
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Programming Interaction-Oriented Cognitive Agents
Demonstration Track

Matteo Baldoni

University of Turin

Turin, Italy

matteo.baldoni@unito.it

Amit K. Chopra

Lancaster University

Lancaster, United Kingdom

amit.chopra@lancaster.ac.uk

Munindar P. Singh

North Carolina State University

Raleigh, NC, USA

mpsingh@ncsu.edu

ABSTRACT
Interactions are central to the notion of multiagent systems. Notions

such as commitments and protocols enable modeling interactions;

however, they are not adequately supported in cognitive program-

ming models such as Jason. We demonstrate novel programming

abstractions for engineering Jason agents that communicate on

the basis of commitments and protocols. Specifically, we demon-

strate how to specify commitments and protocols; automatically

generate role-specific Jason adapters from them; and use the gen-

erated adapters toward implementing an agent’s business logic.

Our approach shines in the implementation of flexible, loosely-

coupled agents, long a challenge for BDI-based agent programming

approaches.

KEYWORDS
Decentralization; Interaction Protocols; BDI; Programming Model

ACM Reference Format:
Matteo Baldoni, Amit K. Chopra, andMunindar P. Singh. 2025. Programming

Interaction-Oriented Cognitive Agents: Demonstration Track. In Proc. of the
24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 3 pages.

1 INTRODUCTION
In 2012, Michael Winikoff [14] highlighted two shortcomings about

agent-oriented programming languages (AOPLs). One, despite the

importance of modeling interactions in multiagent systems (MAS),

AOPLs supported little more than primitives for sending and re-

ceiving messages. He saw the use of such primitives as transferring

control between agents and drew an unflattering analogy with the

use of gotos in programming. Two, interaction protocols, typically
expressed in notations such as AUML [8], were message-centric
and overconstrained the interactions between agents. With the aim

of supporting robustness and flexibility in interactions, as agent

autonomy demands, Winikoff advocated higher-level abstractions

that hid low-level messaging concerns. In 2024, AOPLs still suffer

from the shortcomings Winikoff highlighted.

In recent work [1, 2], we have developed Azorus, a programming

model for multiagent systems that combines cognitive abstractions

with high-level, flexible models of multiagent interaction. In Azorus,

we capture the meaning of interaction via a specification of commit-

ments [3–5, 13, 15] and the operational constraints on interaction

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

via information protocols expressed in the Blindingly Simple Pro-

tocol Language (BSPL) [6, 7, 9–11]. For programming agents, we

build upon Jason [12] to fully exploit an agent’s cognitive autonomy

through the agent’s goals, beliefs, and intentions. The centerpiece

of Azorus is the generation of Jason adapter that supports an agent

programming interface ("API") that enables engineering loosely

coupled, flexible, and decentralized multiagent systems.

Our approach demonstrates how to overcome the limitations

pointed out by Winikoff. Our approach overcomes shortcomings

of message-centric interaction protocols, such as incompatibilities
between agents due to the message schemas being blended into

business logic; semantic errors due to a lack of a formal model;

and inflexibility due to the programmer having to maintain the

protocol state via a state machine. Moreover, it fully exploits the

agent’s social autonomy through the adoption of commitments and

information protocols.

2 SPECIFYING MULTIAGENT SYSTEMS
Listing 1 gives the Azorus specification of a MAS for conducting

ebusiness. The first half of the listing gives a BSPL protocol Ebusi-
ness. The protocol specifies the roles and the message schemas. The

protocol is specified declaratively via information constraints. We

refer to an agent’s communication history as its local state. The
basic idea is that in any protocol enactment, as identified by ⌜key⌝
parameters, an agent can send any message whose ⌜in⌝ parameters

already known (that is, bindings for them exist in the agent’s local

state) and whose ⌜out⌝ parameters are not already known (bind-

ings for them don’t exist in the local state). The Ebusiness protocol
thus captures the operational constraints on protocol enactments.

In contrast to protocols specified as communication state machines,

it is highly flexible, e.g., allowing shipment to be sent any time after

offer.
The second half of the listing gives the commitments in a lan-

guage inspired from Cupid [4]. The commitments specify the mean-

ings of the messages in theEbusiness protocol. The commitment

OfferCom specifies that offer creates a commitment (instance) from

seller to buyer. This commitment is detached if transfer happens
within 5 time units (for purposes of this paper, seconds) of the cre-

ation and Payment in the transfer is at least as much as Price in the

offer. The commitment expires (fails to be detached) if either of these
conditions is not met. The commitment is discharged if shipment
happens within 5 time units of being detached. The commitment is

violated if it fails to be discharged, that is, if shipment fails to occur

within the stipulated time. The other commitments have analogous

readings.

Listing 1: The Ebusiness BSPL protocol and the commitments
that capture the meaning of the messages in the protocol.

1

https://orcid.org/???
https://orcid.org/0000-0003-4629-7594
https://orcid.org/0000-0003-3599-3893
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Matteo Baldoni, Amit K. Chopra, and Munindar P. Singh

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

1 Ebus i n e s s {
2 r o l e s Buyer , S e l l e r , Bank
3 paramete r s out Id key , out Item , out P r i c e , out

S t a t u s
4

5 S e l l e r −> Buyer : o f f e r [out Id key , out Item , out
P r i c e]

6 Buyer −> S e l l e r : a c c ep t [i n Id key , i n Item , i n P r i c e
, out Dec i s i on]

7 Buyer −> Bank : i n s t r u c t [i n Id key , i n P r i c e , out
D e t a i l s]

8 Bank −> S e l l e r : t r a n s f e r [i n Id key , i n P r i c e , i n
De t a i l s , out Payment]

9 S e l l e r −> Buyer : shipment [i n Id key , i n Item , i n
P r i c e , out S t a t u s]

10 S e l l e r −> Bank : r e fund [i n Id key , i n Item , i n
Payment , out Amount , out S t a t u s]

11 }
12 commitment OfferCom S e l l e r to Buyer
13 c r e a t e o f f e r
14 detach t r a n s f e r [, c r e a t e d OfferCom + 5]
15 where " Payment >= P r i c e "
16 d i s c h a r g e shipment [, detached OfferCom + 5]
17

18 commitment RefundCom S e l l e r to Buyer
19 c r e a t e o f f e r
20 detach v i o l a t e d OfferCom
21 d i s c h a r g e re fund [, detached RefundCom + 2]
22 where " Amount >= Payment "
23

24 commitment TransferCom Bank to S e l l e r
25 c r e a t e i n s t r u c t
26 d i s c h a r g e t r a n s f e r [, c r e a t e d TransferCom + 2]
27 where " Payment= P r i c e "

3 TOOLING
Given the MAS specification and the role an agent wants to play,

our tooling generates a Jason adapter (the red components) that

lets the agent query for

• enabled messages (partial message instances whose ⌜in⌝
parameters are known but ⌜out⌝ parameters are unknown).

These are the messages that an agent may potentially emit

at that point in the agent’s execution, and

• commitments in particular states.

Depending on the agent’s internal reasoning (which includes

querying commitment states), an agent may flesh out an enabled

message by supplying bindings for its out parameters and attempt
to send it (attempts may sometimes fail due to concurrency). Thus

the API for programming agents consists the queries and attempt.

Our tooling generates the requisite plans to support the API.

Azorus is more general than traditional agent programming

approaches, which focus on the idea of message handling. In Azorus,

a basic plan pattern is the following. A plan may be triggered by

whatever event is of interest to the agent. The plans then run queries

to compute commitments, enabled messages, and other conditions

of interest. Depending on the results, it may completing the enabled
messages (by providing bindings for the ⌜out⌝ parameters) and

attempt to send them. Listing 2 shows a seller agent’s plan for

sending a shipment. It is triggered by AKC 1: describe the code below.

Listing 2: Commitments as queries in Azorus.

Internal Logic

Compute Enabled Messages &
Commitments

Update Commitment Events

Update Local State: Emission

Update Local State: Reception

Attempt Emission

Internal State

Commitment Events

Local State

Reasoning

Queries

Plans

Beliefs

Agent Implemented via Orpheus

Orpheus Tool

Protocol in BSPL
and Commitments

MAS Specification

Communication Service

Figure 1: Tooling and programming model.

1 + ! handle_form ([shipment (Id , Item , P r i c e , out) [r e c e i v e r (
Buyer)] | _])

2 : i n _ s t o c k (Item) &
3 enab led (shipment (Id , Item , P r i c e , out) [r e c e i v e r (

Buyer)]) &
4 now_detached_OfferCom (S e l l e r , Buyer , Id , Item ,

P r i c e , Bank , Payment , Timestamp) &
5 & cond i t i o n (S t a t u s)
6 <− ! a t tempt (shipment (Id , Item , P r i c e , S t a t u s) [

r e c e i v e r (Buyer)]) ;
7 − i n _ s t o c k (Item) .

4 CONCLUSIONS
We demonstrate Azorus, which provides an interaction-oriented

programming model based on commitments and information pro-

tocols. A Its value proposition to engineering MAS is in reducing

code complexity, avoiding repetition of business and interaction

logic, and thereby facilitating the implementation of loosely cou-

pled agents. Azorus supports the implementation of MAS on fully

asynchronous communication services, multiparty (more than two)

interactions, and multiple concurrent instances of a protocol.

5 REPRODUCIBILITY
The entire codebase (including tooling) and full versions of all

examples are available at https://gitlab.com/masr.

ACKNOWLEDGMENTS
Thanks to the NSF (grant IIS-1908374) for partial support.

2

https://gitlab.com/masr

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Programming Interaction-Oriented Cognitive Agents AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

REFERENCES
[1] Matteo Baldoni, Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra.

2025. Orpheus: Engineering Multiagent Systems via Communicating Agents. In

Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI). AAAI,
Philadelphia, 1–9.

[2] Amit K. Chopra, Matteo Baldoni, Samuel H. Christie V, and Munindar P. Singh.

2025. Azorus: Commitments over Protocols for BDI Agents. In Proceedings of
the 24th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). IFAAMAS, Detroit.

[3] Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. 2020. An Evalu-

ation of Communication Protocol Languages for Engineering Multiagent Sys-

tems. Journal of Artificial Intelligence Research (JAIR) 69 (Dec. 2020), 1351–1393.
https://doi.org/10.1613/jair.1.12212

[4] Amit K. Chopra and Munindar P. Singh. 2015. Cupid: Commitments in Relational

Algebra. In Proceedings of the 29th Conference on Artificial Intelligence (AAAI).
AAAI Press, Austin, Texas, 2052–2059. https://doi.org/10.1609/aaai.v29i1.9443

[5] Amit K. Chopra and Munindar P. Singh. 2016. Custard: Computing Norm States

over Information Stores. In Proceedings of the 15th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS). IFAAMAS, Singapore,

1096–1105. https://doi.org/10.5555/2936924.2937085

[6] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2022. Mandrake:

Multiagent Systems as a Basis for Programming Fault-Tolerant Decentralized

Applications. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS)
36, 1, Article 16 (April 2022), 30 pages. https://doi.org/10.1007/s10458-021-09540-

8

[7] Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra. 2023. Kiko:

Programming Agents to Enact Interaction Protocols. In Proceedings of the 22nd
International Conference on Autonomous Agents andMultiAgent Systems (AAMAS).
IFAAMAS, London, 1154–1163. https://doi.org/10.5555/3545946.3598758

[8] Marc-Philippe Huget and James Odell. 2004. Representing Agent Interaction

Protocols with Agent UML. In Proceedings of the 5th International Workshop on
Agent-Oriented Software Engineering (AOSE) (Lecture Notes in Computer Science,
Vol. 3382). Springer, New York, 16–30. https://doi.org/10.1007/978-3-540-30578-

1_2

[9] Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-

ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the
10th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). IFAAMAS, Taipei, 491–498. https://doi.org/10.5555/2031678.2031687

[10] Munindar P. Singh. 2012. Semantics and Verification of Information-Based

Protocols. In Proceedings of the 11th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). IFAAMAS, Valencia, Spain, 1149–1156.

https://doi.org/10.5555/2343776.2343861

[11] Munindar P. Singh and Samuel H. Christie V. 2021. Tango: Declarative Semantics

for Multiagent Communication Protocols. In Proceedings of the 30th International
Joint Conference on Artificial Intelligence (IJCAI). IJCAI, Online, 391–397. https:

//doi.org/10.24963/ijcai.2021/55

[12] Renata Vieira, Álvaro F. Moreira, Michael J. Wooldridge, and Rafael H. Bordini.

2007. On the Formal Semantics of Speech-Act Based Communication in an Agent-

Oriented Programming Language. Journal of Artificial Intelligence Research (JAIR)
29 (June 2007), 221–267. https://doi.org/10.1613/jair.2221

[13] Michael Winikoff. 2007. Implementing Commitment-based Interactions. In Pro-
ceedings of the 6th International Conference on Autonomous Agents and Multiagent
Systems. 1–8.

[14] Michael Winikoff. 2012. Challenges and Directions for Engineering Multi-Agent

Systems. CoRR abs/1209.1428 (2012), 12 pages.

[15] Pınar Yolum and Munindar P. Singh. 2002. Flexible Protocol Specification

and Execution: Applying Event Calculus Planning using Commitments. In

Proceedings of the 1st International Joint Conference on Autonomous Agents
and MultiAgent Systems (AAMAS). ACM Press, Bologna, 527–534. https:

//doi.org/10.1145/544862.544867

REQUIREMENTS FOR THE DEMO
These are our requirements for the demo:

• A table and two/three chairs;

• A monitor with HDMI connectivity;

• Flip chart (if possible);

• poster display stand (if possible).

3

https://doi.org/10.1613/jair.1.12212
https://doi.org/10.1609/aaai.v29i1.9443
https://doi.org/10.5555/2936924.2937085
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.5555/3545946.3598758
https://doi.org/10.1007/978-3-540-30578-1_2
https://doi.org/10.1007/978-3-540-30578-1_2
https://doi.org/10.5555/2031678.2031687
https://doi.org/10.5555/2343776.2343861
https://doi.org/10.24963/ijcai.2021/55
https://doi.org/10.24963/ijcai.2021/55
https://doi.org/10.1613/jair.2221
https://doi.org/10.1145/544862.544867
https://doi.org/10.1145/544862.544867

	Abstract
	1 Introduction
	2 Specifying Multiagent Systems
	3 Tooling
	4 Conclusions
	5 Reproducibility
	Acknowledgments
	References

