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Time-Critical Social Mobilization
Galen Pickard,1,2* Wei Pan,1* Iyad Rahwan,1,3* Manuel Cebrian,1* Riley Crane,1

Anmol Madan,1 Alex Pentland1†

The World Wide Web is commonly seen as a platform that can harness the collective abilities of large
numbers of people to accomplish tasks with unprecedented speed, accuracy, and scale. To explore the
Web’s ability for social mobilization, the Defense Advanced Research Projects Agency (DARPA) held the
DARPA Network Challenge, in which competing teams were asked to locate 10 red weather balloons
placed at locations around the continental United States. Using a recursive incentive mechanism that both
spread information about the task and incentivized individuals to act, our team was able to find all 10
balloons in less than 9 hours, thus winning the Challenge. We analyzed the theoretical and practical
properties of this mechanism and compared it with other approaches.

Incrowdsourcing, an interested party provides
incentives for large groups of people to con-
tribute to the completion of a task (1, 2). The

nature of the tasks and the incentives vary sub-
stantially, ranging from monetary rewards, to en-
tertainment, to social recognition (3–7).

A particularly challenging class of crowd-
sourcing problems requires not only the recruit-
ment of a very large number of participants but
also extremely fast execution. Tasks that require
this kind of time-critical social mobilization in-
clude search-and-rescue operations, hunting down
outlaws on the run, reacting to health threats that

need instant attention, and rallying supporters
of a political cause.

To mobilize society, one may turn to mass me-
dia. However, the ability to use mass media can
be inhibited for many reasons, such as telecom-
munications infrastructure breakdown. In such
cases, one must resort to distributed modes of com-
munication for information diffusion. For exam-
ple, in the aftermath of Hurricane Katrina amateur
radio volunteers helped relay 911 traffic for emer-
gency dispatch services in areas with severe com-
munication infrastructure damage (8). At other
times, the nature of the task itself necessitates so-
cially driven diffusion because it requires tight in-
volvement that can only be generated socially.

Another common characteristic of these so-
cial mobilization problems is the presence of
some sort of search process. For example, search
may be conducted by members of the mobilized
community for survivors after a natural disaster.
Another kind of search attempts to identify indi-

viduals within the social network itself, such as
finding a medical specialist to assist with a chal-
lenging injury.

There is growing literature on search in social
networks. It has long been established that so-
cial networks are very effective at finding target
individuals through short paths (9), and various
explanations of this phenomenon have been giv-
en (10–13). However, the success of search in
social mobilization requires individuals to be mo-
tivated to actually conduct the search and par-
ticipate in the information diffusion; indeed, the
majority of chains observed empirically terminate
prematurely. Providing appropriate incentives is
a key challenge in social mobilization (14, 15).

Recognizing the difficulty of time-critical so-
cial mobilization, theDefenseAdvancedResearch
ProjectsAgency (DARPA) announced theDARPA
NetworkChallenge inOctober 2009. Through this
challenge,DARPAaimed to “explore the roles the
Internet and social networking play in the timely
communication, wide-area team-building, and ur-
gent mobilization required to solve broad-scope,
time-critical problems” (16). The challenge was
to provide coordinates of 10 red weather balloons
placed at different locations in the continental
United States. According to DARPA, “a senior ana-
lyst at the National Geospatial-Intelligence Agen-
cy characterized the problem as impossible” by
conventional intelligence-gathering methods (17).

We, as the Massachusetts Institute of Tech-
nology (MIT) team, won the challenge (18),
completing the task in 8 hours and 52 min. In
~36 hours before the beginning of the challenge,
we were able to recruit almost 4400 individuals
through a recursive incentivemechanism.Between
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50 and 100 other teams participated in the
DARPA Network Challenge (17). Although no
other team located the 10 balloons, The Georgia
Institute of Technology (GaTech) team placed
second by locating nine balloons within 9 hours.
Two more teams found eight balloons (DudeItsa-
Balloon and Rodriguez-Chang), and five other
teams found seven balloons. Variations in the
strategies of the competing teams reflected dif-
ferences in how social media can be tailored in
order to fit a given task (19).

The MIT team’s strategy for public collabo-
ration was to use the $40,000 prize money that
would be awarded to the winning team as a
financial incentive structure rewarding not only
the people who correctly located balloons but
also those connecting the finder to us. Should we
win, we would allocate $4000 in prize money
to each of the 10 balloons. We promised $2000
per balloon to the first person to send in the cor-
rect balloon coordinates. We promised $1000
to the person who invited that balloon finder
onto the team, $500 to whoever invited the in-
viter, $250 to whoever invited that person, and
so on. The underlying structure of the “recursive
incentive” was that whenever a person received
prize money for any reason, the person who in-
vited them would also receive money equal to
half that awarded to their invitee (fig. S1).

Our approach (“mechanism”) was based on
the idea that achieving large-scale mobilization

requires incentives at the individual level to ex-
ecute the task as well as to be actively involved in
the further recruitment of other individuals through
their social networks. A formal model of the ap-
proach is in the supporting online material (SOM)
text. In this diffusion-based task environment, agents
become aware of tasks as a result of either (i)
being directly informed by the mechanism through
advertising or (ii) being informed through recruit-
ment by an acquaintance agent (20).

Our approach can be seen as a variant of the
Query Incentive Network model of Kleinberg
and Raghavan (21), in which a query propagates
over a network through a subcontracting pro-
cess, and the answer propagates back once it is
found (SOM text). The use of incentives to spread
information on a social network is also frequent
in referral marketing programs, which encour-
age existing customers to promote the product
among their peers—for example, by giving the
customer a coupon for each friend recruited (22).
A fundamental difference between these techniques
and ours is that our reward scales with the size of
the entire recruitment tree (because larger trees
are more likely to succeed), rather than depend-
ing solely on the immediate recruited friends.

Our mechanism’s performance compares
well with previous studies on search and re-
cruitment in social networks. One measure of
success is the size of the cascades, both in terms
of number of nodes, as well as depth. In a study

of the spread of online newsletter subscriptions
(23), in which individuals were rewarded for rec-
ommending the newsletter to their friends, the
7188 cascades varied in size between 2 and 146
nodes, with a maximum depth of eight steps,
over a time span of 3 months. In our data, if we
ignore the MIT root node there were 845 trees
recruited within 3 days. Examples of these trees
are shown in fig. S5. The largest tree contained
602 nodes, and the deepest tree was 14 levels deep.
The distribution of tree/cascade depth is shown in
Fig. 1A. Furthermore, a power-law distribution of
tree/cascade size with exponent −1.96, as predicted
by models of information avalanches on sparse
networks, is shown in Fig. 1B (24).

Previous empirical studies reported attrition
rates, which measure the percentage of nodes
that terminate the diffusion process. For exam-
ple, in a study of e-mail–based global search for
18 target persons, attrition rate varied between
60 and 68% in 17 out of the 18 searches performed
(15). In another study of the diffusion of online
recommendations, an attrition rate of 91.21%was
reported, despite providing incentives to partic-
ipants by offering them a chance in a lottery (24).
In the DARPA Network Challenge, if we ignore
isolated single nodes our mechanism achieved a
significantly lower attrition rate of 56%.

Another measure of performance for social
mobilization processes is the branching factor
(also known as the reproductive number), which
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is the number of people recruited by each in-
dividual. Previous empirical studies reported
diverse, though mostly low, observations. In a
study of the spread of support for online peti-
tions, dissemination was very narrow, with >90%
of nodes having exactly one child (25), which
others have attributed to a selection bias, ob-
serving only large diffusions (26). In our data,
the average branching factor was 0.93 if we
exclude single-node trees (0.80 if we include
single-node trees). The branching factor follows
a power-law distribution, suggesting that certain
individuals played an important role in dissemi-
nation by recruiting a very large number of people
(Fig. 1C). Our data also compares very favorably
with the newsletter subscription experiment men-
tioned above, in which spreaders invited an av-
erage of 2.96 individuals but were only able to
cause 0.26 individuals to sign up on average (23).
More generally, our data indicates that the branch-

ing factor appears to be closer to the tipping point
(branching factor of 1), above which large cas-
cades ensue. However, the cascade was finite
because of the completion of the task.

The dynamics of recruitment over time are
shown in Fig. 2, A and B, highlighting two
bursts of day-time recruitment activities on Fri-
day and Saturday just before DARPA launched
the balloons into their locations. In contrast with
the newsletter subscription experiment (23), in
which diffusion experienced a continuous decay,
these bursts enabled our mechanism to amass a
large number of people quickly.

Moreover, in the newsletter subscription ex-
periment the dynamics of diffusion were slow,
which was attributed to a heterogeneous, non-
Poisson distribution of individuals’ response time.
We observed an exponential distribution of inter–
sign-up time (Fig. 2C) (27). This contrasts with
the empirically observed power-law distribution

of inter-response time in human activity (28, 29)
and information cascades (23).

In message-routing tasks, it has been argued
that the ability of individuals to find a target with
an approximately known location is largely at-
tributed to people’s ability to exploit geography
(11, 15). To investigate this, we plotted the prob-
abilistic density distribution of distances between
two parties in a successful recruitment (Fig. 3).
We compared this data with a best-fit model
that explains the distribution of friendship over
geographical distance in the popular LiveJournal
online community (Fig. 3) (30). Our data ex-
hibited higher likelihood of distant connections
compared with the model by Liben-Nowell et al.
(30). Furthermore, this was confirmed by applying
the Kolmogorov-Smirnov test, comparing our
data with random samples drawn from the model
(P < 10−100). This suggests that people may have
exerted greater effort in recruiting distant friends.
This might be due to an expectation that increas-
ing the geographic spread of their recruitment
sub-tree is likely to increase their expected reward.

Because the DARPA challenge was not de-
signed specifically as an experiment, the poten-
tial for comparisonwith the other teams is limited.
To provide a qualitative comparison of diffusion
between the MIT team and other teams, we ana-
lyzed data from the information network Twitter.
We obtained ~100 million tweets for the time
period from 10 November to 9 December. This
data set covers an estimated 20 to 30% of all
public tweets for that period (31). Initially, we
filtered out all tweets except those containing
the string “balloon” in a case-insensitive manner.
We analyzed five teams in the top 10 final stand-
ings with a Twitter presence:MIT, GaTech, Hotz,
Geocatcher, and Deci/Nena, representing differ-
ent strategy categories. We then kept track of the
number of tweets that included either of the fol-
lowing as tweet content about the team: team
name, team website, hashtag for the team, short
link for the team Web site, and team’s affiliation
name, including the abbreviation. The tweet counts
are shown in Fig. 4.

The GaTech team adopted an altruism-based
incentive method, by offering to donate all pro-
ceeds to the American Red Cross. The limited
number of tweets responding to their strategy
suggests that relying purely on altruistic propa-
gation is not sufficient to amass large social mo-
bilization. Because of their early start, mass media
coverage, and search engine optimization, they
ended up locating nine balloons with 1400 active
members, and ranked second in the final list (19).

Another class of strategies is those that cap-
italize on an existing community of interest to
which a team had direct access. We refer to this
as the community-based strategy. George Hotz
is a Twitter celebrity with more than 35,000 fol-
lowers, and his strategy was to use his fame on
Twitter to solicit help. He successfully created
a burst in Twitter on the day he announced his
participation in the competition, and ended up
finding eight balloons (four from his Twitter
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network, and four through trades with other
teams) (17). Similarly, Geocacher’s strategy was
based on the existing community of geocaching,
a sport based on using navigational techniques
to hide and seek objects. It also created a burst
by announcing its participation to the geocacher
community and located seven correct balloons.
DeciNena aimed at assembling a balloon-hunting
teamby posting their participation on every related
blog on the Internet to gain attention, but they failed
to achieve a wide-range response. DeciNena found
seven balloons at the end of the competition.

Although Hotz and Geocacher were able to
create a sudden response peak by efficiently pro-
pagating the news to an existing audience, this
response was very short-lived. On the other hand,
our strategy was able to sustain social response
for a longer period, stretching up until the end
of the competition. This happened despite not
having access to a large community of followers.
Instead, the MIT team started with only four peo-
ple; and after a couple of days, twitter response
achieved a number comparable with that of
Hotz, who started with 35,000 existing followers.
Another interesting observation is that after the
competition, when mass media came to report
the winning story of the MIT team the tweet
count actually decreased instead of increasing.
This suggests that the incentives provided by
the MIT strategy played a dominant role in gen-
erating Twitter response, rather than the “MIT
brand” and mass media effect (SOM text).

The recursive incentive mechanism has a
number of desirable properties. First, the recur-
sive incentive mechanism is never in deficit—
it never exceeds its budget (SOM text). After
being recruited by a friend, an individual has
no incentive to create his own root node by vis-
iting the Balloon Challenge Web page directly
(without using the link provided by the recruiter).
This follows from the fact that payment to the
person finding the balloon does not depend on
the length of the chain of recruiters leading to him.

However, the mechanism is not resistant to
false name attacks, which were originally iden-
tified in the context of Web-based auctions (32).
In this attack, which has been shown to plague
powerful economic mechanisms (32), an individ-
ual creates multiple false identities in order to gain
an unfair advantage. Having said that, our data
does not reveal any successful incidents of false-
name attacks. This may be due to the fact that
the mechanism did not operate for long enough
for people to identify this potential, and that ac-
tual payment requires social security numbers. In
practice, other measures could be put in place to
minimize or detect this kind of attack (33).

The mechanism’s success can be attributed
to its ability to provide incentives for individuals
to both reports on found balloon locations while
simultaneously participating in the dissemination
of information about the cause. When an in-
dividual finds a balloon, the individual can ei-
ther report the balloon to us, to other teams, or
attempt to find the other nine balloons and win

the DARPA prize directly. In practice, it is un-
likely for an unprepared individual to find other
balloons (and if they replicated our mechanism,
their delayed start would always leave them be-
hind). Proofs are in the SOM.

Our mechanism simultaneously provides in-
centives for participation and for recruiting more
individuals to the cause. This mechanism can be
applied in very different contexts, such as social
mobilization to fight world hunger, in games of
cooperation and prediction, and for marketing
campaigns.
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The Complex Folding Network of
Single Calmodulin Molecules
Johannes Stigler,1 Fabian Ziegler,1 Anja Gieseke,1 J. Christof M. Gebhardt,1* Matthias Rief1,2†

Direct observation of the detailed conformational fluctuations of a single protein molecule
en route to its folded state has so far been realized only in silico. We have used single-molecule
force spectroscopy to study the folding transitions of single calmodulin molecules. High-resolution
optical tweezers assays in combination with hidden Markov analysis reveal a complex network of
on- and off-pathway intermediates. Cooperative and anticooperative interactions across domain
boundaries can be observed directly. The folding network involves four intermediates. Two
off-pathway intermediates exhibit non-native interdomain interactions and compete with the
ultrafast productive folding pathway.

The energy landscape view provides a con-
ceptual framework for understanding pro-
tein folding (1, 2). However, the diversity

in size and structure of the proteome is far too
large to provide a single generic mechanism for
howproteins fold.Deciphering specificmechanisms
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