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Abstract—Malicious reconnaissance is a critical step for attack-
ers to collect sufficient network knowledge and choose valuable
targets for intrusion. Defensive deception (DD) is an essential
strategy against threats by misleading attackers’ observations
and beliefs. Honeypots are widely used for cyber deception that
aims to confuse attackers and waste their resources and efforts.
Defenders may use low-interaction honeypots or high-interaction
honeypots. In this paper, we consider a hybrid honeypot system
that balances the use of the two levels of honeypot complexity,
where high-interaction honeypots are more capable of deceiving
skilled attackers than low-interaction honeypots. We present a
two-player hypergame model that characterizes how a defender
should deploy low and high-interaction honeypots to defend the
network against malicious reconnaissance activities. We model
the tradeoff of each player and characterize their best strategies
within a hypergame framework that considers the imperfect
knowledge of each player toward their opponent. Finally, our
numerical results validate the effectiveness of the proposed
honeypot system.

I. INTRODUCTION

Reconnaissance is a critical step that attackers perform to
identify vulnerable and valuable targets. We consider passive
monitoring and active probing of an enterprise network [2].
The passive monitoring attacks search services by monitoring
the traffic between servers and clients and aims to use the
collected intelligence to perform future attacks. Thus they
are often invisible (i.e., hard to be detected by the system)
but consume fewer resources to launch the attacks. On the
other hand, active probing attacks aim to identify services
by aggressively sending packets to hosts and analyzing their
responses. They finally identify vulnerable nodes and their
criticalities in a target system. Although active probing is more
effective in terms of actual attack benefits, it consumes more
resources and can be easily detected by the system due to its
active scanning.

To detect and mitigate malicious reconnaissance, we con-
sider defensive deception using honeypots in this work. Hon-
eypots are commonly used to detect and mislead attackers
and are mainly categorized into low-interaction honeypots
(LHs) and high-interaction honeypots (HHs). LHs behave in a
more-or-less fixed way while HHs carry out more realistic
interactions [8]. LHs are easier to build and operate than
HHs, while attackers can easily detect them. Although the
attacker may not know an entire network topology or system

information (e.g., active nodes’ IP addresses), it may be able
to distinguish the LHs from actual nodes by performing active
probing.

In this work, we are interested in considering how the target
system (i.e., a defender) can strategically identify an optimal
defensive deception strategy (e.g., LHs or HHs) against such
malicious reconnaissance where it aims to best protect the
system from such attacks, given limited resources. Given
resource constraints, we also would like to consider intelligent
attackers who can strategically perform an optimal reconnais-
sance attack (e.g., passive or active scanning). Further, the
attacker and the defender may perceive the game and their
corresponding opponent’s move differently under inherent un-
certainty due to their partial observability. To effectively deal
with such uncertainties in a game setting, we consider the so-
called hypergame theory which enables players to choose their
best action based on hypergame expected utilities (HEUs).
The HEUs estimate players’ expected utilities by considering
uncertainty introduced by imperfect, partial observations of the
game. To be specific, we make the following key contribu-
tions in this work:
• We develop a defensive deception framework based on a

two-player hypergame for a setting in which an attacker
applies active probing and passive monitoring while the de-
fender deploys a mix of LHs and HHs to detect an attack. No
prior work has studied game-theoretic defensive deception
solutions for the attacker’s game-theoretic strategic scanning
attacks (i.e., passive or active).

• We identify the optimal defensive deception strategies con-
sidering each party’s perceived uncertainty and hypergame
expected utility (HEU). The two-player hypergame deals
with uncertainty where the attacker and defender take ac-
tions based on their subjective perception of the game and
the opponent’s move.

• Via extensive simulation experiments, we prove that our
game model can provide an optimal defensive deception
strategy to effectively defend against reconnaissance attacks.

II. BACKGROUND & RELATED WORK

Passive and active reconnaissance attacks. Passive mon-
itoring focuses on searching services by observing traffic
between servers and clients. Encrypted web traffic can leak



information through packet length, timing, web flow size, and
response delay [14]. Hence, passive scanning can detect active
nodes, their services, supported protocols, operating systems
(OSs), enterprise roles, and update schedule [11]. Since pas-
sive monitoring consumes fewer network resources than active
probing, it can run on a long-term basis and detect active
services running on transient hosts. The passive monitoring
is generally invisible to the hosts running the services and
can be difficult to detect by traditional security measures as it
is non-intrusive. Moreover, firewall configurations can catch
services that an active probing attack misses. However, a
passive scanning attack can monitor only active services and
those running on well-known ports and using protocol-specific
decoders.

Active probing attacks can find services by sending packets
to a host and analyzing its response, from which an attacker
can learn the vulnerabilities and importance of a node [6].
Probing can be specific to a protocol or customized to an
application. The active probing is fast and gives a complete
report of all open and unprotected ports [1]. However, its
aggressive intrusiveness can be easily detected. We will con-
sider the attackers performing a mix of passive monitoring
and active probing [1, 6] as attack strategies in a cyber game
setting.

Game-theoretic defensive deception. Cybersecurity re-
search has widely discussed game theoretic defensive decep-
tion [20]. Schlenker et al. [13] proposed a deception game
where a defender chooses a deceptive response to reply to
an attacker’s observation while the attacker is unaware or
aware of the deception. Pawlick and Zhu [12] introduced a
signaling game to develop a honeypot-based defense system
where an attacker can detect honeypots. However, the prior
works [12, 13] did not consider honeypot systems with HHs
and LHs when uncertainty in expected utilities is considered
using hypergame theory.

Hypergame theory [5] has been used as an extensive game
model to model different subjective views between players
under uncertainty. Vane and Lehner [17] explored hypergames
for decision-making in adversarial settings. Ferguson-Walter
et al. [4] leveraged hypergames to quantify how a defensive
deception signal can manipulate an attacker’s beliefs. Cho
et al. [3] and Wan et al. [19] discussed hypergame-based
deception against advanced persistent threat (APT) attacks
performing multiple attacks performed in the stages of the
cyber kill chain. Kulkarni et al. [10] developed a zero-sum
hypergame of incomplete information for evaluating the effec-
tiveness of a proposed honeypot allocation. Unlike the prior
works [3, 4, 10, 19], our work mainly focuses on developing a
defensive deception game framework where the defender uses
two types of honeypots (i.e., HHs and LHs) while the attacker
performs either passive or active reconnaissance attacks.

III. SYSTEM MODEL

A. Network Model

We consider a software-defined network (SDN)-based en-
terprise network consisting of servers, routers, and connected

Fig. 1. Network Model: 3-layer network.

clients with a centralized entity. The SDN environment sepa-
rates the network control and the data (e.g., packet forwarding)
planes for higher flexibility, robust security/performance, and
programmability [15]. Considering each node’s network posi-
tion and worth (i.e., importance), we group all involved nodes
within three subsets, including asset layer, internal layer, and
core layer, as described in Fig. 1. Each layer is detailed as:
• Asset Layer (AL): This layer includes clients, such as

Internet-of-Things (IoT) devices and laptops.
• Internal Layer (IL): This layer contains routers, switches,

or other nodes between the asset layer and the core layers.
• Core Layer (CL): This layer includes high value nodes, such

as database or other servers, which involve sensitive data.
Let N = NAL

⋃
NIL

⋃
NCL denote the set of all nodes. We

consider nodes in IL and CL. A node belonging to IL or CL is
characterized by a node worth, denoted by v(i), indicating the
importance of the information node i has, which is susceptible
to attacks. Depending on which layer node i belongs to, node
i’s importance, v(i), is determined differently.
IL nodes (NIL) play a role in network flow transfer. Node

i is assigned with W (i), representing node i’s workload
(e.g., the number of network flows) where higher W (i) is
more valuable. CL nodes (NCL) are the most valuable assets
in a given network. Their value is defined based on their
type, T (i), such as database or web server, where T (i) =
{type1, type2, type3, . . .},∀i ∈ NCL. Each node i’s value,
v(i), is represented by these two values, W (i) and T (i), by:

v(i) =

{
W (i), if i ∈ NIL
T (i), if i ∈ NCL

. (1)

B. Defender Model

The defender uses various honeypots to collect the attackers’
intelligence and protect tangible assets. Honeypots mimic fake
vulnerable services to lure attackers into exploiting them. Vir-
tual machines perform such a role with simple implementation;
therefore, they are usually referred to as low-interaction hon-
eypots, LHs. Moreover, adding LH nodes helps the defender
hide the actual information (e.g., network topology or traffic
data) that the attacker can collect using passive monitoring.



The attackers can easily detect LHs. Therefore, for a node
to look like a CL node (e.g., database servers), the defender
needs to deploy HHs specifically within the core layer.

The defender is aware of the network topology and the
values of the connected nodes. The defender aims to balance
the levels of honeypots (e.g., when to use LHs or HHs).
LHs suffice to deceive passive attackers. However, they can
be easily detected by active probing attackers. To prevent
this, the defender can deploy HHs to interact and respond to
the attacker’s probes and requests. Relying solely on HHs is
impractical and incurs high costs. Moreover, deploying HHs
is unnecessary if the defender thwarts passive reconnaissance.
Therefore, the defender should be able to strategically select
an optimal defense depending on a given network situation
and the attacker’s strategies taken.

a) Deploy LHs: Low-interaction Honeypots (LH) [16]
are virtual machines that reside on a host. More specifically,
LHs do not represent a fully-featured operating system and
usually cannot be thoroughly exploited. As a result, a LH is not
well suited for capturing active probings or zero-day exploits
and can be easily detected by experienced attackers.

To protect against passive monitoring, the defender decides
a deception budget in terms of the number of honeypots to
be allocated. Let A`d = [Low ,Medium,High] be the strategy
space for the defender, which represents three numbers of
honeypots deployed in the asset layer and connected to IL. If
the defender uses more LHs against passive reconnaissance it
leads to a more secure internal and asset layer. The defender
incurs a cost cd associated with the implemented deception
budget. However, to protect the core layer, the defender needs
defense strategies that include HHs.

b) Deploy HHs: High-interaction Honeypots (HH) [18]
represent real hosts attached to the network. Hence, we allow
the defender to mimic more sophisticated systems that can
interact with attackers and mislead them by false responses and
fake information. Such a honeypot can monitor attackers and
record their activities on the machine. The defender uses HHs
to protect a particular device i. The strategy space containing
the core layer nodes to be protected is denoted by Ahd = NCL.
An action ad ∈ Ahd defines a subset of the core layer nodes
to be protected via HHs is defined as, ad = {Ni|Ni ∈ NCL}.
HHs can successfully deceive attackers performing active
probing. The associated defender cost, denoted by Cd, is much
higher, i.e., Cd > cd. The defender needs to balance between
LHs and HH to be deployed to deceive the attacker. The
defender action space is Ad = A`d ×Ahd .

C. Attacker Model

We consider an attacker in the reconnaissance stage, where
the attacker targets an SDN-based enterprise network and aims
to obtain the information, including the network topology and
node worth, via passive monitoring and active probing.

a) Passive Monitoring: The attacker performs passive
monitoring to collect information about the network, such as
hosts’ IP addresses, connectivity, and hosts’ worth. Passive

TABLE I
KEY DESIGN PARAMETERS, MEANINGS, AND THEIR DEFAULT VALUES

Symbol Meaning Default
NAL, NIL,

NCL

The nodes in the asset layer, internal layer,
and core layer, respectively

None

W (i) The node worth of the node in IL [1,5]
T (i) The node worth of the node in CL [6,10]
r Information leaked by passive monitoring None
R Information leaked by active probing None
ca Cost of passive monitoring 3
Ca Cost of active probing 10
cd Cost of low-interaction honeypot [2,4,6]
Cd Cost of high-interaction honeypot 10
v(i) Value of an arbitrary node i Eq. 1
γ Low-interaction honeypot detectability 0.5
Γ High-interaction honeypot detectability 0.2

monitoring snoops data exchanged in a network without alter-
ing it. The such attack includes traffic monitoring to identify
communication parties and functionalities, eavesdropping, and
traffic analysis [7]. The attacks can help the attacker gain
packet header and non-encrypted information and learn the
network topology and the connection between different hosts.

Assume an attacker must select one node in IL (e.g.,
routers or switches) to perform passive monitoring and obtain
information about the hosts only if their network traffic passes
through the selected node. As a result, a higher workload
of the selected IL node means the attacker can obtain more
information through the corresponding node. Recall W (n)
in Eq. 1 as the node worth of the nodes in NIL. Because
the attacker is unaware of the entire network topology at
the beginning of the game, the attacker initially selects a
random node as the target. After the attacker performs passive
monitoring with a node, the attacker obtains the information
corresponding to the node worth to the attacked node. We
use Apa = NIL to denote the action space when the attacker
performs passive monitoring via node Ni and incurs cost ca.

b) Active Probing: The attacker performs active probing
by sending packets to a particular host to collect information
regarding a specific host, such as finding open ports and OS
types. Recall that the attacker’s objective is to gather infor-
mation from the core layer (e.g., database servers). Therefore,
the active probing targets are the nodes in CL denoted by
Aaa = NCL, which is the attacker’s action space under active
probing with associated cost Ca where Ca > ca. The attacker
action space is Aa = Apa×Aaa. A pure action aa ∈ Aa is the
set of nodes to be probed actively and passively. The attacker
balances the two reconnaissance levels to avoid excessive
attack costs and gain necessary network information.

In practice, an attacker may discover honeypots. Let γ and
Γ denote the attacker’s probability of discovering LHs and
HHs, respectively. Table I summarizes game parameters. The
attacker’s reward depends on the deception strategy imple-
mented by the defender, as explained next in Section III-D.

D. Utility Functions

Let ud and ua denote the utility functions for the defender
and attacker, respectively. Consider a zero-sum game (i.e., ud+



ua = 0) where the players action profile is (ad, aa) ∈ A.
If the attacker passively monitors a node in the IL, aa ∈ Ap,

and the defender deploys LHs, ad ∈ A`d. The defender’s
utility when taking LHs is expressed by:

ud(ad, aa) =
(∑
i∈aa

− [r · v̂(i)]
)
− cd · ad + ca, (2)

where r is the information leaked via passive monitoring.
Recall that v(i) = W (i) is the value the node in IL. Let
W ad(i) denote the amount of fake traffic generated by LHs
and passing through node i and W (i) is the number of all
traffic passing through node i. We assign v̂(i) = v(i)−W ad(i)
as the value of node i under deception due to fake traffic. In
other words, the node’s value is decreased due to deceptive
traffic that belongs to honeypots.

Similarly, if the attacker performs active probing, (i.e., aa ∈
Aaa) , the defender needs to deploy HHs to mimic a certain
type of node in CL (i.e., ad ∈ Ahd ). The defender utility
when taking HHs is:

ud(ad, aa) =
(∑
i∈aa

R · v(i)1Γ
{i∈ad}

)
− Cd · |ad|+ Ca, (3)

where R denotes the leaked information due to active probing
and v(i) = T (i) is the value of a node i ∈ aa targeted via
active probing. 1Γ

{·} is a special indicator function that equals
Γ, if i ∈ ad, where Γ is the probability of successful deception,
and returns −1, otherwise. That is, if the attacked node is a
honeypot, the defender receives a reward with the probability
that the attacker is deceived successfully; the attacker gains a
reward R, otherwise.

In some cases, the defender may implement a low level of
deception against active probes, or high-level deception against
passive monitoring. Thus, the utility will be a combination of
Eqs. 2 and 3 as follows. In the first scenario, we have ad ∈ A`d
and aa ∈ Aaa. As such, the defender utility is similar to Eq. 3,
replacing Γ by γ as the probability of successful deception
and replacing Cd by cd as the cost of deception as given by:

ud(ad, aa) =
(∑
i∈aa

R · v(i)1γ{i∈ad}

)
− cd · ad + Ca (4)

In the second scenario, we have ad ∈ Ahd and aa ∈ Apa. The
defender utility is:

ud(ad, aa) =
(∑
i∈aa

− [r · v̂(i)]
)
− Cd · |ad|+ ca. (5)

Both cases represent improper deception scenarios. However,
the defender may fall into such scenarios due to a lack of
information, which motivates our hypergame formulation as
presented in the next section.

IV. HYPERGAME FORMULATION

Considering the attacker and defender models above and
the uncertainty associated with each player, we present our
hypergame model. The game is played repeatedly between
two players, each facing an interesting tradeoff. The attacker
decides whether to use active or passive probes. The defender

balances the use of LHs and HHs to reduce the cost and
provide effective deception. The cost for running a HH is
greater than that of an LH. If the defender is certain about the
type of reconnaissance the attacker uses, it can better optimize
its deception strategies.

A. Subgames

We develop a hypergame formulation that captures the
possible subgames played by the attacker. We refer to the
defender as the row player. We consider three subgames (i.e.,
subgame 1, 2, and 3) where each subgame specifies the set of
strategies to be played by both players defined below:
1) Subgame 1: The attacker solely relies on passive moni-

toring to perform reconnaissance. The defender conducts
deception via LHs or HHs. The action space of this
subgame is Ald × Apa. The defender decides on the de-
ception budget to invest in deception. The attacker selects
a switch/router to monitor for a specific duration to gather
information about the nodes’ connectivity, and traffic flows
passing through the targeted switch. Deception via LH is
considered dominant for the defender in this subgame as
HH incurs unnecessary costs.

2) Subgame 2: The attacker uses active probing to gather
information about a node in the CL. The defender uses
a HH to protect a certain node in the CL. The action space
of this subgame is Ahd ×Aaa.

3) Subgame 3: This is a full game. Therefore, the action space
of this subgame is Ad ×Aa.

B. Players’ Beliefs

The belief vector is P = [P1, P2, P3], where P3 = 1 −
P1 − P2. Pk is the true probability that subgame k will take
place. These probabilities will be given based on the attacker’s
preference in performing different reconnaissance approaches
(i.e., passive, active, or both). In practice, we assume that
these probabilities are initially unknown to the defender.
The defender improves his expected utility by learning the
attacker’s subgame preference Pk as in [9]. In this work,
we assume that the defender knows the attacker’s subgame
preferences Pks with uncertainty gd as detailed next.

C. Players’ Uncertainty

The defender is uncertain about which subgame the attacker
will play and thus does not know true Pk’s. However, as the
game is repeated over time, the defender can learn the actual
belief probability Pk for each subgame. One way is to assume
that the defender observes the actual probability distribution
of Pk’s with probability 1 − gd where gd is the defender’s
perceived uncertainty toward what subgame the attacker will
play. Hence, the defender is assumed to know the actual belief
vector with 1 − gd. gd is represented by a decay function in
terms of the number of play rounds j as follows:

gd(j) = exp(− j
µ

), (6)

where µ is a decay rate.



Let ga denote the attacker perceived uncertainty about the
cyber deception implemented by the defender. ga exponen-
tially decays in terms of Γ (i.e., HH detectability by the
attacker), and γ (i.e., LH detectability by the attacker) by:

ga(γ,Γ) = exp(−γ + Γ

2
). (7)

D. Players’ Mixed Strategies

If the attacker is playing subgame 1 (i.e., performing passive
monitoring), it is more efficient for the defender to implement
deception using LHs. In fact, implementing HHs will come at
an excessive cost for the defender (i.e., dominated strategies
by A`d strategies). However, if the attacker performs active
probing (i.e., subgame 2), the defender needs to use HHs and
thus Ahd will be the dominant strategies. Finally, if the attacker
plays a combined reconnaissance (i.e., subgame 3), which is a
full game), the defender needs to use both levels of deception.
We consider a rational attacker that plays Nash equilibrium
strategies within each subgame.

For any subgame k ∈ {1, 2, 3}, the defender (i.e., row
player) mixed strategies, DEFk = [dk1, . . . , dkm], where
m = |Ad| for the full game, such that

∑m
i=1 dki = 1.

Similarly, the attacker (i.e., column player) mixed strategies
at the kth subgame is believed by the defender to be Attk
such that, Attk = [ak1, . . . , akn], where n = |Aa| for the full
game, such that

∑n
j=1 akj = 1.

According to the belief vector P, the defender redefines its
beliefs regarding the mixed strategies played by the attacker
at different subgames. Specifically, let ā = [ā1, . . . , ān], where
āj =

∑4
k=0 Pkakj for ∀j = 1, . . . , n.

E. Hypergame Expected Utility

Now we can calculate the hypergame expected utility (HEU)
for the defender. Recall that the defender is uncertain about
its beliefs regarding the subgame. Hence, the defender’s HEU
(DHEU) is a weighted combination of the EUs obtained under
its belief and the EU under uncertainty, gd. When the defender
takes ad, DHEU is obtained by:

DHEU(ad, gd) = (1−gd)·EU (ad; ā)+gD·EU(ad; aw), (8)

where EU (ad; ā) =
∑
aa∈Aa

ā(aa)ud(ad, aa). The second
term represents the worst case expected utility received by
the defender due to uncertainty when playing a strategy ad
against a damaging attack strategy w, such that EU(ad; aw) =
n · a(aw) · u(ad, aw); aw ∈ Aa.

The defender selects the defense strategy that maximizes
his hypergame expected utility, DHEU . The attacker’s mixed
strategies, akj’s, are considered to represent Nash equilibrium
mixed strategies within each subgame.

Similarly, the attacker’s HEU (AHEU) for any strategy aa
is given by:

AHEU(aa, ga) = (1−ga)·EU
(
aa; d̄

)
+ga·EU(aa; aw). (9)

V. EVALUATION BY SIMULATION AND RESULTS

Simulation Settings. Recall that each node belongs to one
of the three layers. In this simulation, we consider 100 nodes
belonging to the asset layer, 70 nodes in the internal layer,
and the core layer containing ten nodes. Nodes in the asset
layer AL are assigned a value between [1, 5] and between
[5, 10] for the node in the core layer CL. The IL nodes’ values
are calculated via Eq. 1. When the defender deploys low-
interaction honeypots, each honeypot obtains an importance
value of [1, 5]. If the defender deploys a high-interaction
honeypot strategy to protect a particular node in CL, we create
a new node as the honeypot and assign it the same importance
value as the protected node. For attacker, we assign LH and
HH detectabilities with γ = 0.5 and Γ = 0.2, respectively.
Table I summarizes the notations of key design parameters,
the corresponding meaning, and default values.

We use the following performance metrics:
• Accumulated Payoff: This is the accumulated values of an

attacker’s and defender’s payoffs with respect to the number
of game rounds, respectively.

• Total Attack Time: The attacker aims to collect all the
values of the nodes in the CL. We use the number of game
rounds for the attacker to complete its objective successfully
to estimate this metric.
We compare the following policies for the defender and

attacker to choose their best strategies:
• Random with No DD (R-No-DD): Given no knowledge of

the network, an attacker randomly selects its action when
the defender does not use any defensive deception (DD).

• Random with DD (R-DD): The defender and attacker
randomly select their strategies when the defender uses DD.

• Hypergame with DD (H-DD): The attacker and defender
play a hypergame when the defender uses DD.
Fig. 2 (a) shows the attacker’s accumulated payoffs when

the attacker and defender play under the three policies (i.e.,
R-No-DD, R-DD, H-DD). Similarly, Fig. 2 (b) shows the
defender’s accumulated payoffs. Under R-No-DD (i.e., red
dashed line), the attacker’s payoff is significantly higher than
under R-DD and H-DD (i.e., blue dotted and black solid lines).
When the defender uses DD, the attacker’s payoff decreases.
Even if the defender randomly selects its strategies, the
honeypots provide false information (e.g., deceptive network
flow and fake nodes) and disturb the attacker’s reconnaissance,
as described in Eqs. 2 and 3). Moreover, playing H-DD
decreases the attacker’s payoff and increases the defender’s
payoff compared to playing R-DD. Recall that the uncertainty
creates a discrepancy between the players’ beliefs about the
game. The defender uncertainty (gd(j)) decreases over game
rounds, which implies that the defender knows better about
its opponents and chooses more suitable strategies against
the attacker. As a result, the defender obtains the highest
payoff under H-DD. Fig. 2 (c) shows the number of game
rounds (i.e., total attack time) exhausted by the attacker to
obtain all the values of the core layer nodes successfully.
Without DD, the attacker needs 53 game rounds to harvest the
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Fig. 2. Comparative performance analysis of defensive deception vs. non-defensive deception under R-No-DD, R-DD, and H-DD.

network information and the core layer nodes’ worth. LHs and
HHs provide false information to delay the attacker’s passive
monitoring and active probing (i.e., R-DD and H-DD). In
addition, hypergame allows the defender to identify the best
response to the attacker’s reconnaissance actions (i.e., H-DD)
where real-world uncertainties are better reflected on H-DD.

VI. CONCLUSION

This research proposed a hypergame-based hybrid honeypot
system to defend against malicious reconnaissance. We proved
that defensive deception could significantly delay the attacker’s
processes, leading to attack failures. We also observed that
the hypergame considering uncertainty in practice allows the
defender to select optimal strategies to mislead the attacker’s
reconnaissance by leveraging the inherent uncertainty that can
mislead the attacker’s perception.
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