
Role-Based Deception in Enterprise Networks
I�at Anjum

ianjum@ncsu.edu
North Carolina State University

Raleigh, NC, USA

Mu Zhu
mzhu5@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Isaac Polinsky
ipolins@ncsu.edu

North Carolina State University
Raleigh, NC, USA

William Enck
whenck@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Michael K. Reiter
michael.reiter@duke.edu

Duke University
Durham, NC, USA

Munindar P. Singh
mpsingh@ncsu.edu

North Carolina State University
Raleigh, NC, USA

ABSTRACT
Historically, enterprise network reconnaissance is an active process,
often involving port scanning. However, as routers and switches
become more complex, they also become more susceptible to com-
promise. From this vantage point, an attacker can passively identify
high-value hosts such as the workstations of IT administrators,
C-suite executives, and �nance personnel. The goal of this paper is
to develop a technique to deceive and dissuade such adversaries.
We propose HoneyRoles, which uses honey connections to build
metaphorical haystacks around the network tra�c of client hosts
belonging to high-value organizational roles. The honey connec-
tions also act as network canaries to signal network compromise,
thereby dissuading the adversary from acting on information ob-
served in network �ows. We design a prototype implementation
of HoneyRoles using an OpenFlow SDN controller and evaluate
its security using the PRISM probabilistic model checker. Our per-
formance evaluation shows that HoneyRoles has a small e�ect on
network request completion time, and security analysis demon-
strates that once an alert is raised, HoneyRoles can quickly identify
the compromised switch with high probability. In doing so, we
show that role-based network deception is a promising approach
for defending against adversaries in compromised network devices.

CCS CONCEPTS
• Security and privacy → Network security; • Networks →
Network reliability; Programmable networks.

ACM Reference Format:
I�at Anjum, Mu Zhu, Isaac Polinsky, William Enck, Michael K. Reiter,
and Munindar P. Singh. 2021. Role-Based Deception in Enterprise Networks.
In Proceedings of the Eleventh ACM Conference on Data and Application
Security and Privacy (CODASPY ’21), April 26–28, 2021, Virtual Event, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3422337.3447824

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY ’21, April 26–28, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8143-7/21/04. . . $15.00
https://doi.org/10.1145/3422337.3447824

1 INTRODUCTION
Enterprises heavily rely on the security of their networks. These
networks often consist of a wide variety of computing resources,
including desktops, laptops, servers, routers, and switches. The
resources support a range of activities by di�erent types of users
performing actions as di�erent roles (e.g., IT administrators, C-suite
executives, and �nance personnel) [10]. By compromising one or
more of these resources, an adversary may cause signi�cant harm
to the enterprise. For example, it may steal credentials or access
systems with the goal of ex�ltrating sensitive information such as
intellectual property and customer information, or modifying data
such as source code repositories and payment systems.

The �rst phase of network in�ltration is reconnaissance. Tradi-
tional reconnaissance techniques such as port scanning are active,
and the current state-of-the-art network defenses have become
highly tuned to identify them. However, passive reconnaissance
by compromising packet forwarding devices and inspecting net-
work �ows to identify the existence and behaviors of client and
server hosts is becoming increasingly feasible. Speci�cally, as packet
forwarding devices such as routers and switches become more com-
plex, they becomemore prone to compromise [14, 60]. These targets
include emerging Software De�ned Networking (SDN) switches,
which provide much broader and more �exible functionality [5, 8,
50, 55]. Prior solutions [40, 45] seeking to defend against malicious
forwarding devices are not directly applicable for SDN devices [63].
Furthermore, SDN data plane defenses mostly concentrate on for-
warding veri�cation and other active attacks (e.g., packet delaying,
tampering, dropping) [13, 17, 25, 33, 49].

The goal of this paper is to protect enterprise employees acting
in high-value roles such as IT administrators, C-suite executives,
and �nance personnel. We are particularly interested to (1) deceive
adversaries by perturbing the network tra�c information gained
through passive reconnaissance, and (2) dissuade an adversary from
acting on observed information (e.g., performing active reconnais-
sance or an attack). Our vision is to build metaphorical “haystacks”
around the network activities of these individuals. The introduced
network tra�c perturbs reconnaissance, and if the adversary acts
on the wrong intelligence, it will be detected with high probability,
which will in e�ect dissuade the adversary from acting.

In this paper, we propose HoneyRoles, which uses honey connec-
tions to deceive adversaries using compromised packet forwarding
devices for passive reconnaissance. HoneyRoles coordinates honey
connections by modeling fake hosts that are organized into roles

corresponding to organizational functions of client hosts. Hon-
eyRoles performs integrity validation of honey connections such
that they act as “canaries” for attacks against network clients. In
the event that an adversary modi�es or blocks a honey connec-
tion, HoneyRoles detects the adversary’s existence and statistically
identi�es any compromised forwarding devices.

We evaluate the security of HoneyRoles’ defender-attacker en-
vironment using a probabilistic model checker (PRISM [29]). This
simulation assumes an alert has been raised and measures the ac-
curacy of detecting the location of compromised switches. For a
simulated Fat-Tree network topology with 50 real and 50 fake hosts
and 1 compromised switch, we show that HoneyRoles consistently
ranks the compromised switch as most suspicious. In the same
environment with two compromised switches, we show that Hon-
eyRoles consistently ranks at least one of the compromised switches
as most suspicious. The second compromised switch is also usually
highly ranked, depending on its function.

We additionally used Mininet to emulate the Fat-Tree topology
with 50 real and 50 fake hosts.Whenmeasuring the pairwise request
completion time between real hosts and servers, we observed that
HoneyRoles has a small impact on network request completion
time for a moderately loaded network (1 request per second per
host). With a thorough experiment, we have seen that 90% of hosts
observe less than 14% overhead in request completion time.

This paper makes the following contributions:
• We introduce role-based deception as an enterprise network
defense. HoneyRoles conceals the identity of critical client
hosts and creates uncertainty for an adversary residing in
one or more compromised packet forwarding devices.

• We use honey connections to de�ect and detect en-route manip-
ulation of client network tra�c. HoneyRoles uses statistical
inference to identify any compromised network device.

• We evaluate the security of HoneyRoles’s defender-attacker
environment using a probabilistic model checker. HoneyRoles
consistently tracks network events and successfully ranks
the switches in terms of suspiciousness.

The remainder of this paper proceeds as follows. Section 2 mo-
tivates our work. Section 3 overviews HoneyRoles’s architecture
and major goals. Section 4 describes the design principles. Section 5
provides a security analysis using a probabilistic model checker.
Section 6 evaluates performance overhead. Section 7 discusses limi-
tations. Section 8 overviews related work. Section 9 concludes.

2 PROBLEM
Targeted attacks [18, 32] and threats to enterprise network infras-
tructure [22, 56] continue to increase. Such attacks often begin with
a foothold for reconnaissance. Historically, footholds have been
client workstations. However, network packet forwarding devices
such as routers and SDN switches are becoming prime targets as
they o�er a valuable vantage point for reconnaissance and their
increased complexity leaves them more prone to compromise.

Once a foothold is established, the adversary performs recon-
naissance to identify targets that most pro�tably support its goals
(e.g., to take over the account of an IT administrator or C-suite
executive). From the vantage point of a compromised network
switch, the adversary can perform various en route network tra�c

attacks that strategically and selectively target high-value clients
at critical times. For example, it could inject malicious JavaScript
into Web pages as they are returned from Web servers, or it could
use SSL-stripping to eavesdrop on tra�c and steal credentials. Ex-
isting defenses such as HSTS have seen limited deployment [27],
in part because many developers do not understand how to use
HSTS correctly, resulting in critical information such as login cook-
ies being leaked. For networks that include mobile devices, Luo et
al. [36] found that popular mobile web browsers failed to fully sup-
port HSTS and were left open to clickjacking attacks. Additionally,
Krombholz et al. [28] showed that TLS deployment is far too com-
plex, leading to large numbers of incorrect HTTPS deployments.
Other attacks include redirecting client tra�c to malicious servers
or simply blackholing the tra�c to keep a target from performing
a critical task (e.g., monitoring IDS logs). If done strategically and
sparingly, such manipulation can fall under the detection thresholds
of existing defenses [13, 17, 49].

Such attack activity can be broken down into three phases.
(1) Passive reconnaissance: the adversary passively intercepts and
tracks the communications of di�erent organizational entities to
identify the target roles’ probable locations. Other than forwarding
collected data for further analysis, the adversary does not leave
a trace for the defender to identify suspicious activity. (2) Active
reconnaissance: the adversary may perform a di�erent type of active
interception for pinpointing the target and increasing the con�-
dence it has about the information. Such activities may be detected
by the defender; however, the adversary still does not disrupt com-
munication. (3) Active attack: the adversary has gained adequate
con�dence for target systems and decides to attack a client’s net-
work tra�c. Even if such activities raise an alarm, the adversary’s
location within the network may still be di�cult to locate.

The three-phase attack plan described above demonstrates the
danger of reconnaissance as an important precursor to sophisticated
attacks. With information about the users, devices, and services on
a network it is possible to design an attack strategy that minimizes
the risk of detection. For example, armed with information gathered
passively, an adversary may realize its current foothold is unable
to contact a sensitive server without triggering an alarm, resulting
in it pivoting its foothold in the network to a device or user that
can access the server. For this reason, it is crucial to defend against
network reconnaissance.
Threat Model & Assumptions: The goal of the adversary is to iden-
tify high value targets, learn enterprise secrets (e.g., intellectual
property, customer data and credentials), and modify data en route
to high-integrity servers (e.g., software code repositories, payment
systems). To do so, an adversary may target administrative systems,
or connections to them, to gain access to target systems. We assume
the adversary is able to compromise one or more packet forwarding
devices in the network. From the vantage point of a forwarding
device, the adversary can view, analyze, and modify all packets
that �ow through it. We do assume that not all of the forwarding
devices are compromised, and that the defender can incrementally
replace or refresh devices as they are detected.

We assume the adversary has some, but not all knowledge of the
hosts in the network. For example, we assume the IP addresses of im-
portant servers (e.g., Admin and Finance Servers) are known, based

on other available information (e.g., DNS information). However,
we assume the adversary does not know the IP address and other
details of workstations that perform speci�c organization roles (e.g.,
the IT Admin workstation). Additionally, by compromising an SDN
switch, the adversary has access to the SDN southbound network
and hence can attempt to forge forwarding rules (e.g., OpenFlow
messages) in the corresponding switch. Finally, in order to achieve
its goals, the adversary seeks to remain undetected.

Our trusted computing base (TCB) includes the system defender
(SDN controller or a separate trusted server) and the southbound
network between the SDN controller and SDN switches. As such,
we assume the SDN switches are con�gured to either use out-of-
band communication, or in-band communication protected by TLS.
We do not blindly assume that SDN switches are trustworthy. Simi-
larly, HoneyRoles trusts its host agents running on workstations
and servers. Finally, we assume the topology has a su�cient num-
ber of redundant forwarding paths for the ease of dynamic path
management, discussed in Section 4.

3 OVERVIEW
HoneyRoles seeks to use deception to mitigate the threat of compro-
mised packet forwarding devices (e.g., switches and routers). From
the vantage point of a packet forwarding device, an adversary can
perform passive reconnaissance to identify high-value client hosts
(e.g., IT administrators, C-suite executives, and �nance personnel),
active reconnaissance (e.g., selective probing or rerouting), and per-
form en route tra�c attacks (e.g., injecting content, SSL-stripping,
blackholing). Our vision is to introduce honey network tra�c that
(1) deceives the adversary by building metaphorical “haystacks”
around the network activities of high-value client hosts, and (2)
dissuades the adversary from acting on information in real network
tra�c for fear of being detected. Achieving this vision requires
overcoming the following research challenges:

C1 (Detection): Compromised packet forwarding devices are dif-
�cult to detect. An adversary performing passive monitoring
will not produce detectable actions until it attempts an attack
(possibly months after compromise), at which point it may
be too late to detect a compromise.

C2 (Exposure): The adversary may have knowledge of some en-
terprise network components. Information from DNS and pub-
licly accessible websites [39, 53] make hiding the identity
of servers futile. Servers receive a disproportionate amount
of inbound connections, allowing an in-network adversary
to distinguish between clients and servers, which may limit
the e�ectiveness of moving-target defenses [15, 46].

C3 (Visibility): The adversary may be aware of the deception
system. Naïvely sending honey tra�c is not e�ective if the
adversary is aware of the defense. External events (e.g., stock
market changes and DDoS attacks) can cause certain high-
value client hosts to act predictably.

Figure 1 overviews the high-level intuition behind HoneyRoles.
The �gure depicts four client hosts (c1-c4) and four servers (s1-
s4) connected by a network topology with redundant links and
switches. A network administrator partitions each client host based
on organizational roles. In the �gure, c1 is in Role 1, c2 is in Role 2,
c3 is in Role 3. Host c4 is not assigned to any role. HoneyRoles then

c1

c2

c3

c4

s1

s2

s3

s4

sw1

sw2

sw7

sw8

Core Network

sw3

sw4

sw5

sw6

SDN Controller

Real: Role 1 Role 2 Role 3

Fake: Role 1 Role 2 Role 3

Figure 1: Overview of HoneyRoles

installs software agents (honey agents) on client hosts that produce
fake network tra�c. Each client host is assigned at least one honey
agent, each of which is assigned one of the organizational roles.
Some physical hosts may run multiple honey agents.

HoneyRoles uses hosts with honey agents to establish honey
connections with the real servers. Using honey connections, honey
agents establish new application-layer protocol sessions with the
servers (simply replaying network traces would be detectable). Hon-
eyRoles uses Software-De�ned Networking (SDN) to dynamically
select random forwarding paths between client hosts (both honey
and real) and servers. Figure 1 shows two forwarding paths. The
blue path (c1-s1) containing real tra�c avoids the compromised
switch (sw5), and the red path (c3-s1) containing fake tra�c passes
through the compromised switch (sw5). Note that the blue path
could have just as easily passed through the compromised switch.
The goal of deception is to provide the adversary with fake infor-
mation such that it does not know what information to believe.

HoneyRoles addresses the Detection challenge by increasing the
frequency at which a given compromised packet forwarding device
will see network tra�c that may be viewed by the adversary as
“valuable”. If the adversary guesses wrong enough times and per-
forms an en route tra�c attack on a honey connection, HoneyRoles
statistically identi�es the compromised forwarding device. For ex-
ample, a switch near client host c4 (Figure 1) may not normally
see network tra�c to a domain controller. However, honey connec-
tions from a honey agent on c4 provide the delusion that domain
controller tra�c can go through that switch. In fact, this design
choice enables HoneyRoles to not merely overcome but embrace
the Exposure challenge. By not obfuscating the network identities
of high-value servers, HoneyRoles uses honey connections as bait.

HoneyRoles addresses the Visibility challenge through its use of
organizational roles to parameterize the creation of honey connec-
tions. For each role, an administrator speci�es a role pro�le. The
pro�le de�nes: (1) the number of real hosts, (2) the identities of
the real hosts, (3) the number of honey agents, (4) the locations
and identities for the honey host agents, and (5) the set of target
servers S that are relevant to the role (e.g., domain controller, HR
server). HoneyRoles assumes the adversary would attempt to iden-
tify target client hosts based on their connections to the high-value
servers. Therefore, HoneyRoles monitors the network activity be-
tween real clients and corresponding high-value servers. It uses

these tra�c patterns to automatically con�gure the honey host
agents to send honey connections to the target servers with simi-
lar request rates. Assume there are r real client and h honey host
agents in same target role. Hence, the adversary has a r

r+h chance
of correctly identifying a real client host. Importantly, HoneyRoles
does not provide any signal on detection (no change of strategy)
toward the adversary.

Finally, to ensure the adversary cannot distinguish a honey host
from a real host, HoneyRoles assumes an ambient network tra�c
generator to represent the general activity that a given user may
perform [9, 51, 58]. We note that these prior works are simply
examples. Designing and evaluating network tra�c generators that
can evade detection from modern machine learning algorithms is
an orthogonal challenge. HoneyRoles would directly bene�t from
any advancements in this area.

4 DESIGN
This section discusses three considerations in HoneyRoles: (1) honey
connections, including how they aremanaged by the software agents
and how they are coordinated by the HoneyRoles controller; (2)
dynamic forwarding path management to distribute honey con-
nections across many potentially compromised switches and help
statistically identify compromised switches; and (3) the belief main-
tenance system within the HoneyRoles controller, which is used to
rank switches based on their probability of being compromised.

4.1 Honey Connections
Honey connections provide the primary form of deception in Hon-
eyRoles. For expository reasons, we describe how to create honey
connections for a single role; it is straightforward to extend the
design to an arbitrary number of roles.

4.1.1 Role Profile. For each role, the administrator de�nes a �xed
set IDr of real hosts matching their organizational roles. The ad-
ministrator de�nes for each role a honey host factor, � � 0, which
yields the size of the set IDh of honey hosts for the speci�c role.
Speci�cally, |IDh | = d� · |IDr |e. We expect a typical deployment
will include at least as many honey hosts as real hosts (� � 1).

HoneyRoles identi�es each host (both real and honey) via a 5-
tuple: < ip, mac, type, role, switch >, where ip is the host’s IP
address, mac is the host’s MAC address, type indicates if the host is
real or honey, role speci�es the host’s organizational role (e.g., IT
administrator), and switch speci�es the network switch to which
the host is attached. The ip, mac, and switch are �xed for real
hosts and are randomly assigned by HoneyRoles for honey hosts.
Of these values, the switch has the most impact on the utility of
honey connections, as it determines where in the network the honey
host exists, and hence the other switches that honey connections
to or from this switch will likely traverse. The honey agent (host)
composition and assignment is further discussed in Section 4.1.2.

Finally, the role pro�le contains a set of target servers S , each
associated with the organizational role. Conceptually, S de�nes the
set of servers that users in a role connect with to perform their
duties. For example, for an IT administrator role, S may include
a domain controller, a centralized VM management server, and a
con�guration management system server. For each server s 2 S , the
network administrator speci�es information for valid connections

(e.g., an unprivileged user and associated credentials) so that the
size and frequency of packets in TLS-protected connections are
indistinguishable from the connections generated by real hosts.

4.1.2 Honey Agent. We envision that honey agents will reside on
the same physical hardware as real hosts to reduce capital expen-
ditures required for deploying HoneyRoles. However, network ad-
ministrators can deploy hosts without users, e.g., decommissioned
computers, that run only honey agents.

The honey agent needs to be a privileged process capable of
using distinct IP and MAC addresses. This is achievable using ei-
ther operating system virtualization or containerized environments.
For example, Qubes OS uses a hypervisor to containerize multiple
distinct execution environments. It provides a �exible and modular
networking environment that can bridge virtual interfaces to dif-
ferent environments. Alternatively, for non-hypervisor hosts, the
honey agent could be deployed as a container. Since our perfor-
mance evaluation in Section 6 uses Mininet [54], we emulate the
existence of a honey agent by creating extra Mininet hosts (with
individual IP addresses) tagged as honey hosts.

4.1.3 Honey Agent Coordination. The HoneyRoles controller co-
ordinates the honey connections sent by honey agents using TLS-
protected heartbeat messages. It is important that heartbeats are
sent on regular intervals and are statistically similar in size, as they
are sent through the data plane and are observable by adversaries.
Heartbeat messages are sent to real hosts to prevent the adversary
from using heartbeats to identify honey hosts.

The purpose of the heartbeat messages is to parameterize the
creation of honey connections. To that end, each heartbeat contains
the following information: (1) destination information (MAC ad-
dress, IP address, transport-layer port), (2) number of RREs (Request
Response Exchange), (3) RRE interval, (4) application-layer protocol
information, and (5) estimated timeout. The generation of believable
honey connections additionally requires realistic application-layer
content or information. The application-layer protocol information
depends on the type of protocol (e.g., SMTP, FTP, HTTP). For ex-
ample, HTTP/HTTPS connections may require a URL, cookies, and
username/password pairs. Other application-level information can
be Gmail cookies, protocol payloads (i.e., email bodies), passwords
for unencrypted protocols (e.g., SMTP, POP, IMAP). For simplicity,
our implementation considers only HTTP and HTTPS tra�c.
Capturing Real Tra�c Pro�les: As described in Section 3, a key idea
of HoneyRoles is that honey connections for a given role follow the
tra�c patterns of that role. Existing tra�c tracing and monitoring
tools [19, 20, 42] use multiple network sensors distributed through-
out a network. We achieve a similar capability using OpenFlow’s
�ow-level statistics collection mechanism [52, 57]. Our implemen-
tation leverages this information within the ONOS SDN controller.
We leverage the OpenFlow control messages (e.g., PacketIn, Flow-
Mod, FlowRemoved, FlowStatistics) to capture the near-realtime
traces of real host connections.
Replicating Real Tra�c Pro�les: Our implementation does not in-
clude ambient network tra�c, but focuses on dynamically turning
captured real tra�c pro�les into honey connections. The role pro�le
(Section 4.1.1) de�nes a set of target servers S that are relevant to
the tasks of a given role. HoneyRoles generates honey connections

of a speci�c role by observing the network connections between
the real hosts IDr of that role and the corresponding servers in S .
As in Harpoon [51], HoneyRoles parameterizes tra�c generation
based on the following information for each time interval: (1) the
source and destination addresses; (2) the payload size for each source-
destination pair; (3) the average number of active sessions between
each source-destination pair; (4) the time duration based on an em-
pirical distribution of time between consecutive connections as
well as the inter-arrival time; and (5) header information based on
the common values such as MAC address, protocol, and port.

4.1.4 Honey Agent Reports. A honey agent sends reports as heart-
beat responses. Note that real hosts must also send reports (without
meaningful content) to make them indistinguishable from honey
hosts. At a high level, a honey agent report provides a status update
on the honey connections speci�ed in previous heartbeats. Each
alert included in a report speci�es: (1) total number of requests sent,
and (2) alert details (e.g., average delay, number of dropped request,
attack type).

Our implementation detects two attack types: SSL-stripping and
blackholing. SSL-stripping occurs when the victim �rst visits the
HTTP version of a website. Normally, the server will redirect the
web browser to the HTTPS version of the website. However, an en
route network adversary can suppress the redirection to keep the
victim using HTTP URLs, potentially revealing passwords or other
security-sensitive information. To detect SSL-stripping, HoneyRoles
uses honey connections that simulate the user entering just the
domain name into the URL bar of the web browser. If the honey
agent does not receive the expected redirect to the HTTPS version
of the web page, an alert is reported.

Network blackholing occurs when an in-network adversary pre-
vents packets from reaching their destination. For example, an
adversary may wish to prevent an IT administrator from accessing
a network logging server while it is performing an attack. To detect
blackholing, HoneyRoles simply sends honey connections to the
important target servers. If a connection exceeds a pre-speci�ed
timeout period, an alert is reported. However, normal network
congestion and load at the target server can also cause honey con-
nections to time-out. Therefore, the belief maintenance system
(Section 4.3) must take care when using alerts of this type.

4.2 Forwarding Path Management
HoneyRoles dynamically changes the forwarding path from clients
to servers to distribute honey connections across potentially com-
promised switches. The dynamic forwarding path helps to identify
the location of a compromised switch. Since the goal of the adver-
sary is to distinguish between real and honey connections, it is
important to minimize the di�erences between them. Therefore,
HoneyRoles does not di�erentiate real connections from honey
connections when changing forwarding paths.

A dynamic forwarding path selection distributes packets in
honey connections across more switches. To understand how the
dynamically forwarding path helps identify the location of a com-
promised switch, consider a collection of alarms raised for honey
connections between client c1 and server s1 (Figure 1). If the honey
connections always traverse the same set of network switches, it is
di�cult to determine which switch is compromised. However, if

the forwarding path di�ers for each alarm, the intersection of the
forwarding paths can be used to isolate a compromised switch. The
belief maintenance system in Section 4.3 uses this intuition.

HoneyRoles builds upon the OpenFlow SDN protocol to perform
dynamic forwarding paths. A key component of all SDN controllers
(e.g., ONOS) is a reactive forwarding path algorithm that determines
the best path from a source to a destination. Network topologies
commonly have redundant links and switches (e.g., Figure 1). We
observe that given a network topology with su�cient redundancy,
there will be multiple optimal (or slightly non-optimal) paths within
each pair of source and destination. We change the path selection
logics of the forwarding path algorithm, which also avoids forward-
ing loops and potentially react to network congestion.

HoneyRoles de�nes network �ows as a 5-tuple: source IP address
(sip), source transport-layer port (spor t), destination IP address
(dip), destination transport-layer port (dpor t), and transport-layer
protocol (i.e., TCP or UDP). Whenever a new connection (honey
or real) is set up by a source-destination pair, a PacketIn message
(request for setting up a forwarding path) is sent to the controller
by the edge switch connected with the source host. HoneyRoles’s
reactive forwarding application determines amaximal set of disjoint
paths. Depending on the system requirement, this application can
consider optimal disjoint paths only, or both optimal and non-
optimal disjoint paths, or tolerate a certain percentage of overlap.
From the set of possible forwarding paths, HoneyRoles selects a path
using uniform random distribution. Even if the defender suspects
compromised switches on a certain path, it should not set a priority
in the selection process, as this may be detected by the adversary,
thereby revealing some of the defender’s knowledge.

Given a topology with p disjoint paths (both optimal and non-
optimal), the probability of selecting a certain path is 1/p. At a given
time t , there are r real and h honey connections for a given target
server. If there is a compromised switch in only one disjoint path, the
probability that the adversary will be able to scan a real connection
is r

p(r+h) . Consequently, combining the dynamic forwarding and
honey connections, HoneyRoles builds a dense haystack around
the real connections, making passive reconnaissance harder.

4.3 Belief Maintenance System
The goal of the belief maintenance system (BMS) is to alert the
system administrator about the existence of an adversary, as well as
potential locations of compromised switches. However, it does not
seek to precisely determine a speci�c switch or set of switches that
are compromised. Instead, the BMS ranks switches based on a level
of suspiciousness. The goal is to ensure all compromised switches
are among the most suspicious ones in the ranked list. The BMS
can reside on the SDN controller or on a separate server.

As discussed in Section 4.1.4, detection of adversarial activity
and alert generation is performed by the honey agents. Recall that
HoneyRoles uses both role-based honey connections and dynamic
forwarding paths to entice the adversary into acting on false in-
formation. HoneyRoles cannot be certain about the network’s ad-
versarial state. For example, some alarms (e.g., packet dropping)
can be generated from either network failure or adversarial activity.
Furthermore, even for true positives for a given forwarding path
with n switches, there is only a 1

n chance that a given switch is

Algorithm 1 Belief Maintenance System

1: procedure B�����M����������(t)
2: #Risk update using Honey Noti�cation
3: Initialize ak ,t & ck ,t to 0, for all switch sk
4: for each entry e 2 Honey Noti�cation at time t do
5: Ps ,d �etForwardin�Path(e)
6: for all k 2 Ps ,d do
7: Increment ck ,t
8: if any ATTACK logged in e then
9: Increment ak ,t
10: for all connected switch sk do
11: Update rk ,t & Rk ,t

the source of the alarm. Therefore, the BMS maintains an updated
mapping between the honey connections and the corresponding
forwarding paths and uses alarms from honey agent reports to
update its belief of suspiciousness for each switch.

The BMS updates its current belief for each switch after each
discrete time interval � . That is, if the current time is t , the next
update will occur at t + � . The BMS uses the � period to collect
statistics for the interval, after which the reports can be discarded.
For each switch sk , the BMS calculates ak and ck for the time
interval. Here, ak is the number of alarms received for forwarding
paths that include switch sk and ck is number of honey connections
forwarded by sk . The BMS then calculates a risk factor rk ,t =

ak ,t
ck ,t

for switch k on a speci�c time t . It computes an overall risk factor
Rk ,t for switch sk using exponential moving average (where Rk ,0 =
rk ,0):

Rk ,t = � · rk ,t + (1 � �) · Rk ,t�� (1)
For convergence, 0 < � < 1. To reduce the weight assigned to
the current time interval, for our experiments in Section 5, we
use � = 0.2; however, we have experimented with other values
of � (0.5) and anecdotally found similar results. Algorithm 1
summarizes the process of belief maintenance.

The BMS creates a ranked list of switches based on their level
of suspiciousness (higher Rk ,t means higher likelihood of being
compromised). This list is a useful resource for the network admin-
istrator for remediation or recon�guration.

5 SECURITY ANALYSIS
HoneyRoles creates deception using honey connections from honey
hosts representing di�erent enterprise roles. In this section, we use
the PRISMprobabilisticmodel checker to characterizeHoneyRoles’s
e�ectiveness against an knowledgeable adversary. The evaluation is
designed to determine how well HoneyRoles can identify the com-
promised switch. Recall that our goal is for compromised switches
to be ranked as one of the most suspicious. We begin by presenting
our implementation of HoneyRoles within PRISM and then present
the results of the simulation.

5.1 PRISM Model
Probabilistic model checking uses a model construction that repre-
sents the behavior of a system over time, i.e., the possible states that
the model can be in, the transitions that can occur between states,

Table 1: HoneyRoles Con�guration in PRISM

E

Environment Features Value
Number of Roles, Erole 3
Number of Rounds, Erounds 100
Number of connections per round, Elength 100

N

Nodes
Network devices or switches, Nswitch 14
Number of real client hosts, Nreal 50
Number of honey client hosts, Nhoney 50
Number of servers, Nserver 6

L Connectivity
Forwarding paths, Lsrc,dst
Maximum redundancy paths, |Lsrc,dst | 8

A

Adversarial Features
Compromised switches, Aswitch {1, 2}
Target role, Arole
Attacker con�dence on system, Acon�dence

P

Set of Operational policy
Connection de�nition, Pconnection
Belief maintenance, Pbelief
Attacker actions, Pa�acker

and information about the likelihood of these transitions [30]. It can
provide an approximate value of a certain parameter by calculating
all possible system paths. We use DTMC of PRISM [29], as it is
more realistic for our model to consider time as discrete steps for
maintaining the belief state of each switch.

A PRISM model is constructed as the parallel composition of its
modules. The behavior of each module is described by a collection
of guarded commands, [] �uard ! p1 : u1 + . . . + pn : un ;. Here,
the guard �uard is a predicate over model variables. Each update
action ui describes a transition the module can make by giving the
variables new values; in the case of DTMCs, pi is the transition
probability. If the guard is true, each update is executed according
to its probability.

For modeling complex network behavior using PRISM, we de-
veloped a code generator that takes in a system con�guration and
outputs a PRISM model with the necessary modules and transition
formulas. The generated model also (1) ensures consistent state up-
dates and module transitions; (2) identi�es compromised switches
based on observations from honey connections; and (3) generates
the necessary reward functions to measure the performance of the
system. Our framework generates a dedicated HoneyRoles model
for each con�guration. Mathematically, each con�guration is de-
�ned by hE,N , L,A,D, Pi, as described in Table 1. We de�ne three
PRISM modules: Defender, System, and Adversary.

5.1.1 Defender Module. The defender module speci�es the current
system state by de�ning a connection con�guration as follows,C !
htype, role, source, destination, pathi. By selecting a new connection
con�guration, a new transition path is initiated. Both adversarial
actions and the system belief update in the current path depend
on the connection con�guration. Since we cannot represent tra�c
replication in PRISM, we specify the same probabilistic selection

weight for both the honey and real types. As a result, the model
produces a nearly equal number of honey and real connections.

For this implementation, we have only considered three mission-
oriented roles, each of which is selected with equal probability. The
source and destination are randomly chosen for each connection,
depending on the type of connection and role chosen in previous
states. For this PRISM analysis, we have considered both disjoint and
non-disjoint paths. We are using a uniformly random distributed
forwarding path selection algorithm. Since PRISM cannot directly
encode a network topology, our PRISM code generator enumerates
these di�erent paths between sources and destinations as distinct
PRISM formulas with unique tags.

5.1.2 System Module. The system module gets the current connec-
tionC as a con�guration. It decides between two possibilities. If the
chosen forwarding path contains at least one compromised switch,
the system state gives control to the Adversary module. Otherwise,
the system state moves towards the defender module to reinitialize.
Belief Update:After the adversarymodule takes actions (Section 5.1.3),
control returns to the system module. For every round r , the system
module records the number of honey connections (ck) handled by
each switch k , as well as the number of adversarial incidents (ak).
After the completion of each round ck and ak are reinitialized.

In our current implementation, each round consists of Elength
connections (see Table 1). When completing one round, our model
goes though approximately Elength⇥20 (or⇥ 25) state transitions and
Elength⇥3module transitions. After completing a round, the current
belief is calculated as described in Equation 1. Here, if the current
connection type is hone� and attack is true, the adversarial incident
count (ak) of each switch k on the current path is incremented.

5.1.3 Adversary Module. To simulate reconnaissance, we assume
the adversary receives all possible kinds (di�erent types, roles, IDs)
of connections from the defender that pass through the correspond-
ing compromised switch. Note that we assume the adversary has
knowledge observed from all compromised switches, if there is
more than one. An adversary that is aware of HoneyRoles may still
act, performing some active reconnaissance and attacks once it has
gained su�cient con�dence through passive reconnaissance. There-
fore, the adversary module accumulates con�dence in observed
information and then attempts to (1) increase con�dence through
some active reconnaissance, and (2) attack real connections with
targeted roles.

As speci�ed in Table 1, the adversary module has a target organi-
zational roleArole (e.g., IT administrators). We assume the adversary
is only interested in tra�c for that role, as de�ned by connections
to the role’s corresponding target servers. The module is also con-
�gured with a belief parameter Abelief , which speci�es a threshold
of su�cient belief in observed information.

The adversary module has two phases: (1) attack, and (2) build
con�dence. For the attack phase, each connection starts with check-
ing whether the current connection as associated with Arole . If the
current connection matches Arole , the adversary probabilistically
(based on Abelief) determines its belief for the current observation.
If the adversary believes the current observation is real tra�c, it
performs an attack. On the other hand, if the adversary believes
the current observation is honey tra�c, it does nothing.

< C0, A0, B0 >

< C1, A0, B0 >< C1, A1, B1 >

< C0, A1, B0 >< C0, A1, B1 >

< C1, A1, B0 >

compromised = true
type = honey
attack = true

compromised = true
type = real

attack = true

compromised
= false

compromised
= false

compromised
= false

compromised = true
type = honey
attack = true

compromised = true
type = real

attack = true

Figure 2: A simpli�ed version of HoneyRoles Markov chain

On the completion of each round, the adversary probabilistically
updates Abelief , either increasing or decreasing it. To indicate that
the adversary’s knowledge is increasing with each connection, our
implementation uses a higher weight (e.g., 2

3) for increasing the
Abelief . To simulate the e�ect of deception, we also include the
possibility of decreasing the belief (e.g., 13). Finally, we assume the
adversary cannot have 100% con�dence over its observation.

Based on this operation, the adversary’s action for a connection
can be de�ned by a Markov chain. Let HoneyRoles’s initial state
be denoted hC0,A0,B0i, where C0 is the current connection state,
A0 is the adversary state in terms of con�dence, and B0 indicates
system’s belief on the suspiciousness of switches. Figure 2 provides
a simpli�ed visualization. The �gure assumes only three possible
conditions: (1) compromised de�nes the state of a forwarding path
being compromised or not, (2) t�pe de�nes a connection to be either
honey or real, and (3) attack de�nes an adversarial attack decision.
We assume a connection con�guration (e.g., source, destination)
can repeat; however, this is infrequent and not shown in the �gure.

5.2 Security Evaluation
This section provides the simulation results from the PRISMmodule
described in Section 5.1. However, �rst we describe our experimen-
tal setup and performance metrics.
Experimental Setup: As described in Section 5.1, our code generator
automatically creates a PRISM model given a system con�guration.
The code generator was written in around 1,300 lines of Python
code. It has two parts: 1) the TopologyParser generates the topology
by using connectivity information to enumerate all-possible for-
warding paths for each pair of edge switches, 2) the PRISMCodeGen-
erator takes the topology information and the system parameters
(Table 1) and generates �nal PRISM logic. The “Experiment” col-
umn in Table 1 speci�es the con�guration used for our experiment.
Speci�cally, we considered scenarios where there were 1 or 2 com-
promised switches, including simulations where the compromised
switch resided at di�erent locations within the Fat-Tree topology
(i.e., edge, aggregate, core). Note that we used a Fat-Tree topology
for lack of a public database of an enterprise network topology.
Repositories such as Topology-Zoo [44] and Internet2 [11] only in-
clude topologies for data centers, ISPs, and point of presence (POP)
networks. However, our code generator can consume topologies
in Geography Markup Language (GML) following the format of
Topology-Zoo and can therefore be easily used to evaluate di�erent

(a) One compromised edge switch (b) One compromised aggregate switch (c) One compromised core switch

Figure 3: Con�dence in switch compromise for one compromised switch (� = 0.2).

(a) One edge and one aggregate switch (b) One edge and one core switch (c) One aggregate and one core switch

Figure 4: Con�dence in switch compromise for two compromised switches (� = 0.2).

topologies. Finally, to assess the sensitivity of � in Equation 1, we
ran the simulator with � 2 {0.1, 0.2, 0.3, 0.4, 0.5}.

We used the discrete-event simulator built into PRISM, a tech-
nique often called statistical model checking [2]. This sampling
approach generates a large number of random paths through the
model, evaluating the result of the given properties on each run,
and using this information to generate an approximately correct
result [29]. Each simulation takes 50 samples and provides the mean
values as a �nal result. Recall that this evaluation is designed to de-
termine how well HoneyRoles can locate the compromised switch
or switches, i.e., how often the compromised switch(es) appear
high in HoneyRoles’ suspiciousness ranking. We thus examine this
ranking over the course of 100 rounds.

5.2.1 Detection Accuracy with One Compromised Switch. Figure 3
shows the relative ranking of suspiciousness for switches for � =
0.2when there is only one compromised switch. The other � con�g-
urations produced anecdotally similar graphs, but as hypothesized,
a smaller � performs better. The �gure shows that when there is
one compromised switch, that switch is consistently ranked in the
top-1 or top-2. When comparing the di�erent locations for the
compromised switch (i.e., edge, aggregate, and core), the �gure
shows the best performance for compromised switches located at
the edge (Figure 3a). This is because it is easier to isolate the attack
activity over the time. As shown in Figures 3b and 3c, when a core

or aggregate switch is compromised, HoneyRoles does not provide
as clear of a distinction. However, this is an artifact of the Fat-Tree
topology, as core and aggregate switches are included in most of
the forwarding paths that raise alarms. Hence, it is di�cult to sta-
tistically determine which switch on the path is performing the
attacks. That said, even with this high overlap, the compromised
switches were within the top-2 riskiest at all times.

5.2.2 Detection Accuracy with Two Compromised Switches. Figure 4
shows three possible combinations of compromised switches for
� = 0.2. Other than the number of compromised switches, the other
parameters remained the same as in the tests with one compro-
mised switch. As before, di�erent � values produced visually similar
results, with smaller � values performing better. As discussed in
Section 5.2.1, edge switches are easier to isolate than aggregate
and core. When aggregate or core switches are compromised, at
least one of the compromised switches is ranked in the top one or
two most of the time, with the second compromised switch being
in the top �ve for all but two scenarios. Note that the network
administrator can approach refreshing switches to a good known
state in an incremental fashion. That is, it can refresh the top-1
switch, removing one of the compromised switches and leaving
only one, which as shown in Figure 3 is easier to isolate. While the
adversary will know that it has been detected, in the worst case (for
detection) it will stop attacking connections, which is ultimately

Real Client
Hosts

Honey
Client Hosts

Server
Hosts

Honey
Connection
Generator

Belief
Maintenance

System

ONOS Controller

Heartbeat
Generator

Forwarding Path
Manager

Traffic
Tracer

ONOS Default
Functionalities

Figure 5: Experimental Layout for Evaluation

our goal. The system administrators can also de�ne some threshold
on the switch risk factors, depending on their security requirement.
Thus, administrators will remove a switch only when its risk factor
goes beyond that threshold.

6 PERFORMANCE EVALUATION
HoneyRoles’s security stems from its deception elements (e.g.,
honey connections and routes), which add network overhead. We
now discuss our prototype implementation, experimental setup,
and evaluate HoneyRoles’s performance overhead in an emulated
Mininet [54] environment.

6.1 Implementation
Our HoneyRoles prototype is implemented as six components that
comprise the design in Section 4. We built our prototype on top of
the OpenJDK 11.0.7 and ONOS 2.0.0 SDN controller with the default
con�guration. Three components are implemented as ONOS Java
applications: ForwardingPath Manager (95 lines of code), Heartbeat
Generator (305 lines of code), and Tra�c Tracer (250 lines of code).
Two additional components run as dedicated processes that com-
municate with the ONOS controller: Belief Management System
(180 lines of code) and Honey Connection Processor (310 lines of
code). The Mininet network creation and real host tra�c generator
took up 600 and 120 lines of code, respectively. The Honey Agent
(240 lines of code) is used implementation the work�ow of a honey
host. Although HoneyRoles can function with di�erent applications
(e.g., SSH, SMTP), we restricted ourselves to HTTP/HTTPS tra�c.
Network Creation: Our performance analysis uses the same Fat-Tree
topology generation algorithm used for the security analysis in
Section 5. Both Real and Honey client hosts are implemented as
standard Mininet hosts. The Real hosts execute a script that ran-
domly initiates sessions (a sequence of one or more HTTP requests)
with a target server. The Honey hosts execute the Honey Agent
script, which uses heartbeat instructions from the controller to ini-
tiate a session with a target server and then reports results back to
the controller using Honey Noti�cations. Servers are implemented
as Docker containers running on the host machine.

6.2 Experimental Setup
The evaluation was hosted in a virtual machine con�gured with 8
vCPUs and 32 GB RAM, running on a VMware ESXi 6.5.0 host with
Intel(R) Xeon(R) CPU E5620 @ 2.40GHz processors. Figure 5 shows
the network, along with the main components described in the

Figure 6: Percent Overhead of HTTP request completion
time in each con�guration compared to baseline.

implementation details (Section 6.1). We considered four environ-
ments to compare the performance impact of various HoneyRoles
components. The Baseline environment was con�gured to use the
default ONOS settings with no HoneyRoles features enabled and
included only real hosts in the network. The Honey Forwarding
environment replaces the default ONOS reactive forwarding ap-
plication with the HoneyRoles Forwarding application but does
not introduce honey hosts or honey agents. The Honey Host envi-
ronment was con�gured with the default ONOS forwarding app
but introduces the Heartbeat Generation Application and honey
hosts. Here, we have one honey host initiated in correspond to each
real host in the network. Finally, the HoneyRoles environment was
con�gured with all HoneyRoles features enabled and one honey
host for each real host in the network.

To maintain consistency with our security analysis, we con�g-
ured each environment with 50 real hosts. As discussed easier in
Section 4, we are using a 5-tuple for �ow rule matching: sip , spor t ,
dip ,dpor t , andprotocol . The baseline and all treatments use ONOS’s
default 10 second idle timeout for �ow-mod rules. Each experiment
ran for 30 minutes and all hosts (honey or real) were con�gured
to send 1 request per second to a speci�c server, which is selected
based on their roles from a �xed set.

6.3 HoneyRoles Performance Overhead
Calculating a single average overhead across all pairs does not
provide a useful characterization, as di�erent pairs have di�erent
numbers of hops between them, resulting in a signi�cant variance
in completion time. Therefore, to observe the overhead HoneyRoles
imposes on real network tra�c, we calculated the average request
completion time between each unique real-client server pair for the
baseline environment. For each non-baseline environment, we cal-
culated the percent overhead of every real request from the baseline
average. We plotted the percent overheads for each con�guration
as a cumulative distribution function (CDF).

Figure 6 depicts the overhead of each treatment with respect to
the baseline. Each line represents the percentage of real requests
in each environment that �nished under a given percent overhead
calculated using the average baseline request completion time for

unique client-server pairs. That is, each request between client c
and server s in the Honey Forwarding Application, Honey Host, and
HoneyRoles environments was compared to the average completion
time of all requests between c and s in the baseline environment.
From this graph we observe that for HoneyRoles, 90% of requests
�nish with less than 14% overhead when compared to the baseline.

Note that these percentage overheads are for small request-
completion times, which are signi�cantly impacted by jitter. The
median request completion time in the baseline environment was
31 ms. As a result, even small changes in completion time in the
other environments show as a larger magnitude overhead. For ex-
ample, with a 31 ms baseline completion time, a request with a 9 ms
increase from the baseline (e.g., 40 ms) results in a 29% overhead.
The natural jitter in network requests and the sensitivity when deal-
ing with small numbers can also explain the negative overheads
observed in Figure 6.

Further, we compared the average request-completion time of
each environment to the baseline average by calculating the e�ect
size using Cohen’s d. Cohen’s d reports how many pooled standard
deviations two groups di�er by. According to Cohen [16], a d value
of 0.20 is considered a “small” e�ect, a d value of 0.50 is a “medium”
e�ect, and a d value of 0.80 is a “large” e�ect of an experimental
change to a control group. For the HoneyRoles environment, we
observe 55% of client-server pairs have a d value of under 0.20
(small e�ect), and all of d values are below 0.63, which is well below
the 0.80 margin (large e�ect). Thus we observe that, with respect
to request-completion times, HoneyRoles had a small e�ect for a
majority of the client-server pairs and a medium e�ect for all the
rest of the pairs.

We believe our small overheads are due to two primary reasons.
First, the network is not under full load, thus the introduction of
Honey Host tra�c does not compete with real tra�c for resources
and has minimal impact on the network links and server processing.
Second, although theHoney Forwarding applicationmay select non-
optimal routes for tra�c, for the choice of Fat-Tree the non-optimal
routes do not introduce major di�erences in request completion
time. It may be possible that a network is designed in such a way
that a non-optimal route may introduce much higher round trip
times but these routes are not permanent and some tra�c will
still travel over optimal or close to optimal routes. Essentially, net-
work administrators can create additional network links to provide
shorter alternative paths.

7 DISCUSSION
Attack variations: HoneyRoles considers that an adversary uses
passive and active reconnaissance to obtain knowledge about target
enterprise roles, presumably to launch active attacks using that
knowledge. Many active attacks and reconnaissance techniques
have been discovered over the past decades. We envision a Hon-
eyRoles deployment will include a collection of attacks (e.g., SSL
downgrade, wrong SSL certi�cate, page contents modi�ed) and
detection types (e.g., packet rerouting, packet hijacking, manipula-
tion) for di�erent types of applications (e.g., SMTP, FTP). However,
the SSL-stripping and blackholing detectors are su�cient to demon-
strate the heartbeats and reports functions, because they cover the
spectrum of modi�cation and dropping.

Accuracy vs. deception: Using the centralized control of SDN, it
is possible to dynamically change honey components according
to system belief to improve accuracy. However, such an approach
would be risky. First, sudden changes in system behavior may alarm
the adversary and reduce the e�ectiveness of the deception (e.g.,
helping it identify which IP address belong to honey hosts). Second,
a dynamic change in system behavior may increase complexity in
large networks. Third, the TCB must include at least a segment of
switches to achieve the security goal.
Scope of implementation:We used PRISM to evaluate the security of
HoneyRoles and used an emulatedMininet environment to measure
performance overhead. These evaluation frameworks are approxi-
mations of realistic enterprise networks. Our security evaluation
was limited in the way it modeled attacker behavior, as we could
not �nd any realistic attack data for enterprise reconnaissance. Ab-
sent realistic attack behavior, the PRISM model was more compre-
hensive than a Mininet simulation to estimate detection accuracy.
Additionally, we were unable to �nd realistic enterprise network
topologies and relied on the Fat-Tree topology as a representative
topology with redundant links and switches. Finally, as stated in
Section 3, we assume the existence of an ambient network tra�c
generator [9, 51, 58], which our implementation does not include.
Additional work is required to design and evaluate ambient network
tra�c generators against more recent machine learning algorithms;
however, doing so is orthogonal to the contributions of this paper.
We also note that some machine learning algorithms require signi�-
cant storage and computational capabilities, which are not available
to an adversary positioned on a compromised packet forwarding
device.

8 RELATEDWORK
Network reconnaissance and eavesdropping: Traditional intrusion de-
tection systems cannot detect passive attackers performing network
reconnaissance from compromised packet forwarding devices. Such
reconnaissance investments are particularly apropos to advanced
persistent threats (APTs) [12]. Bartlett et al. [7] demonstrate the
dangers of reconnaissance by presenting a quantitative comparison
and evaluation of the e�ectiveness of passive monitoring and active
probing for service discovery in decentralized networks. Even if
tra�c is encrypted, reconnaissance remains a threat. Schuster et
al. [48], Backes et al. [6], and Ling et al. [34] show that encrypted
web tra�c can leak information through packet length, packet tim-
ing, web �ow size, and response delay. With increasing threats of
targeted reconnaissance and attacks (e.g., Snowden [50], CISCO
SYNfulKnock [22], political espionage [32]), defense against APT
is becoming more critical.
Deceptive Defenses: Deception techniques provide alternative de-
fense approach that can mislead and delay adversarial e�orts, and
even detect attacks in early stages. Spa�ord et al. [3] de�ne cyber-
deception as “planned actions taken to mislead and/or confuse
attackers and to thereby cause them to take (or not take) speci�c
actions that aid computer-security defenses.” Current deceptive
defense solutions depend on mimicking random or static speci-
�cation of system behavior, network con�guration, or network
infrastructures (e.g., honey-nets, decoy IP) [15, 23].

The dynamic control and programmability of an SDN environ-
ment has inspired new deception techniques. HoneyMix [21] uses
a dynamic SDN-based honey-net to automate interactions with
adversaries, and showed deception is a promising approach toward
defending against network reconnaissance. Further, the dynamic
network con�guration of an SDN can be used for discriminating
against scanning attacks and enhancing targeted defenses [4, 37].
For example, Achleitner et al. [1] use SDN to defend against insider
reconnaissance by simulating virtual network topologies as decoys.
Software De�ned Networking: SDNs have the potential to address
many operational and security challenges in enterprise networks [31,
35]. They decouple network control from the underlying data plane
and consolidates con�guration to a logically central controller,
which provides valuable �exibility for dynamic tra�c forward-
ing [38]. SDN has the potential to supplant conventional security
systems [61], simplify policy enforcement [47], ensure information
�ow control [43], enable deceptive defense [41], and so on. However,
the greater capabilities and open functionality of SDN switches in-
crease the potential for compromise and enable a new vantage point
for attacks, e.g., data plane attacks using advanced reconnaissance,
data manipulation, and redirection (e.g., Teleportation [55], Benton
et al. [8], Menghao et al. [62]).

Network analysis and auditing tools (e.g., Header Space Analy-
sis [24], VeriFlow [25], SDN-RDCD [63]) can protect against net-
work or SDN controller con�guration failures (or attacks). How-
ever, a compromised SDN data plane can introduce di�erent types
of attack scenarios [5], which are not possible to detect through
header �ow analysis alone. Some solutions have sought to detect
forwarding attacks by monitoring �ow statistics from neighboring
switches [42], verifying OpenFlow events in the controller [59, 62],
applying heavy-weight cryptographic approaches [26], and naive
controller generated probes [13].

Sphinx [17] uses SDN control messages for incremental valida-
tion of network updates and detect suspicious behaviors (e.g., DoS,
blackholing, fake topology). WedgeTail [49] detects both forward-
ing attacks and forged packets by utilizing Header Space Analysis
and other network troubleshooting tools. Both Sphinx and Wed-
geTail dynamically construct network �ow graphs to compare with
a de�ned policy to identify deviations, which is not only a manual
and error-prone process but also cannot handle dynamic networks.
Additionally, DynaPFV [33] proposed a mechanism to detect packet-
modi�cation by comparing the cryptographic hash of packets at the
ingress and egress points of a network. However, none of these prior
works can address passive (or even subtle active) reconnaissance.
Since reconnaissance can be performed without network disruption
attacks (e.g., forwarding, packet forging, and packet-modi�cation
attacks detected by the tools above), the attacker is able to evade the
defenses of prior works. HoneyRoles complements the detection
capabilities of prior works by adding a layer of deception to lower
the e�ectiveness of reconnaissance in the network.

9 CONCLUSION
The increasing complexity of packet forwarding devices such as
routers and switches make them a new target for advanced per-
sistent threats. From the vantage point of a compromised packet

forwarding device, an adversary can passivelymonitor network traf-
�c to identify not only the network topology and servers listening
on ports, but also the client hosts that connect to high-value servers
such as domain controllers and �nancial systems. In this paper, we
presented HoneyRoles as a novel approach to defending against this
relatively new threat. HoneyRoles uses honey connections to both
deceive adversaries and dissuade them from performing attacks. A
key idea behind HoneyRoles is to focus on client hosts performing
high-value organizational roles, building metaphorical haystacks
around their network tra�c. The honey connections used to build
these haystacks also act as network canaries to bait adversaries and
more quickly detect their presence. We built a prototype of Hon-
eyRoles in an SDN environment and modeled its operation using
the PRISM probabilistic model checker. In doing so, we found that
HoneyRoles reliably ranks compromised switches among the most
suspicious while having only a small e�ect on network request
completion time. As such, we believe role-based network deception
is a promising approach for defending against adversaries that have
compromised network devices.

ACKNOWLEDGMENTS
This research was partially sponsored by the Army Research Of-
�ce and was accomplished under Grant Number W911NF-17-1-
0370. The views and conclusions contained in this document are
those of the authors and should not be interpreted as represent-
ing the o�cial policies, either expressed or implied, of the Army
Research O�ce or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notices herein.

REFERENCES
[1] Stefan Achleitner, Thomas La Porta, Patrick McDaniel, Shridatt Sugrim,

Srikanth V. Krishnamurthy, and Ritu Chadha. 2016. Cyber Deception: Virtual
Networks to Defend Insider Reconnaissance. In Proceedings of the 8th ACM CCS
International Workshop on Managing Insider Security Threats. 57–68.

[2] Gul Agha and Karl Palmskog. 2018. A Survey of Statistical Model Checking.
ACM Trans. Model. Comput. Simul. 28, 1 (Jan. 2018), 39.

[3] Mohammed H Almeshekah and Eugene H Spa�ord. 2016. Cyber security decep-
tion. In Cyber deception. 23–50.

[4] I�at Anjum, Mohammad Sujan Miah, Mu Zhu, Nazia Sharmin, Christopher Kiek-
intveld, William Enck, and Munindar P Singh. 2020. Optimizing Vulnerability-
Driven Honey Tra�c Using Game Theory. arXiv:cs.CR/2002.09069

[5] Markku Antikainen, Tuomas Aura, and Mikko Särelä. 2014. Spook in Your Net-
work: Attacking an SDN with a Compromised OpenFlow Switch. In Secure IT
Systems, Karin Bernsmed and Simone Fischer-Hübner (Eds.). Springer Interna-
tional Publishing.

[6] Michael Backes, Goran Doychev, and Boris Köpf. 2013. Preventing Side-Channel
Leaks in Web Tra�c: A Formal Approach. In 20th ISOC Network and Distributed
System Security Symposium.

[7] Genevieve Bartlett, John Heidemann, and Christos Papadopoulos. 2007. Under-
standing passive and active service discovery. In Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement. 57–70.

[8] Kevin Benton, L. Jean Camp, and Chris Small. 2013. OpenFlow Vulnerability
Assessment. In Proceedings of the Second ACM SIGCOMMWorkshop on Hot Topics
in Software De�ned Networking (HotSDN ’13). ACM, 151–152.

[9] Brian M. Bowen, Vasileios P. Kemerlis, Pratap Prabhu, Angelos D. Keromytis, and
Salvatore J. Stolfo. 2012. A System for Generating and Injecting Indistinguishable
Network Decoys. J. Comput. Secur. 20, 2-3 (2012), 199–221.

[10] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown, and S. Shenker.
2009. Rethinking Enterprise Network Control. IEEE/ACM Transactions on Net-
working 17 (Aug 2009), 1270–1283.

[11] Internet2 Network Operations Center. 1996. Internet2. https://www.internet2.
edu/

[12] Ping Chen, Lieven Desmet, and Christophe Huygens. 2014. A study on ad-
vanced persistent threats. In IFIP International Conference on Communications
and Multimedia Security. Springer, 63–72.

[13] Po-Wen Chi, Chien-Ting Kuo, Jing-Wei Guo, and Chin-Laung Lei. 2015. How to
detect a compromised SDN switch. In Proceedings of the 1st IEEE Conference on
Network Softwarization (NetSoft). 1–6.

[14] Catalin Cimpanu. 2019. Cisco bungled RV320/RV325 patches, routers
still exposed to hacks. ZDNet. https://www.zdnet.com/article/
cisco-bungled-rv320rv325-patches-routers-still-exposed-to-hacks/.

[15] Andrew Clark, Kun Sun, and Radha Poovendran. 2013. E�ectiveness of IP address
randomization in decoy-based moving target defense. In 52nd IEEE Conference on
Decision and Control. 678–685.

[16] Jacob Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences (second
ed.). Routledge Member of the Taylor and Francis Group.

[17] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann. 2015.
SPHINX: Detecting Security Attacks in Software-De�ned Networks. In ISOC
Network and Distributed System Security Symposium.

[18] R. J. Enbody and A. K. Sood. 2013. Targeted Cyberattacks: A Superset of Advanced
Persistent Threats. IEEE Security & Privacy 11 (2013), 54–61.

[19] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica.
2007. X-trace: A Pervasive Network Tracing Framework. In Proceedings of the 4th
USENIX Conference on Networked Systems Design & Implementation (NSDI’07).
USENIX Association, 20–20.

[20] Wireshark Foundation. 1998. Wireshark. https://www.wireshark.org/.
[21] Wonkyu Han, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. 2016. Honeymix:

Toward sdn-based intelligent honeynet. In Proceedings of the 2016 ACM Interna-
tional Workshop on Security in Software De�ned Networks & Network Function
Virtualization. ACM, 1–6.

[22] Graham Holmes. 2015. Evolution of attacks on Cisco IOS devices. https://blogs.
cisco.com/security/evolution-of-attacks-on-cisco-ios-devices.

[23] J. H. Jafarian, E. Al-Shaer, and Q. Duan. 2015. An E�ective Address Mutation Ap-
proach for Disrupting Reconnaissance Attacks. IEEE Transactions on Information
Forensics and Security 10 (Dec 2015), 2562–2577.

[24] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation (NSDI’12). USENIX
Association, USA, 9.

[25] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. 2013. VeriFlow: Verifying Network-Wide Invariants in Real Time. In
Presented as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). USENIX, Lombard, IL, 15–27.

[26] Ti�any Hyun-Jin Kim, Cristina Basescu, Limin Jia, Soo Bum Lee, Yih-Chun Hu,
and Adrian Perrig. 2014. Lightweight Source Authentication and Path Validation.
In Proceedings of the ACM Conference on SIGCOMM. 271–282.

[27] Michael Kranch and Joseph Bonneau. 2015. Upgrading HTTPS in Mid-Air: An
Empirical Study of Strict Transport Security and Key Pinning. In 22nd Network
and Distributed System Security Symposium NDSS.

[28] Katharina Krombholz, Wil�red Mayer, Martin Schmiedecker, and Edgar Weippl.
2017. “I have No Idea What I’m Doing” - On the Usability of Deploying HTTPS.
In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association.

[29] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Veri�cation of Prob-
abilistic Real-time Systems. In Proc. 23rd International Conference on Computer
Aided Veri�cation (CAV’11), Vol. 6806. Springer, 585–591.

[30] Marta Kwiatkowska, Gethin Norman, and David Parker. 2018. Probabilistic Model
Checking: Advances and Applications. Springer International Publishing, 73–121.

[31] Dan Levin, Marco Canini, Stefan Schmid, Fabian Scha�ert, and Anja Feldmann.
2014. Panopticon: Reaping the Bene�ts of Incremental SDN Deployment in
Enterprise Networks. In 2014 USENIX Annual Technical Conference (USENIX ATC
14). Philadelphia, PA, 333–345.

[32] F. Li, A. Lai, and D. Ddl. 2011. Evidence of Advanced Persistent Threat: A case
study of malware for political espionage. In 2011 6th International Conference on
Malicious and Unwanted Software. 102–109.

[33] Q. Li, X. Zou, Q. Huang, J. Zheng, and P. P. C. Lee. 2018. Dynamic Packet
Forwarding Veri�cation in SDN. IEEE Transactions on Dependable and Secure
Computing (2018), 1–1.

[34] Z. Ling, J. Luo, Y. Zhang, Ming Yang, X. Fu, and W. Yu. 2012. A novel network
delay based side-channel attack: Modeling and defense. In 2012 Proceedings IEEE
INFOCOM. 2390–2398.

[35] C. Lorenz, D. Hock, J. Scherer, R. Durner, W. Kellerer, S. Gebert, N. Gray, T. Zinner,
and P. Tran-Gia. 2017. An SDN/NFV-Enabled Enterprise Network Architecture
O�ering Fine-Grained Security Policy Enforcement. IEEE Communications Mag-
azine 55 (March 2017), 217–223.

[36] Meng Luo, Pierre Laperdrix, Nima Honarmand, and Nick Nikiforakis. 2019. Time
Does Not Heal All Wounds: A Longitudinal Analysis of Security-Mechanism
Support in Mobile Browsers. In 26th Network and Distributed System Security
Symposium (NDSS).

[37] Duohe Ma, Cheng Lei, LimingWang, Hongqi Zhang, Zhen Xu, and Meng Li. 2016.
A Self-adaptive Hopping Approach of Moving Target Defense to thwart Scanning
Attacks. In Information and Communications Security. Springer International
Publishing, 39–53.

[38] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 38,
2 (2008), 6.

[39] Daniel Miessler. 2019. amass- Automated Attack Surface Mapping. https://
danielmiessler.com/study/amass/.

[40] Alper Tugay Mizrak, Yu-Chung Cheng, Keith Marzullo, and Stefan Savage. 2006.
Detecting and Isolating Malicious Routers. IEEE Trans. Dependable Secur. Comput.
3 (July 2006), 230–244.

[41] Reham Mohamed, Terrance O’Connor, Markus Miettinen, William Enck, and
Ahmad-Reza Sadeghi. 2019. HONEYSCOPE: IoTDevice Protectionwith Deceptive
Network Views,. In Autonomous Cyber Deception: Reasoning, Adaptive Planning,
and Evaluation of HoneyThings. Springer International Publishing.

[42] Flowmon Networks. 2019. Flowmon: Driving Network Visibility. https://www.
�owmon.com/en/.

[43] Tj OConnor,William Enck,W.Michael Petullo, andAkash Verma. 2018. PivotWall:
SDN-Based Information Flow Control. In Proceedings of the Symposium on SDN
Research (SOSR ’18). Article 3, 14 pages.

[44] The University of Adelaide. 2010. The Internet Topology Zoo. http://www.
topology-zoo.org/contact.html

[45] Venkata N. Padmanabhan and Daniel R. Simon. 2003. Secure Traceroute to
Detect Faulty or Malicious Routing. SIGCOMM Comput. Commun. Rev. (Jan.
2003), 77–82.

[46] Kyungmin Park, Samuel Woo, Daesung Moon, and Hoon Choi. 2018. Secure
Cyber Deception Architecture and Decoy Injection to Mitigate the Insider Threat.
Symmetry 10 (01 2018), 14.

[47] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement Using SDN. In
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. 27–38.

[48] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2017. Beauty and the Burst:
Remote Identi�cation of Encrypted Video Streams. In 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC, 1357–1374.

[49] Arash Shaghaghi, Mohamed Ali Kaafar, and Sanjay Jha. 2017. WedgeTail: An
Intrusion Prevention System for the Data Plane of Software De�ned Networks. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security. ACM, 849–861.

[50] Bill Snyder. 2014. Snowden: The NSA planted backdoors in
Cisco products. https://www.infoworld.com/article/2608141/
snowden--the-nsa-planted-backdoors-in-cisco-products.html.

[51] Joel Sommers and Paul Barford. 2004. Self-con�guring Network Tra�c Genera-
tion. In Proceedings of the 4th ACM SIGCOMMConference on Internet Measurement.
ACM, 68–81.

[52] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter. 2014. OpenSample: A Low-
Latency, Sampling-Based Measurement Platform for Commodity SDN. In 2014
IEEE 34th International Conference on Distributed Computing Systems. 228–237.

[53] Hacker Target. 2019. Simplify the security assessment process with hosted
vulnerability scanners. https://hackertarget.com/.

[54] Mininet Team. 2018. Mininet An Instant Virtual Network on your Laptop (or
other PC). http://mininet.org/.

[55] Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-
Pierre Seifert, Anja Feldmann, and Stefan Schmid. 2016. Reigns to the Cloud:
Compromising Cloud Systems via the Data Plane. CoRR (2016). arXiv:1610.08717

[56] Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-
Pierre Seifert, Anja Feldmann, and Stefan Schmid. 2016. Reigns to the Cloud:
Compromising Cloud Systems via the Data Plane. CoRR abs/1610.08717 (2016).

[57] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers. 2014. OpenNetMon: Network
monitoring in OpenFlow Software-De�ned Networks. In 2014 IEEE Network
Operations and Management Symposium (NOMS). 1–8.

[58] K. V. Vishwanath and A. Vahdat. 2009. Swing: Realistic and Responsive Network
Tra�c Generation. IEEE/ACM Transactions on Networking 17 (June 2009), 712–
725.

[59] H. Wang, L. Xu, and G. Gu. 2015. FloodGuard: A DoS Attack Prevention Exten-
sion in Software-De�ned Networks. In 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. 239–250.

[60] GenShen Ye. 2018. 75,000+ MikroTik Routers Are Forwarding Owners’ Tra�c
to the Attackers, How is Yours? Netlab 360. https://blog.netlab.360.com/
7500-mikrotik-routers-are-forwarding-owners-tra�c-to-the-attackers-how-is-yours-en/.

[61] Changhoon Yoon, Taejune Park, Seungsoo Lee, Heedo Kang, Seungwon Shin,
and Zonghua Zhang. 2015. Enabling security functions with SDN: A feasibility
study. Computer Networks 85 (2015), 19 – 35.

[62] Menghao Zhang, Guanyu Li, Lei Xu, Jun Bi, Guofei Gu, and Jiasong Bai. 2018.
Control Plane Re�ection Attacks in SDNs: New Attacks and Countermeasures.
In Research in Attacks, Intrusions, and Defenses, Michael Bailey, Thorsten Holz,
Manolis Stamatogiannakis, and Sotiris Ioannidis (Eds.). Springer International
Publishing, 161–183.

[63] H. Zhou, C. Wu, C. Yang, P. Wang, Q. Yang, Z. Lu, and Q. Cheng. 2018. SDN-
RDCD: A Real-Time and Reliable Method for Detecting Compromised SDN
Devices. IEEE/ACM Transactions on Networking 26, 5 (2018), 2048–2061.

