
Chapter 1

Perspectives on Social Computing

CONTENTS

1.1 Microsocieties and Sociotechnical Systems 1-2
1.2 Understanding Social Computing 1-4

1.2.1 Recommendation . 1-5
1.2.2 Crowdsourcing and Human Computation 1-6
1.2.3 Knowledge Management . 1-7

1.3 Toward a Scorecard for Social Computing 1-7
1.4 Social Computing as Computing 1-9
1.5 Historical Remarks . 1-12

Computing is increasingly called upon to move outside of the computer. The
blazingly rapid advances in computer science have enabled applications that could
not have been conceived of even a couple of decades ago. In particular, modern
applications of computing pull us into the real world of people with all its attendant
messiness.

In computational terms, social entities are not only autonomous but are also het-
erogeneous, meaning that they are of distinct construction. Heterogeneity at the level
of programming language or operating system or information representation is impor-
tant for the purposes of realizing implementations but is more an artifact of the way
we program today than of any fundamental aspect of the concerned social entities. In
addition, heterogeneity at the level of the meaning of the information produced and

1-1

1-2 1: Perspectives on Social Computing

accessed by social entities, including the semantics and pragmatics of that informa-
tion is deeply ingrained in the nature of the social entity. Dealing with this hetero-
geneity calls for not just technical solutions but technical solutions supplemented by a
computational modeling of the social structures (internal) and relationships (external)
of the parties involved.

Related to autonomy and heterogeneity is the notion of dynamism, which refers
to the continual changes in the meaning of information as well as of the social struc-
tures and relationships. Dealing with these at a computational level is a nontrivial
challenge and involves a combination of innovations in architecture that reflect social
relationships as first-class abstractions.

Table 1.1 describes an easy way to distinguish the three properties mentioned
above.

Table 1.1: Characterizing openness.

Property Definition Impact

Autonomy Independent action How will a party act?
Heterogeneity Independent design How will a party represent information?
Dynamism Independent configuration How can a party come and go?

These properties taken together describe what are called open IT environments.
Sometimes, in addition, the scale, that is, the potential for large numbers of parties
in a number of overlapping simultaneous transactions and relationships, is included
in openness. An important point from our standpoint is that whereas traditional com-
puter science deals best with closed environments, modern IT environments are open.
To handle such environments presupposes flexible approaches and arms-length rela-
tionships.

Social computing is interesting as a computing discipline because it provides us
with representations and techniques—and a new mindset—for dealing with openness.

1.1 Microsocieties and Sociotechnical Systems

We turn to human interactions for inspiration. In essence, we can treat each infor-
mation environment as a microsociety. The specification, analysis, and enactment of
such a microsociety using social abstractions is what social computing is about.

Conceiving of, representing, and reasoning about microsocieties gives us a han-
dle on talking about sociotechnical systems (STSs) in a high-level, meaning-rich,

© Munindar P. Singh Do Not Distribute

1: Perspectives on Social Computing 1-3

and reusable manner while remaining grounded in computer science. In our concep-
tion, an STS is a system of two or more autonomous or social entities who interact
with each other through or about one or more technical entities. The social entities
include people, communities, teams, and organizations; the technical entities include
computers, networks, IoT devices, data stores, and software. This conception of STS
has the benefit of being a social abstraction that can be computationally applied.

It is worth pointing out that our conception of an STS lies between the conven-
tional conceptons of STSs. One of those conceptions is concerned with the applica-
tion of technologies in societies and user communities where there is no computation
or reasoning by the participants about their interaction, just the sociologist’s view
of how the nature of those interactions may have changed as a consequence of new
technology having been introduced. For example, an STS investigation may point out
that the advent of computers in medicine has led not to a reduction in time spent by
physicians on record keeping but an increase in the time spent. Sometimes the term
sociotechnical systems is used to talk about Society as a whole or a large business
organization responds to the introduction of Technology. For example, researchers
may be concerned with the effects of introducing email on productivity or the effects
of introducing social media on social distance. Those are valuable concerns but
largely removed from the present setting. Here we are not interested in Society and
Technology in the large but instead in computational models that relate to decision
making and actions by the social entities. For example, we may be interested in com-
putationally representing and reasoning about whether Alice sharing Bob’s health
records with Charlie violates some relevant social norm that applies to Alice.

The second conception of an STS is of anywhere we see people (as social enti-
ties) interacting with computers or mobile phones (as technical entities). This view
doesn’t require there to be an social effect and does not even require there to be two
participants. Clearly, one could argue that a user playing Solitaire on his computer in
his spare time is a weak example of social computing at best.

There are clear reasons for accommodating openness—namely, that the parties
concerned demonstrate the properties of autonomy, heterogeneity, and dynamism and
their interactions reflect the subtleties of these properties. However, in addition, there
is a major architectural reason to support these properties. Treating the concerned
parties as autonomous, heterogeneous, and dynamic leads to cleaner interfaces with
better modularity and encapsulation. Thus, we can apply social computing princi-
ples even in settings where we know autonomy, heterogeneity, and dynamism to be
limited. For example, we might architecturally model an enterprise as if its vari-
ous divisions were fully heterogeneous and its staff fully autonomous though they

Do Not Distribute © Munindar P. Singh

1-4 1: Perspectives on Social Computing

might not be so. The benefits lie in reducing the fragility of an architecture and thus
future-proofing a sociotechnical system.

Interestingly enough, business environments meet our criteria for social comput-
ing. This is because what characterizes business environments is that they involve the
interactions of autonomous parties. What differentiates social computing (as defined
here) from traditional computing is its emphasis and focus on the interactions and
autonomy. More generally, we see other environments, such as scientific collabo-
ration or even academic computing that demonstrate the interactions of autonomous
parties. We can therefore pull them into the scope of social computing and understand
them from the perspective that we apply throughout this volume.

The unifying theme is that in social computing, we seek to build and compute
with abstractions that at the core reflect intuitions of human social interactions.

1.2 Understanding Social Computing

Another way to think of social computing is that like any other academic discipline it
does not have sharp boundaries. Therefore, a way to approach understanding social
computing is to consider a number of putative applications or platforms for comput-
ing that involve a social element. We can abstract out their important features and
determine what features are more important or more decisive in determining if an
application or platform is social.

Table 1.2 lists some major platforms that demonstrate social features. Arguably,
the first prominent social computing application is email. Email is an important test
case for clarifying our concepts. Clearly, email is used to achieve social interaction.
However, the computational support in email is primarily concerned with low-level
details. Specifically, an email platform provides (a) a way for drafting and sending
messages; (b) a way to store and retrieve messages, including threading conversa-
tions; and (c) a way to suggest people to communicate with based on prior conversa-
tions However, the social structure is primarily in the minds of the users. That is, the
social state is largely epiphenomenal as far as the email platform is concerned.

The next few entries in Table 1.2, Google search and Netflix movies, are social
only to the extent that they bring together information produced by multiple people
to solve a problem of interest to other people. For Google search, the estimation of
the relevance of a search result is based in part on hyperlinks created by people. For
Netflix, movie recommendations are based on similarities of ratings of movies given
by various users. In these cases, the hyperlinkers and movie raters do not interact
with each other though their insights are aggregated together.

© Munindar P. Singh Do Not Distribute

1: Perspectives on Social Computing 1-5

Table 1.2: Platforms and applications with a social flavor.

Platform Problem Key Feature

Human communication
Email Facilitate communication Conversations, contacts
Blogger.com Support conversations Feeds, posts, comments, tags
Who . . . Millionaire? Answering questions Voting
Selection and recommendation
Google Ranking search results Hyperlinking
Netflix Recommend movies to users User profiles, ratings
Amazon Help users in product selection Reviews, comments, ratings
Social media
Twitter Find tweets on a topic Common hash tags
Facebook Services for apps Social network
Collaboration
Wikipedia Create a free encyclopedia Revision history, talk
Quora Find information on something Questions and answers
Reddit Select top stories Feeds, posts, comments
Stack Overflow Question answering Posts, comments, ratings
Crowdsourcing and human computation
reCAPTCHA Recognize text in images User-provided content
ESP game Determine photo content User-provided captions
Mechanical Turk Perform tasks Market, HIT
Iowa Electronic Markets Predict election outcomes Dynamic futures pricing
External purpose
KickStarter Select fundable projects Projects, rewards, backing

1.2.1 Recommendation

Several other of the applications in Table 1.2, e.g., in Amazon review ratings, make
the interactions among people explicit and use them as a basis for rating the reviews
(and reviewers) that rate products. Some, like Stack Overflow, apply a similar idea
to producing and rating answers to questions that users pose. Reputation or status is
an important motivator in these applications. The users come together to interact for
a product or question but have no long term association.

Facebook goes further in that it exploits the somewhat stable social relationships
between users, especially friendship, to further guide their interactions and produce

Do Not Distribute © Munindar P. Singh

1-6 1: Perspectives on Social Computing

customized recommendations for content that the users may find valuable.

1.2.2 Crowdsourcing and Human Computation

Recent years have seen an increasing attention directed toward socially inspired approaches
for finding and judging information. Crowdsourcing involves using people to provide
or vet information. The intuition is that what a crowd knows is usually better than
what an individual knows, and with greater certainty. For example, to find the pop-
ulation of Brazil, we can query a (large) number of people, and use their median
answer as an effective approximation.

reCAPTCHA is the common application we all encounter when we try to access
some service on the web, e.g., to create a new account. reCAPTCHA addresses
two problems. The first problem is that when there is no other authentication, e.g.,
because one’s account isn’t set up yet, it is possible for attackers to use software
bots to request the service. For example, attackers may create spurious accounts
or access free services to benefit themselves or harm others. reCAPTCHA serves
as evidence that the requester is human because it involves completing a task (such
as image recognition) that is easy for people but difficult for software. The service
already knows the answer and a user establishes his or her credentials as a human by
providing that answer. The second problem that reCAPTCHA addresses is how to
acquire ground truth or labels for a problem for which a clear answer is not known.
This problem could be identifying words scanned in from old publications. Because
reCAPTCHA presents a composite problem to the user as a challenge, the user does
not know which is which. Each user has an interest in proceeding with whatever he
or she wishes to accomplish, and therefore generally complies by providing a useful
answer to each part of the challenge. The answers of many users are collated to
determine what the scanned words really are.

A similar process occurs with the ESP game where users are asked to create photo
captions, and points are awarded and captions used when independent users happen to
agree on the terms used. The above approaches, though intriguing, are highly limited.
In particular, they replace intelligence by an estimation of the majority answer. In
some cases, the estimation can be through statistical methods, as in the reCAPTCHA
example. In other cases, the estimation can be through incentives for the participants
to agree, as the ESP game demonstrates.

Subsequent approaches expand from the above into settings where there are explicit
incentives. For example, Amazon’s Mechanical Turk web services support the exe-
cution of human intelligence tasks by people. This approach broadens the set of
possible applications; well-known examples (http://aws.amazon.com/mturk/)

© Munindar P. Singh Do Not Distribute

1: Perspectives on Social Computing 1-7

include natural language translation, media production, and data cleansing.
These approaches have a common structure in that they are centrally concep-

tualized. One party decides to have a problem solved and offers financial or other
incentives to persuade members of a crowd to solve it. Such approaches can work
when we can treat the members of the crowd as external entities, safely understood as
a service, and which we can largely assume are disinterested except for the incentives
we offered them. Further, the people work in essence independently of each other. To
summarize, traditional approaches are centrally driven (orchestrated), treat the peo-
ple as independent and disinterested, and rely upon consensus or majority view to
determine the answer they offer.

1.2.3 Knowledge Management

Knowledge management is an example of a social application. Since the earliest
days of knowledge management in computer science, researchers have considered
how to build platforms that users could adopt in order to sustain knowledge manage-
ment. The idea behind knowledge management is to find a way to support capturing
the knowledge that people (especially employees of a company) have so that such
knowledge could be reused by other employees of that company. In other words,
knowledge would propagate from the employees toward the central storage.

Knowledge management in its typical rendering ends up as a software mod-
ule through which the participants communicate, including providing their ideas or
hunches, fielding user queries, and storing and retrieving information. That is, the
social nature of the knowledge is mostly left outside of the computational realm and
purely in the minds of the participants.

1.3 Toward a Scorecard for Social Computing

Social computing, like any other intellectual discipline, would not have a crisp defi-
nition of what’s in and what’s out of its scope. Building upon the intuition expressed
in our working definition of social computing as computing of and with social rela-
tionships, we can identify some key features that indicate social computing.

Here, we focus on the core of a problem—how it is modeled—as opposed to
architectures of particular solutions that may have been or could be produced. In
other words, we seek to understand what the problem itself calls for regardless us
potential solutions to it, which may make additional assumptions.

Do Not Distribute © Munindar P. Singh

1-8 1: Perspectives on Social Computing

Table 1.3: Key distinguishing features of social computing applications.

Meaning Examples

Autonomy

What is the extent of independence
of the various parties?

• Who may initiate a computation?
• Who selects the participants?

Strategy

Are the parties interested in the out-
come?

• Do the parties interact repeatedly?
• Do the parties learn and might useful

outcomes emerge?
• Is it a majority or a minority game?

Interaction

How do participants interact with
each other and with any requesters
not closely involved in the computa-
tion?

• How rich or complex are the interac-
tions?

• Can a coalition be formed?
• Is the nature of the work negotiable?
• How is the service engagement gov-

erned?

Meaning

How much of the social state is rep-
resented computationally?

• Is the meaning of a social relationship
or interaction represented?

• How deep is the meaning of the social
state? Does it relate to the intimacy
participants feel toward each other?

• Does the represented meaning involve
human concerns, such as emotion and
personality?

• Is the meaning explicit so that the
participants can extract it and reason
about it?

Time and Structure

© Munindar P. Singh Do Not Distribute

1: Perspectives on Social Computing 1-9

. . . Continued

Meaning Examples

How is the work structured?

• Is it a one-off task?
• Who selects the performer and assigns

the task?
• Who completes the task?
• Who evaluates the task and how?
• Are the results produced continually?

Originality

How much originality or insight
does the work require?

• Does it require original thinking?
• Does it encourage consensus thinking

or novelty?
• Does it promote creativity?

These features or dimensions can help us distinguish diverse forms of social com-
puting and when they occur together they indicate a stronger form of social comput-
ing than when they fail to occur.

The following questions provide an indication of the nature of the various fea-
tures. Answers to these questions indicate whether and to what extent an application
or architecture may be considered social. These questions can be used as a basis for
what we might call a social computing scorecard—a higher score corresponds to a
more central instance of social computing. We won’t go into numeric scores, how-
ever, because such scores would be quite ad hoc unless one had a specific narrow
purpose in mind.

• Autonomy and organization: What is the extent of independence of the vari-
ous parties? Specifically, who may initiate a computation? Who selects the
participants? Is the work carried out collaboratively between two or more par-
ticipants? How complex are the social relationships between the participants?

• Strategy: Are the parties interested in the outcome? Specifically, do the parties
interact repeatedly? Do the parties learn and might useful outcomes emerge?
Is it a majority or a minority game?

Do Not Distribute © Munindar P. Singh

1-10 1: Perspectives on Social Computing

• Interaction: How do participants interact with each other and with requesters?
Specifically, can a coalition be formed? Is the nature of the work negotiable?
How is the service engagement governed?

• Meaning: How much of the social state is represented computationally? Specif-
ically, is the meaning of a social relationship or interaction represented? Is the
meaning explicit so that the participants can extract it and reason about it?

• Time and planning: How are the work and interactions structured? Specifi-
cally, is it a one-off task? Are the results produced continually?

• Human intelligence: Does the interaction involve human judgment, for exam-
ple, in regards to producing creative ideas?

• Computing: Is the main contribution centered on computing?

Let’s consider the last question above as a segue into a deeper discussion of com-
puting. Computers are used everywhere so the mere use of a computer to solve a
problem that relates to some task in sociology or psychology would not rate as a
social computing. For example, one may carry out data analysis to discover the age,
education, and wealth distributions of the population of Wake County in North Car-
olina. This may be a valuable computational exercise but I would place decidedly
outside of social computing. If were instead to compute these distributions for Face-
book users, the problem would not quite change. Now it is possible that in the latter
case there is something about the data and how it is obtained that would make it
interesting from a social computing perspective. But it would be more compelling if
weren’t merely reporting facts but applying such facts in further reasoning, e.g., in
making higher-quality friend recommendations on Facebook or in the physical world.

1.4 Social Computing as Computing

Another direction in which it would help to expand our working definition of social
computing is into a characterization of a formal model for computing. Such a char-
acterization can provide a foundation for further investigations.

To do so, let us consider the following two leading and complementary abstract
models of computation established in the literature. Likewise, we can understand
social interactions in corresponding terms.

The first idea is of an automaton or machine that maintains a state and that
describes transitions from one state to another; the machine could be deterministic

© Munindar P. Singh Do Not Distribute

1: Perspectives on Social Computing 1-11

or not and finite or not. Examples of such machine models are finite state automata,
push-down automata, Turing machines. A possible application of such a model is
in describing how a vending machine may operate. For simplicity, imagine that this
machine vends only one type of product, a candy bar, and only takes one type of
coin. Such a vending machine would have states corresponding to two counters: one
for how many candy bars it has and one for a payment within a transaction. Sup-
pose it takes two coins to buy a candy bar. The vending machine would also have
a coin counter with states corresponding to whether there it has received zero, one,
or two coins since its last transaction. Suppose initially that the machine contains
100 candy bars and zero coins. When a customer feeds the machine coins, the coin
counter increases from zero to one to two. If the machine is ever in a state where
it has received two coins and it has one or more candy bars, it would dispense one
candy bar, reset the coin counter to zero and reduce the number of candy bars by one.
(It would also save the coins and a practical machine would let a customer take back
a coin, but let’s disregard such details.) If the machine is ever in a state where it has
received two coins and it has zero candy bars, it would return the coins, reset the coin
counter to zero and leave the number of candy bars unchanged. To describe good
behaviors, we would specify the accepting or final states of the vending machine:
each state where the coin counter is zero and the number of candy bars is between
zero and 100 is an accepting state.

The second model is based on a formal grammar for describing a formal lan-
guage treated as a set of sentences constructed out of elementary tokens. We can
define a language (and grammar) for our vending machine example. A token in this
setting is coin (meaning a coin being inserted), bar (meaning a candy bar being dis-
pensed), return (meaning two coins are returned to the customer). Specifically, the
language for the vending machine contains sentences such as these: (a) coin, coin,
bar; and (b) coin, coin, return. There is a grammar for the language—a set of rules
by which to generate the sentences in the grammar—corresponding to each machine.
The grammar for the vending machine language would be quite simple because the
machine is quite simple. In general, machines and grammars can be a lot more subtle.

Although there is a correspondence between grammars and machines, there is a
fundamental difference. A machine describes how to achieve specified functionality.
A grammar describes a machine’s interactions with its environment. That is, the
grammar-language view focuses on what the interaction is and the machine view
focuses on how to realize it.

The above concepts can be lifted quite naturally to the social setting. Whereas the
state of the vending machine captures the numbers of candy bars and coins, a social

Do Not Distribute © Munindar P. Singh

1-12 1: Perspectives on Social Computing

machine would be built on social states. Specifically, we can model the social state
of a microsociety as a set of social relationships among the relevant principals. A
social machine would transition from one (social) state to another based on relevant
events that describe how the social relationships progress as the concerned parties
interact with each other. Likewise, we can imagine a social grammar as describing
how the concerned parties interact in terms of their potential communications among
principals understood at the social level.

For example, we can understand a part of Facebook’s functionality in social
terms. Imagine we have only three users, Alice, Bob, and Charlie. Initially, all have
accounts but no one is anyone’s friend. If Alice requests to be added as Bob’s friend,
Bob receives her invitation. If he accepts it, they become each other’s friends. If Bob
rejects it or does nothing, they do not become friends. Likewise, Alice and Charlie
can become friends. Once Alice is friends with both Bob and Charlie, Facebook may
generate a friend suggestion for Bob and Charlie to consider adding the other. If
either of them takes up the suggestion, the same friendship process ensues.

We might describe the Facebook social machine as having states, each of which
describes who is whose friend and whose friendship invitation is pending with whom.
The initial state shows no one as anyone’s friend. When Alice’s invitation to Bob goes
out, the state changes to one where Alice’s invitation is pending with Bob. Once Bob
accepts it, the state changes to one where Alice’s invitation is not pending but Bob
and Alice are friends. In this view, Facebook’s suggestion has no effect on the social
state. One could create an alternative social machine where it does.

In terms of the formal grammar, we would characterize what communications
may take place between Alice, Bob, and Charlie. Some possible sentences in the
associated language would be these: (a) invite(Alice, Bob), accept(Bob, Alice), . . . ; and
(b) invite(Alice, Bob), invite(Alice,Charlie), accept(Charlie, Alice), accept(Bob, Alice), . . .

In conceptual terms, then, we can understand social computing as computing
where the objects of the computation are based on social state. That is, we can under-
stand social computing in terms of automata that manipulate social state or in terms
of a grammar whose content applies to communications understood at the social
level. Notice that we understand communications in social terms, not in terms of
the bits transmitted or even the format adopted for a message though such details are
important in realizing a practical system. But such low-level details apply equally
to communications between software programs. In contrast, it is the high-level,
social understanding of communications that justifies our treating interacting parties
as autonomous and the ensuing computation as social computing.

The foregoing discussion is meant only to make the point that we can formulate

© Munindar P. Singh Do Not Distribute

1: Perspectives on Social Computing 1-13

social computing in classical computing terms. The devil is in the details—of how
we construct and manipulate social machine states and how we model and realize
social communications. We will pick up this thread again and get into these details
in Chapter 13. Until then, let’s treat it merely as an abstract way of thinking about
social computing that characterizes as a form of computing.

Smart et al. [2014] describe a somewhat traditional take on social machines,
wherein the social machine is characterized by interactions among people that are
facilitated by computers. The computers are essential to the enterprise but the com-
putational representations are purely operational: all the social meaning is invisible
in the computational representations and is represented entirely in the minds of the
(human) participants.

With Amit Chopra, I have developed an alternative approach called Interaction-
Oriented Software Engineering that characterizes social machines in terms of the
social protocols that they support [Chopra and Singh 2016]. Each protocol is speci-
fied in terms of the social relationships among the participants and how those social
relationships progress as the participants interact. In this way, the social meaning
is central to the computational effort, and the explicitness of the meaning supports
greater independence from implementation than is otherwise possible.

1.5 Historical Remarks

Why should anyone care about social computing? The last few decades have seen
information and communications technology (ICT) work its way into virtually every
domain of human society. Increasingly, ICT brings people together—sometimes in
enhancements of interactions people have had for millennia and sometimes in ways
that lack any precedents in the pre-ICT era. In either case, interactions among people
are a crucial way in which ICT is applied, whether it be in business, education, or
entertainment.

Social computing provides us a way of realizing the value and promise of ICT,
and is the natural next step in the progress of computer science.

References

Amit K. Chopra and Munindar P. Singh. 2016. “From Social Machines to Social
Protocols: Software Engineering Foundations for Sociotechnical Systems.” In
Proceedings of the 25th International World Wide Web Conference, 903–914.
Montréal: ACM, April.

Do Not Distribute © Munindar P. Singh

1-14 1: Perspectives on Social Computing

Paul Smart, Elena Simperl, and Nigel Shadbolt. 2014. “A Taxonomic Framework for
Social Machines.” In Social Collective Intelligence, edited by Daniele Miorandi,
Vincenzo Maltese, Michael Rovatsos, Anton Nijholt, and James Stewart, 51–85.
Computational Social Sciences. Springer.

© Munindar P. Singh Do Not Distribute

