Rationality

- Basis for understanding interactions among autonomous parties
- Many questions reduce to resource allocation
- What is an optimal or correct resource allocation

Mechanism Design

- Mechanism: a set of rules of an environment under which agents operate
 - Honor systems
 - Honor systems with social censure (as a penalty)
 - Auctions
 - Paying taxes (voluntary, but with selective audits and severe penalties for violators)
- How do the above compare?
- Mechanism design: Creating a mechanism to obtain desired system-level properties, e.g., participating agents interact productively and fairly

Example Mechanism: Puzzle from the Talmud

Given two horses to be raced for a mile

- Owner of horse proved faster wins a reward
 - Each owner is or hires a jockey
 - The horses are raced against each other
 - The winner of the race wins
- Owner of horse proved *slower* wins a reward
 - Might consider rewarding the loser of a race, but such a race won't terminate because each rider will want to go slower than the other

Economic Abstractions

- Support achieving optimal resource allocations
- Capture a notion of autonomy and rationality
- Provide a basis for achieving some contractual behaviors, especially in helping
 - An individual agent decide what to do
 - Agents negotiate
- Incomplete by themselves

How Can Trade Work?

Whether barter or using money

- Why would rational agents voluntarily participate?
- Both cannot possibly gain; or can they?
- Consider the following. Would you trade
 - A dollar bill for another dollar bill?
 - ► A US dollar for *x* Euros?
 - Money for a bottle of drinking water?
 - A bottle of drinking water for money?

It comes down to your valuations: differences in valuations make trade possible

Kinds of Valuations

How do agents place values of goods?

- Independent (and private): Agents value goods in a manner that is unaffected by others
 - Consume or use: cake
- Common: Agents value goods entirely based on others' valuations, leading to symmetric valuations
 - Resale: treasury bills
- Correlated: Combination of above
 - Automobile or house

Markets Introduced

Compare stock with specific real-estate

Can be

- Public
- Private: part of restricted exchanges
- Can restrict kinds of goods traded
 - Endogenous: NASDAQ
 - Exogenous: eBay, where physical goods are traded outside the scope of the market
- Offer some form of nonrepudiation

Centrality of Prices

A price is a scalar: easy to compare

- The computational state of a market is described completely by current prices for the various goods
- Communications are between each participant and the market, and only in terms of prices
- Participants reason about others and choose strategies entirely in terms of prices being bid

Functions of a Market

- Provides this information to participants
- Takes requests (buy, sell bids) from participants, enforcing rules such as bid increments and time limits
- Decides outcome based on messages from participants, considering rules such as reserve prices, ...

Achieving Equilibrium

When supply equals demand

- At equilibrium, the market has computed the allocation of resources
 - Dictates the activities and consumptions of the agents
- Under certain conditions, a simultaneous equilibrium of supply and demand across all goods exists
 - That is, the market "clears"
 - Reachable via distributed bidding
 - Pareto optimal: you cannot make the allocation better for one agent without making it worse for another

Pareto Optimality

- Allocation: how resources are allocated to different parties
- Think of a vector of allocations, one dimension for each participant
- An allocation is Pareto optimal if improvements along any dimension must be accompanied by a reduction along another dimension

Auctions in Markets

Computational mechanism to manage supply and demand by computing a price to trade at

- Exchange common object (money) for goods
 - Ascending (English) vs. Descending (Dutch)
 - Silent (auctioneer names a price; bids are silent) vs. outcry (bids name prices; auctioneer listens)
 - Hidden identity or not
 - Combinatorial: involve bundles or sets of goods

English Auction

Buyers bid for an item

- Prices start low and increase
- Highest bidder gets the object and pays the price bid

Variations:

- Minimum bid increment
- Reserve price (no sale if too low)
- Limited time

Dutch Auction

- Price "clock" or counter starts high and winds down
- First to stop the clock wins and pays the price on the clock
- ▶ In other words, the highest bidder wins and pays the price bid

Fish Market Auction

Imagined scenario is based on a Spanish fish market

Auctioneer calls out prices

- If two or more bidders
 - repeat with higher price
- If no bidders
 - repeat with lower price

Winner's Curse: 1

- If you just won an English auction
- You just paid \$x for something
- How much can you sell it for?
- Obviously, you will be able to sell it for

Not quite a curse if inherently valuable to you, but perhaps could have obtained the item for less

Winner's Curse: 2

Sealed bid; no resale

- A group of mutually independent people estimate the values of different goods and bid accordingly
- Assume that the group is smart
 - The average is about right as an estimate of the true value
- The winner bid the maximum

Suckers' Auction

Consider two bidders bidding for \$1 currency

- Bid in increments of 10¢
- Highest bidder wins
- Both bidders pay (i.e., loser also pays)
- Once you are in, can you get out?
 - The myopically rational strategy is to bid
 - The outcome is not pleasant

Sealed Bid First-Price Auction

Also known as tenders: bidding to buy

- One-shot bidding without knowing what other bids are being placed
- Used by governments and large companies to give out certain large contracts (lowest price quote for stated task or procurement)
 - All bids are gathered
 - Auctioneer decides outcomes based on given rules (e.g., highest bidder wins and pays the price it bid)

Vickrey Auction

- Second-price sealed bid auction
- Highest bidder wins, but pays the second highest price

Pricing

Intuition: Allocate resources to those who value them the most

Fixed: slowly changing, based on various criteria

- Flexibility: (restrict rerouting or refundability in air travel)
- Urgency: (convenience store vs. warehouse)
- Customer preferences (coupons: price-sensitive customers like them; others pay full price)
- Demographics
- Artificial (Paris Metro, Delhi "Deluxe" buses)
- Predicted demand (New York subway, phone rates)
- Dynamic: rapidly changing, based on actual demand and supply

M^{th} and $(M+1)^{st}$ Price Auctions: 1

 $\blacktriangleright\ L = M + N$ single-unit sealed bids, not continuously cleared

- M sell bids
- N buy bids
- Mth price clearing rule
 - Price = Mth highest among all L bids
 - English: first price; M=1
 - Seller's reserve price is the sole sell bid (assume minimum value, if no explicit reserve price)
- ▶ (M+1)st price clearing rule
 - Price = $(M+1)^{st}$ highest among all L bids
 - Vickrey: second price; M=1

M^{th} and $(M+1)^{st}$ Price Auctions: 2

The M^{th} and $(M+1)^{st}$ prices delimit the equilibrium price range, where supply and demand are balanced

- Above Mth price: no demand from some buyers
- ▶ Below (M+1)st price: no supply from some sellers

Concepts About Matching

Buy and sell bids can be matched in various ways, which support different properties

- Equilibrium prices: those at which supply equals demand, also known as market price
- Individually rational: each agent is no worse off participating than otherwise
- Efficient: No further gains possible from trade (agents who value goods most get them): i.e., Pareto optimal
- Uniform price: Multiple units, if simultaneously matched, are traded at the same price
- Discriminatory: Trading price for each pair of bidders can be different
- Incentive compatible: Agents optimize their expected utility by bidding their true valuations

Incentive Compatibility

Incentives are such it is rational to tell the truth

- Ramification: Agents can ignore subtle strategies and others' decisions: hence simpler demands for knowing others' preferences and reasoning about them
- Basic approach: payoff depends not on decisions (bids) by self
- Example: Vickrey (second-price sealed bid) auctions for independent private valuations
 - Underbid: likelier to lose, but price paid on winning is unaffected by bid
 - Overbid: likelier to win, but may pay more

Economic Rationality

- Space of alternatives or outcomes
- ► Each agent has some ordinal (i.e., sorted) preferences over the alternatives, captured by a binary relation, ≻
 - ≻ is a strict ordering
 - Asymmetric, Transitive (implies irreflexive)
 - \blacktriangleright > is not total
 - ► Another binary relation, ~, captures indifference

Lotteries

Probability distributions over outcomes or alternatives (add up to 1)

- In essence, define potential outcomes
 - ► Flip a coin for a dollar: [0.5: \$1; 0.5:-\$1]
 - Buy a \$10 ticket to win a car in a raffle: [0.0001: car-\$10; 0.9999: -\$10]
 - ► Four choices: [p: A; q: B; r: C; 1 p q r: D]

Using Lotteries

Infer (rational) agents' preferences based on their behavior with respect to the lotteries

- What odds will a specific person accept?
- ► For example, [0.01: car-\$10; 0.99: -\$10]

Properties of Lotteries

- Substitutability of indifferent outcomes
 - ▶ If $A \sim B$, then $[p : A; (1-p) : C] \sim [p : B; (1-p) : C]$
- Monotonicity (for preferred outcomes)
 - If $A \succ B$ and p > q, then $[p : A; (1-p) : B] \succ [q : A; (1-q) : B]$
- Decomposibility (flatten out a lottery)
 - Compound lotteries reduce to simpler ones
 - $\blacktriangleright [p:[q:A;1-q:B];1-p:C] = [pq:A;p-pq:B;1-p:C]$

Expected Payoff

- Expresses the value of a lottery as a scalar (i.e., in monetary terms)
- Expected payoff is sum of utilities weighted by probability
- Utilities are *not* proportional to monetary amounts, but assume so for this example
 - Calculate for [0.0001: car-\$10; 0.9999: -\$10] where the car is worth \$25,010

Completeness of Preferences

Same as indifference being an equivalence relation

- ► Given outcomes A and B
 - \blacktriangleright \preceq means nonstrict preference
 - Either $A \leq B$ or $B \leq A$
- That is, $A \sim B$ if and only if $A \preceq B$ and $B \preceq A$
- Thus, ~ is an equivalence relation
 - ▶ Reflexivity: A ~ A
 - Symmetry: $A \sim B$ implies $B \sim A$
 - ► Transitivity: (A ~ B and B ~ C) implies A ~ C

Continuity of Preferences

- $A \succ B \succ C$ implies that there is a probability *p*, such that
 - $\blacktriangleright [p:A;1-p:C] \sim B$
 - Consider A, B, and C to be ice-cream, yogurt, and cookies, respectively
- Informally, this means we can price alternatives in terms of each other
- Is this reasonable in real life? Why or why not?

Utility Functions

One per agent

Map each alternative (outcome) to a scalar (real number)

▶ U: {alternatives} $\rightarrow \mathscr{R}$

For agents with irreflexive, transitive, complete, continuous preferences, there is a utility function U such that

•
$$U(A) > U(B)$$
 implies $A \succ B$

•
$$U(A) = U(B)$$
 implies $A \sim B$

• $U([p:A;1-p:C]) = p \times U(A) + (1-p) \times U(C)$ (weighted sum of utilities)

Risk: 1

- According to the above, two lotteries with the same expected payoff would have equal utility
- In practice, risk makes a big difference
 - Raffles
 - Insurance
 - Business actions with unpredictable outcomes

Risk: 2

The utility of an outcome depends not only on the outcome but also on the distribution of outcomes

- Consider two lotteries
 - ► $L_1 = [1 : x]$
 - ► $L_2 = [p: y; 1-p: z]$
 - Where x = py + (1-p)z. That is, L_1 and L_2 have the same expected payoff
- An agent's preferences reflect its attitude to risk
 - Neutral: $U(L_1) = U(L_2)$
 - Averse: $U(L_1) > U(L_2)$
 - Seeking: $U(L_1) < U(L_2)$

Beyond Simple Utility

Other factors besides expected payoff and risk are relevant in real life

- Total deal value: \$10 discount for a t-shirt vs. for a car
 Compare with Tversky and Kahneman's studies
 Current wealth: 1st million vs. 10th million
- Altruism or lack thereof

Simplifying Assumptions

- Participants are risk neutral
 - Willing to trade money for any of their resources at a price independent of how much money they already have
- > Participants know their valuations, which are independent and private

Leads to social choice theory

Consider two scenarios for sharing—only requirement is that the parties agree on the split

- Splitting a dollar: relative sizes are obvious. Should splits consider the relative wealth of the splitters? Should splits consider the tax rates of the splitters?
- Sharing a cake: relative sizes and other attributes (e.g., amount of icing) can vary—several cake-cutting algorithms exist

Pareto Optimality

A distribution of resources where no agent can be made better off without making another agent worse off

Example: A has goods g and values g at \$1; B values g at \$3

- It is Pareto optimal for B to buy g at a price between \$1 and \$3, say \$2.50
- ► A's gain: \$2.50-\$1 = \$1.50
- ▶ B's gain: \$3-\$2.50 = \$0.50
- No further gains can be made from trade

Computing Pareto Optimal Allocations

Setting

- Private valuations
- No central control
- Design mechanisms that are efficient and where participants have an incentive to bid their private values
 - Buyers and sellers are symmetrical: may need to flip a coin

Vickrey Incentive Compatibility for Buyers

That is, buy bids equal private valuations

- Consider a single seller
- Consider two buyer agents A₁ and A₂, with private valuations v₁ and v₂, bidding b₁ and b₂
- If $b_1 > b_2$, A_1 wins and pays b_2

• A_1 's utility in that case is $v_1 - b_2$: could be positive or negative

- ► If b₁ < b₂, A₁ loses the auction: utility = 0 (assuming no bidding costs)
- If $(v_1 b_2) > 0$ (i.e., $v_1 > b_2$)
 - Then A_1 benefits by maximizing $Prob(b_1 > b_2)$
 - Underbid: likelier to lose, but would pay the same price if it wins
 - Else A_1 benefits by minimizing $Prob(b_1 > b_2)$
 - Overbid: likelier to win, but may pay more than the valuation
- Thus, setting the bid equal to valuation is the best strategy

Munindar P. Singh (NCSU)

Vickrey Incentive Compatibility: 2

- If A_1 wins, what A_1 pays depends on bids by other agents
- A₁ should try to
 - Win when it would benefit by winning
 - Lose when it would suffer by winning

How do the above ideas apply when a buyer is bidding for multiple units of the same item?

M^{th} and $(M+1)^{st}$ Price Auctions

- Vickrey = $(M+1)^{st}$ price, with one unit for sale
- ▶ For single-unit buyers, (M+1)st price induces truthfulness
- For multiunit buyers, NO!
 - A buyer may artificially lower some bids to lower the price for other bids

Dominant Strategies

One which yields a greater payoff for the agent than any of its other strategies (regardless of what others bid)

- Under Vickrey auctions, the dominant strategy for a *buyer* is bidding according to its true value
- Under first-price auctions, the dominant strategy for a *seller* is to bid its true value

Multiunit Auctions

- Multiunit bids are *divisible* when not necessarily the whole set needs to be bought or sold
- When multiunit bids are divisible,
 - Treat multiunit bids as multiple copies of single-unit bids
 - If indivisible, e.g., sets of two or four tires, then treat as bundled goods

Desirable Properties of Markets

Efficient: the one values it most gets it

- ▶ If seller's valuation < buyer's valuation, they trade
- Truthful
 - Rational to bid true valuation for both sellers and buyers
- Individually rational
 - No participant is worse off for participating
- Budget balanced, i.e., no subsidy from the market:
 Σpayment = Σrevenue

Seller receives what the buyer pays Can all of the above be satisfied?

Impossibility Result

Given a sealed buy bid b and a sealed sell bid s (Meyerson & Satterthwaite)

- Valuations of each from overlapping distributions
- Ultimately buyer pays p_b and seller gets p_s
 - For truthfulness, $p_b = s$ and $p_s = b$
 - But the deal happens only if b > s, else irrational
 - Thus buyer pays less than the seller receives, i.e., a deficit!

That is, subsidize or relax another requirement

McAfee's Dual Price Auction: 1

Let p be a price in the equilibrium range

- ▶ That is, Mth to (M+1)st
- Let's choose the midpoint to be specific
- Omits the lowest buyer at or above Mth and the highest seller at or below (M+1)st

Which of the above properties does the dual price auction violates?

McAfee's Dual Price Auction: 2

- Individually rational
- Promotes truthfulness
- Budget balanced
- Inefficient
 - Discards the lowest valued match
 - Not good if it is the only one

Continuous Double Auctions

As in stock markets and prediction markets

- Multiple sellers and buyers, potentially with multiple sell and buy bids each
- Bid quote: what a seller needs to offer to form a match
- Ask quote: what a buyer needs to offer to form a match
- Clears continually:
 - The moment a buyer and seller agree on a price, the deal is done and the matching bids are taken out of the market
 - Possibly, a moment later a better price may come along, but it will too late then
- The bid-ask spread represents the difference between the buyers and the sellers

Prediction Markets: 1

Combining markets with crowdsourcing

- A market computes an equilibrium price for a commodity
- Suppose the commodity were a prediction
 - A security: abstract like a share
- If we could trade on the predictions, the equilibrium would correspond to the median
 - Equilibrium because supply equals demand at the median
 - Half the bids are above: those bidders would buy at the median
 - ► Half the bids are below: those bidders would sell at the median

Prediction Markets: 2

Continual: absorbs dynamic information Galton's case was a one-shot sealed bid

- Predictions as commodities could be traded
- Payoff when the prediction settles: becomes reality
- Whoever has better knowledge than the market
 - Sells if their estimate is that it is less likely
 - Buys if their estimate is that it is less likely
 - They profit from their knowledge
 - The market's price shifts accordingly
- Those who mistakenly think they are knowledgeable
 - Lose money
 - Assumed to cancel out
- The market price at any time is the best estimate

Prediction Markets for Probabilities

Winner Takes All

- A prediction is for a future event
- Whoever has better knowledge than the market
 - Price of oil on December 2
 - Rainfall will exceed 1 inch at RDU on October 31
 - ▶ Who will win the Oscar for Best Motion Picture in 2021
- If so, owner of the security cashes out for \$1
- If not, owner of the security gets nothing
- Computes probability of the event

Prediction Markets: Main Types

Winner Pays \$1 if and only if the Reveals market expectation or takes all (Boolean) event occurs the probability Index Pays \$1 for each percentage Reveals market expectation or point of the event the mean value of the event Real-valued event. normalized to [0, 1], such as fraction of votes received by a candidate Sold for \$1; Pays \$2 if the Reveals market expectation of Spread the median value of the event event value beats the spread, else zero

Exercise: Limitations of Prediction Markets

Identify the key assumptions and when those assumptions may be violated

- A prediction is for a future event
- Whoever has better knowledge than the market
 - Price of oil on December 2
 - Rainfall will exceed 1 inch at RDU on October 31
 - ▶ Who will win the Oscar for Best Motion Picture in 2021
- If so, owner of the security cashes out for \$1
- If not, owner of the security gets nothing
- Computes probability of the event

Limitations of Prediction Markets

- Central tendency
- Potential irrational behavior by participants
- Manipulation of participants
- Side bets
 - Sethi and Rothschild's study of the 2012 US Presidential Elections
 - The Romney security stayed higher than the polls

Auction Management: Bidding

Bidding rules to govern, e.g.,

- Whose turn it is
- What the minimum acceptable bid is, e.g., increments
- What the reserve price is, if any

Compare these for outcry, silent, sealed bid, and continuous auctions

Auction Management: Information

What information is revealed to participants?

- Bid value (not in sealed bid auctions)
- Bidder identity (not in sealed bid auctions or stock exchanges)
- Winning bid or current high bid
- Winner
- ▶ How often, e.g., once per auction, once per hour, any time, and so on

Auction Management: Clearing

Bids are cleared when they are executed and taken out of the market

- What defines a deal: how are bids matched?
 - ▶ What prices? If uniform, then matching is not relevant
 - Who?
- How often?
- Until when?