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ABSTRACT
Interactions are central to the notion of multiagent systems. Notions

such as commitments and protocols enable modeling interactions;

however, they are not adequately supported in cognitive program-

ming models such as Jason. We demonstrate novel programming

abstractions for engineering Jason agents that communicate on

the basis of commitments and protocols. Specifically, we demon-

strate how to specify commitments and protocols; automatically

generate role-specific Jason adapters from them; and use the gen-

erated adapters toward implementing an agent’s business logic.

Our approach shines in the implementation of flexible, loosely-

coupled agents, long a challenge for BDI-based agent programming

approaches.
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1 INTRODUCTION
In 2012, Michael Winikoff [14] highlighted two shortcomings about

agent-oriented programming languages (AOPLs). One, despite the

importance of modeling interactions in multiagent systems (MAS),

AOPLs supported little more than primitives for sending and re-

ceiving messages. He saw the use of such primitives as transferring

control between agents and drew an unflattering analogy with the

use of gotos in programming. Two, interaction protocols, typically
expressed in notations such as AUML [8], were message-centric
and overconstrained the interactions between agents. With the aim

of supporting robustness and flexibility in interactions, as agent

autonomy demands, Winikoff advocated higher-level abstractions

that hid low-level messaging concerns. In 2024, AOPLs still suffer

from the shortcomings Winikoff highlighted.

In recent work [1, 2], we have developed Azorus, a programming

model for multiagent systems that combines cognitive abstractions

with high-level, flexible models of multiagent interaction. In Azorus,

we capture the meaning of interaction via a specification of commit-

ments [3–5, 13, 15] and the operational constraints on interaction

This work is licensed under a Creative Commons Attribution Inter-
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via information protocols expressed in the Blindingly Simple Pro-

tocol Language (BSPL) [6, 7, 9–11]. For programming agents, we

build upon Jason [12] to fully exploit an agent’s cognitive autonomy

through the agent’s goals, beliefs, and intentions. The centerpiece

of Azorus is the generation of Jason adapter that supports an agent

programming interface ("API") that enables engineering loosely

coupled, flexible, and decentralized multiagent systems.

Our approach demonstrates how to overcome the limitations

pointed out by Winikoff. Our approach overcomes shortcomings

of message-centric interaction protocols, such as incompatibilities
between agents due to the message schemas being blended into

business logic; semantic errors due to a lack of a formal model;

and inflexibility due to the programmer having to maintain the

protocol state via a state machine. Moreover, it fully exploits the

agent’s social autonomy through the adoption of commitments and

information protocols.

2 SPECIFYING MULTIAGENT SYSTEMS
Listing 1 gives the Azorus specification of a MAS for conducting

ebusiness. The first half of the listing gives a BSPL protocol Ebusi-
ness. The protocol specifies the roles and the message schemas. The

protocol is specified declaratively via information constraints. We

refer to an agent’s communication history as its local state. The
basic idea is that in any protocol enactment, as identified by ⌜key⌝
parameters, an agent can send any message whose ⌜in⌝ parameters

already known (that is, bindings for them exist in the agent’s local

state) and whose ⌜out⌝ parameters are not already known (bind-

ings for them don’t exist in the local state). The Ebusiness protocol
thus captures the operational constraints on protocol enactments.

In contrast to protocols specified as communication state machines,

it is highly flexible, e.g., allowing shipment to be sent any time after

offer.
The second half of the listing gives the commitments in a lan-

guage inspired from Cupid [4]. The commitments specify the mean-

ings of the messages in theEbusiness protocol. The commitment

OfferCom specifies that offer creates a commitment (instance) from

seller to buyer. This commitment is detached if transfer happens
within 5 time units (for purposes of this paper, seconds) of the cre-

ation and Payment in the transfer is at least as much as Price in the

offer. The commitment expires (fails to be detached) if either of these
conditions is not met. The commitment is discharged if shipment
happens within 5 time units of being detached. The commitment is

violated if it fails to be discharged, that is, if shipment fails to occur

within the stipulated time. The other commitments have analogous

readings.

Listing 1: The Ebusiness BSPL protocol and the commitments
that capture the meaning of the messages in the protocol.
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1 Ebus i n e s s {
2 r o l e s Buyer , S e l l e r , Bank
3 paramete r s out Id key , out Item , out P r i c e , out

S t a t u s
4

5 S e l l e r −> Buyer : o f f e r [ out Id key , out Item , out
P r i c e ]

6 Buyer −> S e l l e r : a c c ep t [ i n Id key , i n Item , i n P r i c e
, out Dec i s i on ]

7 Buyer −> Bank : i n s t r u c t [ i n Id key , i n P r i c e , out
D e t a i l s ]

8 Bank −> S e l l e r : t r a n s f e r [ i n Id key , i n P r i c e , i n
De t a i l s , out Payment ]

9 S e l l e r −> Buyer : shipment [ i n Id key , i n Item , i n
P r i c e , out S t a t u s ]

10 S e l l e r −> Bank : r e fund [ i n Id key , i n Item , i n
Payment , out Amount , out S t a t u s ]

11 }
12 commitment OfferCom S e l l e r to Buyer
13 c r e a t e o f f e r
14 detach t r a n s f e r [ , c r e a t e d OfferCom + 5 ]
15 where " Payment >= P r i c e "
16 d i s c h a r g e shipment [ , detached OfferCom + 5 ]
17

18 commitment RefundCom S e l l e r to Buyer
19 c r e a t e o f f e r
20 detach v i o l a t e d OfferCom
21 d i s c h a r g e re fund [ , detached RefundCom + 2 ]
22 where " Amount >= Payment "
23

24 commitment TransferCom Bank to S e l l e r
25 c r e a t e i n s t r u c t
26 d i s c h a r g e t r a n s f e r [ , c r e a t e d TransferCom + 2 ]
27 where " Payment= P r i c e "

3 TOOLING
Given the MAS specification and the role an agent wants to play,

our tooling generates a Jason adapter (the red components) that

lets the agent query for

• enabled messages (partial message instances whose ⌜in⌝
parameters are known but ⌜out⌝ parameters are unknown).

These are the messages that an agent may potentially emit

at that point in the agent’s execution, and

• commitments in particular states.

Depending on the agent’s internal reasoning (which includes

querying commitment states), an agent may flesh out an enabled

message by supplying bindings for its out parameters and attempt
to send it (attempts may sometimes fail due to concurrency). Thus

the API for programming agents consists the queries and attempt.

Our tooling generates the requisite plans to support the API.

Azorus is more general than traditional agent programming

approaches, which focus on the idea of message handling. In Azorus,

a basic plan pattern is the following. A plan may be triggered by

whatever event is of interest to the agent. The plans then run queries

to compute commitments, enabled messages, and other conditions

of interest. Depending on the results, it may completing the enabled
messages (by providing bindings for the ⌜out⌝ parameters) and

attempt to send them. Listing 2 shows a seller agent’s plan for

sending a shipment. It is triggered by AKC 1: describe the code below.

Listing 2: Commitments as queries in Azorus.

Internal Logic

Compute Enabled Messages &
Commitments

Update Commitment Events

Update Local State: Emission

Update Local State: Reception

Attempt Emission

Internal State

Commitment Events

Local State

Reasoning

Queries

Plans

Beliefs

Agent Implemented via Orpheus

Orpheus Tool

Protocol in BSPL
and Commitments

MAS Specification

Communication Service

Figure 1: Tooling and programming model.

1 + ! handle_form ( [ shipment ( Id , Item , P r i c e , out ) [ r e c e i v e r (
Buyer ) ] | _ ] )

2 : i n _ s t o c k ( Item ) &
3 enab led ( shipment ( Id , Item , P r i c e , out ) [ r e c e i v e r (

Buyer ) ] ) &
4 now_detached_OfferCom ( S e l l e r , Buyer , Id , Item ,

P r i c e , Bank , Payment , Timestamp ) &
5 & cond i t i o n ( S t a t u s )
6 <− ! a t tempt ( shipment ( Id , Item , P r i c e , S t a t u s ) [

r e c e i v e r ( Buyer ) ] ) ;
7 − i n _ s t o c k ( Item ) .

4 CONCLUSIONS
We demonstrate Azorus, which provides an interaction-oriented

programming model based on commitments and information pro-

tocols. A Its value proposition to engineering MAS is in reducing

code complexity, avoiding repetition of business and interaction

logic, and thereby facilitating the implementation of loosely cou-

pled agents. Azorus supports the implementation of MAS on fully

asynchronous communication services, multiparty (more than two)

interactions, and multiple concurrent instances of a protocol.

5 REPRODUCIBILITY
The entire codebase (including tooling) and full versions of all

examples are available at https://gitlab.com/masr.
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• A table and two/three chairs;

• A monitor with HDMI connectivity;

• Flip chart (if possible);

• poster display stand (if possible).
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