
Social Network Analysis

Are You More Popular Than Your Friends?
On average, that is

For clarity:

▶ Define popularity as number of friends

▶ Consider a person i

▶ Let mi be the number of friends of i who are more popular than i

▶ Let li be the number of friends of i who are less popular than i

▶ For most i , mi > li

For most i , is mi > li , mi = li , or mi < li?
Number of people i whose mi > li versus number of people i whose mi < li
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Social Network Analysis

No!
Hint

▶ You may be, but most people are not

▶ Model a person as a vertex in a graph: N vertices

▶ Model friendship as an undirected edge

▶ The average degree of the graph indicates the average friendliness

▶ Consider two people, one above and one below the average

▶ Thus their degrees relate dpopular > dunpopular
▶ Informally, dpopular people suffer by having a popular friend and

dunpopular people gain by having a less popular friend

▶ But dpopular > dunpopular
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Social Network Analysis

Counting Friends

gAlinta

gBoris

gChen

gFranc

gEsse

gDaoud

Friends Friends’ friends average
Alinta 3 3
Boris 4 3 more popular than friends
Chen 3 3
Daoud 3 31

3 less popular than friends
Esse 3 3
Franc 2 3 less popular than friends
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Social Network Analysis

Sociometrics and Structure
How can we understand social networks abstractly?

gAlinta

gBoris

gChen

gFranc

gEsse

gDaoud

▶ Set of edges: no good for analysis because it doesn’t say much

▶ Entire graph: too complex and varied

▶ Triad: Consider nodes three at a time

▶ Typically, unlabeled edges (or all have same label)
▶ Typically, undirected edges but not always
▶ A small number of possible triads
▶ See how they are distributed over a network

▶ More complex subgraphs: increasingly studied
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Social Network Analysis

Exercise: Cliquishness
Clique (pronounced click): ∼ closed social group

gAlinta

gBoris

gChen

gFranc

gEsse

gDaoud

▶ How would you define it?

▶ As a property of an individual
▶ As a property of a network

▶ How would you define it mathematically?
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Social Network Analysis

Cliquishness
Typical definition in network analysis

gAlinta

gBoris

gChen

gFranc

gEsse

gDaoud

▶ Clique: complete subgraph

▶ Cliquishness: How many of the possible triads are closed

▶ Evaluate for each vertex

▶ How many of its friends are mutual friends
▶ Ratio of actual mutual friendships to possible mutual friendships

▶ For a network, average over its vertices
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Social Network Analysis

Exercise: Estimate Importance or Influence of a Vertex
Also called centrality measures

gAlinta

gBoris

gChen

gFranc

gEsse

gDaoud
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Social Network Analysis

Centrality Measures
Almost an unlimited supply of metrics

gAlinta

gBoris

gChen

gFranc

gEsse

gDaoud

▶ Degree

▶ Removal would increase path length for others the most

▶ Betweenness centrality: How many shortest paths it lies on

▶ Has minimum of maximum path length to others
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Social Network Analysis

Weak Ties
Mark Granovetter

gAlinta

gBoris

gChen

gFranc

gEsse

gDaoud

▶ Distinguish ties (undirected edges) based on strength

▶ Weak

▶ Infrequent interactions
▶ Low intimacy
▶ Someone you meet occasionally, e.g., acquaintance

▶ Weak ties often connect otherwise disjoint parts of the network

▶ More likely to lead to surprising knowledge

▶ Effective in producing job referrals
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Social Network Analysis

Consider Directed Networks
Give some natural examples

gAlinta

gBoris

gChen

gFranc

gEsse

gDaoud

▶ Define influence for two of your examples
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Social Network Analysis

Simplified Page Rank
Influential people are those whom influential people link to (e.g., follow on Twitter)

▶ Model Twitter as a graph (V ,E ), |V |= N authors

▶ Ignoring the tweets

▶ A random search lands you at an author with probability e

▶ Assuming authors are uniformly likely to be found

▶ Each author Alice gets a vote

▶ Equal to Alice’s rank
▶ Distributed equally among all the authors she follows

R(x) =
e

N
+(1− e) ∑

y :(y ,x)∈E

R(y)

out(y)

▶ Näıve method to compute

▶ Initialize R(x) to 1/N
▶ Iterate until fixed point
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Social Network Analysis

Social Network Dynamics
The previous metrics were static: for a fixed graph

gAlinta

gBoris

gChen

gFranc

gEsse

gDaoud

▶ How would people act to create friendships or follow others?

▶ Describe a story by which the people above could end up with the
above network

▶ What kinds of networks are likely to emerge?
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Social Network Analysis

Emergent Properties
Depend on processes of attachment
Knowledge and incentives of those deciding
Easiest to think of for directed graphs because they involve one party’s decision making

▶ Preferential attachment

▶ A new entrant will connect with others proportional to their
current degree

▶ Rich get richer
▶ Purely an abstract mathematical model

▶ For humans, many factors come up

▶ Alignment of interests
▶ Coolness factor?
▶ Requesting, giving, following referrals
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Social Network Analysis

Random Graphs
Exercise: Define one
Give a method for producing one
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Social Network Analysis

Random Graphs
Erdös-Rényi

▶ Anonymous vertices

▶ Unlabeled, undirected edges

▶ Consider n vertices and e edges

▶
(n
2

)
= n(n−1)

2 edges are possible
▶ Uniform-randomly choose e out

(n
2

)
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Social Network Analysis

Exercise: Erdös-Rényi Random Graphs
Use n vertices and e edges

▶ What would be the average degree?

▶ How might the degree be distributed (in intuitive terms) across the n
vertices?

▶ Relative to graphs of n vertices and e edges and in qualitative terms
(low, medium, high)

▶ What would be its cliquishness (called clustering by Watts &
Strogatz)?

▶ What would be its average path length (all-pairs shortest
distance)?
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Social Network Analysis

Exercise: Regular Graphs
Like a ring (of n vertices and e edges)
A familiar ring has each vertex of degree two
Imagine rings with larger degrees

▶ What would be the average degree?

▶ How might the degree be distributed (in intuitive terms) across the n
vertices?

▶ Relative to graphs of n vertices and e edges and in qualitative terms
(low, medium, high)

▶ What would be its cliquishness (called clustering in this paper)?
▶ What would be its average path length (all-pairs shortest

distance)?

Munindar P. Singh (NCSU) Social Computing and Decentralized AI Fall 2024 47



Social Network Analysis

Small-World Networks
Watts and Strogatz

▶ Real-life networks (social, economic, physical, biological) exhibit

▶ High clustering (cliquishness)
▶ Low average path length

▶ Not like Erdös-Rényi random graphs

▶ Indicate some bias in connectivity

▶ Not like regular graphs
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Social Network Analysis

Constructing a Small-World Network
Watts and Strogatz

▶ Assume e = 2n or 4n or . . .

▶ Begin from a ring

▶ With probability p select an edge and holding one vertex fixed,
reconnect the other

▶ p = 0: No change, so regular
▶ p = 1: Maximum change, so random
▶ In the middle: Interesting cases

▶ Characteristic path length, as a function of p: L(p)

▶ Global property

▶ Clustering, as a function of p: C (p)

▶ Local property
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Social Network Analysis

Exercise: Small-World Networks
Suppose a regular graph is rewired with low p ∼ 0.1

▶ Consider a regular graph with n = 1000 and e = 2000

▶ How would its clustering change?

▶ How would its average path length change?
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Social Network Analysis

Exercise: Small-World Networks
Plot L(p) and C(p) as functions of p
In qualitative terms, what’s the shape of these curve

Normalize L as L(p)
L(0)

and C as C(p)
C(0)

to relativize to regular graphs
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Social Network Analysis

Wayfinding
How would you find a way in geographical space

▶ Back to your hotel in a city you are visiting?

▶ Via Uffici del Vicario, 40

▶ Giolitti

▶ That gelato place in Rome where Audrey Hepburn and Barack
Obama stopped

▶ How would you search for the Titanic sunk under the Atlantic?
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Social Network Analysis

Wayfinding

▶ How would you find a way in geographical space?

▶ Look up on a map
▶ Head in a promising direction
▶ Apply geographical knowledge: follow a river downstream or

upstream
▶ Ask someone

▶ Searching for the Titanic

▶ Brute force search?
▶ Actual approach

▶ Locate debris trail running North-South
▶ Move North along it
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Social Network Analysis

Wayfinding in a Social Network
Social geography
John Donne: No man is an island

▶ What are some example uses of social wayfinding

▶ Compare with geographical space

▶ How might Facebook do it?

▶ How would you do it as an individual user?
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Social Network Analysis

Exercise: Propose an Algorithm for Decentralized
Wayfinding
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Social Network Analysis

Algorithms for Decentralized Wayfinding

▶ Flooding

▶ Referrals

▶ Who to ask
▶ Whom to respond to
▶ What response to give
▶ How to assess responses
▶ How to learn from each episode
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Social Network Analysis

Dynamism in Referral Networks: Evolution
Depends on how the participants explore and learn
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Social Network Analysis

Social Mobilization
Getting people to act
Exercise: come up with a task and a possible solution

▶ Clean up a park or a beach

▶ Donate blood

▶ Help locate a suspect in a crime or terror attack

▶ Help locate an cognitively challenged person who wandered off from
home
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Social Network Analysis

Programming Competitions
What motivates you to participate?
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Social Network Analysis

Balloon Challenge
DARPA: Defense Advanced Research Projects Agency
Exercise: how would you do it?

▶ Release 10 balloons in the continental US

▶ Competition between teams

▶ Whichever team locates (visually) all 10 first gets $50k

▶ Two groups being motivated

▶ By DARPA: Researchers who would pursue the competition
▶ By researchers: Members of the public to help them
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Social Network Analysis

Balloon Challenge Outcomes

▶ Winning team

▶ Employed referrals
▶ Reward for first person to find a balloon
▶ Exponentially decaying rewards for chain of referrers

▶ Other approaches

▶ Donation to charity
▶ Use of social media personality to tweet about it
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Social Network Analysis

Exercise: Identify Limitations of these Approaches
Give specific examples
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