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Abstract	and	Keywords

This	chapter	proposes	a	framework	for	modeling	argumentation.	The	key	features	of	this
framework	are	the	clarification	of	the	nature	of	arguments	and	counterarguments;	the
identification	of	canonical	undercuts,	which	are	the	only	undercuts	that	need	to	be	taken
into	account;	and	the	representation	of	argument	trees	and	argument	structures	which
provide	a	way	of	exhaustively	collating	arguments	and	counterarguments.
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To	move	beyond	abstract	argumentation,	we	introduce	in	this	chapter	a	framework	for
argumentation	in	which	more	details	about	each	argument	are	considered.	In	so	doing,
we	distinguish	the	reasons	(i.e.,	premises),	the	claim,	and	the	method	of	inference	by
which	the	claim	is	meant	to	follow	from	the	reasons.	The	nature	of	inference	is	diverse
and	includes	analogical	inference,	causal	inference,	and	inductive	inference.
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We	focus	on	deductive	inference	and	hence	on	deductive	arguments,	that	is,	the	claim	is
a	deductively	valid	consequence	of	the	reasons	(the	support).	We	investigate	the
formalization	of	such	arguments	in	the	setting	of	classical	logic.	Thus,	our	starting	position
is	that	a	deductive	argument	consists	of	a	claim	entailed	by	a	collection	of	statements	such
that	the	claim	as	well	as	the	statements	are	denoted	by	formulae	of	classical	logic	and
entailment	is	identified	with	deduction	in	classical	logic.

In	our	framework,	an	argument	is	simply	a	pair	where	the	first	item	in	the	pair	is	a
minimal	consistent	set	of	formulae	that	proves	the	second	item.	That	is,	we	account	for
the	support	and	the	claim	of	an	argument,	though	we	do	not	indicate	the	method	of
inference,	since	it	does	not	differ	from	one	argument	to	another:	We	only	consider
deductive	arguments;	hence,	the	method	of	inference	for	each	and	every	argument	is
always	entailment	according	to	classical	logic.

Most	proposals	for	modeling	argumentation	in	logic	are	very	limited	in	the	way	that	they
combine	arguments	for	and	against	a	particular	claim.	A	simple	form	of	argumentation	is
that	a	claim	follows	if	and	only	if	there	is	an	argument	for	the	claim	and	no	argument
against	the	claim.	In	our	approach,	we	check	how	each	argument	is	challenged	by	other
arguments	and	by	recursion	for	these	counterarguments.	Technically,	an	argument	is
undercut	if	and	only	if	some	of	the	reasons	for	the	argument	are	rebutted	(the	reader
may	note	that	“undercut”	is	given	a	different	meaning	by	some	authors).	Each	undercut
to	a	counterargument	is	itself	an	(p.38)	 argument	and	so	may	be	undercut,	and	so	by
recursion	each	undercut	needs	to	be	considered.	Exploring	systematically	the	universe
of	arguments	in	order	to	present	an	exhaustive	synthesis	of	the	relevant	chains	of
undercuts	for	a	given	argument	is	the	basic	principle	of	our	approach.

Following	this,	our	notion	of	an	argument	tree	is	that	it	is	a	synthesis	of	all	the	arguments
that	challenge	the	argument	at	the	root	of	the	tree,	and	it	also	contains	all
counterarguments	that	challenge	these	arguments,	and	so	on,	recursively.

3.1	Preliminaries
Prior	to	any	definitions,	we	first	assume	a	fixed	Δ	(a	finite	set	of	formulae)	and	use	this	Δ
throughout.	We	further	assume	that	every	subset	of	Δ	is	given	an	enumeration	〈α1,
…,αn〉	of	its	elements,	which	we	call	its	canonical	enumeration.	This	really	is	not	a
demanding	constraint:	In	particular,	the	constraint	is	satisfied	whenever	we	impose	an
arbitrary	total	ordering	over	Δ.	Importantly,	the	order	has	no	meaning	and	is	not	meant
to	represent	any	respective	importance	of	formulae	in	Δ.	It	is	only	a	convenient	way	to
indicate	the	order	in	which	we	assume	the	formulae	in	any	subset	of	Δ	are	conjoined	to
make	a	formula	logically	equivalent	to	that	subset.

The	paradigm	for	our	approach	is	a	large	repository	of	information,	represented	by	Δ,
from	which	arguments	can	be	constructed	for	and	against	arbitrary	claims.	Apart	from
information	being	understood	as	declarative	statements,	there	is	no	a	priori	restriction
on	the	contents	and	the	pieces	of	information	in	the	repository	can	be	arbitrarily	complex.
Therefore,	Δ	is	not	expected	to	be	consistent.	It	need	even	not	be	the	case	that	individual
formulae	in	Δ	are	consistent.
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The	formulae	in	Δ	can	represent	certain	or	uncertain	information,	and	they	can	represent
objective,	subjective,	or	hypothetical	statements	as	suggested	in	chapter	1.	Thus,	Δ	can
represent	facts,	beliefs,	views,	…	Furthermore,	the	items	in	Δ	can	be	beliefs	from
different	agents	who	need	not	even	have	the	same	opinions.	It	can	indeed	be	the	case
that	an	argument	formed	from	such	a	Δ	takes	advantage	of	partial	views	from	different
agents.	In	any	case,	it	is	quite	possible	for	Δ	to	have	two	or	more	formulae	that	are
logically	equivalent	(e.g.,	Δ	can	be	such	that	it	contains	both	α	∨	β	and	β	∨	α).	However,
wherever	they	come	from,	all	formulae	in	Δ	are	on	a	par	and	treated	equitably.

Note	that	we	do	not	assume	any	metalevel	information	about	formulae.	In	particular,	we
do	not	assume	some	preference	ordering	or	“certainty	ordering”	over	formulae.	This	is
in	contrast	to	numerous	proposals	(p.39)	 for	argumentation	that	do	assume	some	form
of	ordering	over	formulae.	Such	orderings	can	be	useful	to	resolve	conflicts	by,	for
example,	selecting	formulae	from	a	more	reliable	source.	However,	this,	in	a	sense,
pushes	the	problem	of	dealing	with	conflicting	information	to	one	of	finding	and	using
orderings	over	formulae,	and	as	such	raises	further	questions	such	as	the	following:
Where	does	the	knowledge	about	reliability	of	the	sources	come	from?	How	can	it	be
assessed?	How	can	it	be	validated?	Besides,	reliability	is	not	universal;	it	usually	comes	in
specialized	instances.	This	is	not	to	say	priorities	are	not	useful.	Indeed	it	is	important	to
use	them	in	some	situations	when	they	are	available,	but	we	believe	that	to	understand
the	elements	of	argumentation,	we	need	to	avoid	drawing	on	them—we	need	to	have	a
comprehensive	framework	for	argumentation	that	works	without	recourse	to	priorities
over	formulae.

3.2	Arguments
Here	we	adopt	a	very	common	intuitive	notion	of	an	argument	and	consider	some	of	the
ramifications	of	the	definition.	Essentially,	an	argument	is	a	set	of	appropriate	formulae
that	can	be	used	to	classically	prove	some	claim,	together	with	that	claim	(formulae
represent	statements,	including	claims).

Definition	3.2.1

An	argument	is	a	pair	〈Φ,	α〉	such	that

1.	Φ	⊬	⊥.
2.	Φ	⊢	α.
3.	Φ	is	a	minimal	subset	of	Δ	satisfying	2.

If	A	=	〈Φ,	α〉	is	an	argument,	we	say	that	A	is	an	argument	for	α	(which	in	general	is	not
an	element	of	Δ)	and	we	also	say	that	Φ	is	a	support	for	α.	We	call	α	the	claim	or	the
consequent	of	the	argument,	and	we	write	Claim	(A)	=	α.	We	call	Φ	the	support	of	the
argument,	and	we	write	Support(A)	=	Φ.	Ω.	denotes	the	set	of	all	arguments,	given	Δ.

Example	3.2.1

Let	Δ	=	{α,α	→	β,	γ	→	¬β,	γ,	δ,	δ	→	β,	¬α,¬γ}.	Some	arguments	are	as	follows:
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(p.40)	 The	need	for	condition	1	of	definition	3.2.1	can	be	illustrated	by	means	of
the	next	example,	adapted	from	[Rea89].

Example	3.2.2

The	story	is	that	René	Quiniou	contends	that	John	Slaney	was	in	St-Malo	on	a
certain	day,	and	that	Sophie	Robin	denies	it.	The	situation	is	described	by	three
statements,	represented	by	the	formulae	to	the	left:

s	→	q  If	Slaney	was	in	St-Malo,	Quiniou	is	right.

¬(r	→	q) It	is	not	the	case	that	if	Robin	is	right,	so	is	Quiniou.

¬(s	→	r) It	is	not	the	case	that	if	Slaney	was	in	St-Malo,	Robin	is	right.

Intuitively,	nothing	there	provides	grounds	for	an	argument	claiming	that	I	am	the
Pope	(the	latter	statement	is	denoted	p).	Still,	note	that	{¬(r	→	q),	¬(s	→	r)}	is	a
minimal	set	of	formulae	satisfying	condition	2	with	respect	to	deducing	p:

If	it	were	not	for	condition	1	that	is	violated	because	{¬(r	→	q),	¬(s	→	r)}	is
inconsistent,

would	be	an	argument	in	the	sense	of	definition	3.2.1,	to	the	effect	that	I	am	the
Pope!

Condition	2	of	definition	3.2.1	aims	at	ensuring	that	the	support	is	sufficient	for	the
consequent	to	hold,	as	is	illustrated	in	the	next	example.

Example	3.2.3

The	following	is	a	sound	deductive	argument	in	free	text.

Chemnitz	can’t	host	the	Summer	Olympics	because	it’s	a	small	city	and	it	can	host

⟨{α,α → β},β⟩

⟨{γ → ¬β,γ},¬β⟩
⟨{δ,δ → β},β⟩
⟨{¬α},¬α⟩
⟨{¬γ},¬γ⟩

⟨{¬(r → q),¬(s → r)} ⊢ p

⟨{¬(r → q),¬(s → r)},p⟩
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the	Summer	Olympics	only	if	it	is	a	major	city.

Below	is	an	attempt	at	formalizing	the	example:

o	→	m Chemnitz	can	host	the	Summer	Olympics	only	if	Chemnitz	is	a	major	city.

s    Chemnitz	is	a	small	city.

Hence
¬o Chemnitz	cannot	host	the	Summer	Olympics.

(p.41)	 According	to	classical	logic,	the	purported	conclusion	fails	to	follow	from
the	premises

because	of	a	missing,	implicit,	statement:
s	→	¬m If	Chemnitz	is	a	small	city,	then	Chemnitz	is	not	a	major	city.

An	enthymeme	is	a	form	of	reasoning	in	which	some	premises	are	implicit,	most	often
because	they	are	obvious.	For	example,	“The	baby	no	longer	has	her	parents;	therefore,
she	is	an	orphan”	(in	symbols,	¬p	hence	o)	is	an	enthymeme:	The	reasoning	is	correct
despite	omitting	the	trivial	premise	stating	that	“if	a	baby	no	longer	has	her	parents,	then
she	is	an	orphan”	(in	symbols,	¬p,	¬p	→	o	⊢	o).

Example	3.2.3	shows	that,	by	virtue	of	condition	2	in	definition	3.2.1,	arguments	in	the
form	of	enthymemes	are	formalized	with	all	components	made	explicit.

Remember	that	the	method	of	inference	from	support	to	consequent	is	deduction
according	to	classical	logic,	which	explains	the	first	two	conditions	in	definition	3.2.1.

Minimality	(i.e.,	condition	3	in	definition	3.2.1)	is	not	an	absolute	requirement,	although
some	properties	below	depend	on	it.	Importantly,	the	condition	is	not	of	a	mere	technical
nature.

Example	3.2.4

Here	are	a	few	facts	about	me	…

p   I	like	paprika.

r   I	am	retiring.

r→ q	If	I	am	retiring,	then	I	must	quit	my	job.

It	is	possible	to	argue	“I	must	quit	my	job	because	I	am	retiring	and	if	doing	so,	I	must
quit”	to	be	captured	formally	by	the	argument

{o → m,s} ⊬ ¬0



Logical Argumentation

Page 6 of 40

PRINTED FROM MIT PRESS SCHOLARSHIP ONLINE (www.mitpress.universitypressscholarship.com). (c) Copyright The MIT
Press, 2014. All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single
chapter of a monograph in MITSO for personal use (for details see http://www.mitpress.universitypressscholarship.com/page/privacy-
policy). Subscriber: North Carolina State Univ Libraries; date: 31 March 2014

In	contrast,	it	is	counterintuitive	to	argue	“I	must	quit	my	job	because	I	like	paprika	and	I
am	retiring	and	if	doing	so,	I	must	quit”	to	be	captured	formally	by

which	fails	to	be	an	argument	because	condition	3	is	not	satisfied.

The	underlying	idea	for	condition	3	is	that	an	argument	makes	explicit	the	connection
between	reasons	for	a	claim	and	the	claim	itself.	However,	(p.42)	 that	would	not	be	the
case	if	the	reasons	were	not	exactly	identified—in	other	words,	if	reasons	incorporated
irrelevant	information	and	so	included	formulae	not	used	in	the	proof	of	the	claim.

Arguments	are	not	necessarily	independent.	In	a	sense,	some	encompass	others
(possibly	up	to	some	form	of	equivalence),	which	is	the	topic	we	now	turn	to.

Definition	3.2.2

An	argument	〈Φ,	α〉	is	more	conservative	than	an	argument	〈Ψ,	β〉	iff	Φ	⊆	Ψ	and
β	⊢	α.

Example	3.2.5

〈{α},	α	∨	β〉	is	more	conservative	than	〈{α,	α	→	β},	β〉.	Here,	the	latter	argument
can	be	obtained	from	the	former	(using	α	→	β	as	an	extra	hypothesis),	but	the
reader	is	warned	that	this	is	not	the	case	in	general	(see	proposition	3.2.4).

Roughly	speaking,	a	more	conservative	argument	is	more	general:	It	is,	so	to	speak,	less
demanding	on	the	support	and	less	specific	about	the	consequent.

Example	3.2.6

Now	we	consider	some	ruminations	on	wealth:

p   I	own	a	private	jet.

p →	q	If	I	own	a	private	jet,	then	I	can	afford	a	house	in	ueens	Gardens.

Hence	“I	can	afford	a	house	in	Queens	Gardens,”	which	is	captured	by	the	following
argument:

⟨{r,r → q},q⟩

⟨{p,r,r → q},q⟩

⟨{p,p → q},q⟩
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Let	the	same	two	considerations	be	supplemented	with	another	one:

p   I	own	a	private	jet.

p →	q	If	I	own	a	private	jet,	then	I	can	afford	a	house	in	Queens	Gardens.

q →	r	If	I	can	afford	a	house	in	Queens	Gardens,	then	I	am	rich.

Hence	“I	am	rich,	and	I	can	afford	a	house	in	Queens	Gardens,”	which	is	captured	by	the
following	argument:

However,	the	previous	argument	〈{p,	p	→	q},	q〉	is	more	conservative	than	〈{p,	p	→	q,	q
→	r},	r	∧	q〉,	which	can	somehow	be	retrieved	from	it:

(p.43)	 The	next	section	is	devoted	to	a	number	of	formal	properties	and	can	be	skipped
if	desired.

3.2.1	Technical	Developments
The	subsections	entitled	“Technical	developments”	provide	more	detailed	consideration
of	the	framework	and	may	be	skipped	on	a	first	reading.	All	proofs	are	to	be	found	in
appendix	D.

Based	on	refutation,	there	is	a	simple	characterization	of	being	an	argument.

Proposition	3.2.1

〈Φ,	α〉	is	an	argument	iff	Φ	∪	{¬α}	is	a	minimal	inconsistent	set	such	that	Φ	⊆	Δ.

What	requirements	are	needed	to	make	a	new	argument	out	of	an	existing	one?	The	first
possibility	deals	with	the	case	that	the	new	argument	only	differs	by	its	consequent.

Proposition	3.2.2

Let	〈Φ,	α〉	be	an	argument.	If	Φ	⊢	α	→	β	and	β	→	α	a	is	a	tautology,	then	〈Φ,	β〉	is
also	an	argument.

It	is	not	possible	to	loosen	the	conditions	in	proposition	3.2.2.	Taking	Φ	=	{β,	α	↔	β}	gives
an	argument	〈Φ,	α〉	such	that	 	and	 ,	but	〈Φ,	β〉	fails	to	be	an
argument.

⟨{p,p → q,q → r},r∧ q⟩

} ⇒ ⟨{p,p → q,q → r},r∧ q⟩
⟨{p,p → q},q⟩

{q,q → r} ⊨ r∧ q

Φ ⊢ α → β Φ ⊢ β → α
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Proposition	3.2.3

Let	Φ	and	Ψ	be	such	that	there	exists	a	bijection	f	from	Ψ	to	some	partition	{Φ1,	…
Φn}	of	Φ	where	Cn({ψ})	=	Cn(f(ψ))	for	all	ψ	∈	Ψ.	If	〈Φ,	α〉	is	an	argument,	then	〈Ψ,
α〉	is	also	an	argument.

The	converse	of	proposition	3.2.3	fails:	Let	Δ	=	{α,	α	→	β,	α	∧	β}.	Let	Ψ	=	{α	∧	β}	and	Φ
=	{α,	α	→	β}.	Now,	〈Ψ,	α〉	is	an	argument,	but	〈Φ,	α〉	is	not.

Corollary	3.2.1

Let	Φ	=	{ϕ1,	…,	ϕn}	⊆	Δ	and	Ψ	=	{ψ1,	…,	ψn}	⊆Δ	such	that	φi	↔	ψi	is	a	tautology
for	i	=	1	…	n.	Let	α	and	β	be	such	that	α	↔	β	is	a	tautology.	Then,	〈Φ,	α〉	is	an
argument	iff	〈Ψ,	β〉	is	an	argument.

It	is	not	possible	to	extend	corollary	3.2.1	substantially.	Clearly,	proposition	3.2.3	can
neither	be	extended	to	the	case	Cn({ψ})	⊆	Cn(f(ψ))	(if	Φ	=	{α}	and	Ψ	=	{α,	∨	β}	then
〈Φ,	α〉	is	an	argument,	but	〈Φ,	α〉	is	not)	nor	to	the	case	Cn(f(ψ))	⊆	Cn({ψ})	(if	Φ	=	{β	∧
γ,	β	∧	γ	→	α}	and	Ψ	=	{α	∧	β	∧	γ,	α	∧	δ}	then	〈Φ,	α〉	is	an	argument,	but	〈Ψ,	β〉	is	not).

Example	3.2.5	suggests	that	an	argument	〈Ψ,	β〉	can	be	obtained	from	a	more
conservative	argument	〈Φ,	α〉	by	using	Ψ\Φ	together	with	α	in	order	(p.44)	 to	deduce
β	(in	symbols,	{α}	∪	Ψ\Φ	⊢	β	or,	equivalently,	Ψ\Φ	⊢	α	→	β).	As	already	mentioned,	this
does	not	hold	in	full	generality.	A	counterexample	consists	of	〈{α	∧	γ},	α〉	and	〈{α	∧	γ,
¬α	∨	β	∨	¬γ},	β〉.	However,	a	weaker	property	holds.

Proposition	3.2.4

If	〈Φ,	α〉	is	more	conservative	than	〈Ψ,	β〉,	then	Ψ\Φ	⊢	φ	→	(α	→	β)	for	some
formula	φ	such	that	Φ	⊢	φ	and	φ	⊬	α	unless	α	is	a	tautology.

The	interesting	case,	as	in	example	3.2.5,	is	when	φ	can	be	a	tautology.

What	is	the	kind	of	structure	formed	by	the	set	of	all	arguments?	That	some	arguments
are	more	conservative	than	others	provides	the	basis	for	an	interesting	answer.

Proposition	3.2.5

Being	more	conservative	defines	a	pre-ordering	over	arguments.	Minimal
arguments	always	exist	unless	all	formulae	in	Δ	are	inconsistent.	Maximal
arguments	always	exist:	They	are	 ,	where	⊤	is	any	tautology.

A	useful	notion	is	then	that	of	a	normal	form	(a	function	such	that	any	formula	is	mapped
to	a	logically	equivalent	formula	and,	if	understood	in	a	strict	sense	as	here,	such	that	any
two	logically	equivalent	formulae	are	mapped	to	the	same	formula).

Proposition	3.2.6

⟨ ,⊤⟩0
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Given	a	normal	form,	being	more	conservative	defines	an	ordering	provided	that
only	arguments	that	have	a	consequent	in	normal	form	are	considered.	The
ordered	set	of	all	such	arguments	is	an	upper	semilattice	(when	restricted	to	the
language	of	Δ).	The	greatest	argument	always	exists;	it	is	 .

Example	3.2.7

The	greatest	lower	bound	of	〈{α	∧	β},	α〉	and	〈{α	∧	¬β},	α〉	does	not	exist.	If	Δ	=
{α	∧	β,	α	∧	¬β}	then	there	is	no	least	argument.	Taking	now	Δ	=	{α,	β,	α	↔	β}
there	is	no	least	argument	either	(although	Δ	is	consistent).	Even	though	Δ	=	{α,	β
∧	¬β}	is	inconsistent,	the	least	argument	exists:	〈{α},	α′〉	(where	α′	stands	for	the
normal	form	of	α).	As	the	last	illustration,	Δ	=	{α	∨	β,	β}	admits	the	least	argument
〈{β},	β′〉	(where	β′	stands	for	the	normal	form	of	β).

In	any	case,	 	is	more	conservative	than	any	other	argument.

The	notion	of	being	more	conservative	induces	a	notion	of	equivalence	between
arguments.	However,	another	basis	for	equating	two	arguments	with	each	other	comes
to	mind:	pairwise	logical	equivalence	of	the	components	of	both	arguments.

(p.45)	 Definition	3.2.3

Two	arguments	〈Φ,	α〉	and	〈Ψ,	β〉	are	equivalent	iff	Φ	is	logically	equivalent	to	Ψ
and	α	is	logically	equivalent	to	β.

Proposition	3.2.7

Two	arguments	are	equivalent	whenever	each	is	more	conservative	than	the	other.
In	partial	converse,	if	two	arguments	are	equivalent,	then	either	each	is	more
conservative	than	the	other	or	neither	is.

Thus,	there	exist	equivalent	arguments	〈Φ,	α〉	and	〈Ψ,	β〉	that	fail	to	be	more
conservative	than	each	other	(as	in	example	3.2.8	below).	However,	if	〈Φ,	α〉	is	strictly
more	conservative	than	〈Ψ,	β〉	(meaning	that	〈Φ,	α〉	is	more	conservative	than	〈Ψ,	β〉,	but
〈Ψ,	β〉	is	not	more	conservative	than	〈Φ,	α〉),	then	〈Φ,	α〉	and	〈Ψ,	β〉	are	not	equivalent.

Example	3.2.8

Let	Φ	=	{α,	β}	and	Ψ	=	{α	∨	β,	α	↔	β}.	The	arguments	〈Φ,	α	∧	β〉	and	〈Ψ,	α	∧	β〉
are	equivalent	even	though	neither	is	more	conservative	than	the	other.	This
means	that	there	exist	two	distinct	subsets	of	Δ	(namely,	Φ	and	Ψ)	supporting	a	α	∧
β.

While	equivalent	arguments	make	the	same	point	(i.e.,	the	same	inference),	we	do	want	to
distinguish	equivalent	arguments	from	each	other.	What	we	do	not	want	is	to	distinguish
between	arguments	that	are	more	conservative	than	each	other.

⟨ ,⊤⟩0

⟨ ,⊤⟩0
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3.3	Defeaters,	Rebuttals,	and	Undercuts
An	intuitive	idea	of	counterargument	is	captured	with	the	notion	of	defeaters,	which	are
arguments	whose	claim	refutes	the	support	of	another	argument	[FKEG93,	Nut94,
Vre97,	Ver99].	This	gives	us	a	general	way	for	an	argument	to	challenge	another.

Definition	3.3.1

A	defeater	for	an	argument	〈Φ,	α〉	is	an	argument	〈Ψ,	β〉	such	that	β	⊢	¬	(ϕ1	∧	…
∧	ϕn)	for	some	{ϕ1,	…	ϕn}	⊆	Φ.

Example	3.3.1

Let	Δ	=	{¬α,	α	∨	β,	α	↔	β,	γ	→	α}.	Then,	〈{α	∨	β,	α	↔	β},	α	∧	β〉	is	a	defeater	for
〈{¬α,	γ	→	α},	¬γ〉.	A	more	conservative	defeater	for	〈{¬α,	γ	→	α}	is	〈{α	∨	β,	α	↔
β},	α	∨	γ〉.

The	notion	of	assumption	attack	to	be	found	in	the	literature	is	less	general	than	the
above	notion	of	defeater,	of	which	special	cases	are	undercut	and	rebuttal	as	discussed
next.

Some	arguments	directly	oppose	the	support	of	others,	which	amounts	to	the	notion	of
an	undercut.

(p.46)	 Definition	3.3.2

An	undercut	for	an	argument	〈Φ,	α〉	is	an	argument	〈Ψ,	¬(ϕ1	∧	…	∧	ϕn)〉	where
{ϕ1,	…,	ϕn}	⊆	Φ.

Example	3.3.2

Let	Δ	=	{α,	α	→	β,	γ,	γ	→	¬α}.	Then,	〈{γ,	γ	→	¬	α},	¬{α	∧(α	→	β))〉	is	an	undercut
for	〈{α,	α	→	β},	β〉.	A	less	conservative	undercut	for	〈{α,	α	→	β},	β〉	is	〈{γ,	γ	→
¬α},	¬α〉.

Presumably,	the	most	direct	form	of	a	conflict	between	arguments	is	when	two
arguments	have	opposite	claims.	This	case	is	captured	in	the	literature	through	the	notion
of	a	rebuttal.

Definition	3.3.3

An	argument	〈Ψ,	β〉	is	a	rebuttal	for	an	argument	〈Φ,	α〉,	ai	iff	β	↔	¬α	is	a
tautology.

Example	3.3.3

We	now	return	to	the	Simon	Jones	affair	in	five	statements:

p    Simon	Jones	is	a	Member	of	Parliament.



Logical Argumentation

Page 11 of 40

PRINTED FROM MIT PRESS SCHOLARSHIP ONLINE (www.mitpress.universitypressscholarship.com). (c) Copyright The MIT
Press, 2014. All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single
chapter of a monograph in MITSO for personal use (for details see http://www.mitpress.universitypressscholarship.com/page/privacy-
policy). Subscriber: North Carolina State Univ Libraries; date: 31 March 2014

p	→	¬q If	Simon	Jones	is	a	Member	of	Parliament,	then	we	need	not	keep	quiet
about	details	of	his	private	life.

r    Simon	Jones	just	resigned	from	the	House	of	Commons.

r	→	¬p If	Simon	Jones	just	resigned	from	the	House	of	Commons,	then	he	is
not	a	Member	of	Parliament.

¬p	→	q If	Simon	Jones	is	not	a	Member	of	Parliament,	then	we	need	to	keep
quiet	about	details	of	his	private	life.

The	first	two	statements	form	an	argument	A	whose	claim	is	that	we	can	publicize
details	about	his	private	life.	The	next	two	statements	form	an	argument	whose
claim	is	that	he	is	not	a	Member	of	Parliament	(contradicting	an	item	in	the	support
of	A)	and	that	is	a	counterargument	against	A.	The	last	three	statements	combine	to
give	an	argument	whose	claim	is	that	we	cannot	publicize	details	about	his	private
life	(contradicting	the	claim	of	A),	and	that,	too,	is	a	counterargument	against	A.	In
symbols,	we	obtain	the	following	argument	(below	left)	and	counterarguments
(below	right).

Trivially,	undercuts	are	defeaters,	but	it	is	also	quite	simple	to	establish	the	next
result.

Proposition	3.3.1

If	〈Ψ,	β〉	is	a	rebuttal	for	an	argument	〈Φ,	α〉,	then	〈Ψ,	β〉	is	a	defeater	for	〈Φ,	α〉.

(p.47)	 If	an	argument	has	defeaters,	then	it	has	undercuts,	naturally.	It	may	happen
that	an	argument	has	defeaters	but	no	rebuttals	as	illustrated	next.

Example	3.3.4

Let	Δ	=	{α	∧	β,	¬β}.	Then,	〈{α	∧	β},	α〉	has	at	least	one	defeater	but	no	rebuttal.

Here	are	some	details	on	the	differences	between	rebuttals	and	undercuts.

An	undercut	for	an	argument	need	not	be	a	rebuttal	for	that	argument
As	a	first	illustration,	〈{¬α},	¬α〉	is	an	undercut	for	〈{α,	α	→	β},	β〉	but	is	not	a	rebuttal
for	it.	Clearly,	〈{¬α},	¬α〉	does	not	rule	out	β.	Actually,	an	undercut	may	even	agree	with
the	consequent	of	the	objected	argument:	〈{β	∧	¬α〉	is	an	undercut	for	〈{α,	α	→	β},	β〉.
In	this	case,	we	have	an	argument	with	an	undercut	that	conflicts	with	the	support	of	the
argument	but	implicitly	provides	an	alternative	way	to	deduce	the	consequence	of	the
argument	(see	the	so-called	overzealous	arguments	in	section	5.3.1).	This	should	make	it

⟨{p,p → ¬q},¬q⟩ {An undercut is ⟨{r,r → ¬p},¬p⟩

A rebuttal is ⟨{r,r → ¬p,¬p → q},q⟩
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clear	that	an	undercut	need	not	question	the	consequent	of	an	argument	but	only	the
reason(s)	given	by	that	argument	to	support	its	consequent.	Of	course,	there	are	also
undercuts	that	challenge	an	argument	on	both	counts:	Just	consider	〈{¬α	∧	¬β},	¬α〉,
which	is	such	an	undercut	for	〈{α,	α	→	β},	β〉.

A	rebuttal	for	an	argument	need	not	be	an	undercut	for	that	argument
As	an	example,	〈{¬β},	¬β〉	is	a	rebuttal	for	〈{α,	α	→	β},	β〉	but	is	not	an	undercut	for	it
because	β	is	not	in	{α,	α	→	β}.	Observe	that	there	is	not	even	an	argument	equivalent	to
〈{¬β},	¬β〉	that	would	be	an	undercut	for	〈{α,	α	→	β},	β〉:	In	order	to	be	an	undercut
for	〈{α,	α	→	β},	β〉,	an	argument	should	be	of	the	form	〈Φ,¬α〉,	〈Φ,	¬(α	→	β)〉	or	〈Φ,	¬(α
∧(α	→	β))〉,	but	¬β	is	not	logically	equivalent	to	¬α,	¬(α	→	β)	or	¬(α	∧	(α	→	β)).

Anyway,	a	rebuttal	for	an	argument	is	a	less	conservative	version	of	a	specific	undercut
for	that	argument	as	we	now	prove.

Proposition	3.3.2

If	〈	Ψ,	β〉	is	a	defeater	for	〈	Φ,	α	〉,	then	there	exists	an	undercut	for	〈Φ,	α〉	that	is
more	conservative	than	〈	Ψ,	β	〉.

Corollary	3.3.1

If	〈Ψ,	β〉	is	a	rebuttal	for	〈Ψ,	α〉,	then	there	exists	an	undercut	for	〈Φ,	α〉	that	is
more	conservative	than	〈Ψ,	β〉.

The	undercut	mentioned	in	proposition	3.3.2	and	corollary	3.3.1	is	strictly	more
conservative	than	〈Ψ,	β	whenever	¬β	fails	to	be	logically	equivalent	with	Φ.	(p.48)

Figure	3.1 	If	A	has	a	defeater,	there	is	an	infinite	series	of
counterarguments,	starting	with	a	counterargument	for	A,	and	then
for	each	counterargument,	by	recursion,	there	is	a
counterargument.

Proposition	3.3.3

If	an	argument	has	a	defeater,	then	there	exists	an	undercut	for	its	defeater.

Using	ℕ	to	denote	the	nonnegative	integers,	a	noticeable	consequence	can	be	stated	as
follows.

Corollary	3.3.2
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If	an	argument	A	has	at	least	one	defeater,	then	there	exists	an	infinite	sequence	of
arguments	 ,	such	that	A1	is	A	and	An+1	is	an	undercut	of	An	for	every	n	∈
ℕ*.

As	an	illustration	of	corollary	3.3.2,	see	figure	3.1.

Example	3.3.5

Let	Δ	=	{α,	α	→	β,	γ	∧	¬α}.	Then,

is	an	argument	for	which	a	defeater	is

The	argument	〈{α,	α	→	β},	α	∧	β〉	gives	rise	to	an	infinite	series	of	arguments
where	each	one	is	an	undercut	for	the	previous	argument	in	the	series:

(p.49)	 Corollary	3.3.2	is	obviously	a	potential	concern	for	representing	and	comparing
arguments.	We	address	this	question	in	section	3.5.

Section	2.1	introduced	the	notions	of	self-attacking	arguments	and	controversial
arguments.	The	next	two	results	deal	with	such	special	arguments.

Proposition	3.3.4

Let	〈Φ,	α〉	be	an	argument	for	which	〈Ψ,	β〉	is	a	defeater.	Then,	Ψ	⊈	Φ.

Proposition	3.3.4	proves	that,	in	the	sense	of	definition	3.2.1	and	definition	3.3.1,	no
argument	is	self-defeating.

Proposition	3.3.5

If	〈Γ,	¬ψ〉	is	an	undercut	for	〈Ψ,	¬ϕ〉,	which	is	itself	an	undercut	for	an	argument
〈Φ,	α〉,	then	〈Γ,	¬ψ〉	is	not	a	defeater	for	〈Φ,	α〉.

( )An n∈N*

⟨{α,α → β},α∧ β⟩

⟨{γ∧ ¬α},γ∧ ¬α⟩

⟨{α,α → β},α∧ β⟩
↑

⟨{γ∧ ¬α},¬α⟩
↑

⟨{α},¬(γ∧ ¬α)⟩
↑

⟨{γ∧ ¬α},¬α⟩

⋮
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Proposition	3.3.5	shows	that	no	undercut	is	controversial,	again	in	the	sense	of	definition
3.2.1	and	definition	3.3.1.	This	does	not	extend	to	defeaters	as	illustrated	by	the	following
example.

Example	3.3.6

Consider	the	following	arguments:

Thus,	A2	is	an	undercut	for	A1	and	A3	is	a	defeater	for	A2.	Furthermore,	A3	is	also	a
defeater	for	A1.

As	arguments	can	be	ordered	from	more	conservative	to	less	conservative,	there	is	a
clear	and	unambiguous	notion	of	maximally	conservative	defeaters	for	a	given	argument
(the	ones	that	are	representative	of	all	defeaters	for	that	argument).

Definition	3.3.4

〈Ψ,	β〉	is	a	maximally	conservative	defeater	of	〈Φ,	α〉	iff	for	all	defeaters	〈Ψ′,	β′〉
of	〈Φ,	α,〉	if	Ψ′	⊆	Ψ	and	β	⊢	β′,	then	Ψ	⊆	Ψ′	and	β′	⊂	β.

Equivalently,	〈Ψ,	β〉	is	a	maximally	conservative	defeater	of	〈Φ,	α〉	iff	〈Ψ,	β〉	is	a	defeater	of
〈Φ,	α〉	such	that	no	defeaters	of	〈Φ,	α〉	are	strictly	more	conservative	than	〈Ψ,	β〉.

Proposition	3.3.6

If	〈Ψ,	β〉	is	a	maximally	conservative	defeater	of	〈Φ,	α〉,	then	〈Ψ,	β′〉	is	an	undercut
of	〈Φ,	α〉	for	some	β′	that	is	logically	equivalent	with	β.

(p.50)	 Proposition	3.3.6	suggests	that	we	focus	on	undercuts	when	seeking
counterarguments	to	a	given	argument	as	is	investigated	from	now	on.

3.3.1	Technical	Developments
The	first	question	to	be	investigated	here	is	under	what	condition	can	an	argument	defeat
its	defeaters?

Proposition	3.3.7

Given	two	arguments	〈Φ,	α〉	and	〈Ψ,	β〉	such	that	{α,	β}	⊢	φ	for	each	φ	∈	Φ	if	〈Ψ,
β〉	is	a	defeater	for	〈Φ,	α〉,	then	〈Φ,	α〉	is	a	defeater	for	〈Ψ,	β〉.

Corollary	3.3.3

A1

A2

A3

⟨{α∧ ¬β},α⟩
⟨{¬α∧ β},¬(α∧ ¬β)⟩
⟨{¬α∧ ¬β},¬α∧ ¬β⟩
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Let	α	be	logically	equivalent	with	Φ.	If	〈Ψ,	β〉	is	a	defeater	for	〈Φ,	α〉,	then	〈Φ,	α〉	is	a
defeater	for	〈Ψ,	β〉.

A	follow-up	is	the	case	about	rebuttals.

Corollary	3.3.4

If	〈Ψ,	β〉	is	a	rebuttal	for	〈Φ,	α〉,	then	〈Φ,	α〉	is	a	rebuttal	for	〈Ψ,	β〉.

A	similar	question	is	when	are	two	arguments	a	defeater	of	each	other?

Proposition	3.3.8

Given	two	arguments	〈Φ,	α〉	and	〈Ψ,	β〉	such	that	¬{α	∧	β)	is	a	tautology,	〈Ψ,	β〉	is	a
defeater	for	〈Φ,	α〉,	and	〈Φ,	α〉	is	a	defeater	for	〈Ψ,	β〉.

While	proposition	3.3.4	expresses	that	the	defeat	relation	is	anti-reflexive,	proposition
3.3.7	and	proposition	3.3.8	show	that	the	defeat	relation	is	symmetric	on	parts	of	the
domain	(i.e.,	it	is	symmetric	for	some	arguments).

Returning	to	features	of	individual	counterarguments,	what	does	it	take	for	a	defeater	to
be	a	rebuttal?

Proposition	3.3.9

Let	〈Ψ,	β〉	be	a	defeater	for	an	argument	〈Φ,	α〉.	If	α	∨	β	is	a	tautology	and	{α,	β}	⊢
φ	for	each	φ	∈	Φ,	then	〈Ψ,	β〉	is	a	rebuttal	for	〉Φ,	α〉.

Proposition	3.3.10

If	〈Φ,	α〉	is	an	argument	where	Φ	is	logically	equivalent	with	α,	then	each	defeater
〈Ψ,	β〉	of	〈Φ,	α〉	such	that	α	∨	β	is	a	tautology	is	a	rebuttal	for	Φ,	α〉.

Note:	In	proposition	3.3.10,	the	assumption	that	α	∨	β	is	a	tautology	can	be	omitted	when
considering	the	alternative	definition	of	a	rebuttal	where	〈Ψ,	β〉	is	a	rebuttal	for	〈Φ,	α〉	iff
¬α	∨	¬β	is	a	tautology	(and	the	proof	gets	simpler,	of	course).

(p.51)	 It	has	been	exemplified	above	that	the	notion	of	a	rebuttal	and	the	notion	of	an
undercut	are	independent.	The	next	result	characterizes	the	cases	in	which	both	notions
coincide.

Proposition	3.3.11

Let	〈Φ,	α〉	and	〈Ψ,	β〉	be	two	arguments.	〈Ψ,	β〉	is	both	a	rebuttal	and	an	undercut
for	〈Φ,	α〉	iff	Φ	is	logically	equivalent	with	α	and	β	is	¬(ϕ1	∧	…	∧	ϕn)	such	that	Φ	=
{φ1	…,	φn}.

Interestingly	enough,	the	support	of	a	maximally	conservative	de-feater	leaves	no	choice
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about	its	consequent	as	is	proven	in	proposition	3.3.12.

Proposition	3.3.12

Let	〈Ψ,	β〉	be	a	maximally	conservative	defeater	for	an	argument	〈Φ,	α〉.	Then,	〈Ψ,
γ〉	is	a	maximally	conservative	defeater	for	〈Φ,	α〉	iff	γ	is	logically	equivalent	with	β.

Proposition	3.3.12	does	not	extend	to	undercuts	because	they	are	syntax	dependent	(in
an	undercut,	the	consequent	is	always	a	formula	governed	by	negation).

Lastly,	in	what	way	does	the	existence	of	a	defeater	relate	to	inconsistency	for	Δ?

Proposition	3.3.13

Δ	is	inconsistent	if	there	exists	an	argument	that	has	at	least	one	defeater.	Should
there	be	some	inconsistent	formula	in	Δ,	the	converse	is	untrue.	When	no	formula
in	Δ	is	inconsistent,	the	converse	is	true	in	the	form:	If	Δ	is	inconsistent,	then	there
exists	an	argument	that	has	at	least	one	rebuttal.

Corollary	3.3.5

Δ	is	inconsistent	if	there	exists	an	argument	that	has	at	least	one	undercut.	The
converse	is	true	when	each	formula	in	Δ	is	consistent.

3.4	Canonical	Undercuts
As	defined	above,	an	undercut	for	an	argument	〈Φ,	α〉	is	an	argument	〈Ψ,	¬(ϕ1	∧	…	∧
ϕn)〉	where	{ϕ1,	…,	ϕn}	⊆	Φ	and	Φ	∪	Ψ	⊆	Δ	by	the	definition	of	an	argument.

While	proposition	3.3.2	and	proposition	3.3.6	point	to	undercuts	as	candidates	to	be
representative	of	all	defeaters	for	an	argument,	maximally	conservative	undercuts	are
even	better	candidates.

Definition	3.4.1

〈Ψ,	β〉	is	a	maximally	conservative	undercut	of	〈Φ,	α〉	iff	for	all	undercuts	〈Ψ′,
β′〉	of	〈Φ,	α〉,	if	Ψ′	⊆	and	β	⊢	β′	then	Ψ	⊆	Ψ′	and	β′	⊢	β.

(p.52)	 Evidently,	〈Ψ,	β〉	is	a	maximally	conservative	undercut	of	〈Φ,	α〉	iff	〈Ψ,	β〉	is	an
undercut	of	〈Φ,	α〉	such	that	no	undercuts	of	〈Φ,	α〉	are	strictly	more	conservative	than
〈Ψ,	β〉.

Stressing	the	relevance	of	maximally	conservative	undercuts,	it	can	be	proved
(proposition	3.4.6)	that	each	maximally	conservative	undercut	is	a	maximally	conservative
defeater	(but	not	vice	versa,	of	course).

Example	3.4.1	now	shows	that	a	collection	of	counterarguments	to	the	same	argument
can	sometimes	be	summarized	in	the	form	of	a	single	maximally	conservative	undercut	of
the	argument,	thereby	avoiding	some	amount	of	redundancy	among	counterarguments.
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Example	3.4.1

Consider	the	following	formulae	concerning	who	is	going	to	a	party:

 If	Rachel	goes,	neither	Paul	nor	Quincy	goes.

p  Paul	goes.

q   Quincy	goes.

Hence	both	Paul	and	Quincy	go	(initial	argument):

Now	assume	the	following	additional	piece	of	information:
r Rachel	goes.

Hence	Paul	does	not	go	(a	first	counterargument):

Hence	Quincy	does	not	go	(a	second	counterargument):

A	maximally	conservative	undercut	(for	the	initial	argument)	that	subsumes	both
counterarguments	above	is

The	fact	that	the	maximally	conservative	undercut	in	example	3.4.1	happens	to	be	a
rebuttal	of	the	argument	is	only	accidental.	Actually,	the	consequent	of	a	maximally
conservative	undercut	for	an	argument	is	exactly	the	negation	of	the	full	support	of	the
argument.

Proposition	3.4.1

If	〈Ψ,	¬(ϕ1	∧	⋯	∧	ϕn〉	is	a	maximally	conservative	undercut	for	an	argument	〈Φ,	α〉,
then	Φ	=	{ϕ,	…	,	ϕn.

(p.53)	 Note	that	if	〈Ψ,	¬(ϕ1	∧	⋯	∧	ϕn)〉	is	a	maximally	conservative	undercut	for	an
argument	〈Φ,	α〉,	then	so	are	〈Ψ,	¬(ϕ2	∧	…	∧	ϕn	∧	ϕ1)〉	and	〈Ψ,	¬(ϕ3	∧	⋯	∧	ϕn	∧	ϕ1	∧
ϕ2)〉	so	on.	However,	they	are	all	identical	(in	the	sense	that	each	is	more	conservative
than	the	others).	We	can	ignore	the	unnecessary	variants	by	just	considering	the
canonical	undercuts	defined	as	follows.

Definition	3.4.2

An	argument	〈Ψ,	¬(ϕ1	∧	…	∧	ϕn)〉	is	a	canonical	undercut	for	〈Φ,	α〉	iff	it	is	a

r → ¬p ∧ ¬q

⟨{p,q},p ∧ q⟩

⟨{r,r → ¬p ∧ ¬q},¬p⟩

⟨r,r → ¬p ∧ ¬q},¬q⟩

⟨{r,r → ¬p ∧ ¬q},¬(p ∧ q)⟩
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maximally	conservative	undercut	for	〈Φ,	α〉	and	〈ϕ1,	…	,	ϕn〉	is	the	canonical
enumeration	of	Φ.

Next	is	a	simple	and	convenient	characterization	of	the	notion	of	a	canonical	undercut.

Proposition	3.4.2

An	argument	〈Ψ,	¬(ϕ1	∧	⋯	∧	ϕn)〉	is	a	canonical	undercut	for	〈Φ,	α〉	iff	it	is	an
undercut	for	〈Φ,	α〉	and	〈ϕ1,	…	,	ϕn〉	is	the	canonical	enumeration	of	Φ.

Corollary	3.4.1

A	pair	〈Ψ,	¬(ϕ1	∧	…	∧	ϕn)〉	is	a	canonical	undercut	for	〈Φ,	α〉	iff	it	is	an	argument
and	〈ϕ1,	…	,	ϕn〉	is	the	canonical	enumeration	of	Φ.

Clearly,	an	argument	may	have	more	than	one	canonical	undercut.	What	do	the	canonical
undercuts	for	the	same	argument	look	like?	How	do	they	differ	from	one	another?

Proposition	3.4.3

Any	two	different	canonical	undercuts	for	the	same	argument	have	the	same
consequent	but	distinct	supports.

Proposition	3.4.4

Given	two	different	canonical	undercuts	for	the	same	argument,	neither	is	more
conservative	than	the	other.

Example	3.4.2

Let	Δ	=	{α,	β,	¬α,	¬β}.	Both	of	the	following

are	canonical	undercuts	for	〈{α,	β},	α	↔	β〉,	but	neither	is	more	conservative	than
the	other.

Proposition	3.4.5

For	each	defeater	〈Ψ,	β〉	of	an	argument	〈Φ,	α〉,	there	exists	a	canonical	undercut
for	〈Φ,	α〉	that	is	more	conservative	than	〈Ψ,	β〉.

That	is,	the	set	of	all	canonical	undercuts	of	an	argument	represents	all	the	defeaters	of
that	argument	(informally,	all	its	counterarguments).	This	is	to	be	taken	advantage	of	in
section	3.5.

(p.54)	 3.4.1	Technical	Developments

⟨{¬α},¬(α∧ β)⟩

⟨{¬β},¬(α∧ β)⟩
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Restricting	ourselves	to	maximally	conservative	undercuts	forces	us	to	check	that	they
capture	maximally	conservative	defeaters.	In	fact,	they	do,	in	a	strong	sense	as	given	by
proposition	3.4.6.

Proposition	3.4.6

If	〈Ψ,	β〉	is	a	maximally	conservative	undercut	for	〈Φ,	α〉,	then	〈Ψ,	β〉	also	is	a
maximally	conservative	defeater	for	〈Φ,	α〉.

As	to	a	different	matter,	the	converse	of	proposition	3.4.1	also	holds.

Proposition	3.4.7

If	〈Ψ,	¬(ϕ1	∧	⋯	∧	ϕn)〉	is	an	undercut	for	〈Φ,	α〉	such	that	Φ	=	{ϕ1,	…	,	ϕn},	then	it
is	a	maximally	conservative	undercut	for	〈Φ,	α〉.

Corollary	3.4.2

Let	〈Ψ,	¬(ϕ1	∧	⋯	∧	ϕn)〉	be	an	undercut	for	〈Φ,	α〉.	〈Ψ,	¬(ϕ1	∧	⋯	∧	ϕn)〉	is	a
maximally	conservative	undercut	for	〈Φ,	α〉	iff	Φ	=	{ϕ,	…	,	ϕn}.

Although	not	strictly	necessary,	a	sufficient	condition	for	being	a	maximally	conservative
undercut	is	as	follows.

Proposition	3.4.8

If	〈Ψ,	β〉	is	both	a	rebuttal	and	an	undercut	for	〈Φ,	α〉	then	〈Ψ,	β〉	is	a	maximally
conservative	undercut	for	〈Φ,	α〉.

In	partial	converse,	there	is	a	special	case	of	the	following	general	result.

Proposition	3.4.9

Let	〈Φ,	α〉	be	an	argument.	Each	maximally	conservative	undercut	for	Φ,	α〉	is	a
rebuttal	for	〈Φ,	α〉;	iff	Φ	is	logically	equivalent	with	α.

In	general,	when	an	argument	is	a	maximally	conservative	undercut	for	another
argument,	the	converse	does	not	hold	but	it	is	almost	the	case	as	shown	next.

Proposition	3.4.10

If	〈Ψ,	β〉	is	a	maximally	conservative	undercut	for	〈Φ,	α〉,	then	there	exists	Φ′	⊆	Φ
and	γ	such	that	〈Φ′,	γ〉	is	a	maximally	conservative	undercut	for	〈Ψ,	β〉.

Corollary	3.4.3

If	〈Ψ,	β〉	is	a	canonical	undercut	for	〈Φ,	α〉,	then	there	exists	Φ′	⊆	Φ	such	that	〈Φ′,
¬(ψ1	∧	⋯	∧	ψn)〉	is	a	canonical	undercut	for	〈Ψ,	β〉	(where	〈ψ1,	…	,	ψn	is	the
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canonical	enumeration	of	Ψ).

Under	certain	circumstances,	the	notion	of	a	rebuttal	and	the	notion	of	maximally
conservative	coincide.	One	of	these	circumstances	is	given	by	the	following	result.

(p.55)	 Proposition	3.4.11

If	〈Φ,	α〉	is	an	argument	such	that	Φ	is	logically	equivalent	with	α,	then	each	rebuttal
of	〈Φ,	α〉	is	equivalent	with	a	canonical	undercut	for	〈Φ,	α〉.

We	will	consider,	in	the	next	section,	how	canonical	undercuts	constitute	a	key	concept
for	forming	constellations	of	arguments	and	counterarguments.

3.5	Argument	Trees
How	does	argumentation	usually	take	place?	Argumentation	starts	when	an	initial
argument	is	put	forward,	making	some	claim.	An	objection	is	raised	in	the	form	of	a
counterargument.	The	latter	is	addressed	in	turn,	eventually	giving	rise	to	a	counter-
counterargument,	if	any.	And	so	on.	However,	there	often	is	more	than	one
counterargument	to	the	initial	argument,	and	if	the	counterargument	actually	raised	in
the	first	place	had	been	different,	the	counter-counterargument	would	have	been
different,	too,	and	similarly	the	counter-counter-counterargument,	if	any,	and	so	on.
Argumentation	would	have	taken	a	possibly	quite	different	course.

So	do	we	find	all	the	alternative	courses	that	could	take	place	from	a	given	initial
argument?	And	is	it	possible	to	represent	them	in	a	rational	way,	let	alone	to	answer	the
most	basic	question	of	how	do	we	make	sure	that	no	further	counterargument	can	be
expressed	from	the	information	available?

Answers	are	provided	below	through	the	notion	of	argument	trees,	but	we	first	present
an	example	to	make	things	a	little	less	abstract.	Just	a	word	of	warning:	The	details	of
reasoning	from	support	to	consequent	for	each	(counter-)argument	do	not	really	matter;
they	are	made	explicit	in	the	example	for	the	sake	of	completeness	only.

Example	3.5.1

There	are	rumors	about	Ms.	Shy	expecting	Mr.	Scoundrel	to	propose	to	her,
although	she	may	not	wish	to	get	married.	(To	respect	privacy,	the	names	have
been	changed.)	Here	is	the	situation:

•	If	he	doesn’t	propose	to	her	unless	he	finds	she	is	rich,	then	he	has	no	qualms.

•	If	he	proposes	to	her	only	if	she	looks	sexy,	then	it	is	not	the	case	that	he	has
no	qualms.

•	He	finds	out	that	she	is	rich.

•	She	looks	sexy.

•	He	doesn’t	propose	to	her!
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(p.56)	 There	are	grounds	for	various	arguments	about	whether	Mr.	Scoundrel	has	no
qualms	about	marrying	Ms.	Shy:

An	argument	claiming	that	Mr.	Scoundrel	has	no	qualms
As	stated,	if	he	doesn’t	propose	to	her	unless	he	finds	she	is	rich,	then	he	has	no	qualms.
In	other	words,	if	it	is	false	that	he	has	no	qualms,	it	is	false	that	he	doesn’t	propose	to
her	unless	he	finds	she	is	rich.	Equivalently,	if	it	is	false	that	he	has	no	qualms,	then	he
proposes	to	her	while	he	does	not	find	she	is	rich—which	is	not	the	case:	He	finds	she	is
rich,	and	it	is	possible	to	conclude,	by	modus	tollens,	that	he	has	no	qualms.

A	first	counterargument
The	sentence	“at	least	in	the	event	that	he	proposes	to	her,	she	looks	sexy”	is	true:	See
the	fourth	statement.	However,	the	sentence	means	the	same	as	“he	proposes	to	her
only	if	she	looks	sexy.”	According	to	“if	he	proposes	to	her	only	if	she	looks	sexy,	then	it	is
not	the	case	that	he	has	no	qualms,”	it	follows	that	it	is	not	the	case	that	he	has	no	qualms.

A	second	counterargument
The	claim	in	the	initial	argument	is	based	on	the	condition	“he	proposes	to	her	only	if	he
finds	she	is	rich”	that	can	be	challenged:	Clearly,	not	both	conclusions	of	“if	he	proposes
to	her	only	if	he	finds	she	is	rich,	then	he	has	no	qualms”	and	“if	he	proposes	to	her	only	if
she	looks	sexy,	then	it	is	not	the	case	that	he	has	no	qualms”	are	true.	Hence,	“he
proposes	to	her	only	if	he	finds	she	is	rich”	is	false	if	“he	proposes	to	her	only	if	she	looks
sexy”	is	true—which	is	the	case	as	detailed	in	the	first	counterargument	on	the	ground
that	she	looks	sexy.

A	counter-counterargument
It	is	asserted	that	if	he	doesn’t	propose	to	her	unless	he	finds	she	is	rich,	then	he	has	no
qualms.	Stated	otherwise,	if	it	is	false	that	he	has	no	qualms,	then	it	is	false	that	he	doesn’t
propose	to	her	unless	he	finds	she	is	rich.	Equivalently,	if	it	is	false	that	he	has	no	qualms,
then	he	proposes	to	her	while	he	does	not	find	she	is	rich—which	is	not	the	case:	He
doesn’t	propose	to	her,	and	it	is	possible	to	conclude,	by	modus	tollens,	that	he	has	no
qualms.

Using	the	following	propositional	atoms

p He	proposes	to	her

q He	has	qualms

r He	finds	out	that	she	is	rich

s She	looks	sexy

the	statements	are	formalized	as	(p.57)

If	he	doesn’t	propose	to	her	unless	he	finds	she	is	rich,	then	he
has	no	qualms

(¬r → ¬p) → ¬q
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If	he	proposes	to	her	only	if	she	looks	sexy,	then	it	is	not	the	case
that	he	has	no	qualms

r He	finds	out	that	she	is	rich

s She	looks	sexy
He	does	not	propose	to	her

and	the	arguments	presented	above	take	the	form

〈{r,	(¬r	→	¬p)	→	¬q},	¬q〉 (initial	argument	I)
〈{s,(p	→	s)	→	¬¬q},	¬¬q〉 (counterargument	C1)
〈{s,	(p	→	s)	→	¬¬q,	(¬r	→	¬p)	→	¬q},	¬(p	→	r)〉 (counter-counterargument	C2)
〈{¬p,	(¬r	→	¬p)	→	¬q},	¬q〉 (counter-counterargument	C)

There	are	still	very	many	other	countern-arguments	(whatever	n),	despite	the	fact	that
definition	3.2.1	already	rules	out	a	number	of	informal	ones.

Indeed,	the	argumentation	about	Mr.	Scoundrel’s	qualms	can	take	different	courses.	One
is	I,	C1,	C,	…,	another	is	I,	C2,	C,	…,	and	there	are	many	others	issued	from	I.	It	would
thus	be	useful	to	have	an	exhaustive	account	of	the	possible	arguments	and	how	they
relate	with	respect	to	the	initial	argument	(allowing	us	to	reconstruct	every	possible
course	of	argumentation	starting	with	a	given	initial	argument).	And	this	is	what	argument
trees	are	meant	to	do:	An	argument	tree	describes	the	various	ways	a	given	initial
argument	can	be	challenged,	as	well	as	how	the	counterarguments	to	the	initial	argument
can	themselves	be	challenged,	and	so	on,	recursively.	However,	some	way	of	forming
sequences	of	counterarguments	is	desirable,	if	not	imperative,	in	view	of	corollary	3.3.2,
which	points	out	that	argumentation	often	takes	a	course	consisting	of	an	infinite
sequence	of	arguments,	each	being	a	counterargument	to	the	preceding	one.

Example	3.5.2

Argumentation	sometimes	falls	on	deaf	ears,	most	often	when	simplistic	arguments
are	uttered	as	illustrated	below	with	a	case	of	the	“chicken	and	egg	dilemma.”
Here	the	same	arguments	are	used	in	a	repetitive	cycle:

Dairyman

Egg	was	first.

Farmer

Chicken	was	first.

Dairyman

Egg	was	first.

(p → s) → ¬¬q

¬p
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(p.58)	 Farmer

Chicken	was	first.

…	…

The	following	propositional	atoms	are	introduced:

p Egg	was	first.

q Chicken	was	first.

r The	chicken	comes	from	the	egg.

s The	egg	comes	from	the	chicken.

Admittedly,	that	the	chicken	was	first	and	that	the	egg	was	first	are	not	equivalent
(i.e.,	¬(p	↔	q)).	Also,	the	egg	comes	from	the	chicken	(i.e.,	r),	and	the	chicken	comes
from	the	egg	(i.e.,	s).	Moreover,	if	the	egg	comes	from	the	chicken,	then	the	egg
was	not	first.	(i.e.,	r	→	¬q).	Similarly,	if	the	chicken	comes	from	the	egg,	then	the
chicken	was	not	first	(i.e.,	s	→	¬p).	Then,	the	above	dispute	can	be	represented	as
follows:

We	are	now	ready	for	our	definition	(below)	of	an	argument	tree	in	which	the	root	of	the
tree	is	an	argument	of	interest,	and	the	children	for	any	node	are	the	canonical
undercuts	for	that	node.	In	the	definition,	we	avoid	the	circularity	seen	in	the	above
example	by	incorporating	an	intuitive	constraint.

Definition	3.5.1

An	argument	tree	for	α	is	a	tree	where	the	nodes	are	arguments	such	that

1.	The	root	is	an	argument	for	α.
2.	For	no	node	〈Φ,	β〉	with	ancestor	nodes	〈Φ1,	β1〉,	…,	〈Φn,	βn〉	is	Φ	a
subset	of	Φ1	∪	⋯	∪	Φn.

⟨{s → ¬p,s,¬(p ↔ q)},q⟩
↑

⟨{r → ¬q,r,¬(p ↔ q)},p⟩
↑

⟨{s → ¬p,s,¬(p ↔ q)},q⟩
↑

⟨{r → ¬q,r,¬(p ↔ q)},p⟩
↑

⋮
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3.	The	children	nodes	of	a	node	N	consist	of	all	canonical	undercuts	for	N
that	obey	2.

(p.59)	 Note,	for	the	definition	of	argument	tree,	in	chapter	4	onwards,	we	assume	a
relaxed	version	of	condition	3	in	which	“the	children	nodes	of	a	node	N	consist	of	some	or
all	of	the	canonical	undercuts	for	N	that	obey	2.”	In	addition,	for	chapter	4	onwards,	we
use	the	term	complete	argument	tree	when	we	need	to	stress	that	condition	3	is	“the
children	nodes	of	a	node	N	consist	of	all	the	canonical	undercuts	for	N	that	obey	2.”

We	illustrate	the	definition	of	an	argument	tree	in	the	following	examples.

Example	3.5.3

Speaking	of	Simon	Jones,	once	again	…

p Simon	Jones	is	a	Member	of	Parliament.

p	→	¬q If	Simon	Jones	is	a	Member	of	Parliament,	then	we	need	not	keep	quiet
about	details	of	his	private	life.

r Simon	Jones	just	resigned	from	the	House	of	Commons.

r	→	¬p If	Simon	Jones	just	resigned	from	the	House	of	Commons,	then	he	is
not	a	Member	of	Parliament.

¬p	→	q If	Simon	Jones	is	not	a	Member	of	Parliament,	then	we	need	to	keep
quiet	about	details	of	his	private	life.

The	situation	can	be	depicted	as	follows:

Example	3.5.4

An	obnoxious	vice-president	…

Vice-President

The	only	one	not	taking	orders	from	me	is	the	president;	you	are	not	the	president
but	a	regular	employee;	hence	you	take	orders	from	me.

Secretary

I	am	the	president’s	secretary,	not	a	regular	employee.

Secretary

⟨{p,p → ¬q},¬q⟩

⟨{r,r → ¬p},¬p⟩
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Anyway,	I	don’t	take	orders	from	you.

This	can	be	captured	in	terms	of	the	sentences	below	(as	recounted	by	the
secretary).

t I	take	orders	from	the	vice-president.

p I	am	the	president.

r I	am	a	member	of	the	regular	staff.

s I	am	the	president’s	secretary.

The	statements	uttered	are	as	follows:

(p.60)
¬t	→	p The	only	one	not	taking	orders	from	me	is	the	president.

¬p	∧	r You	are	not	the	president	but	a	regular	employee.

s	∧	¬r I	am	the	president’s	secretary,	not	a	regular	employee.

¬t I	don’t	take	orders	from	you.

We	obtain	the	following	argument	tree:	

We	give	a	further	illustration	of	an	argument	tree	in	example	3.5.5,	and	then	we
motivate	the	conditions	of	definition	3.5.1	as	follows:	Condition	2	is	meant	to	avoid
the	situation	illustrated	by	example	3.5.6,	and	condition	3	is	meant	to	avoid	the
situation	illustrated	by	example	3.5.7.

Example	3.5.5

Given	Δ	=	{α,	α	→	β,	γ,	γ	→	¬α,	¬γ	∨	¬α},	we	have	the	following	argument	tree:	

Note	the	two	undercuts	are	equivalent.	They	do	count	as	two	arguments	because	they
are	based	on	two	different	items	of	the	knowledgebase	(even	though	these	items	turn
out	to	be	logically	equivalent).

We	adopt	a	lighter	notation,	writing	〈Ψ,	◇〉	for	a	canonical	undercut	of	〈Φ,	β〉.	Clearly,	◇	is
¬(ϕ1	∧	⋯	∧	ϕn)	where	〈ϕ1,	…,	ϕn〉	is	the	canonical	enumeration	for	Φ.

Example	3.5.6
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Let	Δ	=	{α,	α	→	β,	γ	→	¬α,	γ}.

This	is	not	an	argument	tree	because	condition	2	is	not	met.	The	undercut	to	the
undercut	is	actually	making	exactly	the	same	point	(that	α	and	γ	are	incompatible)
as	the	undercut	itself	does,	just	by	using	modus	tollens	instead	of	modus	ponens.

(p.61)	 Example	3.5.7

Given	Δ	=	{α,	β,	α	→	γ,	β	→	δ,	¬α	∨	¬β},	consider	the	following	tree:	

This	is	not	an	argument	tree	because	the	two	children	nodes	are	not	maximally
conservative	undercuts.	The	first	undercut	is	essentially	the	same	argument	as	the
second	undercut	in	a	rearranged	form	(relying	on	α	and	β	being	incompatible,
assume	one	and	then	conclude	that	the	other	doesn’t	hold).	If	we	replace	these	by
the	maximally	conservative	undercut	〈{¬α	∨	¬β},	◇〉,	we	obtain	an	argument	tree.

The	following	result	is	important	in	practice—particularly	in	light	of	corollary	3.3.2	and	also
other	results	we	present	in	section	3.6.

Proposition	3.5.1

Argument	trees	are	finite.

The	form	of	an	argument	tree	is	not	arbitrary.	It	summarizes	all	possible	courses	of
argumentation	about	the	argument	in	the	root	node.	Each	node	except	the	root	node	is
the	starting	point	of	an	implicit	series	of	related	arguments.	What	happens	is	that	for	each
possible	course	of	argumentation	(from	the	root),	an	initial	sequence	is	provided	as	a
branch	of	the	tree	up	to	the	point	that	no	subsequent	countern-argument	needs	a	new
item	in	its	support	(where	“new”	means	not	occurring	somewhere	in	that	initial
sequence).	Also,	the	counterarguments	in	a	course	of	argumentation	may	somewhat
differ	from	the	ones	in	the	corresponding	branch	of	the	argument	tree.

Example	3.5.8

The	statements	about	Ms.	Shy	and	Mr.	Scoundrel	can	be	captured	in	Δ	=	{(¬r	→

⟨{α,α → β},β⟩
↑

⟨{γ,γ → ¬α},◇⟩
↑

⟨{α,γ → ¬α},◇⟩
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¬p)	→	¬q,	(p	→	s)	→	¬¬q,	r,	s,	¬p}.	The	argument	tree	with	〈{r,	(¬r	→	¬p)	→	¬q},

¬q〉	as	its	root	is	

The	left-most	branch	clearly	captures	any	courses	I,	C1,	C,	…	Note	that	the	next
element	(after	C)	could	be	C2,	but	that	is	accounted	for	because	the	support	of	C2
is	a	subset	of	the	set-theoretic	union	of	the	supports	of	I,	C1,	and	C	(actually,	the
resulting	set-theoretic	union	gives	Δ).	Less	(p.62)	 immediate	is	the	fact	that	the
left-most	branch	also	captures	any	courses	I,	C2,	C,	…	The	key	fact	is	that	the
support	of	C1	is	a	subset	of	the	support	of	C2.	What	about	any	courses	I,	C1,	I,	…	?
These	are	captured	through	the	fact	that	C1	being	a	canonical	undercut	of	I,	it
happens	that	appropriately	changing	just	the	consequent	in	I	gives	a	canonical
undercut	of	C1	(cf.	corollary	3.4.3).	That	is	the	idea	that	each	node	(except	for	the
root)	is	the	starting	point	of	an	implicit	series	of	related	arguments.	Lastly,	the
right-most	branch	captures	courses	that	were	not	touched	upon	in	the	earlier
discussion	of	the	example.

Example	3.5.9

Let	us	return	to	the	“chicken	and	egg	dilemma”:

Dairyman

Egg	was	first.

Farmer

Chicken	was	first.

Dairyman

Egg	was	first.

Farmer

Chicken	was	first.

…	…

Here	are	the	formulae	again:

p Egg	was	first.

q Chicken	was	first.
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r The	chicken	comes	from	the	egg.

s The	egg	comes	from	the	chicken.

¬(p	↔	q) That	the	egg	was	first	and	that	the	chicken	was	first	are	not
equivalent.

r	→	¬q The	chicken	comes	from	the	egg	implies	that	the	chicken	was	not	first.

s	→	¬p The	egg	comes	from	the	chicken	implies	that	the	egg	was	not	first.

Thus,	Δ	=	{¬(p	↔	q),	r	→	¬q,	s	→	¬p,	r,	s}.	The	argument	tree	with	the	dairyman’s
argument	as	its	root	is

but	it	does	not	mean	that	the	farmer	has	the	last	word	nor	that	the	farmer	wins	the
dispute!	The	argument	tree	is	merely	a	representation	of	the	argumentation	(in
which	the	dairyman	provides	the	initial	argument).

(p.63)	 Although	the	argument	tree	is	finite,	the	argumentation	here	is	infinite	and
unresolved.

3.5.1	Some	Useful	Subsidiary	Definitions
Here	we	provide	a	few	further	definitions	that	will	be	useful	in	the	following	chapters.

For	an	argument	tree	T,	Depth(T)	is	the	length	of	the	longest	branch	of	T,	and	Width(T)	is
the	number	of	leaf	nodes	in	T	(see	Appendix	B	for	further	details	on	trees).	For	an
argument	tree	T,	Nodes(T)	is	the	set	of	nodes	(i.e.,	arguments)	in	T	and	Root(T)	is	the
root	of	T.	We	call	the	argument	at	the	root	of	an	argument	tree	T,	i.e.,	Root(T),	the	root
argument	(or,	equivalently,	initiating	argument).	For	an	argument	tree	T,	Subject(T)
is	Claim(Root(T)),	and	if	Subject(T)	is	α,	we	call	α	the	subject	of	T.	Given	an	argument
tree	T,	for	an	argument	A,	Parent(A)	is	the	parent	of	A	in	T	(i.e.,	parenthood	is	defined	in
the	context	of	a	particular	argument	tree).

For	an	argument	tree	T,	and	an	argument	A,	Siblings(T,	A)	is	the	set	of	siblings	of	A	in	T
(i.e.,	it	is	the	set	of	children	of	Parent(A))	and	Undercuts(T,	A)	is	the	set	of	children	of	A.
For	an	argument	tree	T,	Siblings(T)	is	the	set	of	sibling	sets	in	T	(i.e.,	S	∈	Siblings(T)	iff	S
=	Undercuts(T,	A)	for	some	A	in	T).

For	an	argument	tree	T,	each	argument	in	T	is	either	an	attacking	argument	or	a
defending	argument.	If	Ar	is	the	root,	then	Ar	is	a	defending	argument.	If	an	argument
Ai	is	a	defending	argument,	then	any	Aj	whose	parent	is	Ai	is	an	attacking	argument.	If	an
argument	Aj	is	an	attacking	argument,	then	any	Ak	whose	parent	is	Aj	is	a	defending
argument.	For	an	argument	tree	T,	Defenders(T)	is	the	set	of	defending	arguments	in	T,

⟨{r → ¬q,r,¬(q ↔ p)},p⟩
↑

⟨{s → ¬p,s,¬(q ↔ p)},◇⟩
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and	Attackers(T)	is	the	set	of	attacking	arguments	in	T.

3.5.2	Technical	Developments
The	question	investigated	here	is	as	follows:	Looking	at	the	form	of	argument	trees,	what
can	be	assessed	about	Δ?

Inconsistency	for	Δ	was	related,	as	stated	in	proposition	3.3.13	and	corollary	3.3.5,	to	the
existence	of	a	defeater.	This	can	be	turned	into	a	relationship	between	inconsistency	for	Δ
and	the	case	that	argument	trees	consist	of	a	single	node	as	shown	in	the	next	result.

Proposition	3.5.2

If	Δ	is	consistent,	then	all	argument	trees	have	exactly	one	node.	The	converse	is
true	when	each	formula	in	Δ	is	consistent.

Conversely,	looking	at	some	properties	about	Δ,	what	can	be	said	about	argument	trees?

(p.64)	 Proposition	3.5.3

Let	T	be	an	argument	tree	whose	root	node	〈Φ,	α〉	is	such	that	no	subset	of	Δ	is
logically	equivalent	with	α.	Then,	no	node	in	T	is	a	rebuttal	for	the	root.

Example	3.5.10

Δ	=	{α	∧	β	∧	γ,	δ	∧	¬(α	∧	β),	¬α	∧	¬δ,	δ	→	(β	∧	γ),	α	∨	α}.

The	above	argument	tree	contains	a	rebuttal	of	the	root	that	is	not	the	child	of	the
root.

Example	3.5.11

⟨{a∧ β ∧ γ},α⟩
↑

⟨{δ∧ ¬(α∧ β)},¬(α∧ β ∧ γ)⟩
↑

⟨{¬α∧ ¬δ},¬(δ∧ ¬(α∧ β))⟩
↑

⟨{α∨ α},¬(¬α∧ ¬δ)⟩
↑

⟨{δ∧ ¬(α∧ β),δ → (β ∧ γ)},¬(α∨ α)⟩
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Δ	=	{¬α	∧	β,	¬α	∧	γ,	α	∧	δ,	α	∨	α}.	

The	above	argument	tree	contains	rebuttals	of	the	root	that	are	not	children	of	the
root.

3.6	Duplicates
Equivalent	arguments	are	arguments	that	express	the	same	reason	for	the	same	point.
For	undercuts,	a	more	refined	notion	than	equivalent	arguments	is	useful:

Definition	3.6.1

Two	undercuts	〈Γ	∪	Φ,	¬ψ〉	and	〈Γ	∪	Ψ,	¬ϕ〉	are	duplicates	of	each	other	iff	ϕ	is
ϕ1	∧	⋯	∧	ϕn	such	that	Φ	=	{ϕ1,	…,	ϕn}	and	ψ	is	ψ1	∧	⋯	∧	ψm	such	that	Ψ	=	{ψ1,	…,
ψm}.

(p.65)	 Duplicates	introduce	a	symmetric	relation	that	fails	to	be	transitive	(and
reflexive).	Arguments	that	are	duplicates	of	each	other	are	essentially	the	same	argument
in	a	rearranged	form.

Example	3.6.1

The	two	arguments	below	are	duplicates	of	each	other:

Example	3.6.2

To	illustrate	the	lack	of	transitivity	in	the	duplicate	relationship,	the	following	two
arguments	are	duplicates

and	similarly	the	following	two	arguments	are	duplicates

⟨{α,¬α∨ ¬β},¬β⟩

⟨{β,¬α∨ ¬β},¬α⟩

⟨{γ,α,α∧ γ → ¬β},¬β⟩

⟨{γ,β,α∧ γ → ¬β},¬α⟩

⟨{γ,β,α∧ γ → ¬β},¬α⟩

⟨{α,α∧ γ → ¬β},¬(β ∧ γ)⟩
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but	the	following	two	are	not	duplicates:

The	following	proposition	shows	how	we	can	systematically	obtain	duplicates.	In	this
result,	we	see	there	is	an	explosion	of	duplicates	for	each	maximally	conservative
undercut.	This	obviously	is	a	potential	concern	for	collating	counterarguments.

Proposition	3.6.1

For	every	maximally	conservative	undercut	〈Ψ,	β〉	to	an	argument	〈Φ,	α〉,	there
exist	at	least	2m	–	1	arguments,	each	of	which	undercuts	the	undercut	(m	is	the
size	of	Ψ).	Each	of	these	2m	–	1	arguments	is	a	duplicate	to	the	undercut.

Proposition	3.6.2

No	two	maximally	conservative	undercuts	of	the	same	argument	are	duplicates.

Corollary	3.6.1

No	two	canonical	undercuts	of	the	same	argument	are	duplicates.

Proposition	3.6.3

No	branch	in	an	argument	tree	contains	duplicates,	except	possibly	for	the	child	of
the	root	to	be	a	duplicate	to	the	root.

These	last	two	results	are	important.	They	show	that	argument	trees	are	an	efficient	and
lucid	way	of	representing	the	pertinent	counterarguments	(p.66)	 to	each	argument:
Corollary	3.6.1	shows	it	regarding	breadth,	and	proposition	3.6.3	shows	it	regarding
depth.	Moreover,	they	show	that	the	intuitive	need	to	eliminate	duplicates	from
argument	trees	is	taken	care	of	through	an	efficient	syntactical	criterion	(condition	2	of
definition	3.5.1).

3.7	Argument	Structures
We	now	consider	how	we	can	gather	argument	trees	for	and	against	a	claim.	To	do	this,
we	define	argument	structures.

Definition	3.7.1

An	argument	structure	for	a	formula	α	is	a	pair	of	sets	 ,	where	 	is	the	set
of	argument	trees	for	α	and	 	is	the	set	of	argument	trees	for	¬α.

Example	3.7.1

Let	Δ	=	{α	∨	β,	α	→	γ,	¬γ,	¬β,	δ	↔	β}.	For	this,	we	obtain	three	argument	trees	for

⟨{α,α∧ γ → ¬β},¬(β ∧ γ)⟩

⟨{γ,α,α∧ γ → ¬β},¬β⟩

⟨P,C⟩ P

C
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the	argument	structure	for	a	α	∨	¬δ.	

Example	3.7.2

Let	Δ	=	{α	↔	β,	β	∨	γ,	γ	→	β,	¬α	∨	¬β	∨	¬γ,	γ	∧	δ,	¬δ}.	From	this,	we	obtain	the
following	argument	trees	for	and	against	β	∧	δ,	where	Φ1	=	{α	↔	β,	¬α	∨	¬β	∨	¬γ,
γ	∧	δ}	and	Φ2	=	{β	∨	γ,	γ	→	β,	α	↔	β,	¬α	∨	¬β	∨	¬γ}.	

(p.67)	 Proposition	3.7.1

Let	 	be	an	argument	structure.	If	there	exists	an	argument	tree	in	 	that	has
exactly	one	node,	then	 	is	the	empty	set.	The	converse	is	untrue,	even	when
assuming	that	 	is	nonempty.

Example	3.7.3

Let	Δ	=	{α	∨	¬β,	β,	¬β}.	In	the	argument	structure	 	for	α,	we	have	that	 	is
the	empty	set	while	 	contains	an	argument	tree	that	has	more	than	one	node:

Example	3.7.3	illustrates	the	last	sentence	in	proposition	3.7.1.	If	Δ	is	augmented	with	α	∧
β,	for	instance,	then	 	is	such	that	 	contains	both	an	argument	tree	with	more	than
one	node	and	an	argument	tree	consisting	of	just	a	root	node.

⟨P,C⟩ P

C

P

⟨P,C⟩ C

P

⟨{α∨ ¬β,β},α⟩
↑

⟨{¬β},◇⟩

⟨P,C⟩ P
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Proposition	3.7.2

Let	 	be	an	argument	structure.	If	Δ	is	consistent,	then	each	argument	tree	in
	has	exactly	one	node	and	 	is	the	empty	set.	The	converse	is	untrue,	even	when

assuming	that	 	is	nonempty	and	that	each	formula	in	Δ	is	consistent.

The	last	sentence	in	the	statement	of	proposition	3.7.2	can	be	illustrated	by	the	following
counterexample.

Example	3.7.4

Let	Δ	=	{α,	β,	¬β}.	The	argument	structure	 	for	α	is	such	that	 	contains	a
single	argument	tree	consisting	of	just	the	root	node	below:

In	argument	structures,	 	and	 	are	symmetrical.	Any	property	enjoyed	by	one	has	a
counterpart,	which	is	a	property	enjoyed	by	the	other:	Both	are	the	same	property,	with	
	and	 	exchanged.	For	example,	we	have	the	result	similar	to	proposition	3.7.1	stating

that	if	there	exists	an	argument	tree	in	 	that	has	exactly	one	node,	then	 	is	the	empty
set.	Symmetry	goes	even	deeper,	inside	the	argument	trees	of	 	and	 .	This	is
exemplified	in	the	next	result.

Proposition	3.7.3

Let	〈[X1,	…,	Xn],	[Y1,	…,	Ym]〉	be	an	argument	structure.	For	any	i	and	any	j,	the
support	of	the	root	node	of	Yj	(resp.	Xi)	is	a	superset	of	the	support	of	a	canonical
undercut	for	the	root	node	of	Xi	(resp.	Yj).

Proposition	3.7.3	is	reminiscent	of	the	phenomenon	reported	in	corollary	3.3.1.

(p.68)	 Proposition	3.7.4

Let	 	be	an	argument	structure.	Then,	both	 	and	 	are	finite.

3.8	First-Order	Argumentation
In	many	situations,	it	is	apparent	that	there	is	a	need	to	support	first-order
argumentation.	As	an	example,	consider	a	senior	clinician	in	a	hospital	who	may	need	to
consider	the	pros	and	cons	of	a	new	drug	regime	in	order	to	decide	whether	to
incorporate	the	regime	as	part	of	hospital	policy:	This	could	be	expedited	by	considering
the	pros	and	cons	of	a	first-order	statement	formalizing	that	piece	of	policy.

As	another	example,	consider	an	information	systems	consultant	who	is	collating
requirements	from	users	within	an	organization.	Due	to	conflicts	between	requirements
from	different	users,	the	consultant	may	need	to	consider	arguments	for	and	against
particular	requirements	being	adopted	in	the	final	requirements	specification.	Towards

⟨P,C⟩
P C

P

⟨P,C⟩ P

⟨{α},α⟩

P C

P C

C P

P C

⟨P,C⟩ P C
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this	end,	first-order	statements	provide	a	format	for	readily	and	thoroughly	capturing
constraints	and	compromises.

It	is	important	to	notice	that	using	a	propositional	framework	to	encode	first-order
statements	leads	to	mishaps,	for	example,	when	attempting	to	mimic	∀x.α[x]	by	means	of
its	instances	α[t]	for	all	ground	elements	t	in	the	universe	of	discourse:	Due	to
circumstantial	properties,	it	may	happen	that,	whatever	t,	a	particular	argument	for	α[t]
can	be	found	but	there	is	no	guarantee	that	an	argument	for	∀x.α[x]	exists.	Here	is	an
example.	Consider	the	statements	“if	x	satisfies	p	and	q,	then	x	satisfies	r	or	s”	and	“if	x
satisfies	q	and	r	and	s,	then	x	satisfies	t.”	Clearly,	these	do	not	entail	the	statement	“if	x
satisfies	p,	then	x	satisfies	t.”	Assume	the	set	of	all	ground	terms	from	the	knowledgebase
is	{a,	b}.	The	obvious	idea	is	to	consider	∀x.α[x]	as	being	equivalent	with	both	instances
α[a]	and	α[b].	Unfortunately,	should	q(a)	and	r(a)	∨	s(a)	→	t(a)	be	incidentally	the	case	as
well	as	s(b)	and	p(b)	→	q(b)	∧	r(b),	then	“if	x	satisfies	p	then	x	satisfies	t”	would	be
regarded	as	argued	for!	The	moral	is	that	a	propositional	approach	here	cannot	be
substituted	for	a	first-order	one.	In	such	situations,	a	first-order	approach	cannot	be
dispensed	with.

To	address	this	need	for	first-order	argumentation,	we	generalize	our	proposal	from	the
propositional	case	to	the	first-order	case.	For	a	first-order	language	 ,	the	set	of
formulae	that	can	be	formed	is	given	by	the	usual	inductive	definitions	for	classical	logic:
Roman	symbols	p,	q,	…	denote	predicates,	Greek	symbols	α,	β,	…	denote	formulae.

All	the	definitions	for	argument,	counterargument,	rebuttal,	undercut,	maximally
conservative	undercut,	canonical	undercut,	and	argument	tree	(p.69)	 are	the	same	as
for	the	propositional	case,	except	that	we	assume	Δ	is	a	set	of	first-order	formulae	and
that	⊢	is	the	first-order	consequence	relation.	Given	that	this	migration	from	the
propositional	case	to	the	first-order	case	is	straightforward,	we	do	not	repeat	any	of	the
definitions,	but	instead	we	just	provide	some	examples	to	illustrate	the	use	of	these
definitions	in	the	first-order	case.

Example	3.8.1

Consider	the	following	knowledgebase:

Some	arguments	from	the	knowledgebase	are	listed	below:

Example	3.8.2

C

Δ= {∀x.(p(x) → q(x) ∨ r(r)),p(a),¬∀x.s(x),¬∃x.r(x),

   ¬∃x.(p(x) → q(x) ∨ r(x))}

⟨{p(a),∀x.(p(x) → q(x) ∨ r(x))},q(a) ∨ r(a)⟩
⟨{¬∀x.s(x)},¬∀x.s(x)⟩
⟨{¬∃x.r(x)},∀x.¬r(x)⟩
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Given	Δ	as	in	example	3.8.1,	the	first	argument	(below)	is	a	more	conservative
argument	than	the	second:

Example	3.8.3

Again,	Δ	is	as	in	example	3.8.1.	It	is	easy	to	find	an	undercut	for	the	argument
〈{p(a),	∀x.(p(x)	→	q(x)	∨	r(x))},	q(a)	∨	r(a)〉;	an	obvious	one	is	〈{¬∃x.(p(x)	→	q(x)	∨
r(x))},	¬∀x.(p(x)	→	q(x)	∨	r(x))〉.	Now,	there	is	another	one,	which	actually	is	more
conservative:	〈{¬∃x.(p(x)	→	q(x)	∨	r(x))},	¬(p(a)	∧	∀x.(p(x)	→	q(x)	∨	r(x)))〉.

Example	3.8.4

Given	an	appropriate	Δ	and	provided	the	conditions	for	definition	3.2.1	are	met,	we
have	the	general	cases	below:

Example	3.8.5

If	Δ	is	as	in	example	3.8.1,	a	maximally	conservative	undercut	for	the	first	argument
below	is	the	second	argument.

(p.70)	 Example	3.8.6

Let	Δ	be	as	in	example	3.8.1.	A	complete	argument	tree	for	q(a)	is	as	follows:

Example	3.8.7

⟨{p(a),∀x.(p(x) → q(x) ∨ r(x))},q(a) ∨ r(a)⟩

⟨{p(a),∀x.(p(x) → q(x) ∨ r(x)),¬∃x.r(x)},q(a)⟩

⟨{∀x.α[x]},α[a]⟩ is undercut by ⟨{¬∃x.α[x]},¬∀x.α[x]⟩
⟨{∀x.α[x]},α[a]⟩ is undercut by ⟨{∃x.¬α[x]},¬∀x.α[x]⟩

⟨{∀x.α[x]},α[a]⟩ is undercut by ⟨{¬α[b]},¬∀x.α[x]⟩
⟨{∀x.α[x]},α[a]⟩ is undercut by ⟨{¬α[c]},¬∀x.α[x]⟩

⟨{p(a),∀x.(p(x) → q(x) ∨ r(x))},q(a) ∨ r(a)⟩

⟨{¬∃x.(p(x) → q(x) ∨ r(x))},¬(p(a) ∧ ∀x.(p(x) → q(x) ∨ r(x)))⟩

⟨{p(a),∀x.(p(x) → q(x) ∨ r(x)),¬∃x.r(x)},q(a)⟩
↑

⟨{¬∃x.(p(x) → q(x) ∨ r(x))},◇⟩
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Let	Δ	=	{∀x.(p(x)	∧	q(x)),	∃x.¬(p(x)	∧	q(x)),	∀x.(r(x)	∧	¬p(x)),	∀x∀y.s(x,	y),	∀x.(s(x,
f(x))	→	¬r(x))}.	An	argument	tree	for	∀x.q(x)	is	as	follows:	

Thus,	as	in	the	propositional	case,	an	argument	tree	is	an	efficient	representation	of	the
counterarguments,	counter-counterarguments,	…,	in	the	first-order	case.

Proposition	3.8.1

Let	α	∈	ℒ.	If	Δ	is	finite,	there	are	a	finite	number	of	argument	trees	with	the	root
being	an	argument	with	consequent	α	that	can	be	formed	from	Δ,	and	each	of	these
trees	has	finite	branching	and	a	finite	depth.

From	these	examples,	and	result,	we	see	that	we	can	straightforwardly	use	our
framework	for	the	first-order	case.	All	the	results	we	have	presented	for	the
propositional	can	be	immediately	generalized	to	the	first-order	case.

We	finish	this	section	with	a	larger	example	of	first-order	reasoning.

Example	3.8.8

Consider	the	following	literals	concerning	a	country	called	Landia:

n1	ReportDate(Landia,	30May2000)
n2	Government(Landia,	unstable)
n3	Democracy(Landia,	strong)
n4	PublicSpending(Landia,	excessive)
n5	OilExport(Landia,	significant)
n6	OilPrice(Landia,	increasing)
n7	LastElection(Landia,	recent)
n8	Currency(Landia,	strong)

(p.71)	 Consider	also	the	following	general	knowledge	about	countries:
d1	∀X.Government(X,	unstable)	→	credit-risk(X)
d2	∀X.Democracy(X,	strong)	∧	LastElection(X,	recent)	→	¬Government(X,
unstable)
d3	∀X.PublicSpending(X,	excessive)	→	credit–risk(X)
d4	∀X.OilExport(X,	significant)	∧	OilPrice(X,	increasing)	→
¬PublicSpending(X,	excessive)
d5	∀X.Currency(X,	strong)	→	¬credit-risk(X)

Now	assume	the	knowledgebase	to	be	Δ	=	{n1,	…,	n8,	d1,	…,	d5}.	Note,	for	a
more	lucid	presentation,	we	use	the	labels	for	the	formulae	(rather	than	the
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formulae	themselves)	in	the	supports	of	the	arguments.	From	this,	we	obtain	the
following	argument	trees	for	and	against	the	inference	credit-risk(Landia).	

(p.72)	 Given	the	simple	nature	of	the	knowledgebase	in	the	above	example,	we	see	that
each	tree	is	a	different	arrangement	of	the	same	set	of	arguments.	However,	we	stress
that	each	tree	is	a	stand-alone	representation	of	the	set	of	arguments	from	a	particular
perspective	and	so	it	is	necessary	to	have	all	these	trees.

3.9	Discussion
In	this	chapter,	we	have	proposed	a	framework	for	modeling	argumentation.	The	key
features	of	this	framework	are	the	clarification	of	the	nature	of	arguments	and
counterarguments;	the	identification	of	canonical	undercuts,	which	we	argue	are	the	only
undercuts	that	we	need	to	take	into	account;	and	the	representation	of	argument	trees
and	argument	structures	that	provide	a	way	of	exhaustively	collating	arguments	and
counterarguments.

Distinct	but	logically	equivalent	supports	give	rise	to	different	canonical	undercuts	that	all
have	to	occur	in	a	complete	argument	tree	whose	root	node	is	attacked	by	these
supports.	The	reader	may	wonder	what	the	rationale	is	here,	as	in	the	following	case,



Logical Argumentation

Page 38 of 40

PRINTED FROM MIT PRESS SCHOLARSHIP ONLINE (www.mitpress.universitypressscholarship.com). (c) Copyright The MIT
Press, 2014. All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single
chapter of a monograph in MITSO for personal use (for details see http://www.mitpress.universitypressscholarship.com/page/privacy-
policy). Subscriber: North Carolina State Univ Libraries; date: 31 March 2014

where	A2,	…	,	A8	are	canonical	undercuts	of	A1:	

where

(p.73)	 There	are	so	many	(infinitely	many,	in	fact)	logically	equivalent	ways	to	refute	α	∨
β,	so	why	spell	out	many	counterarguments	that	are	so	close	to	one	another?	Here	is	an
explanation.	An	argument	tree	is	intended	to	be	exhaustive	in	recording	the	ways	the
argument	can	actually	be	challenged,	but	that	does	not	mean	that	the	argument	tree	lists
all	the	ways	suggested	by	classical	logic:	Remember	that	an	argument	must	have	a
subset	of	Δ	as	its	support.	And	Δ	is	not	closed	under	logical	equivalence!	Thus,	only	those
logically	equivalent	supports	that	are	explicitly	mentioned	by	means	of	Δ	give	rise	to
arguments	to	be	included	in	an	argument	tree.	That	makes	a	big	difference,	and	it	is
where	the	rationale	stands:	If	logically	equivalent	forms	have	been	explicitly	provided,	it
must	be	for	some	reason.	For	example,	the	above	tree	is	not	to	be	an	argument	tree
unless	there	were	some	good	reason	to	have	all	these	many	variants	of	{¬α,	¬β}	in	Δ.

If	the	argument	tree	is	used	for	presenting	the	arguments	and	counterarguments	to	a
user,	then	the	user	would	only	want	to	see	those	arguments	that	have	a	good	reason	to
be	there.	Redundant	arguments	are	unlikely	to	be	welcomed	by	the	user.	Should	an
argument	tree	eventually	to	be	used	when	doing	some	kind	of	evaluation	based	on
reinforcement,	distinct	albeit	logically	equivalent	evidence	may	prove	useful	(e.g.,	if	a
surgeon	has	two	distinct	arguments	for	undertaking	a	risky	operation,	these	arguments
would	reinforce	each	other),	whereas	statements	that	merely	happen	to	be	logically
equivalent	should	not	be	included	in	the	constellation.

Superficially,	an	argument	structure	could	be	viewed	as	an	argument	framework	in
Dung’s	system.	An	argument	in	an	argument	tree	could	be	viewed	as	an	argument	in	a

= ⟨{α∨ β},α∨ β⟩A1

= ⟨{¬α∧ ¬β},◇⟩A2

= ⟨{¬β ∧ ¬α},◇⟩A3

= ⟨{¬(β ↔ ¬α),α∧ β → ¬α∨ ¬β}◇⟩A4

= ⟨{¬α∨ ¬β,α ↔ β},◇⟩A5

= ⟨{α∨ β → ¬α∧ ¬β},◇⟩A6

= ⟨{¬α,¬β},◇⟩A7

= ⟨{¬(α∨ β)},◇⟩A8
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Dung	argument	framework,	and	each	arc	in	an	argument	tree	could	be	viewed	as	an
attack	relation.	However,	the	way	sets	of	arguments	are	compared	is	different.

Some	differences	between	Dung’s	approach	and	our	approach	can	be	seen	in	the
following	examples.

Example	3.9.1

Consider	a	set	of	arguments	{a1,	a2,	a3,	a4}	with	the	attack	relation	ℛ	such	that
a2ℛa1,	a3ℛa2,	a4ℛa3,	and	a1ℛa4.	Here	there	is	an	admissible	set	{a1,	a3}.	We	can
try	to	construct	an	argument	tree	with	a1	at	the	root.	As	a	counterpart	to	the
attack	relation,	we	regard	that	a1	is	undercut	by	a2,	a2	is	undercut	by	a3,	and	so
on.	However,	the	corresponding	sequence	of	nodes	a1,	a2,	a3,	a4,	a1	is	not	an
argument	tree	because	a1	occurs	twice	in	the	branch	(violating	condition	2	of
definition	3.5.1).	Thus,	the	form	of	the	argument	tree	for	a1	fails	to	represent	the
fact	that	a1	attacks	a4.

(p.74)	 Example	3.9.2

Let	Δ	=	{β,	β	→	α,	δ	∧	¬β,	¬δ	∧	¬β},	giving	the	following	argument	tree	for	α:	

For	this,	let	a1	be	〈{β,	β	→	α},	α〉,	a2	be	〈{δ	∧	¬β},	◇〉	and	a3	be	〈{¬δ	∧	¬β},	◇〉.
Disregarding	the	difference	between	the	occurrences	of	◇,	this	argument	tree	rewrites
as	a2ℛa1,	a3ℛa1,	a3ℛa2,	and	a2ℛa3,	where	a1	denotes	the	root	node	〈{β,	β	→	α},	α〉.	In
this	argument	tree,	each	defeater	of	the	root	node	is	defeated.	Yet	no	admissible	set	of
arguments	contains	a1.

Finally,	we	can	consider	capturing	a	class	of	arguments	that	fail	to	be	deductive.	In	other
words,	we	can	revisit	one	of	the	basic	assumptions	made	at	the	start	of	this	chapter.	For
this,	the	basic	principle	for	our	approach	still	applies:	An	argument	comes	with	a	claim,
which	relies	on	reasons	by	virtue	of	some	given	relationship	between	the	reasons	and
the	claim.	Thus,	arguments	can	still	be	represented	by	pairs,	but	the	relationship	is	no
longer	entailment	in	classical	logic;	it	is	a	binary	relation	of	some	kind	capturing	“tentative
proofs”	or	“proofs	using	nonstandard	modes	of	inference”	instead	of	logical	proofs.

This	relationship	can	be	taken	to	be	almost	whatever	pleases	you	provided	that	you	have
a	notion	of	consistency.	Observe	that	this	does	not	mean	that	you	need	any	second
element	of	a	pair	to	stand	for	“absurdity”:	You	simply	have	to	specify	a	subset	of	the
pairs	to	form	the	cases	of	inconsistency.	Similarly,	our	approach	is	not	necessarily
restricted	to	a	logical	language,	and	another	mode	of	representation	can	be	chosen.
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3.10	Bibliographic	Notes
This	chapter	is	based	on	a	particular	proposal	for	logic-based	argumentation	for	the
propositional	case	[BH00,	BH01]	and	generalized	to	the	first-order	case	[BH05].	We	have
compared	this	proposal	with	abstract	argumentation	and	shown	that	by	having	a	logic-
based	notion	of	argumentation,	we	can	have	a	much	deeper	understanding	of	the
individual	arguments	and	of	the	counterarguments	that	impact	on	each	argument.
Furthermore,	by	introducing	logical	knowledgebases,	we	can	automatically	(p.75)
construct	individual	arguments	and	constellations	of	arguments	and	counterarguments.

This	proposal	is	not	the	first	proposal	for	logic-based	argumentation.	However,	most
proposals	are	not	based	on	classical	logic.	Since	we	believe	that	understanding
argumentation	in	terms	of	classical	logic	is	an	ideal	starting	point	for	understanding	the
elements	of	argumentation,	we	have	focused	on	classical	logic.

In	comparison	with	the	previous	proposals	based	on	classical	logic	(e.g.,	[AC98,	Pol92]),
our	proposal	provides	a	much	more	detailed	analysis	of	counterarguments,	and	ours	is
the	first	proposal	to	consider	canonical	undercuts.	Canonical	undercuts	are	a	particularly
important	proposal	for	ensuring	that	all	the	relevant	undercuts	for	an	argument	are
presented,	thereby	ensuring	that	a	constellation	of	arguments	and	counterarguments	is
exhaustive,	and	yet	ensuring	that	redundant	arguments	are	avoided	from	this
presentation.

We	leave	a	more	detailed	comparison	with	other	proposals	for	logic-based	argumentation
(both	proposals	based	on	classical	logic	and	proposals	based	on	defeasible	logic)	until
chapter	8.	(p.76)


