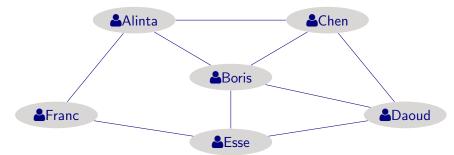
Are You More Popular Than Your Friends?

On average, that is

For clarity:

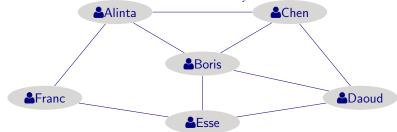
- Define popularity as number of friends
- Consider a person i
- Let m_i be the number of friends of i who are more popular than i
- Let I_i be the number of friends of i who are less popular than i
- For most i, $m_i > l_i$


For most *i*, is $m_i > l_i$, $m_i = l_i$, or $m_i < l_i$?

Number of people *i* whose $m_i > l_i$ versus number of people *i* whose $m_i < l_i$

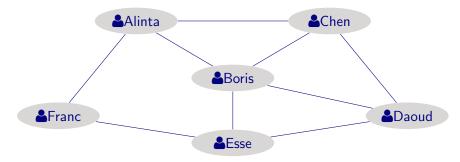
No! Hint

- You may be, but most people are not
- Model a person as a vertex in a graph: N vertices
- Model friendship as an undirected edge
- The average degree of the graph indicates the average friendliness
- Consider two people, one above and one below the average
- Thus their degrees relate d_{popular} > d_{unpopular}
- Informally, d_{popular} people suffer by having a popular friend and d_{unpopular} people gain by having a less popular friend
- But d_{popular} > d_{unpopular}


Counting Friends

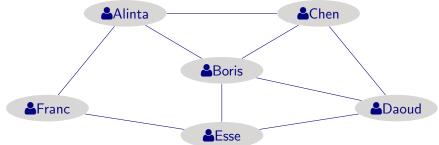
	Friends	Friends' friends average	
Alinta	3	3	
Boris	4	3	more popular than friends
Chen	3	3	
Daoud	3	$3\frac{1}{3}$	less popular than friends
Esse	3	3	
Franc	2	3	less popular than friends

Sociometrics and Structure


How can we understand social networks abstractly?

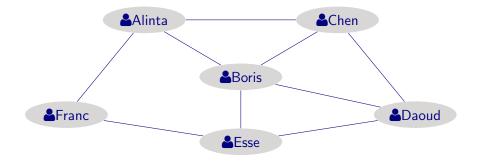
- Set of edges: no good for analysis because it doesn't say much
- Entire graph: too complex and varied
- Triad: Consider nodes three at a time
 - Typically, unlabeled edges (or all have same label)
 - Typically, undirected edges but not always
 - A small number of possible triads
 - See how they are distributed over a network
- More complex subgraphs: increasingly studied

Exercise: Cliquishness

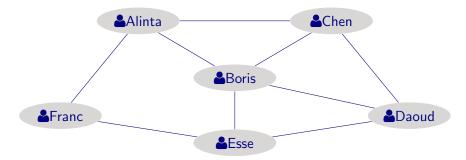

Clique (pronounced click): \sim closed social group

- How would you define it?
 - As a property of an individual
 - As a property of a network
- How would you define it mathematically?

Cliquishness

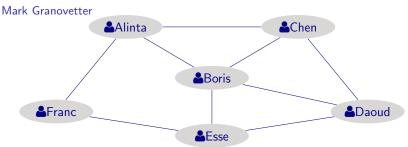


- Clique: complete subgraph
- Cliquishness: How many of the possible triads are closed
- Evaluate for each vertex
 - How many of its friends are mutual friends
 - Ratio of actual mutual friendships to possible mutual friendships
- For a network, average over its vertices


Exercise: Estimate Importance or Influence of a Vertex

Also called centrality measures

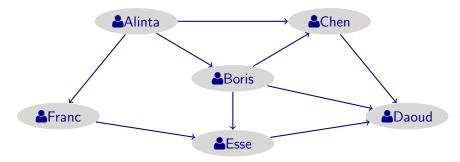
Centrality Measures


Almost an unlimited supply of metrics

Degree

- Removal would increase path length for others the most
- Betweenness centrality: How many shortest paths it lies on
- Has minimum of maximum path length to others

Weak Ties


Distinguish ties (undirected edges) based on strength

Weak

- Infrequent interactions
- Low intimacy
- Someone you meet occasionally, e.g., acquaintance
- Weak ties often connect otherwise disjoint parts of the network
- More likely to lead to surprising knowledge
- Effective in producing job referrals

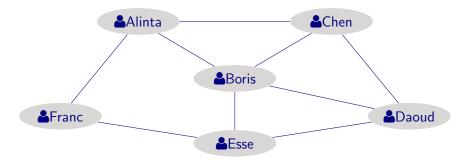
Consider Directed Networks

Give some natural examples

Define influence for two of your examples

Simplified Page Rank

Influential people are those whom influential people link to (e.g., follow on Twitter)


- Model Twitter as a graph (V, E), |V| = N authors
 - Ignoring the tweets
- A random search lands you at an author with probability e
 - Assuming authors are uniformly likely to be found
- Each author Alice gets a vote
 - Equal to Alice's rank
 - Distributed equally among all the authors she follows

$$R(x) = \frac{e}{N} + (1-e) \sum_{y:(y,x) \in E} \frac{R(y)}{out(y)}$$

- Naïve method to compute
 - Initialize R(x) to 1/N
 - Iterate until fixed point

Social Network Dynamics

The previous metrics were static: for a fixed graph

- How would people act to create friendships or follow others?
- Describe a story by which the people above could end up with the above network
- What kinds of networks are likely to emerge?

Emergent Properties

Depend on processes of attachment

Knowledge and incentives of those deciding

Easiest to think of for directed graphs because they involve one party's decision making

Preferential attachment

- A new entrant will connect with others proportional to their current degree
- Rich get richer
- Purely an abstract mathematical model
- For humans, many factors come up
 - Alignment of interests
 - Coolness factor?
 - Requesting, giving, following referrals

Random Graphs

Exercise: Define one Give a method for producing one

Random Graphs

Erdös-Rényi

- Anonymous vertices
- Unlabeled, undirected edges
- Consider n vertices and e edges
 - $\binom{n}{2} = \frac{n(n-1)}{2}$ edges are possible
 - Uniform-randomly choose e out $\binom{n}{2}$

Exercise: Erdös-Rényi Random Graphs

Use n vertices and e edges

- What would be the average degree?
- How might the degree be distributed (in intuitive terms) across the n vertices?
- Relative to graphs of n vertices and e edges and in qualitative terms (low, medium, high)
 - What would be its cliquishness (called *clustering* by Watts & Strogatz)?
 - What would be its average path length (all-pairs shortest distance)?

Exercise: Regular Graphs

Like a ring (of *n* vertices and *e* edges) A familiar ring has each vertex of degree two Imagine rings with larger degrees

- What would be the average degree?
- How might the degree be distributed (in intuitive terms) across the n vertices?
- Relative to graphs of n vertices and e edges and in qualitative terms (low, medium, high)
 - What would be its cliquishness (called clustering in this paper)?
 - What would be its average path length (all-pairs shortest distance)?

Small-World Networks

Watts and Strogatz

- Real-life networks (social, economic, physical, biological) exhibit
 - High clustering (cliquishness)
 - Low average path length
- Not like Erdös-Rényi random graphs
 - Indicate some bias in connectivity
- Not like regular graphs

Constructing a Small-World Network

Watts and Strogatz

- Assume e = 2n or 4n or ...
- Begin from a ring
- With probability p select an edge and holding one vertex fixed, reconnect the other
 - ▶ p = 0: No change, so regular
 - p = 1: Maximum change, so random
 - In the middle: Interesting cases
- Characteristic path length, as a function of p: L(p)
 - Global property
- Clustering, as a function of p: C(p)
 - Local property

Exercise: Small-World Networks

Suppose a regular graph is rewired with low $p\sim 0.1$

- Consider a regular graph with n = 1000 and e = 2000
- How would its clustering change?
- How would its average path length change?

Exercise: Small-World Networks

Plot L(p) and C(p) as functions of pIn qualitative terms, what's the shape of these curve Normalize L as $\frac{L(p)}{L(0)}$ and C as $\frac{C(p)}{C(0)}$ to relativize to regular graphs

Wayfinding

How would you find a way in geographical space

- Back to your hotel in a city you are visiting?
- Via Uffici del Vicario, 40
- Giolitti
- That gelato place in Rome where Audrey Hepburn and Barack Obama stopped
- How would you search for the Titanic sunk under the Atlantic?

Wayfinding

How would you find a way in geographical space?

- Look up on a map
- Head in a promising direction
- Apply geographical knowledge: follow a river downstream or upstream
- Ask someone
- Searching for the Titanic
 - Brute force search?
 - Actual approach
 - Locate debris trail running North-South
 - Move North along it

Wayfinding in a Social Network

Social geography John Donne: No man is an island

- What are some example uses of social wayfinding
- Compare with geographical space
- How might Facebook do it?
- How would you do it as an individual user?

Exercise: Propose an Algorithm for Decentralized Wayfinding

Algorithms for Decentralized Wayfinding

- Flooding
- Referrals
 - Who to ask
 - Whom to respond to
 - What response to give
 - How to assess responses
 - How to learn from each episode

Dynamism in Referral Networks: Evolution

Depends on how the participants explore and learn

Social Mobilization

Getting people to act Exercise: come up with a task and a possible solution

- Clean up a park or a beach
- Donate blood
- Help locate a suspect in a crime or terror attack
- Help locate an cognitively challenged person who wandered off from home

Programming Competitions

What motivates you to participate?

Balloon Challenge

DARPA: Defense Advanced Research Projects Agency Exercise: how would you do it?

- Release 10 balloons in the continental US
- Competition between teams
- Whichever team locates (visually) all 10 first gets \$50k
- Two groups being motivated
 - By DARPA: Researchers who would pursue the competition
 - By researchers: Members of the public to help them

Balloon Challenge Outcomes

Winning team

- Employed referrals
- Reward for first person to find a balloon
- Exponentially decaying rewards for chain of referrers

Other approaches

- Donation to charity
- Use of social media personality to tweet about it

Exercise: Identify Limitations of these Approaches

Give specific examples