
From Visual Choreographies to
Flexible Information Protocols

Tom Lichtenstein 1, Amit K. Chopra 2, Munindar P. Singh 3, and
Mathias Weske 1

1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
tom.lichtenstein@hpi.de, mathias.weske@hpi.de

2 Lancaster University, Lancaster, UK
amit.chopra@lancaster.ac.uk

3 North Carolina State University, Raleigh, NC, USA
mpsingh@ncsu.edu

Abstract. Choreographies enable the coordination of interactions be-
tween business partners. Established modeling languages such as BPMN
focus on a visual notation that may facilitate design but lacks formal
semantics. Moreover, such notations encourage the explicit ordering of
interactions, which often results in over-constrained models. In contrast,
information protocols provide a precise and flexible operational model
for interaction. This paper contributes a tool-supported, semi-automated
mapping from object-aware BPMN choreography diagrams to information
protocols. Our approach enables business experts to tailor the flexibility
of the resulting protocols to their requirements.

Keywords: Business processes, Interaction protocols, Multiagent Sys-
tems, Messaging, Information flow

1 Introduction

This paper focuses on modeling interactions between the business processes
of collaborating organizations. Current business process modeling languages
such as BPMN choreography diagrams [19] capture coordination requirements
in terms of ordering constraints on message exchanges. The visual nature and
wide adoption are significant strengths of these languages [8]. However, these
languages often rely on explicit interaction sequencing, which can lead to complex
models or overly constrained behavior [17]. The latter may interfere with the
underlying business requirements, especially in light of changes in internal needs
or the external environment [21]. Nonetheless, distinguishing between intended
and arbitrary constraints is nontrivial, complicating the creation of flexible
yet precisely constrained models. In addition, despite progress on object-aware
choreographies [14], current models remain non-operational due to a lack of
essential details about the information transferred in each interaction. Thus,
providing operational semantics could facilitate the implementation of interaction
behaviors by providing a clear interface to the processes involved.

https://orcid.org/0000-0001-5585-1003
https://orcid.org/0000-0003-4629-7594
https://orcid.org/0000-0003-3599-3893
https://orcid.org/0000-0002-3346-2442

2 Tom Lichtenstein et al.

Contributions. Consequently, this paper addresses the following research question:
How can we derive flexible and operational models from object-aware choreogra-
phies? To this end, we adopt the idea of information protocols specified in the
Blindingly Simple Protocol Language (BSPL) [22,23]. Information protocols are
declarative, have a formal semantics, can be enacted by decentralized agents
representing the parties, and can support highly flexible interactions—setting
them apart from other protocol languages [4]. Unlike traditional business process
models, which explicitly specify the ordering of tasks and messages, typically
via control-flow abstractions, information protocols specify causal dependen-
cies and integrity constraints declaratively based on information, thus avoiding
unnecessary control-flow constraints while preserving necessary data constraints.

Our main contribution is an approach for generating information protocols
from object-aware choreographies that preserves business meaning. Figure 1
provides our key intuitions: given a choreography (a), we generate a protocol (b)
while ignoring control-flow constraints, allowing for a more flexible ordering of the
choreography’s interactions. Since not all the resulting flexibility may be desired
by the business partners, our method supports business experts in fine-tuning the
protocol by applying a modified or reduced set of relevant control-flow constraints
discovered from the choreography. Thus, the refined protocol (c) can be tailored
to the needs of the collaborating organizations.

Desired
behavior

Undesired
behavior

Choreography
Diagram

(a)

Specified
behavior

(b)

Derived
Information
Protocol

Refined
Information
Protocol

(c)

Fig. 1. The interaction behavior allowed by (a) a choreography, (b) a derived information
protocol, and (c) a refined protocol, adapted from [17].

The paper is organized as follows: Section 2 introduces object-aware process
choreographies and interaction protocols. Section 3 maps choreographies to BSPL.
Section 4 identifies and integrates control-flow constraints. Section 5 evaluates
our approach using two scenarios, and Section 6 reviews related work in the area.
Finally, Section 7 concludes the paper and outlines directions for future research.

2 Preliminaries

We now introduce the core background for this paper.

2.1 Object-Aware Process Choreographies

Process choreographies define the ordering of message exchanges between collab-
orating participants. We focus on BPMN choreography diagrams, in the following

From Visual Choreographies to Flexible Information Protocols 3

referred to as choreography, as an interaction-oriented abstraction of BPMN
collaboration diagrams [19]. A choreography comprises choreography tasks, each
specifying a message sent by one participant to another (optionally with a re-
sponse), as Figure 2 shows. This choreography begins with the buyer placing
an order. Next, the shop sends an invoice. The buyer either cancels the order
(ending the choreography) or pays. When the invoice is paid, the shop forwards
the order to the warehouse. Once packed and approved, the warehouse ships
the parcel, and the buyer’s confirmation of receipt completes the choreography.
Sequence flow defines order constraints between tasks, while gateways indicate
exclusive and parallel behavior.

place order

Buyer

Order
[created]

Shop

send invoice

Shop

Invoice
[open]

Buyer

send
payment

Buyer

Invoice
[paid]

Shop

cancel order

Buyer

Order
[canceled]

Shop order canceled

prepare
shipping

Shop

Order
[created]

Warehouse

Parcel [packed]

ship parcel

Warehouse

Parcel
[shipped]

Buyer

Parcel [received]

order completed

approve
shipping

Shop

Parcel
[approved]

Warehouse

Fig. 2. A BPMN choreography diagram for an order management choreography between
a buyer, a shop, and a warehouse. Participants in white bands initiate the respective
task. Gray envelopes indicate response messages.

Lichtenstein et al. [14] extend choreographies by incorporating a shared data
model and shared object lifecycles. Each class in the shared data model specifies a
type of message that is used to annotate the message elements in a choreography.
Figure 3 shows a shared data model for the choreography in Figure 2. The
inclusion of attributes is discussed in Section 3.1. Relations between classes
may impose ordering constraints on the creation of objects [14]. For example,
according to Figure 3, creating an Invoice or Parcel requires an existing Order.

Objects’ states are modified during execution. A shared object lifecycle defines
the allowed states and state transitions for each class, as exemplified in Figure 4.
State transitions without a source state indicate the creation of objects. In
addition, arc inscriptions specify the participant that can perform the transition.
For example, only a Buyer (B) can create an order and only a Warehouse (W) can
change a parcel’s state to shipped. States are changed locally and synchronized
with participants via messages. In a choreography, message annotations in square

4 Tom Lichtenstein et al.

Invoice
invId
total
tax
transactionId

Order
ordId
item
address
canceled

0..1
1

Parcel
parId
dimensions
weight
approved
trackingNo
receiptDate

1
0..1

Fig. 3. A shared data model, as a UML class diagram, illustrating the structure of the
data being exchanged for the order management choreography, including attributes.

created
[ordId, item

address]

canceled
[canceled]

B B

Order:
open

[invId, total,
tax]

paid
[transact.Id]

S B

Invoice:

Parcel:
packed

[parId, dim.,
weight]

approved
[approved]

SW W shipped
[trackingNo]

B received
[receiptDate]

Fig. 4. Shared lifecycles for data objects of the classes Order, Parcel, and Invoice
extended with attribute references. Participant names are abbreviated to initials.

brackets indicate the state in which an object must be sent [14]. Section 3.1
discusses the associations between states and attributes shown in Figure 4.

2.2 Information Protocols

Information protocols capture the ordering and occurrence of messages between
autonomous parties while neglecting their internal reasoning [7]. The Blindingly
Simple Protocol Language (BSPL) is an operational, declarative language to
capture possible interactions based on the information available to the agents [22].
Listing 1 shows an example BSPL protocol. Each protocol consists of a name
(Line 1), a set of roles (Line 2), a public (Line 3) and private (Line 4) set of
parameters representing the units of information exchanged, and message schemas
(Lines 6–9) or references to other protocols (Line 10) allowing composition. At
runtime, each business partner would adopt a role. Message schemas define a
sender, a receiver, and the parameters exchanged. In a protocol enactment, a
parameter is either bound to a value (available for reading but not for writing) or
unbound. An enactment is identified by a binding of the public key parameters.

For each interaction, in, out, and nil adornments specify requirements on the
availability of the parameters. Parameters adorned with in must be bound to
enable the interaction, e.g., in Listing 1, ship can be sent only if the orderId
is bound. An out adornment binds an initially unbound parameter once the
message is sent, e.g., sending an order message binds the parameters orderId, item,
and address to their respective values. Finally, nil requires the parameter to be
unbound for execution. Hence, outcome must not be bound to send req_cancel.

From Visual Choreographies to Flexible Information Protocols 5

1 OrderManagement {
2 roles B, S
3 parameters out orderId key, out item, out outcome
4 private address, price, receipt, rescind
5
6 B→S: order [out orderId, out item, out address]
7 S→B: ship [in orderId, in item, in address, in receipt, nil rescind,

out outcome]
8 B→S: req_cancel [in orderId, nil outcome, out rescind]
9 S→B: ack_cancel [in orderId, in rescind, out outcome]

10 Payment(S, B, in orderId, in item, nil outcome, out price, out receipt)
11 }

Listing 1. Order management protocol adapted from [22].

Notably, OrderManagement supports concurrent sending of cancel and ship
messages by different agents, with the shipping preventing ack_cancel by binding
outcome. Traditional protocol languages based on communicating state machines
do not allow for such concurrency [4]. Nonetheless, a protocol should never allow
a parameter to be bound by multiple agents concurrently to ensure safety, which
is crucial for operability and can be statically verified [25]. Therefore, prioritizing
shipping in Listing 1 is essential to support concurrency without violating safety.

3 From Choreographies to Protocols

We now describe a semi-automatic approach to mapping object-aware choreogra-
phies to BSPL, using the example from Section 2.1. The supplementary models
are first enriched with attributes and then mapped to a BSPL protocol.

3.1 Extending Object-Aware Choreographies with Attributes

Object-aware choreographies provide a high-level view of data using objects and
states, whereas protocols rely on low-level parameters to specify the information
to be exchanged. To bridge the gap between these levels of abstraction, we enrich
shared data models and lifecycles with attributes. Each attribute represents a
unit of information associated with an object that is exchanged via messages.
Therefore, for the mapping, we interpret attributes as parameters. As depicted
in Figure 3, each class is associated with a set of attributes. Inspired by the work
of Pérez-Álvarez et al. [20], we interpret the state of an object as a binding of
attributes. The mapping of binding to state is defined in the corresponding object
lifecycle (cf. Figure 4). Binding the respective attributes to a value changes the
object’s state accordingly. For example, an invoice in state open has only invId,
total, and tax bound. Transitioning to paid requires binding transactionId as
well. To avoid ambiguity, each state must be associated with a unique binding.

3.2 Mapping Object-Aware Choreographies to Protocols

A protocol defines the legal interactions in a choreography. Hence, our mapping
uses the choreography tasks and the enriched shared data model and shared
object lifecycles as input. Since BSPL supports composition [22], we create a class

6 Tom Lichtenstein et al.

protocol for each class of the data model and compose them into the resulting
protocol. A class protocol defines roles, parameters, and message schemas related
to one class. Listing 2 illustrates the class protocol generated for the class Order.
The mapping rules for class protocols and their composition are detailed below.

1 Order {
2 roles B, S, W
3 parameters out ordId key, out item, out address, out canceled
4 private fw_created
5
6 B→S: create [out ordId, out item, out address]
7 S→W: fw_create [in ordId, in item, in address, nil canceled, out fw_created]
8 B→S: cancel [in ordId, in item, in address, out canceled]
9 }

Listing 2. Order class protocol.

Roles and Public Parameters. The roles are inferred from the participants
involved in choreography tasks associated with the class. The class attributes of
the shared data model serve as public parameters. These parameters are adorned
out, as they are only bound by the respective class protocol. At least one class
attribute must be selected as a key parameter for a protocol. Each key parameter
must reflect an attribute associated with all possible initial states in the lifecycle.
For our running example, we select ordId, invId, and parId as the key parameters
for the respective class protocols. A class protocol may require key parameters of
other class protocols as in parameters to express dependencies according to the
shared data model [14]. Referencing other key parameters is required if there is a
relation to another class with a multiplicity having a lower-bound greater than
zero, as for Invoice and Parcel in Figure 3. Consequently, as Listings 3 and 4 show,
both class protocols take the key parameter ordId of the Order protocol as in.
For one-to-one relations, the creation of both objects is merged into one message
schema that is added to both class protocols, including the respective adaptation
of the public parameters. For brevity, we do not discuss verifying upper bounds
greater than one, as this requires more advanced language features [3].

1 Invoice {
2 roles S, B
3 parameters in ordId key, out invId key, out total, out tax, out transactionId
4
5 S→B: open [in ordId, out invId, out total, out tax]
6 B→S: pay [in invId, in total, in tax, out transactionId]
7 }

Listing 3. Invoice class protocol.

1 Parcel {
2 roles W, S, B
3 parameters in ordId key, out parId key, out dimensions, out weight,

out approved, out trackingNo, out receiptDate
4
5 W→S: pack [in ordId, out parId, out dimensions, out weight]
6 S→W: approve [in parId, in dimensions, in weight, out approved]
7 W→B: ship [in parId, in approved, out trackingNo]
8 B→W: receive [in parId, in trackingNo, out receiptDate]
9 }

Listing 4. Parcel class protocol.

From Visual Choreographies to Flexible Information Protocols 7

Message Schemas. A class protocol defines message schemas based on the
tasks associated with the class in the choreography, relations to other classes, and
the state transitions in the shared object lifecycle. Figure 5 shows the message
schemas for the Invoice protocol based on the tasks send invoice and send
payment. For the mapping, we interpret two-way tasks as two sequential one-way
tasks with alternating initiators [6]. Given a task with a class and a state, a
message schema is created for each transition towards the state that can be
performed by the task’s initiator. For example, for send payment, the buyer can
perform one state transition towards paid according to the lifecycle in Figure 5.
Hence, one message schema is added to the class protocol for this task.

Invoice
invId
...

Order
ordId
...

0..1
1

S Bsend
payment

Buyer

Invoice [paid]

Shop

send
invoice

Buyer

Shop

Invoice [open]

open
[invId, total,

tax]
paid

[transact.Id]

S→B: open [in ordId, out invId, out total, out tax]

B→S: pay [in invId, in total, in tax, out transactionId]

Fig. 5. Mapping rules for the message schemas of the Invoice class protocol.

Each message schema is named according to the state in which the task
sends the object in active form. For example, the message sending an invoice in
state paid is named pay . Sender and receiver are adopted from the task. The
parameters of each message result from the state transition associated with the
message schema. Each message schema specifies the parameters associated with
the target state as out, e.g., transactionId for pay . Since out parameters can be
bound at most once per enactment, only acyclic lifecycles are supported.

If a source state exists, the parameters associated with the source state and
the key parameters of the class protocol are added as in parameters, e.g., invId,
total, and tax (cf. Figure 5). If there are alternative transitions originating from
the source of the transition associated with the message, all parameters of the
alternative target states must be added as nil parameters to enforce exclusivity.
If no source state exists, the key parameters of the class protocol are adorned out
and the key parameters of the classes on which the considered class depends are
added as in parameter. Considering the message open for the task send invoice
in Figure 5, ordId is adorned in to enforce a relation to an existing order.

Whereas most messages add information to the choreography, some only
forward already exchanged information, e.g., as prepare shipping forwards an
order to the warehouse (cf. Figure 2). A forwarding message schema takes all
parameters associated with the required state as in and all parameters associated

8 Tom Lichtenstein et al.

with directly succeeding states as nil, ensuring the object is in the correct state
when forwarded. A private out parameter is added to capture that a forwarding
took place. A forwarding message schema is added when (1) the initiator of a
task cannot transition to the required state, or (2) multiple tasks can send the
object in the same state, all of which have an initiator that can transition to that
state. In the latter case, it is not clear which message performs the transition, so
that forwarding messages are inserted in addition to the transitioning messages.
Since a task can now be associated with both a transitioning and a forwarding
message, both message schemas must contain the same private out parameter so
that only one can be sent. Listing 2 shows an example of a forwarding message
schema. For clarity, forwarding schemas are prefixed with fw .

Composition. Listing 5 shows the result of composing the class protocols into
one. Some parameters are omitted due to space constraints.

1 RelaxedOrderManagement {
2 roles B, S, W
3 parameters out ordId key, out invId key, out parId key, out item, ...
4
5 Order(B, S, W, out ordId, out item, out address, out canceled)
6 Invoice(S, B, in ordId, out invId, out total, out tax, out transactionId)
7 Parcel(W, S, B, in ordId, out parId, out dimensions, out weight, ...)
8 }

Listing 5. Relaxed order management protocol combining all class protocols.

4 Fine-Tuning Flexibility

The derived protocol may be more flexible than the original choreography, since
it incorporates only the data-related constraints. However, as illustrated in
Figure 1(b), the protocol may allow undesirable behavior that the choreography
avoids via control-flow constraints. For example, Listing 5 allows the following
sequence of interactions: ⟨create, fw_create, pack, authorize, ship, receive, open,
pay, cancel⟩, which permits shipping before payment and cancellation after
shipping. This behavior may not be acceptable in a business context. We therefore
propose an approach to identify relevant control-flow constraints from the initial
choreography that can be used to constrain the derived protocol’s behavior. By
modifying or removing the identified constraints, the protocol can be refined
according to business needs, as Figure 1(c) shows.

4.1 Identifying Control-Flow Constraints

Given a protocol and a choreography, we derive constraints by detecting interac-
tion sequences of a protocol that deviate from a given choreography. For each
deviation, we extract the violated control-flow constraints from the choreography
as output, as described in Algorithm 1. Lines 3–4 determine all possible sequences
of interactions assuming synchronous communication, i.e., sent messages are
received before the next message is sent. Lines 5–6 filter all interaction sequences

From Visual Choreographies to Flexible Information Protocols 9

produced by the protocol that are not supported by the choreography. For each
filtered sequence, the first message that deviates from the behavior of the chore-
ography is identified (Line 7) and the deviating message is associated with its
corresponding task to derive the applicable control-flow constraints (Line 8).
Lines 10–11 add constraints that are violated by the sequence to the output.

Algorithm 1: Identifying protocol constraints given a choreography.
Input: p (protocol), c (choreography)
Output: C (set of constraints)

1 Function identify_control_flow_constraints(p, c):
2 C ← ∅; // Set of discovered constraints
3 Sp ← determine_interaction_sequences(p);
4 Sc ← determine_interaction_sequences(c);
5 for σp ∈ Sp do
6 if σp /∈ Sc then
7 m← get_deviating_message(σp, Sc);
8 Ct ← infer_constraints(get_task(m, c), c);
9 for k ∈ Ct do

10 if sequence_violates_constraint(k,m, σp) then
11 C ← C ∪ {k};

12 return C;

We distinguish two types of control-flow constraints. A precedence constraint
requires that the preceding task always occurs before the succeeding task. An
exclusion constraint between the two tasks implies that no interaction sequence
contains both. If the sequence flow arc connects two tasks, a precedence from the
source to the target is identified, e.g., in Figure 2, send payment precedes prepare
shipping . In case the arc connects the observed task to a gateway, precedence is
derived from the observed task to all tasks following the gateway. Similarly, if
an arc connects a gateway to the observed task, precedence is imposed from the
preceding tasks to the observed task; e.g., send invoice precedes send payment.
To ensure that precedence constraints can be enforced, we only consider realizable
choreographies [9]. In addition, if an exclusive or event-based gateway is connected
to the observed task, exclusion is derived for all tasks connected to the gateway
on exclusive paths, e.g., cancel order excludes send payment and vice versa.

Finally, all discovered constraints that are violated by the interaction sequence
up to the deviating message are added to the output, essentially removing the
interaction sequence from the protocol to achieve trace-based conformity with
the choreography [6]. In case multiple precedences share the same target with
the sources being exclusive, only one of the precedences must hold. Figure 6(a)
illustrates the constraints discovered from Listing 5 and Figure 2. Though the
discovered control-flow constraints serve as a baseline for the refinement of the
protocol, constraints might be modified or omitted by experts in accordance

10 Tom Lichtenstein et al.

Invoice: open
(send invoice)

Invoice: pay
(send payment)

precedes

(a) (b)

precedes

excludes

Invoice: pay
(send payment)

excludes

precedes
Order: cancel
(cancel order)

Order: fw_create
(prepare shipping)

Order: cancel
(cancel order)

Invoice: pay
(send payment)

Parcel: approve
(approve shipping)

Order: cancel
(cancel order)

Invoice: pay
(send payment)

Fig. 6. Control-flow constraints for the protocol in Listing 5, in the notation of [17]: (a)
derived from the control flow of Figure 2 and (b) a possible relaxation of the constraints.
Messages are associated with the respective class protocol name and task label.

with business needs. Figure 6(b) shows a possible relaxation that allows for
preparing the parcel before receiving payment: ⟨create, open, fw_create, pack, pay,
authorize, ship, receive⟩. Hence, the relaxed constraints allow for behavior beyond
the choreography, while ensuring that the invoice is paid before a parcel is shipped
and that a shipped order cannot be canceled (nor a canceled order shipped). In
general, the realizability of the new constraints is crucial, but its verification is
out of our present scope.

4.2 Refining Protocols

We can refine a protocol to satisfy additional control-flow constraints. In essence,
the protocol is extended by parameters that are used to implement precedence
and exclusion constraints to control message ordering. Specifically, precedence
translates to an out parameter from the preceding message included as in in
the succeeding message. Similarly, exclusion is achieved by adding the same out
parameter to the exclusive messages. If multiple precede constraints share the
same target, with the sources being exclusive, the target message is copied for all
possible preceding messages. Each copy takes a parameter bound by a different
preceding message as in parameter.

1 RefinedOrder {
2 roles B, S, W
3 parameters ..., in cf_p1, in cf_p2, out cf_e
4
5 B→S: create [...]
6 S→W: fw_create [..., in cf_p1]
7 B→S: cancel [..., in cf_p2, out cf_e]
8 }
9

10 RefinedInvoice {
11 roles S, B
12 parameters ..., out cf_p1, out cf_p2, out cf_e
13
14 S→B: open [..., out cf_p2]
15 B→S: pay [..., out cf_p1, out cf_e]
16 }

Listing 6. Refinement of the protocols in Listings 2 and 3 based on the constraints
illustrated in Figure 6. Unchanged parameters are omitted.

From Visual Choreographies to Flexible Information Protocols 11

Listing 6 refines Listings 2 and 3 based on the constraints in Figure 6(a). Here,
cf_p1 ensures that ⟨pay⟩ precedes ⟨fw_create⟩, cf_p2 guarantees that ⟨open⟩
precedes ⟨cancel⟩, and cf_e enforces exclusivity between ⟨pay⟩ and ⟨cancel⟩, thus
implementing the constraints.

5 Evaluation

We evaluate the conformance, flexibility, and operability of protocols derived
from object-aware choreographies to answer the research question presented
in Section 1 based on two scenarios: S1, an Order Management choreography
described in Section 2.1, and S2, a Transport of Goods choreography illustrated
in Figure 7.

hand over cargo

Supplier

Container
[packed]

Carrier

issue bill of
lading

Carrier

BillOfLading [init]

Supplier

confirm shipping

Supplier

Container
[approved]

Carrier

forward bill of
lading

Supplier

BillOfLading [init]

Consignee

place order

Consignee

Order [created]

Supplier

register import of
goods

Consignee

Order [created]

Customs

register import of
goods

Customs

ImportPermit
[accepted]

Consignee

register import of
goods

Customs

ImportPermit
[checkrequired]

Consignee

hand over cargo

Supplier

Container
[packed]

Carrier

issue bill of
lading

Carrier

BillOfLading [init]

Supplier

inform about
arrival

Carrier

Container
[arrived]

Consignee

send import
permit

Consignee

ImportPermit
[accepted]

Customs

send import
permit

Consignee

ImportPermit
[checkrequired]

Customs

accept import

Customs

ImportPermit
[accepted]

Consignee

reject import

Customs

ImportPermit
[rejected]

Consignee

cancel order

Consignee

Order [canceled]

Supplier import rejected

request container

Consignee

BillOfLading [init]

Carrier

request container

Carrier

Container
[delivered]

Consignee goods imported

confirm shipping

Supplier

Container
[approved]

Carrier

forward bill of
lading

Supplier

BillOfLading [init]

Consignee

forward import
permit

Consignee

ImportPermit
[accepted]

Supplier

forward import
permit

Consignee

ImportPermit
[checkrequired]

Supplier

Fig. 7. Choreography adapted from [14], describing the interplay between a consignee,
a supplier, a carrier, and customs to organize the transportation of goods. The model
consists of 18 tasks and 5 gateways and 4 shared data model classes.

We adopt the number of distinct interaction sequences that can be generated
by a given model as the primary metric for evaluating flexibility [5]. Furthermore,
we compare the behavior of models and protocols using trace-based confor-
mance [6]. In this context, we consider polymorphic message schemas to represent
the same interaction. Only interaction sequences of a single protocol enactment
are considered, assuming synchronous communication. Therefore, we evaluate
conformance and flexibility according to three criteria:

C1 Fitness: Derived protocols cover the entire behavior of the choreography.
C2 Precision: Protocols, when refined with control-flow constraints discovered

from the choreography, match the behavior of the choreography.
C3 Relaxation: Refined protocols with fewer control-flow constraints allow for

more distinct interaction sequences.

The first two criteria are adapted from the quality dimensions for process
model discovery [2], while the third criterion assesses the degree of flexibility
achieved by applying only a subset of discovered constraints [5]. To evaluate
these criteria for the given scenarios, we developed a prototype to automate the
mapping from choreographies to protocols, identify control-flow constraints, and

12 Tom Lichtenstein et al.

create refined protocols. For S1, we identified three constraints (two precedence
and one exclusion), as shown in Figure 6(a). For S2, we identified 15 constraints
(13 precedence and two exclusion). Based on the results, we derive three types
of refined protocols for each scenario: (1) protocols containing only exclusion
constraints, (2) protocols containing only precedence constraints, and (3) protocols
containing both types of constraints. For each resulting protocol, we compute the
number of distinct interaction sequences. The results are presented in Table 1.

Table 1. Distinct interaction sequences computed for both scenarios using choreogra-
phies, derived protocols, and refined protocols including (1) exclusion constraints only,
(2) precedence constraints only, and (3) both types of discovered constraints.

Refined Protocol

Scenario Choreography Protocol Exclusion Precedence Both

S1 2 143 58 7 2

S2 3 11,699,340 4,948,100 49 3

Our results show that for both scenarios, the derived protocols support signif-
icantly more interaction sequences than the original choreographies. We reason
that the large number of tasks relative to the number of classes is responsible for
the significant increase in interaction sequences for S2. Since tasks operating on
objects of different classes can act independently after object creation, S2 allows
for high concurrency, leading to the comparatively large number of different
interaction sequences without control-flow constraints.

Furthermore, the interaction sequences derived from refined protocols repre-
sent a subset of the parent protocol’s sequences. When all identified constraints
are applied, the protocols exactly match the interaction sequences of the chore-
ographies, thus confirming C1 and C2. In addition, removing exclusion, precedence
or both types of constraints increases the behavioral flexibility of the protocols,
confirming C3.

By using tooling from [25], we verified that all derived protocols comply with
BSPL syntax and are safe. In conclusion, our approach effectively derives flexible,
operational models from object-aware choreographies, as demonstrated by the
results for both evaluation scenarios.

Limitations. Despite promising results, this approach relies on consistency be-
tween the choreography, the shared data model, and the shared object lifecycle to
form valid protocols. Conflicting models can lead to deadlocks. States currently
require a unique set of attributes for clear separation, which may lead to artificial
attributes that provide no value besides identifying the state. In addition, we
associate one choreography instance with one protocol enactment, which prevents
support for loops and many-to-one relationships between data objects. While

From Visual Choreographies to Flexible Information Protocols 13

BSPL allows expressing iterative behavior using multiple key bindings, relaxing
this assumption requires further investigation.

When refining protocols, mapping each constraint to a parameter increases
protocol complexity. Optimizing parameter introduction, such as reusing pa-
rameters for multiple constraints, could reduce protocol size. Furthermore, the
relaxation of constraints is up to the end user. The approach could benefit from a
methodology to guide the relaxation. Visual representations of protocol behavior
could aid business experts in assessing the resulting protocols.

In addition, our discovery of control-flow constraints and evaluation assumes
synchronous communication for computing possible interaction sequences. Given
that protocols support asynchronous communication, the flexibility gains and
limitations that asynchrony implies need further investigation. Finally, the evalu-
ation is limited to two scenarios. Further validation with more complex scenarios,
including consideration of applicability by business experts, would substantiate
the results.

6 Related Work

Data-aware and declarative choreographies have garnered much attention. Knu-
plesch et al. [13] model interorganizational data exchange by extending chore-
ographies with virtual data objects that act as variables for routing conditions.
Similarly, Meyer et al. [16] enhance BPMN collaboration diagrams with a global
data model to automate data exchange and transformation between global and
local data. Adding to this, Nikaj et al. [18] incorporate RESTful specifications to
coordinate data exchange in choreographies. Whereas these works model data
exchange, they rely on explicit interaction ordering, limiting flexibility.

Montali et al. [17] propose DecSerFlow, a declarative language that uses
linear temporal logic to constrain message ordering and logical expressions
for data constraints. Building on this, Sun et al. [26] introduce artifact-centric
choreographies, which treat interacting processes as artifacts that are accessed and
manipulated via messages. Geatti et al. [10] extend DECLARE for collaborative
processes, partitioning constraints into assumptions for external participants and
guarantees for the local process using LTL on finite traces. Expanding further,
Hildebrandt et al. [12] present a formal model for declarative choreographies based
on dynamic condition response graphs, later extended with temporal and data
constraints in [11]. While the approaches achieve flexibility through declarative
constraints, they still rely on explicit message ordering. Since our approach aims
to relax control-flow constraints while preserving data constraints, we chose
BSPL as our target language. BSPL’s inherent focus on specifying information
dependencies allows us to naturally encode data dependencies without the need
to infer explicit message ordering.

Bergman et al. [1] discover declarative control-flow constraints from BPMN
process models to be used for conformance checking. Contrary to their work, we
aim to discover control-flow constraints that affect flexibility in a distributed
scenario, allowing for fine-granular relaxation of constraints. Meroni et al. [15]

14 Tom Lichtenstein et al.

map BPMN process diagrams to more flexible E-GSM models for artifact-based
monitoring of multi-party processes. Nonetheless, their approach abstracts from
interaction behavior among collaborators. Finally, Singh [24] introduces Bliss, an
extension of BSPL, providing a systematic methodology for specifying information
protocols. The methodology iteratively identifies the required information to
produce protocol artifacts, ensuring flexibility and avoiding over-constrained
specifications. In contrast, our approach infers protocols from visual object-aware
choreographies.

7 Conclusion

We propose a novel approach that maps object-aware BPMN choreography
diagrams to BSPL information protocols to address the need for flexibility
and operability in modeling collaborations between autonomous organizations.
By initially neglecting control-flow constraints, the resulting protocol allows
for more flexible behavior. To prevent undesirable behavior, constraints are
identified that limit the protocol to the choreography specification. By selectively
relaxing these constraints, business experts can refine the protocol’s behavior
to increase flexibility while avoiding undesired behavior. Evaluation shows that
protocols refined with the identified constraints match the behavior of the original
choreography, while removing constraints increases flexibility. Furthermore, all
generated protocols are safe and adhere to BSPL syntax, validating operability.

Future research includes adding support for loops and investigating the impact
of asynchronous communication on flexibility and conformance with the origi-
nal choreography. Further enhancements include the development of constraint
relaxation guidelines and visual representations of the resulting protocols to
assist business experts in protocol design. Finally, user studies could validate the
applicability of the approach.

Resources and Reproducibility

The source code of the prototype, all resources used for the evaluation, and a
screencast demonstrating the prototype are available on GitHub1.

Acknowledgements

This work was supported by DFG grant 450612067 (TL), EPSRC grant EP/N027965/1
(AKC), and NSF grant IIS-1908374 and a gift from SAS Institute (MPS).

References

1. Bergmann, A., Rebmann, A., Kampik, T.: BPMN2Constraints: Breaking down
BPMN diagrams into declarative process query constraints. In: BPM Demonstration
& Resources Forum. CEUR-WS.org (2023)

1 https://github.com/bptlab/chor2bspl

https://github.com/bptlab/chor2bspl

From Visual Choreographies to Flexible Information Protocols 15

2. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: OTM. LNCS,
Springer (2012)

3. Chopra, A.K., Christie, S., Singh, M.P.: Splee: A declarative information-based
language for multiagent interaction protocols. In: AAMAS. ACM (2017)

4. Chopra, A.K., Christie V, S.H., Singh, M.P.: An evaluation of communication
protocol languages for engineering multiagent systems. JAIR (2020)

5. Corea, C., Felli, P., Montali, M., Patrizi, F.: On the flexibility of declarative process
specifications. In: CAiSE. LNCS, Springer (2024)

6. Corradini, F., et al.: Collaboration vs. choreography conformance in BPMN. Log.
Methods Comput. Sci. (2020)

7. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design
abstractions for business processes. IEEE Trans. Software Eng. (2005)

8. Dumas, M., Pfahl, D.: Modeling software processes using BPMN: When and when
not? In: Managing Software Process Evolution. Springer (2016)

9. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification and
verification of reactive electronic services. Theor. Comput. Sci. (2004)

10. Geatti, L., Montali, M., Rivkin, A.: Foundations of collaborative DECLARE. In:
BPM Forum. LNBIP, Springer (2023)

11. Hildebrandt, T.T., López, H.A., Slaats, T.: Declarative choreographies with time
and data. In: BPM Forum. LNBIP, Springer (2023)

12. Hildebrandt, T.T., Slaats, T., López, H.A., Debois, S., Carbone, M.: Declarative
choreographies and liveness. In: FORTE. LNCS, Springer (2019)

13. Knuplesch, D., Pryss, R., Reichert, M.: Data-aware interaction in distributed and
collaborative workflows: Modeling, semantics, correctness. In: CollaborateCom.
IEEE (2012)

14. Lichtenstein, T., Weske, M.: Execution semantics for process choreographies with
data. In: BPM Forum. LNBIP, Springer (2023)

15. Meroni, G., Baresi, L., Montali, M., Plebani, P.: Multi-party business process
compliance monitoring through IoT-enabled artifacts. Inf. Syst. (2018)

16. Meyer, A., Pufahl, L., Batoulis, K., Fahland, D., Weske, M.: Automating data
exchange in process choreographies. Inf. Syst. (2015)

17. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographiess. ACM Trans.
Web (2010)

18. Nikaj, A., Weske, M.: Formal specification of restful choreography properties. In:
ICWE. LNCS, Springer (2016)

19. OMG: Business Process Model and Notation (BPMN), V 2.0.2: Standard (2014)
20. Pérez-Álvarez, J.M., et al.: Verifying the manipulation of data objects according to

business process and data models. Knowl. Inf. Syst. (2020)
21. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems

– Challenges, Methods, Technologies. Springer, Berlin Heidelberg (2012)
22. Singh, M.P.: Information-driven interaction-oriented programming: BSPL, the

blindingly simple protocol language. In: AAMAS. IFAAMAS (2011)
23. Singh, M.P.: Semantics and verification of information-based protocols. In: AAMAS.

IFAAMAS (2012)
24. Singh, M.P.: Bliss: Specifying declarative service protocols. In: Proc. SCC (2014)
25. Singh, M.P., Christie V., S.H.: Tango: Declarative semantics for multiagent com-

munication protocols. In: IJCAI. ijcai.org (2021)
26. Sun, Y., Xu, W., Su, J.: Declarative choreographies for artifacts. In: ICSOC. LNCS,

Springer (2012)

	From Visual Choreographies to Flexible Information Protocols

