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Abstract—Participatory sensing is now becoming more pop-
ular and has shown its great potential in various applications.
It was originally proposed to recruit ordinary citizens to collect
and share massive amounts of sensory data using their portable
smart devices. By attracting participants and paying rewards as
a return, incentive mechanisms play an important role to guar-
antee a stable scale of participants and to improve the accuracy/
coverage/timeliness of the sensing results. Along this direction, a
considerable amount of research activities have been conducted re-
cently, ranging from experimental studies to theoretical solutions
and practical applications, aiming at providing more comprehen-
sive incentive procedures and/or protecting benefits of different
system stakeholders. To this end, this paper surveys the literature
over the period of 2004–2014 from the state of the art of theoretical
frameworks, applications and system implementations, and exper-
imental studies of the incentive strategies used in participatory
sensing by providing up-to-date research in the literature. We
also point out future directions of incentive strategies used in
participatory sensing.

Index Terms—Participatory sensing, incentive schemes, survey.

I. INTRODUCTION

SMART devices, including smartphones, iPad, and tablets,
etc., are used not only as a means of communication

mobile devices of choice, but also as powerful sensing units
with a rich set of embedded sensors, such as accelerometer,
digital compass, gyroscope, GPS, microphone, camera, etc.
Collectively, these sensors are enabling a new type of appli-

Manuscript received June 16, 2014; revised November 11, 2014; accepted
December 28, 2014. Date of publication January 6, 2015; date of current
version May 19, 2015. This work was supported in part by the National
Natural Science Foundation of China under Grants 61370197, 61300179, and
61271041 and in part by the Doctorate Fund Projects of China under Grant
20130005110011. (Corresponding author: Chi Harold Liu.)

H. Gao is with the State Key Laboratory of Networking and Switching
Technology and the School of Software Engineering, Beijing University of
Posts and Telecommunications, Beijing 100876, China (e-mail: gaohui786@
bupt.edu.cn).

C. H. Liu and J. Zhao are with the School of Software, Beijing Institute of
Technology, Beijing 100081, China (e-mail: chiliu@bit.edu.cn).

W. Wang and Z. Song are with the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts and Telecommunications,
Beijing 100876, China (e-mail: wdwang@bupt.edu.cn).

X. Su is with the Research Institute of Information Technology, Tsinghua
University, Beijing 100084, China (e-mail: suxin@tsinghua.edu.cn).

J. Crowcroft is with the Computer Laboratory, University of Cambridge,
Cambridge CB2 1TN, U.K. (e-mail: jon.crowcroft@cl.cam.ac.uk).

K. K. Leung is with the Department of Electrical and Electronic Engineering
and the Department of Computing, Imperial College London, London SW7
2AZ, U.K. (e-mail: kin.leung@imperial.ac.uk).

Digital Object Identifier 10.1109/COMST.2014.2387836

cations that can recruit ordinary citizens to collect and share
sensory data, and ultimately give rise to a new area of research,
called “participatory sensing” [1]. By using these embedded
sensors, the ordinary citizens act as “participants” to sense
multi-dimensional data streams from the surrounding environ-
ment and share these streams using existing communication
infrastructure [2]. Participatory sensing has shown its great
potential in retrieving context-aware information across a wide
variety of application domains, such as healthcare, social net-
works, safety, environmental monitoring and transportation,
for academia, industry and government agencies. For exam-
ple, Yang et al. proposed an indoor localization scheme for
participatory sensing based systems, where any participants
could upload their location information to the server, and other
participants who were in the same place could download this
information for indoor positioning [3]. Massung et al. used
a participatory sensing system to support pro-environmental
community activism, where they implemented an application
to make participants undertake lightweight environmental data
collection jobs [4]. Mason et al. designed a system to allow
wild exploring participants to upload tiger photos with GPS
information in order to track wild tiger location [5].

The general system flow of a participatory sensing appli-
cation is shown in Fig. 1, where there are three categories of
main stakeholders, namely: (a) task publisher, (b) platform, and
(c) a crowd of participants. When a certain type of sensory data
is required, the task publisher publishes a corresponding sens-
ing task with the detailed quality-of-information (QoI) require-
ments to the platform, such as accuracy, granularity, timeliness,
and quantity, together with the amount of affordable rewards
to be paid to the participants. The platform then matches each
task (or subtasks if the task needs to be divided into parts, and
handled by multiple groups of different participants) with suit-
able participants. Following some basic negotiation processes
(which serves as a key part of the incentive mechanism, and
is the focus of this paper), the participants reach an agree-
ment with the platform on their expected amount of rewards.
After that, they collect sensory data, and upload them to the
platform.

Incentive mechanisms severing as key part of a system have
also been widely implemented in many other different areas.
Wang et al. modeled dynamics of incentive mechanisms in
autonomous networks [6]; Zhao et al. used incentive protocol
to encourage cooperation among end-nodes so as to deliver
a scalable and robust service in peer-to-peer networks [7];
Huang et al. provided incentives for individual users of an
ad hoc mobile network to cooperate with each other [8], etc.
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Fig. 1. The general system flow of participatory sensing, where task publishers publish sensing tasks through the platform to participants. Participants collect
sensory data, upload them to the platform, and receive rewards from task publishers through the platform.

Rewards are introduced into the participatory sensing system
because: (a) participating in a crowd-sensing task may incur
monetary costs, network bandwidth usage, and shortened bat-
tery life for mobile users, and thus rewards are used to offset and
encourage them to tolerate these costs and make contributions;
and (b) unlike traditional sensor networks where a sink node
has the complete control of all sensors’ behaviors, smart devices
are rather personal, and only the owner can decide when, where
and how to use it for participation. In this regard, rewards can
be used to somehow influence their decision, and thus help im-
prove the overall attained QoI of the collected data. Wang et al.
argued that without proper incentives, private provisioning of
public goods was always suboptimal [6]. Within a participatory
sensing system, two research challenges as stated in [9], are:
(a) how to recruit and retain more participants, and (b) how to
evaluate their contributions. The first challenge can be under-
stood from the participant’s perspective, i.e., that the role and
effectiveness of incentives for motivating people cannot fully be
measured unless their needs, goals and concerns are completely
understood [10]. That is, how to provide profitable, secure, and
fair sensing opportunities to maintain enough participants. The
second challenge is from the task publisher/platform’s end, as
different tasks need variable sensing duration and quality [11],
and thus how to provide higher quality sensory data by offering
the smallest amount of rewards is challenging.

To this end, this paper surveys the literature over the period
of 2004–2014 from the state-of-the-art of theoretical frame-
works, applications and system implementations, experimental
studies of the incentive strategies used in participatory sensing
by providing up-to-date research in the literature and future
research directions. The rest of this paper is organized as
follows. In Section II, we start from theoretical perspectives
by comparing existing strategies based on their purposes and
procedures. Second, different kinds of participatory sensing
applications and implementations are presented in Section III.
Third, we represent existing experimental studies for incentive
strategies in Section IV. Last, we discuss the way to provide

trustworthiness of sensing data in participatory sensing systems
and reputation schemes in Section V. Finally, after reviewing
the research challenges and discussing the open issues of these
strategies, we depict our vision on future research directions in
Section VI, and Section VII concludes the paper.

II. THEORETICAL FRAMEWORKS

In this section, we review 31 scientific publications related
to the theoretical frameworks of incentive strategies for par-
ticipate sensing, and discuss their generalities and differences,
as summarized in Tables II–IV. In these tables, their motiva-
tion, adopted incentive model, assumptions, inputs, objectives,
constraints and outputs of their constructed optimization objec-
tives, are extensively compared. We observe that the existing
theoretical frameworks can be divided into different categories
from different aspects.

• Considering different purposes to employ these incen-
tive strategies, the research in [12], [13], the user-centric
method in [14]–[19], IDF method in [20], and [21]–
[27] are all “user-centric” approaches that focus on how
to recruit more users and improve their motivation. In
contrast, the “platform-centric” method in [14], the ITF
method in [20], and schemes in [28]–[41] are “platform-
centric” approaches to mainly focus on how to improve
the information gain of the platform and reduce the overall
sensing cost.

• With regard to different incentive negotiation processes,
schemes in [12], [14], [16], [28], [29], [42]–[57] are all
“Price-Decision-First” approaches. That is, the reward
each participant will receive is decided before the sensory
data are uploaded, thus giving participants a choice as
whether or not to accept the incentive offer. In contrast,
schemes in [19], [20], [30], [31] are all “Data-Upload-
First” approaches, i.e., sensory data upload is done before
incentive decisions.
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Fig. 2. The work flow of Reverse Auction based Dynamic Price, where (a) was data sensed phase, (b) was price bad phase and (c) was participants selected
phase [12].

A. Different Optimization Goals

As stated above, considering different design goals, existing
incentive strategies can be divided into two categories: (a) user-
centric approaches focusing on how to recruit more users and
improve their motivation, and (b) platform-centric approaches
focusing on how to improve the information gain of the plat-
form and reduce the overall sensing costs.

1) User-Centric Approaches: Lee et al. introduced a
reversed-auction based incentive mechanism, called “RADP,”
where participants sent their incentive expectations to the
platform, and those with lowest expectations were chosen as
auction winners to carry on the sensing task [12]. The proposed
work flow was shown in Fig. 2, where task publisher first
sent the requirement to the platform, and then the platform
either sent the task to participants, or participants chose the
task from the platform [see Fig. 2(a)]. After, the participants
bade for selling their sensing data [see Fig. 2(b)]. Finally, the
platform selected the predefined number of participants with
lower bidding prices, and they received their bidding prices for
their sensing data as a reward, as shown in Fig. 2(c).

One drawback of using RADP is that participants who con-
tribute higher quality sensing data but cost more energy and
time may become starved frequently, because their bidding
prices are beyond the selection threshold. Therefore, these
users may stop participating the future tasks. To overcome this
problem, Lee et al. proposed a strategy where virtual credit
was given to those participants who lost in the previous reverse
auction a specific reward only for their participation [13]. The
only purpose of using this virtual participant credit (VPC) was
to maintain adequate number of participants by keeping price
competition and preventing them from dropping out of RADP.
When a participant i with VPC vi proposed his/her bidding
price oi to the platform, the previous would cut down his/her
bidding price to (oi − vi) which made his/her price cheaper,
and thus increased his/her winning probability. When he/she
won, what he/she could earn was oi and his/her vi would
become to 0. The authors called this “RADP-VPC” system.
However, in the proposed strategy, a participant could set an
extremely high bid price, and thus he/she would ultimately
be paid this high price by participating only once, which was
not fair for those participants with long-term relatively low
bidding prices.

The user-centric method proposed in [14], called “MSensing,”
extended RADP by introducing a better auction model for the
platform to guarantee participants’ benefits. The authors proved
that the basic reversed auction model failed to guarantee the
profits of auction winners whose price claims were truthfully
their sensing costs. Then, MSensing was proposed to solve the
problem by giving auction winners the highest bidding price
that could win the auction, instead of their own bidding prices.
However, as shown in Table II, MSensing specifically required
the task publisher to set the value of each piece of required
data as a prior, which might not be feasible for wide area data
collection, where the required data value of each sub-area could
vary significantly.

RADP and other auction based incentive mechanisms were
named “winner-take-all” in [15]. That was, the platform was
only interested in the best quality data with lowest price. The
winning participant took the entire prize and losers wasted their
energy but earned nothing. Thus the authors proposed a mecha-
nism named “Top-K Rule,” to have participants participate in a
pre-qualification stage. This stage filtered participants based on
the idealized production qualities they could produce, and then
it ran a contest with only those participants deemed to provide
high production qualities. In the beginning, each participant i
submitted a bidding pair (θi, Ei) indicating its expertise type θi
and the amount of effort Ei it could devote during the contest.
Here, αi(= Eiθi) denoted the ranked idealized quality, which
could also be viewed as participant i’s cost. Bidders with top-K
qualities were selected for the contest. The selected participants
paid an entry fee for participation, and then they used their data
for bidding and the platform selected the winner and rewarded
him/her.

Another extension came from [16], which guided partici-
pants to figure out their most profitable bidding prices and
participating levels, e.g., by submitting different numbers of
data samples or different types of data. The proposed strategy
involved a Bayesian game [58] in the phase of a participant’s
bidding price decision, with the costs of his/her competitors
as inputs. Table II illustrated the details. Although its nature
conformed to the market economy law of supply and demand,
knowing other participants’ cost was unlikely to be possible
when all participants were moving around and one’s competi-
tors were always changing.
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Fig. 3. Attributes affecting the utility function, where price was not the only decision element [18].

Duan et al. explored a user-centric incentive scheme, where
a task publisher published a task successfully, only if it could
recruit enough participants under budget constraint [17]. They
proposed an incentive mechanism for two types of applications,
namely: data acquisition (DA) and distributed computing (DC)
applications. The authors argued that the platform could attract
enough participants under a minimum reward, if it knew the
cost of them; also, the participants could earn more, if they sold
their privacy information to the platform.

Krontiris et al. argued that the traditional reverse auction did
not consider that sensing data was actually of different qualities
[18]. Therefore, it was unfair for participants when the platform
only considered their bidding prices but fully ignored the data
quality. The authors then proposed a multi-attributive auction
(MAA) that considered many attributes (see Fig. 3 for details)
of the sensing data, to help the platform select the highest
quality data and give participants the incentive through price
negotiation. A utility function was also proposed where each
relevant attribute could be valued and what participants bade
was not only its own price, but also the weighted sum of all
these considered data attributes, as:

S(x) =

n∑

i=1

wiS(xi), (1)

where
∑n

i=1 wi = 1, wi is the weight factor, n is the number of
relevant attributes decided by the system operator, and S(xi)
denotes each valued attribute. The larger S(x) is, the more
chance the participant would be selected.

Lv et al. mainly focused on how to encourage existing par-
ticipants to recruit more participants in [19]. In their proposal,
the obtained incentive was both decided by the contribution of
his/her uploaded data, and the contribution of those participants
he/she managed to solicit. The insight was to give more rewards
to those who had solicited more participants, by taking away
rewards that ought to be given to those who failed to solicit
enough participants. This strategy was helpful to recruit new
participants. However, the payment to later-recruited partici-
pants might be insufficient to cover their sensing costs, and thus
they might leave the future tasks.

Lou et al. proposed the IDF method which first studied
the fairness of incentive distributions among participants in

a specific scenario, where data contributors were also data
consumers [20]. The fairness was reflected on the relation-
ship between each participant’s data contribution and his/her
received service quota for future data consumptions. As shown
in Table II, an optimization problem was formulated to achieve
the maximum fairness, measured by the Jain’s index [59] for all
participants. However, this work did not further explore how to
most fairly evaluated the data contribution of all participants.

An auction scheme was designed by [60] and [61], where
their proposed process was that the platform rejected the first
batch of bidders and used their samples to weight the quality
of the rest of bidders’ data. Zhang et al. called this auction
scheme, as “Threshold-based Auction (TBA)” [21]. In it, the
first batch of participants was used to compute a price threshold,
and then other participants whose price was lower than this
threshold would be chosen. Although TBA maximized the
platform’ utility, it had a shortcoming that the first batch of
bidders had no chance to be selected. Thus, the authors further
designed a Truthful Online Incentive Mechanism (TOIM), and
a Truthful Online incentives Mechanism for arrival-departure
(TOIM-AD). Different from TBA, these two mechanisms took
the first batch of participants into considerations. After com-
puting the price threshold, they selected participants from the
first patch to the last one. The difference between TOIM
and TOIM-AD was that TOIM-AD considered the participants
who had won the bidding but did not leave the task. There-
fore, the platform would reject these participants before every
bidding began.

Similar to [21], Zhao et al. overcame the shortcoming of [60],
[61] that hurt the participants’ motivation [22]. They proposed
a multi-stage sampling-accepting process which divided a task
into some small ones. In every small task, participants could
be rewarded based on their bidding prices and data quality. The
latter small tasks could weight data quality by using the samples
of the former one. Compared with [21], the authors in this paper
also divided a task into small ones but with different long time
slices and different amount of affordable task budget. In a new
time slice, a new price threshold would be computed based on
the price of former time slice.

Zhang et al. proposed a reputation-based incentive mecha-
nism, where a participant with high reputation could always
receive services from others upon requests, while participants
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TABLE I
DIFFERENT FAIRNESS USAGE

with low reputations got served only when he/she requested
services from others [23]. In this paper, a threshold H was
introduced to define high reputation and low reputation, and a
“social rule” was defined based on H to calculate their repu-
tation scores. A participant acted both as a platform (sending
information) and a publisher (requesting information), but here
the platform did not have any utility at all. More details about
employing reputation schemes in participatory sensing, and
incentives in particular will be discussed in Section V.

In order to use incentive schemes to attract more participants,
Cheng et al. widened the scope of incentives from device/user
level to the group level [24]. That was, participants were
organized into a team to do a sensing task and share incentive
rewards. No matter who finished the task, what he/she earned as
rewards could be consumed by others in the same group. Since
the sensing data was collected by a team of participants, the
amount of credits actually belonged to the whole team, but not
the individual user.

Tsujimori et al. argued that sometimes participants could
not sense data of the exact place, or point of interest (POI)
[25]. To overcome this problem, they proposed three thresholds,
distance threshold, time threshold and reward threshold. The
values of these three thresholds were all set by the platform. If
the distance between a participant’s sensing position and POI
was not longer than the distance threshold, the participant used
a longer sensing time than the time threshold, and more rewards
were given than the reward threshold. In this way, this piece of
sensing data was available. Therefore, how much a participant
would be rewarded highly depended on the sensing time, i.e.,
the longer the sensing time was, the more reward he/she could
earn, but between a maximum/minimum bound.

Wang et al. optimized SenseUtil [62] where a distance
threshold was introduced, i.e., only the participant whose dis-
tance from the POI was shorter than the threshold could take
the sensing task [26]. This method could avoid unnecessary
energy and bandwidth consumption on both the platform and
participant sides.

To maintain as many participants as possible, Sun et al. pro-
posed an incentive scheme to stimulate participants to cooperate
in participatory sensing systems [27]. That was, even a partic-
ipant was not selected, he/she still had chance to be rewarded.
The platform decided whether subsidies were distributed or
not, according to his/her cooperation behavior at the end of
a sensing period where the system divided the entire sensing
time into small intervals. The authors proposed the concept of
“social state” for the participant to decide whether he/she had
participated in sensing data. They also proposed a concept of
“whittle indexability” [63] to quantify this social state. After
every time a piece of sensing data was uploaded, the platform
would update the participants’ social state table.

From the above analysis, we observe that a few types of
different methods to implement “user-centric” approaches. One
is to integrate the fairness aspect thought into the designed
incentive mechanism to improve participants’ motivation. In
this regard, we have surveyed five fairness related papers as
shown in Section II-A1. As shown in Table I, consider differ-
ent purposes, these research outputs can be divided into two
categories: (a) fairness is employed in incentive mechanisms in
order to provide participants an opportunity to be selected; and
(b) fairness is employed in incentive mechanisms in order to
provide them a fair reward. Compared with RADP that rejected
the participant who asked a high reward [12], participants in
RADP-VPC incentive systems had a chance to be selected
[13]. Similar to the auction scheme designed by [60] and [61]
rejected the first batch of bidders who did not have a chance to
be paid, Zhang et al. in [21] and Zhao et al. in [22] proposed
their own solutions to consider these first batch of bidders to
overcome this unfairness problem. The work of Krontiris et al.
and Luo et al. aimed to give a participant a fair reward, which
meant that what a participant could gain was equal to what
he/she has been paid. Specifically, Krontiris et al. proposed
MAA that weighted sensing data quality from different at-
tributions, such as sensing time, location accuracy, sampling
frequency, etc., to make sure that the participant in this system
could be given a fair reward [18]. Lou et al. proposed that a
participant’s contribution level was equal to his/her demand in
a participatory sensing system [20].

2) Platform-Centric Approaches: GBMC [28] and ISAM
[29] extended RADP from the aspect of using different opti-
mization objective functions, aiming to achieve most accurate
sensing result. Specifically, the goal of RADP was to achieve
maximum data amount, while GBMC aimed to achieve maxi-
mum coverage and thus improve the quality of sensing results,
and ISAM aimed to achieve maximum information gain, or
minimum error between the exact average and the average
estimated from samplings, as:

RADP : max 1/ci,

GBMC : maxW ′
i/ci,

ISAM : max di/ci = minE (y′i − yi)
2
/ci, (2)

where di, ci denote the contributed data and required payment
of each user i, W ′

i is the sensing coverage gain of i, and y′i, yi
are the estimated average and the exact average, respectively.
Compared with RADP, GBMC and ISAM not only purchased
data from the lowest seller, but also considered their spatial
distribution. The idea of using incentive strategy to satisfy the
coverage requirement is also studied in [64].
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TABLE II
COMPARISON OF DIFFERENT INCENTIVE STRATEGIES FOR PARTICIPATORY SENSING (PART 1)

Yang et al. proposed a platform-centric model for the task
publisher to plan his/her most profitable incentive budget [14].
The incentive negotiation procedure was modeled as a
Stackelberg game [65]. In it, the platform was the leader and
decided payment to each participant, while the participants
could only tailor their actions to the platform. All participants
were assumed to be absolutely rational, and could dynamically
adjust their bidding prices according to the given incentive
budget and costs of other participants to maximize their profits.
However, this model required heavy computational procedures
on participants’ resource-constrained smart devices, and it also
required that the platform knew the actual sensing cost of all
participants, as summarized in Table II.

Lou et al. proposed an ITF method, aiming at maximizing
the total amount of data collection and their quality [20].
In their proposal, a participant’s sensing data was uploaded
without an explicit incentive negotiation phase, thus giving
the platform more privilege to allocate user payment. The
platform encouraged participants to provide more sensing data
by introducing a more competitive incentive distribution strat-
egy. That was, extra rewards were given to participants with
more contributions. However, similar to [19], the payment to
some participants could be insufficient to prevent them from
continuing to participate in future tasks.

“Peer Truth Serum” approaches in [30] and [31] both con-
sidered the trustworthiness of participants’ uploaded data. They
assumed that some collected data may be untruthful, and it used
the truthful data from each participant to evaluate its improve-
ment to the overall measurement accuracy, without explicitly
knowing the accuracy of each user’s data. Then, this contribu-
tion was used to decide their incentive payment from a limited

budget. Later, Zhang et al. in their paper first formulated this
exchange procedure as a two-side market, where task publishers
and participants were matched by the platform and played gift-
giving games repeatedly [31]. Task publishers paid a participant
according to his/her historical reputation, and updated their
reputation after this task. The idea was that, a participant with
high reputation could provide high quality sensing data for task
publishers, and thus they would receive more rewards. Along
this line, in [31], an optimal and sustainable strategy was also
proposed, to achieve the highest social welfare for the platform.
We specifically mention this paper simply because it clearly
separated participants from the central platform, which were
tightly coupled in most other papers.

A consensus prediction payment rule for truthful reporting
was proposed in [32]. The consensus task was that it had
a correct answer and many participants were able to share
assessments about this correct answer. This payment rule re-
warded a participant based on how well his/her report could
predict the consensus of other participants. That was, if a
participant’s report was much different from others’, he/she was
considered not sending truthful report and in turn would receive
low incentive payment. A Bayesian-Nash equilibrium [66] was
used to implement the consensus prediction payment rule. Let
βi: Σ−i → Σi denotes player i’s best-reply correspondence in
terms of strategies:

βi(σ−i)={σi∈Σi| ∀ti∈T−i : σi(ti)∈ϕi(ti;σ−i)} , (3)

where N denotes the set of players, i denotes a player, Ti

denotes the set of types of player i, ti denotes a type of player i,
Σi denotes the set of strategies for player i, Σ :=

∏
i∈N Σi

denotes the set of strategy profiles, σ denotes a strategy profile,



924 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

TABLE III
COMPARISON OF DIFFERENT INCENTIVE STRATEGIES FOR PARTICIPATORY SENSING (PART 2)

TABLE IV
COMPARISON OF DIFFERENT INCENTIVE STRATEGIES FOR PARTICIPATORY SENSING (PART 3)

σi denotes a strategy profile of i, ϕi(ti;σ−i) denotes the set of
actions for i that maximized payoff, σ−i denotes the strategy
profile of the other players except i, a strategy profile σ ∈ Σ,
∀ i ∈ N and ti ∈ Ti, σi(ti) ∈ ϕi(ti;σ−i).

Luo et al. aimed at maximizing the received contribution and
profit for the platform [33]. They designed an incentive scheme

to reward participants who made the highest contribution. They
argued that since all participants contributed their data, and thus
all of them should be paid some monetary reward as incentives
to offset their sensing cost, and kept them contributing in future
tasks. The authors called this scheme as the “all-pay auction”
scheme.
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Fig. 4. The scenario of relaying work flow proposed in [35].

Low power radio technologies (e.g., Bluetooth [67], ZigBee
[68], etc.) were used to deliver sensing data [34]. Before the
data was uploaded, they introduced a “bargaining” procedure.
Suppose participants i and j were selfish and wanted to earn
more rewards, based on the probability of delivering the data to
the platform successfully, i and j weighted all of his/her data
each other and exchanged the data lists to understand what data
i did not have but j had. With each other’s list, participants
i and j exchanged their equal weight data from high to low by
using a greedy algorithm. After exchanging, the expected credit
reward Ri(r), was used by participant i to anticipate the reward
of trading message type r with j, and was calculated as:

Rk(r) = Ak(r)× Pk(r) i, j ∈ k, (4)

where Ak(r) denotes participant k’s message appraisal and
indicated the probability that only he/she can deliver this mes-
sage to the platform. The initial message appraisal is set to 1.
Pk(r) denotes the probability of participant k to first meet the
platform.

Similar to [34], Chou et al. focused on the how to guarantee
the successful delivery (see Fig. 4) of the sensing data to
the platform [35]. But different from [34] where participants
could exchange more than one piece, the authors in this paper
proposed that every participant only could deliver one piece of
data at a time. Therefore, in order to help participants choosing
which piece of data to deliver, they designed a greed algorithm
where a relaying participant would choose the most credits data
to relay. As shown in Fig. 4, the source node will earn C ∗ ξ,
the relay A will earn C ∗ (1− ξ) ∗ ξ, and the relay B will earn
C ∗ (1− ξ) ∗ (1− ξ), where C denotes the amount of credits
and ξ ∈ [0, 1] denotes a fixed commission rate. The platform
will then update participant A and B’s incentive accounts after
it receives their uploaded data.

Goel et al. designed a mechanism called “TM-Uniform,”
based on budget constraint and certain personal skill require-
ment [36]. When a task publisher published a task requiring
certain skills, TM-Uniform assigned it only to those partic-
ipants who had the needed expertise, while ensuring budget
feasibility and achieving near-optimal utility for the publisher.
In their proposal, a bipartite graph G(P, T ) was used, where P
was a pool of participants and T was a set of heterogeneous

tasks. The edge e = (p, t) indicated that a participant p ∈ P
could do task t ∈ T . The participants’ rewards depended on the
utility u of a task (u denoted a requester paid for a task, such as
money, etc.), their sensing cost cp, and requester achievement
ut (what a requester could gain, such as quality of sensing data,
etc.). Every task in this mechanism had different payments. The
proposed mechanism could assign the task, that had the highest
payment among all available tasks, to a participant.

Similar to [36], Difallah et al. also proposed a scheme where
a specific task should be done by only skilled participants
[37]. Both works send tasks to participants directly, and they
recorded participants’ interests and skills. Different from [36],
[37] proposed an incentive approach based on to what degree
the participants matched the specific task, computed as:

r(hi, wj) =
B ∗M(wj , hi)∑

k,l M(wk, hl)
, (5)

where j ∈ k, i ∈ l. hi = {ti, di, Ai, Ci}. ti denotes the textual
description, e.g., the task instruction provided to the partici-
pants; di denotes a data field that is used to provide the context
for the task to the user, e.g., the container for an image to
be labeled; and optionally, the set of candidate answers are
denoted by Ai = {a1, . . . , an}, for the choice tasks (e.g., a
list of music genres used to categorize a singer) and a list of
target Facebook categories Ci = {c1, . . . , cn} where Facebook
is used to find specific participants. wj = {P, T} is the assigned
digit indicating its ranking of the task hi, where P is a set of
participants’ interests, and Ti = {t1, . . . , tn} is a set of tasks
previously completed by wi. This score is determined based
on the likelihood of matching wj to hi. B is the budget. Thus,
the goal is to define a scoring function M(wj , hi) based on
the participant profile. Compared with [36], [37] did not take
participants’ sensing cost into consideration.

Khazankin et al. aimed to recruit enough participants to
finish a task before deadline with proper amount of reward in
their proposal, participants could “book” a task whose assumed
rewards and allotted sensing time was attractive to them [38].
The authors aimed to find a most beneficial trade-off between
rewards, expected booking times, and allotted sensing time for
a task. Although the expenses could be reduced by setting lower
rewards, if the reward was too small, a task might not be booked
for a long period of time, and gradually it was less likely that a
participant decided to take an urgent task for a regular reward.
Toward this end, they argued that rewards should be considered
not only as the usual “market prices” of the respective tasks,
but also sometimes could be increased to strengthen the com-
petition among participants and shorten the booking time.

Gao et al. proposed a participant training mechanism to gain
high quality sensing data by using low budget of micro-tasks
[39]. If a participant was sending acceptable data, he/she would
be rewarded, but if low quality sensing data was received,
he/she would be assigned to train tasks in the “training state.”
Participants in training state should pass the evaluation first
before they could enter the “working state” to earn reward. The
task publisher maintained certain criteria on whether or not a
sensing data should be accepted. When a new participant came,
the task publisher could also decide whether he/she started at
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training or working state, and how many of them were in the
training state. A game theory was employed in their proposal,
where the quality of sensing data would affect not only a
participant’s immediate utility, but also his/her future utility.
Therefore, the authors assumed that participants were happy to
take some training.

Different from all the above solutions, Scekic et al. focused
on offering system designer a methodology to select the right
incentive mechanism [40]. As the model and simulation param-
eters could be changed dynamically, it allowed quick testing
of different incentive setups and behavioral responses at a
low cost. If an incentive mechanism was chosen, it could be
deployed on the used participatory sensing system. To choose
an efficient incentive mechanism, both the participants and pub-
lisher should be taken into consideration. From the participants’
side, the authors proposed to consider the participant’s personal
characteristics (e.g., accuracy, speed, experience), authority’s
perception of the participant’s past interactions with the system,
and the set of the participant’s promised rewards or punish-
ments. From the task publisher’s side, the purpose of either to
achieve higher quality sensing data, or to lower the incurred
sensing cost should be fully investigated.

Finally, Rula et al. designed an interesting approach that
exerted limited control over the spatial and temporal move-
ments of participants [41]. They used the built-in incentives
of location-based gaming (such as social networking games
like “Foursquare”1 and “Gowalla”2) and social applications to
control their movement or obtain their location information.

3) Comparison: The above analysis implies that designing
a good incentive strategy is inherently closely related to how to
evaluate participants’ contributions, recruit enough participants
in a sensing task and make the platform gain sensing data.
The proposal in [12], [13], user-centric method in [14], and
[15], [16], [21], [22], [28], [33] are all using auction or reverse
auction to recruit more participants. But there are still some
differences between them. For example, Lee et al. in [12]
suggested that rewards should give to participants who kept
participating the auction, and/or recruited new members to join
the sensing task; and they further suggested that contributing
more data was worth rewarding. [13], [14] and [16] extended
RADP to focus on solving the problem that high price par-
ticipants might not be selected fairly. Xu et al. in [15] and
Lou et al. in [33] both protected participants from leaving the
participatory sensing system; however their proposed methods
were different. The authors in [15] proposed a participants-
selected-first method in which participants would be selected
before sensing data was uploaded, whereas [33] proposed
“all-pay auction” in which all participants would be paid in
order to keep participants in the system. [21], [22] extended
the auction model in [60] and [61] to overcome the problem
of using a first batch of participants’ sensing data to weight
the quality of the rest of bidders’ data. To help the platform
gain sensing data with satisfactory quality, Jaimes et al. in [28]
suggested that participants whose contributed data could extend
the coverage should be paid more. [17], [19], [24], [27] focused

1foursquare.com
2gowalla.com

on recruiting more participants. [17] and [24] were group-based
recruitment systems. The authors in [18], [20] evaluated the
participants’ contribution, and the authors in [29]–[31] focused
on data trustworthiness and accuracy. Kamar et al. in [32] used
other participants’ sensing data to predict whether a particular
participant’s data was true or not. [34]–[37] and [39]–[41]
focused on how the platform successfully received the sensing
data from network communication perspectives.

On the other hand, the platform or a participant can maximize
his/her own profit by knowing the sensing costs of other partic-
ipants [14], [16]. Nevertheless, this may impair the profits of
the majority of participants, and ultimately causes system per-
formance degradation. Therefore, the allocated reward should
not be decided by randomly generated bid prices, but by the
intrinsic value of their contributed data.

In order to reasonably evaluate the “value” of a piece of
contributed data, one should explicitly consider and leverage
the market economy law of supply and demand. Specifically,
in a considered participatory sensing system, “supply” can be
the number of available participants in a specific region, and
average acceptable price of all users; and “demand” can be
explained as the expected gain by collecting data in an area to
the overall sensing quality. Then, if we allow infinite rounds
of negotiations between participants and task publisher, they
should reach an equilibrium, that reveals the true value of
collected data, in terms of the amount of rewards the platform
should pay to each participant.

B. Different Incentive Negotiation Procedures

As mentioned earlier, considering different procedures to
employ the incentive strategies, there are two categories:
(a) negotiating rewards before the sensing data is uploaded, and
(b) deciding rewards after the data is uploaded. Fig. 5 shows
this difference.

1) Price-Decision-First: As mentioned in [12], the authors
used a “fixed-price” based incentive mechanism for experi-
ments, where the platform offered participants fixed prices for
their uploaded data. The limitation was that users did not rely
on the platform’s real-time feedback on the achieved sensing
quality to take further samples, and thus there was redundant
data due to overlapping sensing area by different users. The
authors also argued that some participants were willing to
accept lower price offers, and thus providing fixed price to all
participants was not the most efficient solution.

Based on this observation, the “auction-based” incentive
strategy was also introduced in [12]. Its basic idea was that
all participants sent their expectations and other relevant infor-
mation, such as location and sensing capabilities (e.g., ranges),
to the platform. The platform then compared all participants’
expectations and sensing capabilities, and chose some auction
winners to purchase their data.

The auction-based incentive method is believed to be capable
of reducing the sensing cost of the platform and improving the
quality of sensing results, and thus it is becoming the major
category of adopted methods within the “Price-Decision-First”
incentive procedure. The “user-centric” model in [14]–[16],
[18], [21], [22], GBMC [28], ISAM [29] are all representative
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Fig. 5. Two types of incentive negotiation procedures.

examples. However, all of the auction-based methods are built
on a complicated theoretical basis and further introduce com-
munication overheads to participants’ devices, and thus might
cause heavy burdens for participants and inefficient use of
network bandwidth. Moreover, some methods, such as RADP
[12], are highly competitive to participants who have to cut
down and/or keep their bidding price low enough to be selected,
which may eventually result in participant’s dropping out who
have not been selected for long period of time. Therefore,
task publishers might need to pay extra rewards to prevent
participants from doing so.

2) Data-Upload-First: In the data-upload-first procedure
[19], [20], [30], [31], and [49]–[57] in Section III, participants
are not aware of how much incentive they will receive at the
time they upload the sensory data. The platform then decides
each participant’s incentive rewards according to their contri-
butions. The main difference is how these contributions are
measured, as described in Section II-A in detail.

3) Comparison: From the platform’s perspective, the Data-
Upload-First procedure is fairer than the Price-Decision-First
procedure, since each participant’s contribution is measured
not according to their collection cost, but the data’s benefit to
the sensing result. However, participants may disagree since
they have spent equal cost in data sampling and uploading, but
eventually receive different payment. Participants may drop out
of the task due to this unfairness, which ultimately reduces the
quality of data collection. Considering that the major advantage
of participatory sensing systems comes from the vast number of
participants collectively as a crowd, we believe that the “Price-
Decision-First” incentive procedure is more suitable for general
participatory sensing systems, while the “Data-Upload-First”
incentive procedure can be more suitable for some specific
scenarios, e.g., in [20] participants were both data contributors
and consumers.

Furthermore, the auction-based approaches in the “Price-
Decision-First” procedure can cause extra burdens to resource-
constrained smart devices, and thus the fixed pricing can be a

good alternative in practice. A possible extension is to allow the
platform to provide dynamic price offers to participants in real-
time according to the spatiotemporal distribution, accuracy and
quantity of the supplied data.

C. Privacy-Aware Approaches

Current participatory sensing applications mainly focus on
the collection of data on a large scale but forget that the
sensing data possibly includes participant’s private information
[75]. When participants in a participatory sensing campaign
contribute their data, the gathered sensory readings may reveal
sensitive information of the participants to others. In addition
to the spatio-temporal annotations based on WiFi, cellular
network based triangulation, or similar as Sen et al. whose
system needed participants’ GPS location traces as sensing
data information, the locations visited by participants could be
inferred from, e.g., pictures and video clips [76]. Christin et al.
conducted a survey with 200 anonymous participants to analyze
the impact of demographics, incentives and gathering condi-
tions on both the importance and value of privacy [77]. In their
survey, the participants’ average rating on the importance of
privacy was 5.82 on a scale from 1 (not important) to 7 (very
important). This confirms that privacy was an important issue
for users. Regarding the incentives, 41% of participants would
contribute their information for free, 27% expected a monetary
reward, 22% would like to access additional data, and 14%
of them expected additional application features. Furthermore,
18% would be interested in receiving coupons, while 6% would
like to be motivated by giving a higher reputation, e.g., giving
“stars” within the community. This indicates that incentive
mechanisms are very important in privacy-aware participatory
sensing systems. Although this survey finds out what kind of
incentive participants may prefer, it may not be always the
ease since using what kind of incentives also depends on the
considered participatory sensing application. Applications for
participatory sensing is extensively reviewed in Section III.
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Fig. 6. The mainstream structure of privacy-aware system.

TABLE V
DIFFERENT INCENTIVE EXPERIMENTS FOR PARTICIPATORY SENSING

One method to preserve user privacy is to use pseudonym
to replace a participant’s real identity, but one have to solve
a side effect: how to add new incentive scores to the right
participants, since they are anonymous. Therefore, how to
ensure the correctness of the employed incentive mechanism
is a challenge. The general work flow and system structure
of privacy-aware participatory sensing systems is shown in
Fig. 6. Application center (AC) receives data from participants
and evaluates their quality. Trusted third party (TTP) sends
encryption and decryption codes to participants and AC for
privacy protection. Incentive scores are recorded either by AC
or TTP, depending on different design goals. This TTP-based
method is used in [69]–[71] and [73]. There are also some
systems that do not contain TTP. For example in [73], the
authors propose a TTP-free scheme, and the similar case is
described in [74]. A detailed description is discussed as follows,
and we summarize and compare them in Table V.

Zhang et al. proposed a pseudonym, encryption function to
protect user privacy and incentive [69]. They used an one-way
hash function and symmetric key algorithm to implement the
system encryption. One-way hash function was an algorithm
that took an arbitrary block of data and returned a fixed-size bit
string. Symmetric key algorithm used the same cryptographic
keys for both encryption of plaintext and decryption of cipher-
text. The participant used his/her cloaked pseudonym h(mi) to
send data, where mi denoted pseudonym and h(·) denoted the
one way hash function. AC received sensing data and resent the
information with rewards and h(mi) to the participant. When
he/she expected to gain rewards from the TTP, he/she must show
the pseudonym mi to TTP. As mi was cloaked when being sent,
malicious users could not obtain the participant’s mi, and thus
the scheme protected participants’ rewards from being stolen.

IncogniSense utilized periodic pseudonyms generated by
using blind signature, and relied on reputation transfer between
these pseudonyms [70]. In their proposal, there existed an
application server (AS, acts as AC), and a reputation and
pseudonym manager (RPM, acts as TTP) in the system. In the
beginning, each participant picked a new pseudonym for each
time period, which was used to report sensory readings to AC. It
evaluated the sensing data and sent rewards of the participant to
TTP. Before the next period started, the user transferred his/her
current pseudonym to his/her next pseudonym, and transferred
the incentive scores with next pseudonym and incentive tokens
to prevent corruption. The TTP maintained a list of participants’
presented pseudonyms along with their validity interval. It was
protected against unauthorized access by using standard cryp-
tographic primitives, and participants did not directly access
their incentive accounts. Toward this end, a malicious user
could not attempt to generate multiple pseudonyms to increase
their incentive scores for a given interval, nor attempted to
alter the incentive scores. Similar to [69], it deposited incen-
tive scores in TTP, and generated pseudonym based on blind
signature which was used in [73]. However, different from [73]
that generated a mobile node’s pseudonym just once, in [70]
mobile nodes had to transfer their pseudonym after a period
and their incentive scores needed to be added to their new
accounts.

Similar to [69] and [70], Huang et al. also used pseudonyms
to protect participants’ privacy [71]. However different from
the two, the TTP in [71] would anonymize a participant’s
time and location information before the participant was about
to send the sensing data to AC, and resent it back with re-
trieved incentive scores that he/she earned before. This could
protect a user’s privacy from been stolen by malicious users.
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The AC used a function to compute a participant’s incentive
scores as:

r = expb exp
c×
(∑t

t′=1
λt−t′×R

t′
)
, (6)

where b and c control the growth rate of the r function with
range between 0 and 1; t denotes the sensing time, t′ denotes
the anonymous time, and Rt′ denotes the rating to what degree a
participant cooperates the AC. Designers cloaked users’ tempo-
ral and spatial information for further preserving their privacy
and protecting malicious users from identifying these pieces of
information.

Sun et al. used TTP to select participants [72]. Platform
employed the price-considered auction to deploy its incentive
mechanism, where whether a participant would be selected or
not highly depended on his/her bidding price and what sub-
task he/she took, that might leak his/her privacy information.
In their proposal, bidding price and the type of sub-tasks was
encrypted, and further signed by participants, before sending to
the platform while being forwarded to the auction issuer (AI) to
participate the incentive auction. If a participant was eventually
chosen after the auction, he/she would send the information via
the AI and then rewarded by the platform.

A system solution that when a requester sent a task to
the AC, a participant would take the task if he/she wished
to was proposed in [73]. The participant generated a random
pseudonym to communicate with AC as a part of the privacy
preservation process. The sensing data with a new, different
pseudonym was then sent to the AC, which later paid a certain
number of pseudo-credits to the reporting participant. The
reason why AC used pseudo-credits was that it did not exactly
know the real identity of the participant, and thus the AC
updated the participant’s credit accounts when he/she sent the
pseudo-credits in a random time spot with his/her real identity.
TTP in this system acted as a secret sending place, where it
sent secret keys to AC for decryption, and sent secret request
token, report token, and credit token together to the participant.
The former two tokens were to make sure that each participant
accepted and reported only one task at a certain time, the last
token helped make sure that he/she could eventually receive
the given credits. Compared with [69], the proposal in [73]
deposited participants’ credits in the AC but not TTP, where
it used an one-way hash function for encryption similar as the
one used in the TTP-based scheme like [69].

Li et al. also proposed a TTP-free scheme that distributed the
TTP task to the AC and participants [73]. It used both a blind
and a partially blind signature to generate tokens. The blind sig-
nature could aid a participant to obtain a signature from the AC
on a message, and the AC did not know about the message being
signed. A participant’s credits were also deposited in the AC.
The authors argued that in the TTP-based scheme, every phase
could be finished within the scale of tens of milliseconds and
consumed mobile phone about 0.05 joules to process each task.
In the TTP-free scheme, the energy cost was slightly more than
that of the TTP-based scheme which was 0.22 joules per task.

Similar to the TTP-free scheme in [73], Oscar et al. did
not employ TTP in their participatory sensing system neither
[74]. They focused on sensing data credibility and privacy

preservation. A participant’s reputation was not only used as
his/her incentive reward, but considered as part of the evaluation
process for sensing data quality. That was, when a new partici-
pant registered to the AC, it created a unique ID, and initialized
an initial reputation for the new participant in the respective
reputation database. The participant would cloak his/her ID
when he/she sent the sensing data, which contained sensing
environmental attributes such as sensing time, location, etc,
and these pieces of information eventually influenced on how
trustworthy the sensing data would be.

D. Summary of Theoretical Frameworks

Compared with the above mentioned theoretical frameworks,
we conclude that:

• “Price-Decision-First” and “Data-Update-First” strategies
benefit different shareholders in a participatory sensing
system. The former benefits participants since they are
aware of the amount of incentive they can earn before the
data is uploaded, and then to decide whether to accept this
task or not. Task publishers may prefer the latter strategy,
because the amount of paid incentive can be decided upon
the quality of collected sensing data.

• “User-centric” and “platform-centric” approaches aim at
different design goals. The former focuses on ensuring
the data quantity by recruiting its more participants and
keeping them participating in future tasks. The latter pays
more attention on the quality of collected sensing data,
where information gain is expected to be maximized and
overall sensing cost is expected to be reduced.

• Some of theoretical approaches are verified by field ex-
periments, such as “Pick-A-Crowd” framework which was
implemented with Facebook App OpenTurk to experiment
[37]. Some of other theoretical approaches are not verified
by experiments, such as Chou et al. verified their proposal
by simulation [35].

• In these system models, the task publisher and platform
are treated as one single entity, but in practice, they play
different roles serving as content provider and network
service provider, respectively. We shall discuss more on
this aspect in Section VI.

• Most likely a TTP will be deployed in a privacy-aware
participatory sensing system to protect participants’ pri-
vacy. Some papers consider TTP just as an authority that
deposit incentive scores. For example, in [69] and [73],
participants exchanged their incentive scores from TTP.
On the other hand, some authors treated TTP also as
a pseudonym machine, e.g., in [70] and [71]. However
the difference was that [71] anonymized the sensing data
information but the proposal in [70] did not.

III. APPLICATIONS AND SYSTEM IMPLEMENTATIONS

In this section, we review nine different applications for
participatory sensing, and compare their features as shown in
Table VI, from application schemes, incentive motivations and
formats, and evaluation process. Finally, a summary is given to
conclude this section.
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TABLE VI
DIFFERENT APPLICATIONS FOR PARTICIPATORY SENSING

A. Applications for Participatory Sensing

Amazon Mechanical Turk (also called MTurk) was a famous
platform served as a programmatic interface for tasks that
were easier for humans than for machines, but most people
considered it as a labor market [49]. It was a utility application
for different tasks and requesters. A person or corporation acted
as a task publisher who published tasks with a specified com-
pensation (with limited budget). Participants could complete
these tasks, and then he/she could earn some compensations as
incentives paid by the corresponding publisher.

Hoh et al. presented TruCentive, which focused on en-
couraging participants to contribute parking availability (PA)
information with high quality data, and preventing malicious
participants from spamming the parking service with high
volume of useless data [50]. TruCentive used system credits
as incentives. A static reward was granted to a participant right
after his/her information was accepted, and he/she would obtain
another reward as a bonus, if the parking information was
successfully confirmed by the consumer who bought it. A con-
sumer might deny the fact although he/she had already parked
successfully, and thus he/she could receive a refund. In this
regard, a game-theoretic incentive mechanism was presented
to address the malicious participants problem. The idea was
that, if a consumer successfully parked at the traded spot, and
he/she told the truth, he/she could re-sell this parking spot later
through TruCentive, and earned more credits than if he/she lied.
The MTurk platform in [49] was used in [50] in the evaluation
phase, where they used a condition:

D + pX ≥ R ≥ D, (7)

D is the constant reward, p is the probability of selling a PA
and confirmed successfully, X is the bonus reward and R is
consumer refund for unsuccessful parking. Considering service
provider cost-benefit, the authors derived the constraints that:

D ≤ R ≤ 1

1 + q
(L+ (p+ q)N) , (8)

where q is the probability that a PA is sold and confirmed
unsuccessfully, and L is the platform pre-PA revenue, and N
is consumer deposit for transaction. In the evaluation section,
they set N = $2, R = $1, D = $0.20, X = $2, and found that
when the resell probability p was as high as 90%, over 90%
of the participants tended to resell their parking spots and be
honest consumers. When p was as low as 10%, over 75%
of participants tended to act dishonestly. By tuning the resell

probability, together with other parameters, the participant’s
action was regularized in this framework.

APISENSE was a participatory sensing platform that helped
scientists to collect realistic data sets from a population of
voluntary participants [51]. Scientists could allocate amount
of credits to indicate what type of data they wanted partic-
ipants to sense. In turn, participants would receive reward,
like monetary incentives and virtual credit. The authors argued
that receiving sufficient large amount of sensing data in this
platform was the best incentive to attract scientists. For par-
ticipants who contributed sensing data, the more sensing data
they contributed, the more incentive rewards they would re-
ceive. The authors also considered how to preserve participants’
privacy, to prevent attacks on geo-spatial data, by blurring the
reported data collection time and location using techniques like
k-Anonymity [78].

In Noisemap, a smartphone was used as a noise meter to
send noise information of the surroundings to an urban man-
agement platform [52]. The authors pointed out that two main
challenges were how to successfully ensure data quality and
quantity. To drive user engagement and improve data quality,
four different incentive schemes were implemented in their
proposal, categorized into internal or external incentives. Both
of them used gamification theories [79] without any monetary
incentives. Internal incentives meant that the application must
reflect the participant’s experience and set new goals to achieve.
Two kinds of internal incentive method were designed. One was
called Statistics, i.e., the complete feedback on users’ measure-
ment history; the other one was called Achievements, where the
system could set new goals for users. External Incentive was
also implemented in two ways: Ranking and Rank. That was,
participants were rewarded by points, and points were used for
a global ranking. In their proposal, a point P for one contributor
was given by:

P =
∑

m∈{G}
a× e (Harea(m))×Hay(m)×Hbs(m), (9)

where G denotes measurements, a is a constant, e(Harea(m))
is the exploration factor over the last 7 days in the area where
participant m is located, accuracy Hay is the location accuracy
of m and bonus Hbs is given in certain bonus areas. Besides,
Ranks were achievements that could be uniquely entitled to one
participant.

Ikarus was a participatory sensing application that ex-
ploited sensory data collected during cross-country flights by



GAO et al.: SURVEY OF INCENTIVE MECHANISMS FOR PARTICIPATORY SENSING 931

paraglider pilots to study thermal effects in the atmosphere
[53]. Data was stored in a flight log generated by a flight
navigation device, and paragliders carried the flight navigation
device during flights. To collect more data, the authors used
a competition incentive mechanism to collect more flight logs
that stored sensory data. One purpose of using flight navigation
device was to collect GPS information in a flight log, including
position, longitude and altitude, to prove that certain way-points
had been passed. Paragliders preferred to use this record to
compete with each others for fun. Then, the authors built a web
community to rank (such as the numbers of way-points or one
way-point nobody has ever passed) each paraglider’s record,
when they uploaded their flight log.

LiveCompare was a system based on participatory sensing
with mobile devices to improve inter-store grocery price com-
parisons [54]. When participants aimed to compare the price
of their product of interest in nearby stores, they used their
phone camera to snap a photograph of its price tag and uploaded
it with their GPS information to the system database. The
photograph must have the bar code of this product to uniquely
identify a product. The correlated GPS information helped
LiveCompare send the price information of other stores which
were near a participant’s current location. To make sure the
quantity of the system’s data, the authors designed a “upload-
first” comparison incentive mechanism. In this scheme, par-
ticipants acted not only as requesters but also contributors.
To evaluate this application, the authors conducted field work
in seven different brick and mortar stores to show that price
dispersion could be observed across a variety of grocery items,
typical store price tags contain sufficient information to enable
LiveCompare’s infrastructure, and data transfer performance
was reasonable over a typically used network.

Medusa was a platform that provided abstractions for speci-
fying the steps required to complete a crowdsensing task [55].
It employed a distributed runtime system that coordinated the
execution of these tasks between smartphones and a cluster
on the cloud. When a requester wanted to publish a task,
he/she submitted this task by using a programming language
called MedScript which was specifically designed for Medusa.
A worker manager, as one of Medusa recruitment component
who used MTurk API, would recruit participants and manage
monetary incentives after the task completion. The authors
argued that, compared with some other participatory sensing
systems, their proposal used less lines of code and shorter
delay, to achieve more scalability, less overhead, and better
robustness.

Traffic prediction system (TPS) was to provide accurate
prediction of road traffic by using a credit based incentive
mechanism [56]. Participants must buy the service of this
system by using credits which they earned from uploading
sensory data. The authors used a “dynamically credit-giving”
mechanism, i.e., if a road was lacking in data, then credits
of this road would be more than others. The better quality
of sensory data participants uploaded, the more credits they
earned. The authors used speed measurements to evaluate the
data quality. That was, if a participant contributed his/her speed
which was almost equal to the historical average data, then
his/her data was of high quality.

w8L0ss was a weight-loss intervention application, that in-
tegrated self-determination theory (SDT) of health behavior
change as intrinsic incentives [57]. SDT was a theory focusing
on physically and psychologically adopted healthy behaviors
and maintaining them over time. In SDT, intrinsic goals such
as health, affiliation, and self-recognition tended to be directly
connected to the satisfaction of basic psychological needs, and
were typically regulated by more autonomous forms of moti-
vation. w8L0ss allowed participants to record their activities,
including self-weight, dietary, physical and coaching activities,
that eventually contributed to the weight-loss. Clearly, partic-
ipants who used w8L0ss aimed to lose weight and they most
likely had good self-motivation. Therefore, this application did
not need explicit (or extrinsic) incentives like real monetary
incentive. Instead, it needed intrinsic incentives to keep them
losing weight, and informed them of the gap between their
achievement and goal. To this end, the authors proposed an
intrinsic incentive method called “Achievement Level,” that
was, the participants set their goals which indicated how long
they would spend in losing weight. When they finished their
exercise in a phase, the incentive mechanism would compare
their achievements with the initial goals. Then, it showed how
much time the participants had spent in losing weight, and
when they could achieve their goals. Mitchell et al. defined
motivation or incentive as “a psychological process that caused
arousal direction and persistence of voluntary actions that were
goal directed” [80]. The exercise time information that the
incentive mechanism showed to the participants could cause
the participants voluntary actions, which meant losing weight
in this platform.

B. Comparisons

1) Different Application Schemes: From the above proposal
analysis, we observe that different types of participatory sens-
ing applications are proposed and used in our daily life,
and many of them eventually use MTurk to implement their
monetary incentives. TruCentive, LiveCompare and TPS focus
on serving people’s daily life, while APISENSE and Medusa
are based on cloud technologies to enhance data utilization.
APISENSE focuses on scientific research, and Medusa features
a formal programming framework for participatory sensing.
Ikarus is a sport application for paraglider to find thermal hot
spots. Noisemap is a noise pollution detection and presentation
application, to help a city’s environmental division find noise
pollution districts. Finally, w8L0ss aims at reducing partici-
pants’ weight.

2) Different Incentive Motivations and Formats: Incentive
schemes used in these applications are different. Some are
designed to directly pay participants as a reward, while the
others aim to make them psychologically satisfactory. However,
none of these incentive schemes can achieve some effect if what
participants receive is not similar as what they expect and able
to cover their sensing costs.

As shown in Fig. 7, there are monetary and non-monetary
incentive mechanisms existed in participatory sensing applica-
tions. MTruk and Medusa using monetary reward to implement
its incentive schemes, where some fees as a reward are always
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Fig. 7. Different kinds of incentives implemented in the existing applications.

paid from each task in order to compensate contributors who
complete the task. TruCentive, APISENSE, Ikarus, Noisemap,
LiveCompare, TPS and w8L0ss are non-monetary incentive ap-
plications, where some kinds of rewards but not real money are
used. Specifically, credits are used in TruCentive, APISENSE
and TPS. However, Ikarus, Noisemap and LiveCompare pro-
pose competition or comparison based schemes in their incen-
tive mechanisms. On the other hand, w8L0ss application uses
intrinsic incentive reward; TruCentive proposes a static reward
plus bonus method to motivate data contributors, where the
reward can be paid by either real money or virtual credit; TPS
does not have a bonus reward mechanism compared with the
employed incentives of TruCentive. Finally, incentive models
are different among these proposals. Ikarus and Noisemap
have ranking mechanisms, which LiveCompare does not have.
Noisemap also has an “Achievements” scheme as the internal
incentive mechanism, which Ikarus does not have.

3) Different Evaluation Process: The authors evaluate their
applications in different aspects. Ikarus compares its perfor-
mance with a raster model of thermal convection. Noisemap
sets three different groups, as no incentives, internal incentives
and all incentives groups, to evaluate its collected data quality
and quantity. LiveCompare first demonstrates price dispersion
existence, then evaluates data transfer delay, and finally loca-
tion accuracy is tested. It does not compare with others, but
evaluates itself in aspects of data utilization, accuracy and delay.
Different with LiveCompare, Medusa evaluates its performance
in aspects of language expressiveness, scalability, overhead and
robustness to highlight its performance. TruCentive focuses on
information quantity and accuracy, where the authors aim to
find a balance point to make a satisfactory performance. Finally,
TPS puts more attention on speed accuracy, considered as data
quality, and the effect of encouraging participants to choose
roads that is lack of contributed data.

C. Summary

We summarize the differences of the above seven applica-
tions and platforms from application category, incentive strat-
egy and sensing activity, as shown in Table VI. We conclude
that:

• Although participatory sensing has a long way to be part of
our real life, it has already shown huge potentials in some
aspects of our daily life, e.g., parking spot finding, noise
pollution monitoring, scientific research assistance, etc.

• Monetary incentives are only one of many incentive mech-
anisms, to be simple and practical. If system designers use
this mechanism in a proper way, a small amount of money
can motivate participants to collect satisfactory amount

of useful data as we mentioned in Section IV-C. There-
fore, how to design a proper monetary incentive mech-
anism is a challenge for practical participatory sensing
research.

• There are many other types of incentives besides real
money, such as competition mentioned in Ikarus, compar-
ison proposed in LiveCompare, achievement and ranking
in Noisemap, and credit payment in APISENSE.

• The reason why the authors design incentive mechanism
is that they aim to keep participatory sensing systems
running, and a good incentive mechanism is one of reasons
to make sure of satisfactory level of data quality and
quantity.

• Among these applications and platforms, only APISENSE
considers participant privacy, as an important issue in real
life that has been discussed in Section II-C.

IV. EXPERIMENTAL STUDIES

Research efforts have been paid to explore the impact of
different incentive strategies from empirical studies [42]–[48],
[52], as summarized in Table VII. Specifically, since none of the
above mentioned theoretical approaches have conducted field
experiments to evaluate their efficacy, we next show how they
are supported by the existing experimental studies.

A. Parameters

An experiment about finding out how to motivate participants
to work harder in an enterprise was made in [42]. The authors
created a crowdsourcing community inside IBM company with
about 400 000 employees who spread over 160 countries within
one year. The task for participants was translating sentences
from English to other languages. Different from others, this
experiment focused on finding out extrinsic and intrinsic mo-
tivations in a company.

To find out whether reciprocity could be used to effec-
tively motivate user contributions in a participatory sensing
system, Tomasic et al. made an investigation in [43]. This
study recruited 8447 participants and took 10 months to make
a real-time arrival information system. The authors selected
the Tiramisu system [81] that allowed transit riders to crowd-
source arrival information by sharing location traces on a
cell phone. They used virtual credits as a way of incentives,
where if a participant accessed the arrival information for the
whole day, he/she would be awarded one virtual credit called
“usage-point” (presented as a). If a participant contributed a
location trace, he/she would be awarded one credit named
“contribution-point” (presented as b). The authors used the ratio
b/a to infer free-riding behavior. That was, when a partici-
pant’s ratio exceeded a threshold, he/she was considered as a
free-riding.

Micro-payment was one of the first to explore the perfor-
mance of an incentive strategy on a real-world testbed [44]. It
recruited 55 young individuals from a campus in the U.S. for
five weeks. Participants were asked to take photos of garbage
bins all over the campus to learn the status of recycling prac-
tices at this university. Through the platform of MTurk [49],
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monetary micro-payment was distributed to participants as an
incentive tool for task fulfillment. The contributions of users
were measured in terms of the amount of uploaded photos.

An experiment which compared the relative effects of micro-
payments and weighted lottery incentive mechanisms was done
by [45]. In this experiment, the authors took two days and
recruited 96 participants in a conference using a collection of
50 Windows Mobile devices loaded with a virtual scavenger
hunt game and distributing them among participants. Each
participant must finish 10 tasks per participant in two days.
The task contained a clue corresponding to one of the demo
booths at the conference. When a participant felt that he/she
had correctly decoded the clue, he/she proceeded to the asso-
ciated demo booth and scanned the 2-D bar code through the
application. A reward would be paid if he/she is successful.

Mao et al. made a comparison between volunteer and pay-
ment incentives, to indicate how financial incentives influenced
the quality and efficiency of the output [46]. The experiment
was an annotation task originally performed by volunteers in
the Planet Hunters [82] citizen science project for an exper-
iment with paid participants on MTurk [49]. Planet Hunter
was a project whose goal was to find planets orbiting around
extra solar planets or exoplanets. Participants examined stars
produced graphs called “light curves” and “mark planets.”
The authors recruited 200 participants who annotated about
14 000 light curves, and 356 participants who annotated over
17 000 light curves, respectively.

Noisemap involved 49 people for 7 weeks. Sound pressure
levels by sampling the microphone were uploaded to the plat-
form, together with the participants’ trajectories [52]. Unlike
the monetary incentives in [44], virtual credits were given
to participants as a return. The contributions of users were
measured by the duration of audio clips.

Chon et al. recruited 85 people for an average of 79 days (i.e.,
11 weeks) to do their experiment [47]. It was worth noting that
its volunteers were from various social/cultural backgrounds
with wide age range, compared with [44] and [52]. Participants’
phones sample the full range of built-in sensors automatically
and photos were taken initiatively. Similar to [44], monetary
rewards were given. The contributions of users were in the
format of both photos and the duration of the audio clips.

36 participants were organized into 3 groups, named as
“uniform group,” “hidden group” and “variable group” to do
a three-day experiment [48]. The authors wanted to find out
the relationship between micro-payment and incentive. Partic-
ipants in this experimentation were asked to wear a wearable
sensor and finish 20 questionnaires per day. Different payment
schemes were deployed in different groups. Similar to [44] and
[47], it allocated participants into one of three different groups.
However it did not have a data competition group as the one in
[47], neither did not have that many groups as in [44].

B. Employed Incentive Strategies

There was no monetary reward used in [42]. What the
authors aimed to find out was whether the incentive mechanism
was needed in a participatory sensing system, and if needed,
what was the difference between psychological and physical

incentive mechanisms. Therefore, they divided the experiment
into 3 hypotheses. Hypothesis 1 was to create a portal and
enlisted people. That was, the authors built the tool and just
called participants to do the task. Hypothesis 2 was to talk
about the crowdsourcing project that would eventually affect
the company’s bottom line. In other words, the authors built
the tool, called participants to do the task and told them the
importance and the new feature of this task. What incentive the
Hypothesis 3 proposed was to present the participants very clear
extrinsic incentives like IPOD kits. That was, the authors built
the tool, called participants to do the task and told them that
they might earn some gifts as rewards.

Tomasic et al. first defined a rule where if a participant earned
less than three usage-points without contribution-points, and
more than six usage-points without contribution-points, this
participant was considered to be free-riding [43]. Then, they
divided these participants into three groups: The first group
was called quid-pro-quo group (QPQ), which was defined in
a way that if a participant was considered as a free-riding,
he/she had to contribute his/her location traces before using this
application again; the second group was called request group
(Req), which was defined that if a participant was considered
as a free-riding, he/she was required to share his/her location
traces but could still use this application; and the last group
was called control group, which was defined that it had no
limit to use this application. The authors’ work similar as [42]
that divided participants into three groups and did not use
real money as incentives. But compared [42] which discussed
the efficiency between intrinsic and extrinsic incentives, they
focused on investigating whether reciprocity could be useful in
participatory sensing.

In Micro-payment, all participants were divided randomly
into five groups [44]. Group A offered each of its members a
fixed amount of money as a return, but lay no requirements
on how much/what they should contribute. Groups B, C, and
D paid their members according to their actual contributions,
but the unit payment for each photo was different. Specifically,
Group B gave a low unit payment, group C gave medium-level
payment and group D gave high payment. Group E paid its
members in a competitive way, that was the unit payment for
each member was decided by their “rankings.” As group B,
C, D were paid according to their contribution, they somehow
represented the efficacy of the IDF [20] mechanism. Mean-
while, group E could be seen as the experiment for the IFT [20]
method.

In the comparison study [45], micro-payment group was de-
fined as a group of participants who were compensated for each
set of 5 tasks the completed. For each set of tasks completed by
a participant, a $5.00 gift card of a national coffee chain was
given. In addition, participants were given a $5.00 gift card for
checking out a device for more than an hour, with a maximum
compensation of $15.00. In weighted lottery group, participants
received a raffle ticket for every 5 tasks they complete, as well
as a ticket for checking out a device for more than an hour. At
the end of the day, tickets were drawn with winners receiving a
$50.00 gift card of the same national coffee chain.

There were volunteers who did not earn any payment at all
and participants who would earn payment in [46]. Payment
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TABLE VII
DIFFERENT INCENTIVE EXPERIMENTS FOR PARTICIPATORY SENSING

incentives were divided as “pay per task” where participants
were paid for each task they complete, “pay per time” where
participants were paid for each unit time that they spent, and
“pay per annotation” where participants were paid for each
object that they annotated on the smartphone.

All participants were divided into two groups in [47], the
bonus payment group (BPG) and the data competition group
(DCG). Members of both groups received the same amount of
baseline payment, but BPG’s high-ranking members received
extra payments. The employed competitive payment strategy
of the BPG group was very similar to Group E as in [44],
while the non-competitive group was similar to Group A
in [44]. However, unlike group E where competition losers
would receive no payment, those of BPG still could have the
baseline payment, which was consistent with the RADP [12]
method.

In Noisemap, two different incentive schemes called “Inter-
nal Incentives” and “External Incentives” were implemented to
attract user engagement [52]. The internal incentive scheme
provided its members achievement titles as virtual credits,
while the external incentive scheme provided its members the
access to compare their virtual credits with others. In [52],
we renamed the “external incentive group” as the “competi-
tive group,” and the “internal incentive group” as the “non-
competitive group,” to be consistent with the two former
studies.

Musthag et al. deployed three different reward payment
groups [48]. They were “Uniform” in which participants were
rewarded a fixed amount for completing a micro task, “Vari-
able” in which awarded vary randomly based on a prior dis-
tribution, “Hidden” in which awarded vary randomly, but the
amount was not revealed until the micro task was completed.
Compared with [44], Musthag had two groups less than that
of [44].

In conclusion, the main differences among these experi-
ments are:

• In [42], the authors provided spiritual and material
incentives.

• In [45] and [46], the authors both aimed to find out how
monetary incentive schemes perform compared with other
schemes.

• In [44] and [48], the authors provided count-by-pieces
monetary incentives. In [43], [48] and [52], the authors

provided count-by-pieces virtual credits, and in [47], the
authors provided the overall monetary incentives with
baseline payment.

• Their common features were that they all compare the
used competitive strategy with non-competitive strategy
for performance studies.

C. Results Evaluation

As shown in Table VII, Stewart et al. divided the experiment
into 3 hypotheses to translate [42]. In Hypothesis 1, designers
just created a portal; in Hypothesis 2, they talked to participants
to make them interested in this project; and in Hypothesis 3
they set extrinsic incentives. The translating results were, the
average words per day per participant for Hypothesis 1–3
were 0.015, 3.797 (first week) and 6.194, respectively. The
reason why we specifically marked the result of Hypothesis 2
as the result of first week, was that after the first week this
number declined rapidly to 1.018 per day per participant. They
concluded that right extrinsic incentive could be effective in
participatory sensing but not necessarily be to cash.

Tomasic et al. divided participants into three groups focusing
on investigating whether reciprocity could be useful in partici-
patory sensing [43]. Quid pro quo (QPQ) forbade a free-riding,
request group (Req) warned a free-riding, and control group
had no limit to use this application. The average percentage of
data contribution for QPQ, Req and control groups were 19.1%,
17.1% and 15.5%, respectively, and the average lasting time of
these three groups were 41.4 days, 46.9 days and 50.3 days,
respectively. From these results, the authors concluded that
QPQ abandoned their use of the application for a higher rate
than others. Although reciprocity could help increase data
contributions, how to design it was still an open question.

Reddy et al. divided all participants randomly into five
groups [44]. Group A offered a fixed amount of rewards.
Groups B, C, and D paid their members according to their actual
contributions, but the unit payment for each photo was different.
Group E paid its members in “rankings.” The results were,
the average data contribution per user-day for Groups A–E
were 3, 5.57, 6.7, 4, and 13.5 photos, respectively. The average
contribution of Groups A–D did not change much between
different days. However, it was worth noting that, the average
contribution of Group E (the competition group) changed a lot,
as it rose quickly in the first few weeks, and dropped quickly to
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nearly zero in the last few weeks. They concluded that monetary
incentive was a more beneficial way than other motivating
factors such as altruism or competitiveness.

Rula et al. aimed to compare the relative effects of micro-
payments and weighted lottery incentive mechanisms [45].
Micro-payment group recruited 39 people and weighted lottery
had 57 people; the number of participants who completed at
least one single task were 23 and 39, respectively. Compliance
rate were 0.43 and 0.32, respectively. They observed that partic-
ipants in the micro-payment group spent more time traversing
the conference area to find answers than those of the lottery
group. Although weighted lottery group recruited more partici-
pants than the micro-payment group, it showed less compliance
rate. The authors concluded that building on a participatory
sensing incentive system needs to consider the application
requirements, such as data quality, and the constraints of the
task publishers like budget.

Mao et al. recruited 200 participants who annotated about
14 000 light curves and 356 participants who annotated over
17 000 light curves, respectively [46]. In the first experi-
ment, the authors paid $0.0453/annotation, $0.0557/task, and
$0.08/minute, and the results are: for volunteers 50 seconds/
task and 1.250 annotation/task, for “pay per annotation” scheme
29.13 seconds/task and 1.964 annotation/task, for “pay per
task” scheme 24.89 seconds/task and 1.435 annotation/task,
and finally for “pay per time” scheme 27.45 seconds/task and
1.454 annotation/task. Noted that paid participants completed
tasks significantly more quickly than the volunteers, resulting in
a much higher wage for both the task and annotation treatments.
Moreover, participants in the annotation treatment were much
more eager about marking transits than other participants. They
concluded that paying participants can trade off precision,
recall, speed and total attention of tasks. Therefore, it was
important to design financial incentives to achieve desired
participatory sensing results.

Chon et al. divided all participants into two groups, the
bonus payment group (BPG) and the data competition group
(DCG) [47]. Results showed that the average contribution of
BPG was 1.16 photos and 0.32 hours of audio clips per user-
day, as against 0.83 photos and 0.25 hours of audio clips
per user-day for non-competitive groups. These results indi-
cated positive effect of BPG was in effect with BPG outper-
forming DCG.

Schweizer et al. proposed two different incentive schemes
called “Internal Incentives” and “External Incentives” [52]. The
internal incentive scheme was the non-competitive group, while
the external incentive scheme was the competitive group. The
result from competitive and the non-competitive groups was
clear, as an average of 0.13 and 0.24 hours of audio clips per
user-day, respectively. The authors concluded increasing the
amount of incentive schemes will keep more users motivated
to participate and measure data.

Musthag et al. deployed three different reward payment
groups: “Uniform” to award a fixed amount for completing
a micro task, “Variable” to award vary randomly based on
a prior distribution, and “Hidden” to award randomly while
keeping the amount as not revealed until the micro task was
completed [48]. The average completion rate were 86.28%,

86.92% and 81.68% for three groups, respectively. They argued
that “Variable” can be a more powerful incentive strategy
than “Uniform,” while “Hidden” group did not perform well.
The authors concluded that variable micro-payment incentive
schemes provided powerful knobs where designers could tune
in order to reflect different system performance metrics.

We next vertically compare these results and draw the fol-
lowing conclusions:

• From the result of [46], we observe that incentive mech-
anism is indeed needed, however the format and effect
can be different. For example, [42] provided spiritual
and material incentives, [44] and [48] provided monetary
incentives, [43], [48] and [52] provided virtual credits.

• For participants’ contributions, the proposals of [44], [47]
and [48] received much more amount than that of [52], and
the rewards in terms of virtual credit could be less efficient
to motivate users than real money.

• Paying participants according to their actual contributions
can lead to more sufficient data submissions than paying
all of them with fixed amount, i.e., count-by-piece incen-
tive strategy is better. This observation is also supported
by comparing [44], [47] and [48], and [47] offered more
rewards but received less data, since it paid the same
amount of rewards to all participants.

• Competitive incentive strategies are more efficient than
non-competitive ones, e.g., IFT [20] could be more effi-
cient than the IDF [20] method since it distributed incen-
tives in a more competitive way. However, the result of
Group E in [44] and that of BPG in [47] were different:
Group E’s members gradually dropped out, but BPG’s
members were making lower but still some contributions.
This was due to the mechanism used where competition
losers received baseline payments in BPG, while there
were no payments for Group E members if no contribu-
tion. Therefore, the proper amount of rewards to com-
petition losers, even if they made no contribution, might
keep them participating for future tasks, as confirmed by
RADP [12].

• An interesting fact revealed by Group B, C, D in [44]
was that, the amount of submissions did not increase
with the increase of unit payment. Members in Group D
received highest unit payment, but contributed smallest
photo amount. We believe this is caused by the exper-
imental setting, where participants cannot transfer from
one group to another, and no more new participants are
recruited so that it lacks a certain degree of competition
inside a group.

• None of these incentive strategies is computationally com-
plex, nor they need a lengthy user negotiation phase. It
is interesting to observe that most incentive strategies
adopted by experiments are fixed price methods, since
such a method is light-weight and can be easily imple-
mented on participants’ energy-constrained smart devices.
On the other hand, as vast theoretical incentive mecha-
nisms are built based on the reversed auction based method
[12], [14], [16], [28], [29], the verification of such methods
through field experiments should also be investigated.



936 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

Fig. 8. The work flow of reputation systems.

V. USING REPUTATION SCHEMES

IN PARTICIPATORY SENSING

There are some usages of reputation in state-of-art research
activities, e.g., the incentive strategy in [70], [71], [73], [74],
“reputation to data quality” in [83]–[85] (where reputation
scores are mainly used to choose trustworthy sensing data), and
“reputation to select participants” in [86]–[88] (where reputa-
tion scores are mainly used to select trustworthy participants).
The main functionality of using reputation is to find out the
accurate and true sensory data and avoid malicious participants
as much as possible. Comparing with rewards that represent
and characterize the transient, one-time quality of the collected
sensing data, a participant’s reputation is rather a long-term,
accumulated metric to identify the quality and trustworthiness
of a participant’s sensory data. That is, the better quality the
sensory data is from a particular participant, the more reward
he/she can earn, and in turn more reputation scores he/she is
evaluated.

Toward this end, reputation system is also a key part of the
participatory sensing platform. As shown in Fig. 8, its work
flow is as follows. First, a task is published. Second, the plat-
form needs to choose who are going to help this task from a pool
of participants. When their reputation is explicitly considered,
the system will access their reputation score database and use
them as the input to the compute a predefined utility function,
e.g., to choose those participants who have high scores, to use
reputation scores to weight sensory data, etc. After the data are
collected, data verification system will verify the correctness
and trustworthiness of these sensing data, and calculate a new
reputation score. Finally, the former accumulated reputation
scores are updated by considering the new score and uploaded
to the database. The updating method may vary from system to
system.

A. Using Reputation Scores to Evaluate Data Quality

Amintoosi et al. used the concept of “quality of contri-
bution” (QoC) and “trust of participant” (ToP) to evaluate a
participant’s sensing data, and this evaluated data was called
trust of contribution (ToC) [83]. If a participant’s ToC values
were higher than a predefined threshold, then he/she would be

rewarded and the reputation scores, denoted as trustRP , would
be added. Alternatively, trustRP would be reduced when ToC
values were less then this threshold, and in turn he/she would
be penalized. The authors also used state-of-the-art methods
to evaluate the QoC, including image processing algorithms
proposed in [89] and outlier detection algorithm [90] for sound-
based sensing tasks. The authors considered many detailed
attributes to calculate ToP, including a participant’s expertise,
response time, locality, friendship duration, and interaction time
gap between participant and requester. QoC and ToP were
computed together by using fuzzy logic and the output score
was the ToC. Furthermore the requester could also express
his/her evaluated trust of the participant’s contribution using
the Requester Evaluation (RE). The platform combined the
requester’s RE with the participant’s ToC and his/her former
reputation scores together to evaluate the new reputation scores
and then stores this new scores in the database.

Amintoosi et al. proposed a recruitment framework for social
participatory sensing [84]. Although it employed social net-
works to recruit a participant’s friends and friends of friends
(FoFs) to participate, it mainly used ToC to evaluate their
sensing data. That was, if a participant’s ToC value was higher
than a predefined threshold, then he/she and correlative FoFs
would be rewarded and their trustRP would be increased, or
their trustRP would be reduced when ToC values were less
then this threshold and they would be penalized. Besides the
attributes mentioned in [83] which were considered to calculate
ToP, the authors in [84] also considered the relationship of
friends and RE (as mentioned in [83]), which were two new
attributes to calculate it.

Albers et al. used a utility function S(x) in their MAA
system (as mentioned in Section II-A1), as the sensing data
quality index to aid the platform to select the most appro-
priate sensing data [85]. Many attributes of the sensing data
were considered in S(x), including the distance, sensing time,
sampling frequency, positioning accuracy and user credibility,
etc. Besides, the participant’s reputation was only one of many
attributes. The utility S(x) is computed as:

S(x) =
n∑

i=1

wiS(xi), (10)
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where
∑n

i=1 wi = 1, wi is the weight factor, n is the number of
relevant attributes decided by the system operator, and S(xi)
denotes each valued attribute. The larger S(x) is, the more
chance the participant will be selected.

B. Using Reputation Scores to Select Appropriate Participants

Huang et al. proposed a participant selection strategy when
considering their reputation scores [86]. They designed a
“watchdog module” and a “reputation module.” The watchdog
module was used to choose participants, verify data correctness
and send cooperative rating to reputation module as an input to
calculate new reputation scores. The reputation module stored
participants’ reputation scores, sent these scores to the watch-
dog module to calculate correct data, and helped watchdog
module filter out those participants whose reputation scores
were below a threshold. The authors used majority voting
numbers and reputation scores to decide which sensing data
should be accepted. When the correct data were generated from
the watchdog module, the corresponding cooperative rating
pi,k of every participant, where i denoted the participant and
k denoted the time epoch, was sent to reputation module
to calculate reputation scores, by using Gompertz function
[91] as:

Ri,k(p
′
i,k) = αeβe

γp′
i,k

, (11)

where α, β, and γ are scaling factors, and defined by the
platform. Parameter α specifies the upper asymptote, β controls
the displacement along the x axis and γ adjusts the growth
rate of the function. If a participant’s reputation score fell
below the threshold, the reputation module would feedback this
information to the watchdog module, and then the platform
would not accept his/her sensing data unless their sensor values
were beyond the threshold.

Yang et al. proposed a framework to calculate the reputation
information and used it to select participants [87]. They con-
sidered three aspects to rank participants, as “direct reputation
(DR)” based on a participant’s previous data quality records
and performance, “personal information (PI)” written by the
participant himself/herself, “indirect reputation (IR)” including
subjective information such as community trust and requester’s
trust. When a requester defined explicit criteria (such as a
participant’ age or location demand), the system would use par-
ticipant’s DR, PI, and IR scores to calculate a value which was
used to rank the participant into four levels (Very trustworthy,
Trustworthy, Untrustworthy and Very untrustworthy). Finally,
the requester could select participants from these levels.

Ganeriwal et al. designed a reputation-based framework
called “RFSN,” to ensure data quality [88]. The underly-
ing model of RFSN was from the Decision Theory [92] in
economics, where malicious or faulty participants acted in a
completely arbitrary manner instead of acting rationally as
incorrectly assumed in many other reputation systems. Similar
to [86], RFSN also had two key building blocks: “Watchdog”
and “Reputation.” Watchdog was responsible for monitoring
the actions of other participants and characterizing these actions
as cooperative or non-cooperative in a data transaction, by

associating a level of confidence that ranges within (0, 1).
Different applications might have different criteria for defining
a proper confidence level. Specifically, this paper implemented
one possible method in detail. That is, distance-based outlier
detection. Therefore, the input to this block was a set of data
readings, and the output was a rating X for each data reading
(X ∈ {0, 1}). However, different from [86], Watchdog did not
reject participants, but rather left participants themselves to
decide which neighbors were trustworthy. Using these ratings
together with some other external evidences, RFSN evaluated
the trustworthiness of other participants and their data. It con-
tinuously maintained the reputation of participants. The authors
adopted a classical beta-binomial framework for estimating
reputations [93], [94]. That is, suppose a transaction occurred
between participants i and j, and θ denoted the reputation of
j held by i. Instead of a solid number, θ was assigned a beta
distribution:

p(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (12)

where 0 ≤ θ ≤ 1, α ≥ 0, β ≥ 0 and α, β are defined by design-
ers. Γ(·) is a typical gamma function [93] in statistics. Thus,
RFSN used the mean of θ as the reputation score. Given θ,
the authors then modeled the binary ratings as Bernoulli ob-
servations with success probability θ. The authors then proved
that posterior probability of θ after a transaction also had a
beta distribution, with only slight changes of parameter α and
β. Therefore, the proposed reputation system required i to
maintain only these two parameters to describe the reputation
of j with very simple update rules as each new transaction
occurred.

C. Comparison and Discussions

As shown in Table VIII, the reputation plays an important
role to help the platform select sensing data and/or participants.
As discussed in Section V-A, the requester’s trust is used as
one attribute to evaluate participants’ data quality in [83], [84].
Amintoosi et al. in [84] proposed a participant recruitment
method that employed social networks to recruit a participant’s
friends and friends of friends (FoFs) to participate, while the
authors in [83] did not mention it. The authors in [86], [88] both
proposed a watchdog block to detect invalid data. However, the
block in [86] rejected a participant’s sensing data when his/her
reputation scores fell below a threshold. Yang et al. ranked the
participants by using their reputation scores into some levels to
allow the requester to choose, instead of the system [87].

VI. FUTURE DIRECTIONS

In this section, we further identify 10 critical challenges
and opportunities on incentive mechanisms for participatory
sensing, with respect to the stochastic characteristics of partici-
patory sensing systems, the information gain of task publishers,
setting initial auction threshold, deploying cloud computing
based platform and multiple incentive schemes, as well as
participant’s reputation, energy efficiency and convenience, etc.
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TABLE VIII
DIFFERENT REPUTATION USAGE

Fig. 9. The participatory sensing system with multiple platforms, where the task publishers can choose different platforms for their sensing tasks.

A. Separating Task Publishers and Platforms

As discussed above, task publishers and the platform should
be treated separately, since in practice they are two different
independent economical entities. The same task publisher may
send tasks to different platforms in a nearby area, and these
platforms can resort help from different groups of participants
based on different collected sensory data levels (such as old and
new, coarse- and fine-grained data, etc.; see Fig. 9). Then, users
can be associated with different prices according to different
sensory data levels, to optimize the overall revenue being aware
of participants’ heterogeneous sensing capabilities.

By introducing multiple platforms, competition among them
will become another research issue. On one hand, different
platforms are competing to accept sensing tasks from task
publishers. An optimization problem can then be formulated to
minimize the sensing costs under the constraint of data quality
requirements for each platform. In addition, a new challenge
arises for the platform as how to precisely predict the cost
when providing sensing results of different quality. On the other
hand, different platforms will be competing for recruiting and
maintaining participants. Existing incentive strategies assume
that the platform plays a dominant role and participants are
disadvantaged and required to lower their bid prices to get
involved. By introducing competition among platforms, each
will be obliged to balance their price offers according to the
tradeoff between higher price to recruit more participants and
lower price to increase its profit. In this way, participants’
benefits can be protected, and more users may be expected.

B. Leveraging Historical Sensory Data for New Tasks

It is possible to allow platforms to sell the collected historical
data to other platforms/task publishers, since tasks may overlap
in spatial and temporal dimensions, and the only difference can
be the data quality such as accuracy. Along this direction, a new
incentive scheme should be proposed since not only participants
but also the platform will receive rewards. Therefore, the issue
of how to collectively optimize both of their benefits should be
investigated. Questions still remain though as to what extent
platforms should purchase the historical data in order to secure
a crowd of participants for future, new tasks (that cannot
leverage existing data). A dynamic scheme that can achieve
long-term equilibrium is needed from this angle.

C. Improving Data Quality by Proper Incentive Allocations

Environmental monitoring is one of the important applica-
tions of participatory sensing, which requires spatio-temporal
samplings with coverage requirement. When the incentive bud-
get is inadequate to obtain all data, the missing data will be re-
constructed by interpolation methods [64]. Data reconstruction
is performed considering the fact that the environmental data
in nearby subregions are usually correlated. Existing incentive
approaches ignore this spatio-temporal distribution of expected
samples, and ultimately may cause missing data in certain
regions and lead to inaccurate data reconstruction results from
interpolation. A novel incentive mechanism is needed in this
regard. On the other hand, incentive mechanism is needed
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in data quality aware systems to stimulate participants’ in-
volvement and enhance the system robustness [95]. Though
Song et al. proposed a data quality aware strategy with par-
ticipants’ reward [96], they did not explicitly consider that par-
ticipants incentive requirements could be dynamically decided
according to the amount of data they provide.

Furthermore, unlike [29], a scheme should be proposed to
avoid requesting full coverage data samples, since it might
cause extra cost to the participant’s sensing capability. A
step forward is to explicitly take into account the multiple
participants’ mobility pattern (i.e., trajectories), their sensing
coverage, acceptable price offer, and spatio-temporal task re-
quirement, since this scheme can optimally distribute the entire
incentive budgets among participants.

D. Energy-Aware Solutions

In existing incentive mechanisms [20], [30] and [73], the
authors had no explicit investigation into the energy level of
participants’ smart devices, and they all modeled the cost of
participation on the basis of the absolute power and bandwidth
usage. Though Liu et al. had employed incentive to help
balance data quality and energy efficiency [97], they did not
consider phone usage and mobility patterns, etc. However, the
inconvenience during the participation procedure can be the
major concern that prevents user engagement. As revealed by
an online questionnaire we conducted recently [98], partici-
pants’ remaining energy level and when their device can be
recharged are two essential impact factors on their willingness
to participant in sensing tasks, and thus further impact their
incentive expectations. A novel optimization goal that drives
a new incentive mechanism should be designed to maximize
the platform’s revenue by allocating smallest, but satisfactory
amount of rewards to participants, in aware of their remaining
energy levels, phone usage and mobility patterns.

E. Calculating the Actual Reputation of a Participant

Since the system may not be able to identify the ground truth
of a participant’s reputation in participatory sensing systems,
the system has to accept certain amount of sensing data to
predict the correct data that may cause data redundancy issues.
Redundant sensing data waste a large amount of manpower
and may cause the platform cost higher. Toward this end,
how to discover the actual reputation of a participant without
knowing the ground truth as a priori but still in a low cost
way is quite challenging. In this regard, designers can use
correlative (spatially and/or temporally) sensing data to verify
another sensing data’s quality, and Kriging Theory [99] can be
employed to reduce data redundancy.

F. Leveraging Reputation Scores to Design Incentive Schemes

As shown in Fig. 10, there is a clear relationship between
the employed reputation and the incentive mechanisms. When
a participant’s sensing data is sent to the platform, its quality
will be evaluated. This quality score can be considered as a
basis to compute participant’s reputation score, as well as to aid

Fig. 10. Weighted sensing data will be sent to the reputation mechanism (left
side) to be calculated reputation scores, in the meanwhile it will be sent to the
incentive mechanism (right side) to be calculated incentive rewards. Reputation
scores will influence incentive rewards as a part of consideration.

the incentive allocation decision made by the platform. Mean-
while, the participant’s reputation score will further influence
how much reward a participant can earn. For example, if the
participant always contributes high quality sensing data, his/her
reputation score will be higher than those whose contributed
data quality is lower. Higher reputation score can also be
exchanged as an “extra” incentive reward (or bonus) to motivate
participants to contribute more high quality sensory data in
future tasks.

G. Middleware and Application for Automatic Bidding

Participatory sensing applications either require sufficient
data automatically collected by sensors embedded on smart de-
vices, or rely on users’ intentional behaviors. However, current
incentive strategies either decide the incentive payments with-
out negotiating with participants, or require fussy negotiation
procedures such as bid-price auction that requires participants’
full engagement, thus causing disturbance to participants. Mid-
dleware and application level solutions on smart devices are
therefore needed to learn a user’s bidding history, and automat-
ically decide bid prices which matches his/her expectations. In
this way, auction is performed in the background and users are
least disturbed.

H. Set Proper Bidding Price Threshold in Auction-Based
Incentive Mechanisms

One drawback of auction based incentive mechanisms is
that the platform has to collect all bidding prices or all the
sensing data to compute the data quality threshold, and then
decides which ones to accept. Participants have to wait for the
platform’s offer/decision for a long time. Although this method
seems can gain high quality sensory data under limited budget,
participants have to wait and they could be losers at the end,
which is not ideal to keep them in the system. Zhang et al. in
[21] and Zhao et al. in [22] named the above method as “offline
bidding,” and both of them proposed “online bidding” meth-
ods. However, there was still a drawback. That was, they either
set a man made price threshold themselves at the beginning,
or just based on first set of selected participants’ bidding price
or data quality to determine this threshold. That was, since the
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platform did not set exact bidding price or data quality threshold
at the beginning, the first batch of participants either earned
more/less than they deserved. This might waste platform’s
profit or lower down the trustworthiness of the sensory data.
Therefore, how to decide the beginning bidding threshold in a
more reasonable way needs further investigations.

I. Building Participatory Sensing Systems in a Cloud

When there are large numbers of participants in a partic-
ipatory sensing system, they send their sensory data to the
platform simultaneously that may cause sudden overload in-
crease to the platform’s storage and processing capabilities.
In this regard, cloud computing related technologies can be
leveraged to solve this Big Data problem. For example, Apache
Kafca [100] can be deployed at the platform to provide realtime
publish/subscribe based messaging services, and then Apache
Storm [101] can be used as realtime data processing engine.
After storing them in an HBase [102] column-based database
for persistence, Apache Hadoop Map/Reduce technology can
be used for processing/analysis distributedly across different
virtual/physical machines.

J. Multiple Incentive Schemes Co-Existence

As mentioned in the survey [77], different participants might
prefer different kinds of incentives, however current solu-
tions only employ one single incentive mechanism. Although
Scekic et al. proposed a modularization incentive mechanism
where incentive schemes could be modeled depending on
different participatory sensing environments in [11], it was
still one single mechanism. Multiple incentive schemes allow
different participants earn different types of rewards at the same
time, however facing challenges on how to decide what type
of incentive reward should be provided to which participant,
and whether this decision is made decided by the platform or
from the participants, in order to maximize their own bene-
fits respectively. When a new participant arrives, the platform
should be able to flexibly integrate existing schemes into a
new scheme that is personalized to the new user according to
his/her preferences.

VII. CONCLUSION

Incentive mechanism is a key design element of novel
participatory sensing systems. In this paper, we extensively
survey the state-of-the-art solutions and open up a few in-
teresting future research directions. First, we classify exist-
ing theoretical solutions according to their design goals and
also their incentive negotiation procedure, and review in de-
tail the most recent representative research activities. Then,
different kinds of participatory sensing applications and im-
plementations are presented. Third, existing experiments are
also compared in terms of their settings, employed strate-
gies and results, and certain conclusions regarding how they
support the existing theoretical frameworks are drawn. Last,
we discuss trustworthiness of sensing data in participatory
sensing and the relationship between reputation and incen-

tives. Finally, we propose a few interesting future directions
that include involving multiple platforms for participatory
sensing, leveraging historical sensory data, improving data
quality by proper incentive allocation, energy-aware, the re-
lationship between reputation and incentive, middleware so-
lutions for automatic bidding, flexibility to the participants
selection, cloud computing for incentive mechanism and mod-
ularization incentive mechanisms.
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