picked). The weight w; is not a part of the norm 7n;. The willingness to violate
the norm could be contingent on the agent, the current state or the potential norm-violating
action, or all three. We do not propose to be prescriptive here about which intuition needs to
be adopted. Indeed, any of these intuitions might be valid. We simply provide machinery in
this equation to obtain a selection probability based on the willingness to violate the norm.

Now we will describe the process of computing sat(ax, n;). The Eq.(2) is used to capture
the likelihood of an action being compliant with prohibitions. Equation (3) captures the
likelihood of an action being compliant with commitments.

For an action ay, a norm n;, and an attribute Attr that is common to a; and n;, we set
the probability of ay satisfying n; to 0 if the upper-bound for Attr as described in gy is less
than the current target for Attr as described in n; (as for a commitment) or the lower-bound
for Attr as described in ay is greater than or equal to the current target for Attr as described
in n; (as for a prohibition). Similarly, we set the probability of a; satisfying n; to 1 if the
lower-bound for Attr as described in gy is greater than or equal to the current target for Attr as
described in n; (commitment) or the upper bound for Attr as described in ay is less than the
current target for Attr as described in n; (prohibition). Note that by computing sat (ay, n;) as
a probability, we eliminate cases where (unnecessarily) increasing or decreasing the amount
of a given attribute beyond the target value might have an undesired effect on calculating
the likelihood of a given action. For example, the probability of satisfaction is the same if
the action produces exactly the target value or twice the target value. If the current target for
Attr as described in n; is within the interval for Attr as described in ag, then we compute the
probability of satisfaction based on a uniform distribution of values from the interval for Attr
as described in a;. For example, if 40% of the values for Attr within the lower bound and
upper bound satisfies the current target, then sat (ax, n;) is 0.4.

c_target (Attr) = n;_target (Attr) — current (Attr)

1, if uaqr < c_target (Attr)
sat(ag,n;) = 0, if Iayr > c_target (Attr) )
c_target (Attr) — Iagr .
, otherwise
Uatr — LA
1, if [aqr > c_target (Attr)
sat(ag, n;) = 0, if upayr < c_target (Attr) 3)
UAur — C_target (Attr) .
, otherwise
UAwr — [Awr

where n;_target (Attr) is the target value for the consequent of norm »;, current(Attr) is the
value of the attribute in the current state, s and u oy are lower bound and upper bound of
attribute Attr in the DeleteList or AddList of ay.
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Now, we provide a proof for the Eq. (1) that it provides a probability distribution for the
set of actions in a given state s.

Theorem 1 7o prove that the sum of probabilities of all actions for state s is equal to 1, we
need to sum the probabilities of all actions over the set of available actions A:

Y apea Problag, s, A, N) =1

Proof Let’s substitute the value of ZakeA prob(ag, s, A, N) from Eq. (1).

|N| fat(ak ni) |N| sat(ak ni)

Z prob(ag, s, A, N) = Z l_[ sat(a ni) l_[ Z sat(a ni) (A)
ag€A areAi=1 ZaeA i=1areA ZaeA

IN| t(ag,n;) |N| sat(ag,n;)

MY = -~y ®)

mt(a nj) sat(a,n;)
i=lazeA ZaeA ol 2qeA W
lekeA wfar(ak.ni)

Now let’s take from Eq. (B) and using the properties of summation, we

sat(a,n;)
. . acA i
can split the sum into two parts.

sat(ag,n;) sat(ay,n;) sat(az,n;) sat(an,nj)
ZakeA w B wi i N wi i N N wi n,Mi
sat(a,n;) sat(a,n;) sat(a,n;) sat(a,n;)
ZaeA w; ZaeA w; ZaeA w; ZaeA w;
sat(a,n;)

Now, let’s bring the common denominator, ), 4 w; , inside each term:

w:mt(al,n,)_i_ rat(azn)+ +w Yat(an,n,)

i
sat(a,n;)
ZaeA w;

sat(a,n;)

Since the denominator) . 4 w; is the sum of the exponential values of all actions

in the A so it can be canceled out.

wvat(a] ;) + wmt(az ni) 4o+ wmt(u,,,n i)
Z 4 wsat(a,n i) =1
ae i
So,
sat(ag,n;)
w
ZukEA — 1 (C)

sat(a,n;)
Daca W

sat(ag,n;)
Zuk cA Wi

sat(a,n;)

Now put value of from Eq. (C) in Eq. (B).

acA

IN| sat(ak,n;) |N|
ZakeA [ '

I1 =[]*1=1

sat(a,n;)
ol 2oaeA W i=1

Hence,

Z prob(ag,s, A, N) =1

ar€A

[m}
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3.3.2 Translation of an STS specification to a PRISM model

The PRISM model is constructed as a probabilistic state transition model. In the following
algorithms, c_target(Attr), n_target(Attr), and current(Attr) have the same denotations as in
Egs. (1, 2, and 3). In Algorithm 1, we compute a PRISM model that includes a transition
probability for every feasible transition (s, s’) where s’ is one of the states that could result
from executing action a in state s. We also note that although our state schema includes a
variable that denotes the agent whose turn to act, this is entirely an artifact of the round-robin
agent execution technique we are using for approximately checking an STS specification.
In the algorithms defined below, we can ignore the state variable called agent except in
situations where we explicitly refer to it.

We also note that for many of the actions we specify their resulting states in terms of
the deltas (i.e., the operations performed) on the prior values of the state variables. In the
algorithms below, we avoid this complexity by simply assuming that the actions are specified
in terms of the values of the state variables in the resulting state instead of explicitly describing
the changes or operations applied to the state variables. Thus, the algorithms avoid the
complexity of detailing how the state variables are updated. They focus on the end result,
rather than the specific steps involved in achieving that result.

Algorithm 1 translates an STS specification into a PRISM model. The algorithm takes
two inputs: (1) An STS specification consisting of a set of agents, where each agent has a
set of norms N and a set of actions A. (2) The set of action execution probabilities given by
ACTIONEXECPROB (these are the probabilities associated with the action execution transi-
tions). In practical settings, we expect these probabilities to be obtained from past execution
data (for this paper’s experimental purposes, these values are randomly generated).

e We create the initial state sy by assigning 1 to variable agent and assigning random values
to other state variables (Line 2).

e The consequences of actions always lie in that range. The number of outcomes of each
action is calculated based on a step size. If we use a small value for step-size, then we
have more number of outcomes of an action as compared to a large value for step-size.
For example, the consequences of the action a1l always lie between 50 and 100. If the
STS designer chooses the step size as 10 then this action has six consequences, i.e., 50,
60, 70, 80, 90, and 100 whereas if the step size is 20 then it has only three consequences,
i.e., 50, 70, and 90. It can be noticed that action a 11 has six consequences when step-size
is 10 whereas action a11 has three consequences when step-size is 20.

e In Line 5, when a specific agent is selected in a state then all transitions from this state
lead to the states where we execute the set of actions (determined by the non-zero value
of an agent, which serves as an identifier for the selected agent). Then, we add transitions
corresponding to all non-deterministic outcomes of executions of the actions identified
by the value of the agent variable (Line 6 or Line 9).

e We build a PRISM model as a probabilistic state transition model. Hence, we need to
compute the transition probability for each state transition. Each state’s state transition
probability is calculated by multiplying the selection probability of an action we execute
with the associated probabilities for that action as defined by the input ACTIONEXECPROB
(Algorithm 1). For a state where a specific agent is selected, we calculate the action
selection probability for each action in the set of actions A for that agent using Eq. (1).

e Algorithm 2 is used to calculate an action selection probability in a given state.

— We go through each action a’ in the set of actions A (Line 2 in Algorithm 2).
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Algorithm 1 Generating PRISM model from an STS specification.

Input: An STS specification consisting of a set of agents, where each agent is specified via:

A set of norms N

A set of actions A

Input: w is a user defined parameter that indicates our willingness to permit the norms that instantiate n where
n € N to be violated.

Input: A function ACTIONEXECPROB : A x § — R which is the probability of arriving in a given state in §
by executing an action in A, independent of which state we are in when this action is executed.

Output: A PRISM model (S, A, Transition Prob) where S is a set of states, A is a set of actions and a
function TransitionProb : § x § - R

1:

A A S ol

Create an initial state sp by assigning to agent the ID of the first agent in the input STS specification and
assigning the value 0 to all the other state variables (note that all of these are necessarily numeric valued).
:S:i={sp}

: while S # ¢ do

Letse S

for each a € A for the agent denoted by the current value of agent do

if agent # last agent in the STS specification then
s’ is obtained from s by removing value assignments to variables that appear in the
DeleteList of @ and adding variable value pairs that appear in the AddList of a;
agent = next agent in the STS specification.
else if agent=last agent in the STS specification then
s’ is obtained from s by removing value assignments to variables that appear in the
DeleteList of @ and adding variable value pairs that appear in the AddList of a;
agent = first agent in the STS specification.
end if
TransitionProb(s, s') :=
ACTIONSELECTIONPROBABILITY (S, w,a,A,N)
* ACTIONEXECPROB(a, s”)

end for
S:=S-{s}

16: end while

Then for each action a’, we go through each norm 7 in the set of norms N to compute
action a’’s probability which satisfies the current target set out by the norm n (Line 3
in Algorithm 2).

If norm 7 is prohibition then we use line 4 to line 7 in Algorithm 2 to compute action
a’’s probability which satisfies the current target set out by the norm prohibition.
Similarly, if norm n is commitment then line 8 to line 11 in Algorithm 2 are used to
compute the actions &’ that satisfies the current target set out by the norm commitment.
For example, agent CompanyNear is selected in the current state s. Then, we calculate
the action selection probability for each actionall, @12, and a 10 based on the norms
P; and Cy (from Listing 1).

Finally, we get the action selection probability for each action using Eq. (1) (Line 14
in Algorithm 2).

e Finally, Line 13 in Algorithm 1 will be used to compute the transition probability for the

updated state which is added using either Line 7 or Line 10 in Algorithm 1.

For example, the current agent is CompanyNear in state s. For each action, such as all,
the state variables are updated (which results in the current state being updated to the
next state) and state transition probability for the next state is computed in Line 13 in
Algorithm 1.

Line 13 computes the state transition probability which is equal to the multiplication
of the selection probability of all with its action execution probability. This process
is repeated for the remaining actions, i.e., @12 and a10. As discussed in Sect. 3.3, the
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states resulting from these transitions are obtained from the corresponding prior states by
removing the value assignments to variables in the DeleteList and adding the new values
to these variables as specified in the AddList of the action.

Algorithm 2 Calculating selection probability in a given state s.

1: function ACTIONSELECTIONPROBABILITY(S,a,w,A,N) where a is the action of interest (i.e., the action
whose probability of selection we wish to compute), s is the current state and N is the currently applicable
set of norms

2 for each a’ € A for the applicable agent in s do

3 for each n € N for the applicable agent in s do

4: if n is a prohibition and state variable Attr is common to a and n then
5: c_target(Attr) := n_target(Attr) — current(Attr)

6: sat(a’, n) is assigned the value computed using Eq. (2)

7 end if

8: if n is a commitment and state variable Attr is common to a and n then
9: c_target(Attr) := n_target(Attr) —current(Attr)

10: sat(a’, n) is assigned the value computed using Eq. (3)

11: end if

12: end for

13:  end for

14:  ACTIONSELPROB(s,a, A,N):= action selection probability computed using Eq. (1).
15:  return ACTIONSELPROB(S, a,A,N)
16: end function

Note that we assume that each action and each norm refers to only one state variable (i.e.,
only one Attr).
Example of PRISM model generated using Algorithm 1. It would be easier to visualise
the model graphically. In PRISM, the transition matrix of the model can be exported in the
Dot (Dot is a graph description language) format, which allows easy graphical visualisation
of the graph structure of the model. Figure2 is constructed based on the transition matrix
of a PRISM model generated using Algorithm 1 from a simplified STS specification with
two agents where each agent has two actions. Figure 2 shows part of a PRISM model but the
complete diagram is provided in the supplementary material. We describe the application of
our algorithm from State 31 (2,3,1)—the red box in the diagram, where agent = 2, PPE = 3,
and pollution = 1. Since the agent = 2, the CompanyNear agent is selected as a current agent.
Two actions are executed next and each action has two consequences. In State 31, there are
four potential state transitions: with 0.11 probability PPE is increased by one in the next state
(State 1—green box) where agent =1; with 0.235 probability PPE is increased by four and
pollution is increased by one where agent = 1 in the next state (State 3 green box); with 0.265
probability PPE is increased by four and pollution is increased by two where agent = 1 in the
next state (State 4 green box). In state 4 (1,7,3)—the green box in the diagram where agent
= 1; PPE = 7; and pollution = 3. Since the agent = 1, the CompanyFar agent is selected as
a current agent. There are two actions for CompanyFar to be executed next. There are four
resulting states, such as 37 (2,8,3) and 54 (2,14,5). Then, state 37 (2,8,3) delivers agent = 2
so CompanyFar is again selected using the round-robin agent execution technique.

3.4 Requirements as PRISM properties

RENO supports three core types of requirements: achievement and maintenance requirements
are essential to the norm literature (e.g., a commitment to achieve something to a certain
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L § ) 4 ‘ A
. 31 33 34 30
(Agent, PPE, pollution) 231) (26.2) 26.3) (29.4)
~N
CompanyNea CompanyNear CompanyNear
0.11 /0.2350.265\0.39 _/0.265 0.235 P11\ 0.39 0.235 D.265 \0.39 0.11
1 3 3 19 10 11
(1.4.1) (1,7.2) 1.73) (1.13.4) (1,10.4) (1,10.5)
1Far D:CompanyFar 0:CompanyFa 0:CompanyFar D:CompanyFar N
0.215 /0.383 0.115_/0.285 /0.215 0385\ 0.115_70.215 /0.285 \0.115 0.385
44 37 <4 5 jle— | &
11.4) (2,8.3) (2,14.5) (2.11.5) 2.17,7)
FCompanyNear :CompanyNear :CompanyNear 1 D:CompanyNear 10:CompanyN
15 16 26
(1.124) (1.12.5) (1,15,5)

Fig.2 Sample (partial) PRISM model using Algorithm 1

level or a prohibition to maintain something at a certain level). The third type is the resilience
requirements (novel to RENO) to verify that an STS can recover from requirement failures.
We believe these three types of requirements cover realistic verification scenarios, to help
guide STS designers. In the following, we consider these three types of requirements and
their formalization in PRISM syntax.

Achievement and Maintenance. Consider the requirement that the probability that the
company can manufacture at least X PPE units within K timesteps and maintain the
pollution level below Y ppm should be no less than P. We formalize this in PRISM as
follows:

Ppin=2[(pollution < Y) U=K (PPE > X)]

If we achieve minimum probability P (Py,;,=2 =P), then this requirement is satisfied.
Resilience Consider a situation where we find the pollution level above some threshold
(say X ppm). Then we wish to achieve a better state (where the over-pollution problem
has been resolved by bringing it down to below Y ppm) within K steps to be no worse
than some threshold value.

We formalize this requirement in PRISM as follows:

filter(print, Pm,-nzf_;[Fprollution < Y], pollution > X)
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filter() is a PRISM device that allows us to perform max or min over multiple states
satisfying some property (here that property is pollution > X). If we achieve a min of 0,
that tells us that we are not resilient at all while if we achieve a minimum of 1.0, then we
are fully resilient.

For resilience, we are interested in ensuring that our system remains within the states that
satisfy the above property with a minimum probability of 0.75. We formalize the second
part of the requirement in PRISM as follows:

Prin=2[G=N (pollution > Y = P-1[F=X (pollution < X)))]

4 Methodological guidelines

In this section, we provide methodological guidance to support the design and implementation
of resilient STSs. We provide guidance from two perspectives:

e From the perspective of STS designers. Here, the challenge is to ensure that the STS
meets the specified requirements while preserving agent autonomy.

e From the perspective of stakeholders specifying requirements for the overall system.
Here, the challenge is to ensure that the requirements are feasible, i.e., that it is not
possible to design an STS that satisfies the given requirements.

These are deliberately framed as methodological guidelines as opposed to a procedure
because there is significant human input and judgment involved. There are multiple options
available to the STS designer in terms of how the constituent agents (and in particular avail-
able agent actions) are designed and in terms of the kinds of norms that should be specified.
There are, similarly, multiple options available to stakeholders in terms of how they might
design requirements.

4.1 The STS designer perspective

The steps below serve as a guide for the STS designer to develop an initial version of the
STS specification and conduct an analysis to ensure stakeholder requirements are satisfied.
If the stated stakeholder requirements are not satisfied, the STS designer can iterate the
specification to refine it and ensure that stakeholder requirements are satisfied.

Step 1: Defining the agents constituting the STS. The STS designer needs to define each
constituent agent as a collection of actions, based on the known capabilities of each agent.

Step 2:Defining the augmented probabilistic state transition model. In general, a probabilistic
state transition model describes the likelihood of achieving a resultant state if a specific
action is performed in a given state. These probabilities are either provided as input (in the
case of transition probability) or computed from an agent’s willingness to violate a norm
(the parameter w which is used in computing the selection probability for an action). In this
step, the STS designer needs to create an augmented probabilistic state transition model
that serves as the model for model-checking PRISM based on the two sets of probabilities:
selection probabilities and transition probabilities.

Step 3: Defining the norms governing the STS. There are some common principles guiding
the specification of the initial set of norms given a set of available agents and a set of
requirements. A resilience requirement specifies two kinds of conditions: (1) Conditions
that flag a departure from the “normal” operating mode and (2) Conditions that flag the
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restoration of the normal operating mode. The overall requirement is augmented with a
deadline (in terms of the number of steps) within which normal operations are restored,
and a lower bound on the probability that this will happen. The normal operating mode
can be achieved via a combination of commitments and prohibitions (e.g., CompanyNear
committing to Hospital to produce at least 100 PPE units per day, but being prohibited
by Regulator from polluting at a rate higher than 60 parts per million per day). The
deviation from the normal operating mode is flagged via a condition where the minimum
PPE production target is not met and the maximum permitted pollution level is exceeded.
Achievement and maintenance requirements can similarly be specified via combinations
of commitments and prohibitions.

Step 4: Using PRISM to determine requirements satisfaction. Our technique enables the
encoding of requirements in the form of PCTL properties that can be provided to PRISM
as input, and an augmented probabilistic state transition model. When we run PRISM with
these inputs, we obtain as output an indication of whether the PCTL properties (and hence
the original requirements) are satisfied. If PRISM indicates that these properties have not
been satisfied, it triggers a redesign of the STS.

Step 5: Redesigning the STS in light of model checking results. Redesigning the STS can
involve (1) Adding or removing agent actions and (2) Adding or removing norms. Adding
an action, if feasible, is one approach to resolving a case of requirements failure. If the
analysis using PRISM reveals that an achievement goal/requirement is not being satisfied,
anew action (for instance to produce PPE at a faster rate) can serve as a potential (re-design)
solution. A violation of a maximum permissible pollution requirement can similarly be
resolved by disallowing/removing an action that permits a faster rate of PPE production,
which comes with a concomitant higher rate of pollution. Adding a new norm in the form
of a commitment to produce higher levels of PPE can help resolve a situation where an
achievement goal/requirement involving meeting a production target for PPE is not being
satisfied.

4.2 The stakeholder perspective

The stakeholder may be required to engage in an iterative process of progressively relaxing
the applicable requirements if the STS designer determines that revising the STS specification
(Step 5 in Sect.4.1) cannot meet the requirements.

Modification of the applicable requirements can involve three kinds of changes:

e Modifying the associated conditions: In our examples, these mainly involve inequalities
on state variables (such as the number of PPE units, or the pollution level). These are
entirely left to human judgment.

e Modifying the number of steps (i.e., the deadline) and the minimum associated prob-
ability: Both of these can be conjointly modified and represent a trade-off space for
the stakeholder. Consider, for instance, Fig.3 which shows the minimum probabilities
achievable for a given number of steps. Figure 6 similarly illustrates the trade-off space
in the context of a resilience requirement. Accessing a visualization of the trade-off
space will make it easier for a stakeholder to decide on an appropriate relaxation of a
requirement.
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5 Prototype implementation and requirement verification results

This section describes the evaluation we carried out, for our approach. We describe the
requirement verification results of our use case. Then, we discuss our experimental settings,
scalability of the implementation, performance measures, and finally, report our results.

To construct and analyse a model with PRISM, it must be specified in the PRISM language,
a simple, state-based language. Specifically, the PRISM language is composed of modules
and variables. The values of these variables at any given time constitute the state of the
module. The behavior of the module is described by a set of commands.

laction]lguard = prob; : update; + ...+ prob, : update,

The guard is a predicate over all the variables in the model. Each update describes a
transition that can be made by a module where the guard is true. A transition relationship of
the system is specified by allocating new values to the variables in the module. Each update
is also assigned a probability (or in some cases a rate) - assigned to the corresponding
transition. If a module has more than one variable, then updates describe the new value
for each one of them. The initial state of a model is then defined by the initial value of all
variables (see Appendix A.1) for the initial state in the PRISM model). However, the PRISM
input language does not support external functions, such as function prob(ay, s, A, N) in
Eq. (1), to dynamically construct a state-transition model. Therefore, we have connected to
PRISM programmatically to create a model building on the machinery described in Eq. (1)
(see Appendix A.2).

PRISM provides a Java-based interface or API that allows users to interact with PRISM
programmatically. This enables us to automate the construction, solving, and verification
of the PRISM model. Algorithm 1 has been used to automatically construct the PRISM
model by translating an STS specification into a PRISM model that incorporates dynamic
state transitions. That is, state transition probabilities are recalculated after each transition
depending on the values of the state variables. We show the snippets for state transitions in
the PRISM model in Appendix A.3.

The first step in our framework in Fig. 1 is to capture the STS specification. Here, Listing 1
describes the STS specification for PPE manufacturing with two companies. Each company
has three actions where two actions are used to manufacture PPE and one action describes
a null action. We introduce a null action where the company does not want to manufacture
PPE. Specifically, actions a10 and a20 are considered as null actions for CompanyNear and
CompanyPFar, respectively. The second step in our framework, stakeholder provide a set of
requirements. So we use the requirements introduced in Sect. 3.4. Then, the STS specification
is automatically converted into a PRISM model using Algorithm 1. Finally, we demonstrate
the verification results for the requirements introduced in Sect.3.4 to see how likely STS
satisfies or fails each requirement. Section5.1 and Sect. 5.3 have been used to show that if a
requirement is not satisfied then the STS designer can revise the STS specification. Section 5.2
and Sect. 5.4 have been used to show that if a requirement is not possible to satisfy then the
stakeholders can relax the requirement to satisfy with a given STS.

Tables 2 and 3 illustrate the probability needed to satisfy a given requirement with a given
STS specification. If a requirement is noncompliant with an STS specification, then the STS
specification needs to be refined to satisfy a given requirement. Tables 2 and 3 also capture
the results where we design the new requirements by relaxing the value of state variables
based on results from the analysis phase. The results shown in Tables 2 and 3 have been
derived by using methodological guidelines mentioned in Sect. 4.
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Table 2 Experimental settings for achievement and maintenance

Requirement Case being verified STS Outcome
Eq.(4) Original (Case 1) Listing 1 Not satisfied even if the
requirement is relaxed
CompanyNear is productive (Case 2) Listing 2 Satisfied if relaxed to 8 steps
Both are productive (Case 3) Listing 3 Satisfied as stated
Eq.(5) Original Listing 1 Satisfied as stated

We present various cases, each corresponding to an STS specification, and verify whether
the specification satisfies the requirement. In the paper, we have provided listings to show an
STS specification for each case. However, the data such as outcomes of actions and execution
probabilities used to conduct experiments is provided in the supplementary material [34].

5.1 Handling strict achievement and maintenance requirements

The requirement below is an instance of the achievement and maintenance requirement
discussed above. The minimum probability that the company manufactures more than 200
PPE units within six timesteps and maintains the pollution level below the threshold of
70 ppm within six timesteps is 0.75. If we achieve a minimum probability of 0.75, then
this requirement is satisfied. Table 2 shows the experimental settings for achievement and
maintenance requirements. Each case in Table 2 corresponds to an STS specification.

We verify whether a case satisfies the requirement.

Pinesl(pollution <70) U=® (PPE > 200)] 4)

Case 1 The STS in this case follows the specification of Listing 1. This requirement is only
satisfied if both companies produce more than 200 PPE within six timesteps with a minimum
probability of 0.75. The minimum probability that both companies produce more than 200
PPE within six timesteps is 0.69, hence, this requirement is not satisfied.

Figure 3 illustrates that the minimum probability to be satisfied for this property varies
with the number of timesteps (k). Moreover, 0.73 is the probability achieved after increasing
the k number of time steps to ten. Hence, this requirement cannot be satisfied within the
timesteps allowed.

Case 2 The STS is revised for CompanyNear. The Listing 2 shows a revised specification of
Listing 1 —commitment C; is replaced by C3(CompanyNear, Hospital, true, PPE>200). After
replacing commitment C1 by C3, CompanyNear is more productive in terms of manufacturing
more PPEs. Commitment C3 enables the selection of an action for increasing the production
of PPEs. The minimum probability achieved is 0.69 (achieved in six timesteps). Hence, this
requirement is not satisfied. Figure3 shows that the requirement is satisfied within eight
timesteps with 0.77 minimum probability.

Case 3 As we have seen in Case 2 this requirement is satisfied in eight or more timesteps and
cannot be satisfied within six timesteps, hence, we revise STS for CompanyFar. STS follows
Listing 3, a revision of Listing 2—commitment Cj is replaced by C4(CompanyFar, Hospital,
true, PPE>200). In this case, the commitment to manufacture PPE has been increased for
both the companies. Therefore, both companies are productive as they choose the actions that
manufacture more PPE. Figure 3 shows the minimum probability achieved is 0.75 (achieved
in six timesteps). Hence, this requirement is satisfied.
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Listing 2 Revised STS specification of Listing 1 for CompanyNear to ensure achievement and Maintenance.

1 Addition of norms or actions are shown in blue

and deleted lines are shown with red
strikethrough.

3 P (CompanyNear , Regulator, true, pollution>60)
4 7 } 2 2 —

5 C3 (CompanyNear, Hospital, true, PPE>200)

s« Pp(CompanyFar , Regulator, true, pollution>80)
7 Cp (CompanyFar , Hospital, true, PPE>100)

v all: m(true, {PPE, pollution}, {PPE+=[50, 100]
pollution+=PPE*[0.2, 0.4]})

0w al2: m(true, {PPE, pollution}, {PPE+=[80, 120]
pollution+=PPE*[0.5, 0.711})

nall0: m(true, {PPE, pollution}, {PPE+=[0, 0],
pollution+=PPE*[0.0, 0.01})

3 a2l: m(true, {PPE, pollution}, {PPE+=[50, 100]
pollution+=PPE*[0.2, 0.4]})

4 a22: m(true, {PPE, pollution}, {PPE+=[80, 120]
pollution4+=PPE%x[0.5, 0.7]})

5 a20: m(true, {PPE, pollution}, {PPE+=[0, 0],
pollution+=PPEx[0.0, 0.01]1})

It is interesting to note that the minimum probability of satisfying this requirement is
less in Case 2 than in Case 1 with less than six timesteps. Here, CompanyFar is committed
to producing more than 200 PPE, which leads it to select action a21 with priority, which
results in high pollution in the short term. So, CompanyFar meets the social objective but the

probability of choosing action a21 is expensive in terms of increasing pollution.

Probabilities for Achievement and Maintenance
1 I T T T
0.9 Case 1 |
0.8} | —=— Case 2 ]
0.7 | —=Case 3 R
0.6 - .
0.5 .
0.4 =
0'3[ -
0.2 |
0.1} |

2 4 6 8 10 12
Number of steps [K]

Minimum Probability

Fig. 3 Probabilities for achievement and maintenance
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Listing 3 Revised STS specification of Listing 2 to ensure achievement and maintenance.

i1 Addition of norms or actions are shown in blue
and deleted lines are shown with red
strikethrough.

S

3 P (CompanyNear , Regulator, true, pollution>60)
4+ C3(CompanyNear , Hospital, true, PPE>200)
s Po(CompanyFar , Regulator, true, pollution>80)

6 7 7 7 —

7 C4 (CompanyFar, Hospital, true, PPE>200)

v all: m(true, {PPE, pollution}, {PPE+=[50, 100],
pollution+=PPE*[0.2, 0.4]})

0w al2: m(true, {PPE, pollution}, {PPE+=[80, 120],
pollution+=PPE*[0.5, 0.711})

nall0: m(true, {PPE, pollution}, {PPE+=[0, 0],
pollution+=PPE*[0.0, 0.01})

3 a2l: m(true, {PPE, pollution}, {PPE+=[50, 10017,
pollution+=PPE*[0.2, 0.4]})

4 a22: m(true, {PPE, pollution}, {PPE+=[80, 120],
pollution4+=PPE%x[0.5, 0.7]})

5 a20: m(true, {PPE, pollution}, {PPE+=[0, 0],
pollution+=PPEx[0.0, 0.01]1})

5.2 Handling relaxable achievement and maintenance requirements

As Fig. 1 (the RENO framework) shows, an STS designer can analyze the various state vari-
ables to satisfy the requirements. The STS in this case follows the specification of Listing 1.
After revising the STS specification (as mentioned in Case 3), we have seen that the minimum
probability of achieving more than 200 PPE and maintaining the pollution below 70 ppm
is 0.81. The STS designer may want to determine which values of PPE and pollution can
satisfy the above property with probability 1.

Figure 4 and Fig.5 show these minimum probabilities when PPE and pollution vary for
a range of values and the number of steps K. Figure4 describes the minimum probabilities
achieved when pollution is less than 70 ppm and PPE varies from 140 to 200. The result shows
that the minimum probability 1 is achieved when we have PPE greater than 160 within 10
timesteps or PPE greater than 140 within eight timesteps.

Figure 5 indicates the minimum probabilities achieved when PPE exceeds 200 ppm and
pollution varies from 70 ppm to 90 ppm. The result shows that the minimum probability 1 is
achieved only when pollution is less than 90 ppm within 12 timesteps.

These values of PPE and pollution indicate to the STS designer to provide new require-
ments by relaxing the value of PPE and pollution. The observations from Figs. 4 and 5 provide
valuable insights for the STS designer. A minimum probability of 0.97 is achieved when we
have PPE greater than 140 within six timesteps. Similarly, when pollution is less than 90
within six timesteps, a minimum probability of 0.92 is achieved. Based on these findings,
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Probabilities (Pollution < 70 & # PPE Varies)

1 0.97% —=

Minimum Probability

2 4 6 8 10 12
Number of Steps[K]
—=— #PPE 200 =5 #PPE 180 —&- #PPE 160 #PPE 140

Fig.4 Probabilities for achievement and maintenance when varying number of PPE units

Probabilities (PPE > 200 & Pollution Varies)

0.92

Minimum Probability
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Number of Steps [k]
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Fig.5 Probabilities for achievement and maintenance when the varying amount of pollution (PPM)

the STS designer can express the new requirement as follows using these values of PPE and
pollution.

Ppin=l(pollution < 90) U=® (PPE > 140)] 5)

The minimum probability achieved is 1 (achieved in six timesteps). Hence, the requirement
is satisfied with certainty (minimum probability of 1).

5.3 Handling strict resilience requirements

Informally, we view resilience as an indicator of both the speed and likelihood with which a
desirable property can be restored when the system of interest is found to be in a state that
violates these properties.

This section describes the verification results of the resilience requirement. We aim to
verify how the system reacts when pollution exceeds the given threshold value. The threshold
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Table 3 Experimental settings for resilience

Requirement Case being verified STS Outcome
Eq.(7) Original (Case 4) Listing 1 Not satisfied even if the
requirement is relaxed
Both companies are Listing 4 Satisfied as stated
productive (Case 5)
Eq.(8) Both are productive (Case Listing 4 Satisfied as stated
5)

value of the pollution represents a change in the operating environment of the system. Then,
lowering the pollution level with probability 1 within a certain number of steps indicates
the response to the system. Table 3 shows the experimental setting for resilience. Each
case in Table 3 corresponds to an STS specification. We verify whether a case satisfies the
requirement.

First, we would like to verify the minimum probability for a system entering a state where
pollution is greater than 180 ppm and the system reduces the pollution level to below 100
ppm within five timesteps. This property can be written in PCTL as described in Eq. (6).

filter(print, Pm,-,,:?[Ffspollution < 100], pollution > 180) 6)

Equation (6) is used to examine the minimum probability required for a state change from a
state having pollution greater than 180 ppm to a state having pollution below 100 ppm within
five timesteps. After verification, we get 1.0 as the minimum probability for this property.

Second, we are interested in ensuring that our system remains within the states that satisfy
the above property (Eq.(6)) for seven timesteps with a minimum probability of 0.75. This
property can be written in PCTL as follows:

Prin=2[G="(pollution > 180 = P > 1[F=(pollution < 100)])] (7)

Equation (7) is a query for the minimum probability of the system staying in states where

pollution goes above 180 ppm (threshold), the probability of lowering the pollution below
100 ppm in five timesteps with probability 1 for seven timesteps. Here, the property P >
1[F=>(pollution < 100)] represents the response that we are expecting from the system
when there is a change in its operating environment (pollution > 180).
Case 4 The STS in this case follows the specification of Listing 1. The minimum probability
achieved for the property of Eq.(7) is 0.43. Hence, this requirement is not satisfied. Figure 6
shows that the minimum probability of recovering the system varies with the number of
timesteps. When the number of steps increases, additional units of PPE are produced at
the cost of increased pollution. It can be noticed from Fig. 6 that the minimum probability
achieved for the property of Eq. (7) is 0.43 in seven timesteps, 0.3 in eight timesteps, and so on.
Similarly, when the number of steps is decreased then fewer units of PPE are produced with
the benefit of reduced pollution. There may be a possibility of requirement getting satisfied.
Hence, we check the minimum probability achieved for the property of Eq. (7) before seven
timesteps. It can be noticed that even after reducing the number of steps, the property is
not satisfied. For example, once we reduce the number of steps from seven to six and then
to five the minimum probabilities achieved are 0.73 and 0.69, respectively. This property
is not satisfied because none of the actions of the companies (Listing 1) reduce pollution
adequately.
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Listing 4 Revised STS specification for CompanyNear and CompanyFar to ensure resilience

1 Addition of norms or actions are shown in blue.

> 3

4+ P (CompanyNear , Regulator, true, pollution>60)

s Ci (CompanyNear , Hospital, true, PPE>100)

s C3(CompanyNear , Regulator, pollution>90,
pollution<40)

7 Pp(CompanyFar , Regulator, true, pollution>80)

s Cr (CompanyFar , Hospital, true, PPE>100)

9 C4 (CompanyFar , Regulator, pollution>90,
pollution<40)

nal0: m(true, {PPE, pollution}, {PPE+=[0, 0],
pollution+=PPE*[0.0, 0.01})

2 all: m(true, {PPE, pollution}, {PPE+=[50, 100],
pollution+=PPEx*x[0.2, 0.41})

3 al2: m(true, {PPE, pollution}, {PPE+=[80, 12017,
pollution+=PPE*[0.5, 0.71})

uwalld3: m(true, {PPE, pollution}, {PPE4+=[50, 1007,
pollution+=PPE*x[-0.6, 0.0]1})

6 a20: m(true, {PPE, pollution}, {PPE+=[0, 0],
pollution+=PPEx[0.0, 0.01]1})

7 a2l: m(true, {PPE, pollution}, {PPE+=[50, 100],
pollution+=PPE*[0.2, 0.41})

8 a22: m(true, {PPE, pollution}, {PPE+=[80, 120],
pollution4+=PPE*[0.5, 0.7]})

v a23: m(true, {PPE, pollution}, {PPE+=[50, 100],
pollution+=PPE*[-0.6, 0.0]1})

Case 5 We revise the STS specification (Listing 4) by adding commitment C3 and C4 for both
companies. Now, both companies are committed to the Regulator to reduce the pollution level
below 40 ppm if pollution increases above 90 ppm during the manufacturing of PPE. The
revised STS specification contains actions al3 and a23 for CompanyNear and CompanyFar
respectively, to decrease pollution while manufacturing PPE. The STS in this case follows the
specification (Listing 4) of Listing 1—commitments C3 and Cy are added for both companies.

Figure 6 shows that minimum probability achieved is 0.89 (achieved in seven timesteps).
Hence, this requirement is satisfied. As we have seen in Case 4 with the original STS specifi-
cation (Listing 1) the requirement is not satisfied even after we relax the number of steps but
after revising STS specification (Listing 4) the property gets satisfied even though we increase
the number of steps from seven to ten with 0.77 probability. After revising the STS speci-
fication (Listing 4), both companies meet the social objective of reducing pollution below
40 ppm whereas pollution above 90 ppm triggers actions that are less expensive in terms of
environmental pollution. These newly introduced actions of each company manufacture the
PPE and do not pollute the environment.
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Probabilities for Resilience

1 T Al T T
O.QEW —=— Case 4 |
0.8 | 0.89 —=— Case 5 ||

Minimum Probability

Number of steps [K]

Fig.6 Probabilities for resilience

5.4 Handling relaxable resilience requirements

We now show how an STS designer can use our framework RENO in Fig. 1 to design the new
relaxed requirement. We use both the original STS specification (Listing 1) and the revised
STS specification (Listing 4) to design the relaxed resilience requirement. The STS designer
wants to explore which threshold value of pollution can satisfy the property (Eq. (7)) with a
probability of 0.85.

Figures 7, 8, 9, and 10 show the probabilities calculated for the original STS specification
(Listing 1) and the revised STS specification (Listing 4) when the pollution threshold varying
for a range of values and number of steps.

Figures 7, 8,9, and 10 indicate that the original STS specification (Listing 1) fails to achieve
minimum probability 0.85 for the property of Eq.(7) even after we increase the pollution
threshold from 180 ppm to 240 ppm. For instance, a minimum probability of 0.73 is achieved
when the pollution threshold is greater than 240 ppm within seven timesteps. However, Fig. 7
shows the minimum probability of 0.89 is achieved when the pollution threshold is greater
than 180 ppm within seven timesteps for the revised STS specification (Listing 4). Similarly,
minimum probabilities 0.93 (Fig.8), 0.95 (Fig.9), and 0.98 (Fig. 10) are achieved (within
seven timesteps) when the pollution threshold is greater than 200 ppm, 220 ppm, and 240
ppm, respectively.

These threshold values of pollution provide an indication to the STS designer to express a
new requirement. Figure 10 illustrates that 90% of the time, the system reduces the pollution
below 100 ppm within five timesteps if the pollution threshold value is greater than 240 ppm
(change in the operating environment). It means that the system will remain in the state where
the pollution is below 100 ppm for the next seven, eight, nine, and ten timesteps with above
0.90 probability. Hence, the STS designer can design the new requirement for revised STS
specification (Listing 4) as follows:

PpinslG < T(pollution > 240 = P > 1[F=>(pollution < 100)])] ®)
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Minimum probabilities for pollution threshold > 180

1 T T T

Minimum Probability

6 7 8 9 10
Number of Steps[K]

—8— Original STS (Listing 1) —8— Revised STS (Listing 4)

Fig. 7 Resilience (Eq. (7)) is not satisfied for the threshold value of pollution > 180 when number of steps
increased for original STS specification (Listing 1) but is satisfied for revised STS specification (Listing 4)
within seven timesteps

Minimum probabilities for pollution threshold > 200
1 T T T

Minimum Probability

6 7 8 9 10
Number of Steps [k]

—&— Original STS (Listing 1) —8— Revised STS (Listing 4)

Fig. 8 Resilience (Eq.(7)) is not satisfied for the threshold value of pollution > 200 when number of steps
increased for original STS specification (Listing 1) but is satisfied for revised STS specification (Listing 4)
within 7 timesteps

5.5 RENO’s Scalability
In this section, we will show computational cost of algorithms and scalability of RENO.
Section5.5.1 has been used to show the time complexity of Algorithm 1. Section5.5.2 has

been used to show the time complexity of Algorithm 2. The scalability of RENO has been
explained in Sect.5.5.3.

5.5.1 Analysis of time complexity for Algorithm 1

Theorem 2 The time-complexity for the Algorithm 1 building PRISM model is O(|A|* % | S| *
IND.
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Minimum probabilities for pollution threshold > 220

1 T T

Minimum Probability

6 7 8 9 10
Number of Steps[K]

—8— Original STS (Listing 1) —8— Revised STS (Listing 4)

Fig.9 Resilience (Eq. (7)) is not satisfied for the threshold pollution > 220 when the number of steps increased
for original STS specification (Listing 1) but is satisfied for revised STS specification (Listing 4) within 7
timesteps

Minimum probabilities for pollution threshold > 240

i I — —
T

Minimum Probability

6 7 8 9 10
Number of Steps [K]

—&— Original STS (Listing 1) —8— Revised STS (Listing 4)

Fig. 10 Resilience (Eq. (7)) is not satisfied for the threshold value of pollution > 180 when the number of steps
increased for original STS specification (Listing 1) but is satisfied for revised STS specification (Listing 4)
within seven timesteps

Proof From the initial state so € S, we consider each state in a set of states S. So, the outer
loop executes at most |S| times. Then, for each state, we consider each action in a set of
actions A which means the inner loop executes at most |A| * | S| times. Then, for each action,
we compute the state transition probability by multiplying the action selection probability
and action execution probability. The time-complexity for Algorithm 2 computing selection
probability in a given state s is O(]A| * |N|). Hence, Algorithm 2 executes at most |A| * ||
* O(|A| * |N|). Thus, the overall execution time is O(|A|2 * |S| * |N|).

In a worst-case scenario, the number of states in the augmented probabilistic state tran-
sition model representing the PRISM model can increase exponentially with the number of
state variables and their possible assignments. For example, if there are v state variables
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with n possible assignments each, the total number of states becomes 2(V*™) | which grows
exponentially as v or n increases.

However, in our work, we have utilized the PRISM model checker programmatically
to construct a PRISM model from an STS specification. PRISM employs Multi-Terminal
Binary Decision Diagrams (MTBDDs) to represent the state space efficiently. MTBDDs offer
a compact and symbolic representation of sets of states, transitions, and properties, which
facilitates efficient state space exploration and model checking. Consequently, although the
time complexity of MTBDD-based techniques can be exponential in theory, their practical
performance is often significantly improved through optimization strategies like symbolic
representation and efficient state space exploration. As a result, the complexities derived from
theoretical worst-case analysis can be overly pessimistic for MTBDD-based techniques. To
gain insights into the actual model statistics and performance, we conducted experiments,
which are detailed in Section 5.5.3. O

5.5.2 Analysis of time complexity for Algorithm 2

Theorem 3 The time-complexity for Algorithm 2 computing selection probability in a given
state s is O(|A| * |N]).

Proof In a given state s, we consider each action in a set of actions A. So, the outer loop
executes at most |A| times. Then for each action, we consider each norm in a set of norms
N, which means the inner loop executes at most |N| * |A| times. Thus, the overall execution
time is O(|A| * |N]). ]

5.5.3 Model statistics

In this section, we analyse the scalability of our RENO in terms of agents and their actions.
All experiments were executed on a machine running Windows 10 Enterprise edition with
an Intel® Core™ i7-7700 CPU with a 3.60GHz processor, 16.0 GB RAM, and a 64-bit
Operating System. We performed all experiments on the STS specification in Listing 1,
where each agent has three actions and three consequences except the null actions. We have
used PRISM version 4.6.1 to conduct experiments but any PRISM version can be used to
use our approach.

Table 4 shows the statistics of PRISM models we have built for an increasing number of
agents and actions. Table 4 includes the number of agents and the number of actions executed
by all agents. For example, there are four agents and twelve actions in Table 4 meaning that
four agents all together execute twelve actions.

Table 4 also includes the number of states and transitions in the PRISM model. The
construction time is the time to build the augmented probabilistic state transition model
representing the PRISM model. The verification time is the time taken to verify the system
property written in PCTL.

Overall, the construction time is calculated by combining the following: (1) the time taken
by Algorithm 1 to generate a PRISM model from an STS specification, (2) the time taken
by Algorithm 2 to compute the selection probabilities to select an action in the current state,
(3) the time which is equivalent to the time taken for the system description to be parsed
and converted to Multi-Terminal Binary Decision Diagrams (MTBDD) representing it, 4)
the time to perform reachability, identify the non-reachable states and filter the MTBDD
accordingly. We observe the state space explosion as the number of states of a model grows
exponentially in terms of the number of variables and parallel components. Yet, they must be
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Table 4 Model statistics

Agents & Actions Model Time (s)

#Agents #Actions States Transitions Construction time (s) Verification time (s)
4 12 100394 961958 264.8 9.419

8 24 143266 1316691 451.649 6.504

12 36 147633 1331552 463.472 17.105

16 48 308512 2931077 1377.17 18.057

20 60 319938 3050028 1442.601 21.732

24 72 340511 3252277 1545.675 31.903

represented in a limited computer memory in some form. For example, symbolic probabilistic
model checking uses variants of binary decision diagrams (BDD) to compactly represent the
state spaces of well-structured models in memory at the cost of verification runtime [45].
The complexity of PCTL model checking or requirement verification is linear in the size
of a PCTL formula. (The size is defined as the number of logical connectives and temporal
operators plus the sizes of temporal operators [45].)

However, as mentioned earlier, it is worth noting that the worst-case time complexity of
building the PRISM model using Algorithm 1 can be exponential (see Sect.5.5.1). Conse-
quently, when dealing with large models, the computational time required for analysis may
become excessively long. This can result in the impractical to complete the analysis within
a reasonable timeframe.

6 Related work

We review relevant approaches to RENO in the context of how to make a multiagent system
more robust. Cheong and Winikoff [10] provide an approach to designing goal-oriented
interactions that result in flexible and robust multiagent systems. In contrast, we define a
sociotechnical system in computational terms as combining a social layer (characterized by
norms) with a technical layer (characterized by actions and their effects). Our framework
RENO provides an approach to make a socio-technical system (STS) more resilient. Socio-
technical systems are an important concept in the study of systems of autonomous systems,
as studied in the fields of multiagent systems and decentralized AI. The significance of
sociotechnical systems arises from how they synthesize social and technical layers to develop
a more complete understanding of how Al agents may be developed and deployed to solve
problems of societal significance.

Chopra et al. [12] consider the robustness of an organization with respect to business
contracts. For them, a contract is robust if it helps lead to behaviours that satisfy an organiza-
tion’s goals and avoids undesirable outcomes. Their analysis is qualitative and concerns how
an organization may be designed so it, for example, monitors and responds to potential or
actual contract violations. In contrast, we are concerned with formal methods for evaluating
a socio-technical system that includes multiple organizations.

More recent approaches [6, 14] have brought forth a notion of accountability in socio-
technical systems. The idea is that, as stated above, the norms in an STS indicate what an agent
may expect from another. Moreover, the agents can be held to accountable for any violations
of the norms that may occur. An agent who violates a norm can be called upon to explain
the violation or make corrections. Baldoni et al. [6] specify how responsibilities should be
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distributed in the STS. Chopra and Singh [14] show how capturing high-level requirements
in terms of who is accountable for ensuring what can help create an STS that can better
serve stakeholder needs by handling exception conditions more easily than systems where
the requirements are at a low level. These approaches can benefit from the formal verification
approach of this paper. If a multiagent system is verified with a certain probability to have the
capability to recover before its execution, then this can be incorporated into the accountability
mechanisms. Accountability mechanisms can be designed to monitor the performance of the
system with respect to its requirements. For example, if the system fails to recover within the
specified time frame, this can trigger an accountability mechanism that reports the failure to
the relevant stakeholders and initiates a corrective action.

In the literature, multiagent systems have addressed exception handling, but they view
it primarily as a mechanism for dealing with specific errors that may arise in the system.
Heg [24] proposes a fault-handling approach for multiagent systems that introduce special
agents called sentinels. Sentinels act as a control structure over the system and provide a
layer of fault tolerance. They do not participate in problem-solving but can intervene when
necessary to choose alternative problem-solving methods. Similarly, Bungie [15] describes
fault-tolerance patterns that can enhance the robustness of information protocols in a casual
manner. Mandrake [16] is a programming model for decentralized applications that does not
rely on infrastructure guarantees. It uses an information protocol that can be executed by
agents in a shared-nothing environment using unreliable and unordered transport. Mandrake
is focused on addressing faults that arise from violations of protocol expectations. In this
context, fault handling can be seen as a form of exception handling, where agents with
expectations can initiate recovery procedures to bring the system back into alignment with
the protocol.

Additionally, Baldoni et al. [6] propose the notion of accountability as a means of achieving
robustness in multiagent systems. The concept of accountability can aid in implement-
ing effective exception-handling mechanisms. When an exceptional condition arises, the
accountable agent(s) responsible for handling the situation is automatically notified with a
corresponding account (i.e., exception) to take the necessary actions. Baldoni et al. [5] dis-
cuss how exception handling can be effectively integrated into distributed systems, which are
implemented as multiagent systems, by utilizing the concept of responsibility at an organiza-
tional level. Gutierrez-Garcia’s [23] approach in the context of normative multiagent systems
involves modeling interaction protocols and exception handlers using obligations in deontic
logic to handle exceptions.

Since norms are crucial to the functioning of an STS, it is important to consider where they
come from. Aydogan et al. [4] address how stakeholders can negotiate about which norms
to adopt in their STS based on the stakeholders’ values. Values here refer to the key beliefs
and desires of an entity, such as privacy, freedom, and safety. The negotiation is facilitated
by ontology-based reasoning to promote their respective value. Incorporating stakeholder
values means that the stakeholders will try harder to satisfy the norms of the STS than if their
values were ignored. In their agent-based negotiation framework [4], an agent revises the
STS specification by revising a set of norm revision rules. However, their approach does not
provide formal reasoning for resilience of the sort developed in our paper. Our framework,
RENO, offers a redesigned STS specification process that incorporates formal probabilistic
reasoning. This enables us to satisfy stakeholders’ requirements, including resilience, by
adding or removing norms or by adding or removing agent actions. Our approach can poten-
tially be enhanced to accommodate values by providing additional domain knowledge of how
various actions performed by the agents promote or demote the values of the stakeholders of
the STS and by including ontological reasoning about the application domain.
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D’Inverno [20] is relevant to this work, insofar as they define a special class of multiagent
systems called electronic institutions which resemble institutions in human societies. Their
approach doesn’t fully support autonomy in that a governor agent in an institution can over-
rule the decisions of a member agent. Additionally, their framework utilizes the state-based
language Z to formally describe the behavior of a system in terms of its states and state transi-
tions. State-based languages excel at capturing both the static structure and dynamic behavior
of systems. However, to address the specific needs of probabilistic behaviors, our framework
RENO incorporates a temporal logic language PCTL. PCTL enables the specification and
reasoning of properties in systems with probabilistic behaviors.

Ajmeri et al. [3] focus on how norms emerge in a decentralized manner based on the
interactions of the agents and how they give (positive or negative) sanctions to each other
based on their apparent norm violations. In their approach, an agent who violates a norm
can share its context with other agents as a weak explanation of why it violated the norm.
This context can help the receiving agent decide if the norm violation was justified in the
specific context, affecting its sanctioning of the violator. Ajmeri et al. show that the norms
that emerge lead to improved outcomes for the participating agents. Agrawal et al. [2] address
similar intuitions but for explicit norms. Although Ajmeri et al. and Agrawal et al. provide
useful intuitions about the emergence of norms, they do not produce norms of complex
logical forms. Although their approach enables an individual agent to evaluate a specific
execution run based on its local observation, they do not address the evaluation of an STS
as a whole. Potentially, their approach could be used as another tool for an STS designer by
using simulations to create richer norms. Our approach could be used to evaluate the norms
(i.e., the STS) for resilience.

Gasparini et al. [22] have used the contrary-to-duty structure to design the normative
specification and have used a preference relation over possible worlds that captures levels
of system robustness. A qualitative reward function has been used to check the levels of
compliance. In RENO, MAS specification is defined as a social layer that includes norms
and a technical layer that includes software components. Our framework uses probabilistic
analysis to check resilience. Overall, Gasparini et al. address norm-driven multiagent planning
in a probabilistic setting using Partially Observable Markov Decision Processes (POMDPs),
and make provision for robustness analysis, but do not address the problems we pose.

Savarimuthu et al. [47-49] have provided an architecture to detect prohibition and obliga-
tion norms based on interactions between the agents. The prohibition and obligation detection
algorithms utilizes association rule mining, a data mining technique, to identify sequences
of events that may represent candidate norms. This architecture helps to modify or remove
norms that are no longer relevant. Their work emphasises norm identification and has some
relevance to our work. Our framework RENO assumes the existence of norms and shifts the
attention to verifying the resilience of a STS. In our approach, we evaluate whether an STS
can effectively recover and meet resilience requirements.

Mahmoud et al. [35] propose a resource-aware adaptive punishment technique that enables
norm establishment with larger neighbourhood sizes than resource-unaware punishment.
Their evaluation of the adaptive technique has been done via a simulation. Dell’ Anna et al.
[19] propose a mechanism to revise the norms automatically that consider agents’ preferences.
The norms are revised by revising associated sanctions at runtime. The relationship between
the satisfaction or violation of the norms and the achievement of the system-level objectives is
learned from system execution data using a Bayesian Network. Then considering the runtime
knowledge and the agent’s preference, they develop heuristic strategies that automatically
revise the sanctions associated with the enforced norms. They evaluate their mechanism on
a traffic simulator ring-road environment. In RENO, instead of focusing on sanctions, we
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examine commitment and prohibition norms. In terms of system properties, our focus is on
probabilistic system properties, allowing for the consideration of uncertain system behavior.
Within our framework, we have incorporated resilient requirements alongside achievement
and maintenance properties to establish a resilient Socio-Technical System.

Kafali et al. [27] propose a formal framework for the verification and refinement of the
STS specification via social norms. They provide an agent-based simulation environment to
mimic a social community consisting of multiple hospitals, physicians, and patients. They
use an agent-based simulation to evaluate candidate STS designs and guide their refinement.
A simulation environment is set up using parameters related to norms and mechanisms
obtained from the STS specifications and requirements. Our approach is to design resilient
sociotechnical systems by incorporating probabilistic model checking in a methodology for
specifying a sociotechnical system and verifying time and quantity-constrained resilience
requirements. We use probabilistic model checking to evaluate our approach.

Cédmara and De Lemos [8] provide an approach for verifying self-adaptive systems. The
focus is on resilience properties, which assess the system’s ability to maintain reliable ser-
vice provision despite environmental changes. They have considered Discrete-Time Markov
Chains (DTMCs) as the probabilistic model employed to depict the system’s behavior. The
system’s environment is stimulated for collecting execution traces to a build probabilistic
model. PRISM is used to perform probabilistic model checking to evaluate the resilience
of self-adaptive systems. Their framework has only relevance to our approach is verifying
system property using probabilistic model checker PRISM. But our framework focuses on
how to make resilient STS, by considering norms and actions. Model checking using PRISM
combines probabilistic analysis and conventional reachability [32]. Unlike a simulation, our
approach produces exact verification results of a property. Typically, there is a tradeoff: sim-
ulation gives us greater modeling realism, e.g., the ability to implement and experiment with
various agent strategies, but it does not handle a formal notion of correctness. Model checking
gives formal guarantees by checking properties against an STS model but requires a more
abstract (simpler) model. Thus, model checking handles more limited phenomena, but with
greater rigor.

Ostrom’s notable contribution lies in her comprehensive focus on rules as the fundamental
units of analysis in institutional theory and design. This emphasis highlights the vital role
rules play in shaping institutional behavior and outcomes. Her work provides valuable insights
into effective institutional design and management [43]. Social rules serve as the fundamental
building blocks of institutional arrangements and are therefore essential elements in resilience
analysis and design. They form the conceptual foundation upon which the analysis and design
of resilient systems are built [42, 43]. Ostrom emphasizes that in the process of evolutionary
institutional change, the variation in rules and norms is frequently a product of deliberate and
rational design, rather than being driven solely by random factors. The work of Ostrom on the
management of shared resources [44] is an example of how social regulation might provide
a solution to problems such as the tragedy of the commons (the connection of such problems
with normative multiagent systems has been made explicit in a number of papers, such as [46]
and [7]). For instance, the authors [46] have used the perspective of self-governing institutions
for common-pool resource (CPR) management, as defined by Ostrom, the concept of an
institution encompasses the set of rules that outline the conditions governing the allocation
and use of resources. These rules should be capable of being modified by additional rules,
allowing for adaptation to the specific context in which the system operates. Additionally, the
actions of individuals within the system can alter the environment, and external factors may
also impact the system’s dynamics [46]. Our framework RENO shares conceptual similarities
to Ostrom’s analysis and design of resilient systems, as outlined in her works ([42, 43]). The
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objective of our framework is to design and implement resilient socio-technical systems by
adjusting either the social layer or the technical layer to fulfill the resilient requirements of
stakeholders.

7 Conclusions and future directions

We propose RENO, a probabilistic framework for the design and verification of STSs involv-
ing social norms, technical actions, and probabilistic temporal stakeholder requirements.
Our main contribution is to introduce the idea of socio-technical resilience and incorporate
probabilistic model checking in an overall methodology for specifying STSs and verifying
resilience requirements. Normative behaviour has been incorporated into MDPs by con-
sidering norms as explicit constraints on agents’ transitions [41], or by expressing norms
explicitly as part of the state space and action space [21]. Other works on norm monitoring
[18, 36] describe the expected normative behaviours of agents and resolved conflicts among
norms using agents’ objectives and preferences. We have incorporated norms explicitly into
the PRISM model by calculating the probability of executing an action based on how the
potential outcome of the action contributes towards the satisfaction or violation of the set
of norms specified in the STS. We have also provided an algorithm that translates a formal
STS specification into a probabilistic model. The RENO framework provides a probabilistic
guarantee that an STS meets its stakeholder requirements and recovers from failure within a
certain period of time.

RENO supports three core types of requirements: achievement and maintenance require-
ments are essential to the norm literature (e.g., a commitment to achieve something to a
certain level or a prohibition to maintain something at a certain level). The third type is the
resilience requirements (novel to RENO) to verify that an STS can recover from requirement
failures. We believe these three types of requirements cover realistic verification scenarios,
to help guide STS designers. Our findings suggest that RENO helps to build resilient STSs
by demonstrating to the designer the tradeoffs between various STS specifications.

Future work

If a requirement is not satisfied, then counterexamples can reveal details about why the
requirement failed and what modifications can be made to the STS specification to satisfy
the requirement. PRISM can produce a violating adversary for a property, for which the ver-
ification outcome is false. We will explore employing such adversaries to guide the designer
towards a revised STS.

Another important area of future development is the automation of the iterative process of
STS re-design and requirements relaxation or modification based on the results of probabilis-
tic model checking. Figuring out what relaxations are appropriate for stakeholders can involve
sophisticated reasoning about goal conflicts [39] as well as creativity [37, 38] more gener-
ally. We currently offer methodological guidelines for doing this (to be followed by the STS
designer and by stakeholders who specify requirements), but there is considerable reliance
on human judgment for key decisions such as which STS re-designs or which requirements
relaxations will lead us to a faster resolution of the problem of an STS design not realizing
the specified requirements.
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Appendix A java code: translation of an STS specification into a PRISM
model

A.1 Code snippets for the initial state in the PRISM model

The Listing 5 shows java code to return the initial state of the PRISM model. The list variables
have the agent variable and all state variables. The setValue(0, 1) in Line 2 in the Listing 5
shows that value 1 has been assigned to the variable at index O in variables list (here the
variable agent is at index O in the list named variable). Similarly, random values have been
assigned to other state variables.

Listing 5 Code Snippets for initial state in PRISM model construction

I public State getInitialState () throws
PrismException {

» return new State(variables.size()).setValue (0,
3) .setValue (1,20) .setValue (2, 0); 1}

A.2 Code snippets to calculate the action selection probability

Listing 6 Code Snippets to calculate action selection probability

1 for (int

m=0;m<AgentsMechanism.get (a).size () ;m++) {

2 if ((normType.equalsIgnoreCase ("P"))) {

3 if (n.getValue () .containsKey (varM)) {

4 int nConsgquentValue =
Integer .parselInt (n.getValue () .get (AtomName) ) ;

5 double currentTarget = nConsquentValue -
valueOfVariable.get (varM) ;

6 if (maxRange <= currentTarget) {

7 prob = 1.0;

s } else if (minRange >= currentTarget) {

9 prob = 0.0;} else {

10 prob = Double.parseDouble (new
DecimalFormat ("##.###") . format ( (double)
(currentTarget - minRange) / (maxRange
- minRange) ) ) ;}

i double result = Double.parseDouble (new
DecimalFormat ("##.###") . format (Math.pow (w,
prob))) ;

2}

13}

14}
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A.3 Code snippets for state transitions in the PRISM model

The Listing 7 shows the snippet of Java code of state transitions in the model. The function
computeTransitionTarget(int i, int offset) is used to compute non-deterministic outcomes for
executing all mechanisms of a selected agent. The Line 2 in the Listing 7 shows the current
state. From Line 3 to Line 5 turns each agent using round-robin agent execution. In the initial
state, the value of the agent variable is 1 (as explained in the use case) meaning that this agent
is Company. In the next state, the value of the agent is 2 (i.e., Hospital); then the value of the
agent is 3 (i.e., Regulator); and then the value of the agent is again 1 (i.e., Company). The
remaining state variables are updated with new values in the Line 8 in the Listing 7.

The function computeTransitionTarget(int i, int offset) is used to compute non-deterministic
outcomes of executing all mechanisms for a selected agent and the function getTransition-
Probability(int i, int offset) is used to compute the state transition probability for each state
transition.

Listing 7 Code Snippets for state transitions in PRISM model

i public State computeTransitionTarget (int i, int
offset) throws PrismException {

» State target = new State (exploreState) ;

3 1f ((agent==numberofAgents) &&(sum!=0) ) {

target.setValue (0,1) ;}

4+ else if((sum!=0)) {

s target.setValue (0, agent+1) ; }

¢ int newTotalValue =
valueOfVariable.get (variables.get (p+1))

7 +Integer .parselnt (varValuelp]) ;

s target.setValue (p+1l, newTotalValue ) ;

v return target;

0 }

1 public double getTransitionProbability (int 1,
int offset) throws PrismException {

2 int agent =
valueOfVariable.get (variables.get (0)) ;

3 for (int t=0;
t<transitionProb.get (action) .size () ;t++) {

1 double probTra =
transitionProb.get (action) .get (t) ;

5 double prob = probTra * mechSelectionProb;
16 return prob ;}
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