
BSPL, the Blindingly Simple Protocol Language

Munindar P. Singh

North Carolina State University

April 2011

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 1 / 34

Interactions and Protocols
All actions are interactions

Goal: Specify distributed systems of autonomous,
heterogeneous agents

I Focus on roles that agents play
I Identify rules of encounter
I Maintain independence from internal reasoning

(policies)
Approach: Specify protocols as abstractions over interactions

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 2 / 34

Traditional Approaches

Declarative Procedural

Meaning Commitments and
other norms

Hard coded within internal
reasoning heuristics

Operation Temporal logic State machines; Petri nets;
process algebras

I Declarative approaches for meaning
I Improve flexibility
I Under-specify enactment: potential of interoperability failures

I Procedural or declarative approaches for operations
I Operationally clear, but

I Tend to emphasize control flow
I Tend to over-specify operational constraints
I Yield nontrivial interoperability and endpoint projections

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 3 / 34

Remark on Control versus Data Flow

I Control flow
I Natural within a single computational thread
I Exemplified by conditional branching
I Presumes master-slave relationship across threads
I Impossible between mutually autonomous parties because neither

controls the other
I May sound appropriate, but only because of long habit

I Data flow
I Natural across computational threads
I Explicitly tied to causality

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 4 / 34

Properties of Participants

I Autonomy
I Myopia

I All choices must be local
I Heterogeneity: local 6= internal

I Local state
I Public or observable
I Typically, must be revealed for correctness

I Internal state
I Private
I Must never be revealed to avoid false coupling

I Shared nothing representation of local state
I Enact via messaging

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 5 / 34

Interaction Orientation
Interactions as first-class constructs

I Protocol
I Abstract class (or interface) of interactions
I Based on roles and parameters

I Roles
I Local but not internal views of each agent

I Parameters
I Distinguish different instances of the same protocol

I Enact protocols via LoST: Local State Transfer

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 6 / 34

Information Centrism
Characterize each interaction purely in terms of information

I Explicit causality
I Flow of information coincides with flow of causality
I No hidden control flows
I No backchannel for coordination

I Keys
I Uniqueness
I Basis for completion

I Integrity
I Must have bindings for some parameters
I Analogous to NOT NULL constraints

I Immutability
I Durability
I Robustness: insensitivity to

I Reordering by infrastructure
I Retransmission: one delivery is all it needs

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 7 / 34

Motivation and Benefits

I Technical
I Statelessness
I Consistency
I Atomicity
I Natural composition

I Conceptual
I Make protocol designer responsible for specifying causality
I Avoid contortions of traditional approaches when causality is

unclear

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 8 / 34

BSPL, the Blindingly Simple Protocol Language
Main ideas

I Only two syntactic notions
I Declare a message schema: as an atomic protocol
I Declare a composite protocol: as a bag of references (to existing

protocols)
I Parameters are central

I Provide a basis for expressing meaning in terms of bindings in
protocol instances

I Yield unambiguous specification of compositions through public
parameters

I Capture progression of a role’s knowledge
I Capture the completeness of a protocol enactment
I Capture uniqueness of enactments through keys

I Separate structure (parameters) from meaning (bindings)
I Capture many important constraints purely structurally

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 9 / 34

Parameter Adornments in BSPL
Capture the essential causal structure of a protocol

I pinq: Information that must be provided to instantiate a protocol
I Bindings must exist locally in order to proceed
I Bindings must be produced through some other protocol

I poutq: Information that is generated by the protocol instances
I Bindings can be fed into other protocols through their pinq

parameters, thereby accomplishing composition
I A standalone protocol must adorn all its public parameters poutq

I pnilq: Information that is absent from the protocol instance
I Bindings must not exist

Ignoring data types of parameters for simplicity: assume strings
everywhere

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 10 / 34

Key Parameters in BSPL
Marked as pkeyq

I All the key parameters together form the key
I Each protocol must define at least one key parameter
I Each message or protocol reference must have at least one key

parameter in common with the protocol in whose declaration it
occurs

I The key of a protocol provides a basis for the uniqueness of its
enactments

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 11 / 34

The Hello Protocol

Hel lo {
role Sel f , Other
parameter out gree t i ng key

Se l f 7→ Other : h i [out gree t i ng key]
}

I At most one instance of Hello for each greeting
I At most one hi message for each greeting
I Enactable standalone: no parameter is pinq
I The key of hi is explicit; could be made implicit

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 12 / 34

The Pay Protocol

Pay {
role Payer , Payee
parameter in ID key , in amount

Payer 7→ Payee : payM [in ID , in amount]
}

I At most one payM for each ID
I Not enactable standalone: why?
I The key of payM is implicit; could be made explicit

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 13 / 34

The Offer Protocol

Of fe r {
role Buyer , S e l l e r
parameter in ID key , out i tem , out p r i ce

Buyer 7→ S e l l e r : r f q [in ID , out i tem]
S e l l e r 7→ Buyer : quote [in ID , in i tem , out p r i ce]
}

I The key ID uniquifies instances of Initiate Offer, rfq, and quote
I Not enactable standalone: at least one parameter is pinq
I An instance of rfq must precede any instance of quote with the

same ID: why?
I No message need occur: why?
I quote must occur for Initiate Offer to complete: why?

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 14 / 34

The Initiate Order Protocol
I n i t i a t e −Order {
role B, S
parameter out ID key , out i tem , out pr ice , out r ID

B 7→ S: r f q [out ID , out i tem]
S 7→ B: quote [in ID , in i tem , out p r i ce]

B 7→ S: accept [in ID , in i tem , in pr ice , out r ID]
B 7→ S: r e j e c t [in ID , in i tem , in pr ice , out r ID]
}

I The key ID uniquifies instances of Order and each of its messages
I Enactable standalone
I An rfq must precede a quote with the same ID
I A quote must precede an accept with the same ID
I A quote must precede a reject with the same ID
I An accept and a reject with the same ID cannot both occur: why?

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 15 / 34

The Purchase Protocol
Purchase {
role B, S, Shipper
parameter out ID key , out i tem , out pr ice , out outcome

B 7→ S: r f q [out ID , out i tem]
S 7→ B: quote [in ID , in i tem , out p r i ce]
B 7→ S: accept [in ID , in i tem , in pr ice , out address , out resp]
B 7→ S: r e j e c t [in ID , in i tem , in pr ice , out outcome , out resp]

S 7→ Shipper : sh ip [in ID , in i tem , in address]
Shipper 7→ B: d e l i v e r [in ID , in i tem , in address , out outcome]
}

I At most one item, price, and outcome binding per ID
I Enactable standalone
I reject conflicts with accept on response (a private parameter)
I reject or deliver must occur for completion (to bind outcome)

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 16 / 34

Possible Enactment as a History Vector
Buyer

_

rfq

��

Seller_

rfq

��

Shipper

ID, item +3
_

quote
��

_

quote
��ID, priceks

_

accept
��

_

accept
��ID, address +3
_

ship
��

_

ship
��ID, item, address +3

_

deliver
��

_

deliver
��ID, item, address, outcomeks

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 17 / 34

LoST Schematically
Local State Transfer

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 18 / 34

Knowledge and Viability
When is a message viable? What effect does it have on a role’s local knowledge?

Knows
Sender’s View

_

in

��

Does not knowG

out

��

_

nil

��

Knows
Receiver’s View

_

in
out
nil

��

Does not knowG

out
in

��

_

nil

��
Knows Does not know Knows Does not know

I Knowledge increases monotonically at each role
I An poutq parameter creates and transmits knowledge
I An pinq parameter transmits knowledge
I Repetitions through multiple paths are harmless and superfluous

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 19 / 34

Send-Receive and Send-Send Constraints on a Role

Sends in Sends out Sends nil

Sends in Unconstrained Send out first Send nil first
Sends out Send at most

one
Send nil first

Sends nil Unconstrained
Receives in Receive first

copy before
send

Receive may
occur after
send

Send before re-
ceive

Receives out Receive first
copy before
send

Impossible Send before re-
ceive

Receives nil Unconstrained Unconstrained Unconstrained

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 20 / 34

Comparing LoST and ReST
ReST LoST

Modality Two-party; client-
server; syn-
chronous

Multiparty interactions; peer-
to-peer; asynchronous

Computation Server com-
putes definitive
resource state

Each party computes its defini-
tive local state and the parties
collaboratively and (potentially
implicitly) compute the defini-
tive interaction state

State Server maintains
no client state

Each party maintains its local
state and, implicitly, the rele-
vant components of the states
of other parties from which
there is a chain of messages
to this party

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 21 / 34

Comparing LoST and ReST

ReST LoST

Transfer State of a re-
source, suitably
represented

Local state of an interac-
tion via parameter bind-
ings, suitably represented

Idempotent For some verbs,
especially GET

Always; repetitions are
guaranteed harmless

Caching Programmer can
specify if cacheable

Always cacheable

Uniform interface GET, POST, . . . pinq, poutq, pnilq
Naming Of resources via

URIs
Of interactions via (com-
posite) keys, whose bind-
ings could be URIs

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 22 / 34

Comparing BSPL and WS-CDL

I Similarity: both emphasize interaction
I Differences: WS-CDL is

I Operational
I Sequential message ordering by default

I Agent-oriented
I Includes agents’ internal reasoning within choreography (specify what

service an agent executes upon receiving a message)
I Relies on agents’ internal decision-making to achieve composition

(take a value from Chor A and send it in Chor B)
I No semantic notion of completeness

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 23 / 34

Well-Formedness Conditions

I A parameter that is adorned pinq in a declaration must be pinq
throughout its body

I A parameter that is adorned poutq in a declaration must be poutq
in at least one reference

I When adorned poutq in zero references, not enactable
I When adorned poutq in exactly one reference, consistency is

guaranteed
I When adorned poutq in two or more references, no more than one

can execute
I A private parameter must be poutq in at least one reference

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 24 / 34

ACID Properties
With inspiration from database transactions though with modifications

I Atomicity: if a protocol completes, each reference within it that is
initiated also completes

I Ensured by placing one agent in charge of each conflict
I Consistency: at most one of a set of conflicting references occurs

I Ensured by placing one agent in charge of each conflict
I Isolation: separate enactments do not interfere

I Ensured by keys
I Durability: any enactment is permanent

I Ensured by the immutability of bindings

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 25 / 34

References: Analogous to Macros or Procedures?

I Macro
I Expanded into the body of a composite protocol: partially enactable
I Maximize concurrency

I Procedure
I All or none
I Enable compositionality

I BSPL treats references as both
I Enactment is maximally concurrent, at the level of individual

messages
I Atomicity avoids undesirable outcomes

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 26 / 34

Standing Order
As in insurance claims processing

Insurance−Claims {
role Vendor , Subscr iber
parameter out policyNO , out reqForClaim key , out claimResponse

Vendor 7→ Subscr iber : c rea tePo l i cy [out policyNO]
Subscr iber 7→ Vendor : serviceReq [in policyNO , out reqForClaim]
Vendor 7→ Subscr iber : c la imServ ice [in policyNO , in reqForClaim ,

out claimResponse]
}

I Each claim corresponds to a unique policy and has a unique
response

I One policy may have multiple claims

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 27 / 34

Flexible Sourcing of out Parameters
Buyer or Seller Offer

Buyer−or−Se l le r−Of fe r {
role Buyer , S e l l e r
parameter in ID key , out i tem , out pr ice , out conf i rmed

Buyer 7→ S e l l e r : r f q [in ID , out i tem , nil p r i ce]
Buyer 7→ S e l l e r : r f q [in ID , out i tem , out p r i ce]

S e l l e r 7→ Buyer : quote [in ID , in i tem , out pr ice , out conf i rmed]
S e l l e r 7→ Buyer : quote [in ID , in i tem , in pr ice , out conf i rmed]
}

I The BUYER or the SELLER may determine the binding
I The BUYER has first dibs in this example

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 28 / 34

in-out Polymorphism
Flexible Offer

F lex ib l e−Of fe r {
role B, S
parameter in ID key , out i tem , pr ice , out qID

B 7→ S: r f q [ID , out i tem , nil p r i ce]
B 7→ S: r f q [ID , out i tem , in p r i ce]

S 7→ B: quote [ID , in i tem , out pr ice , out qID]
S 7→ B: quote [ID , in i tem , in pr ice , out qID]
}

I The price can be adorned pinq or poutq in a reference to this
protocol

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 29 / 34

The Bilateral Price Discovery protocol

BPD {
role Taker , Maker
parameter out reqID key , out query , out r e s u l t

Taker 7→ Maker : pr iceRequest [out reqID , out query]
Maker 7→ Taker : priceResponse [in reqID , in query , out r e s u l t]
}

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 30 / 34

The Generalized Bilateral Price Discovery protocol

GBPD {
role T , M
parameter reqID key , query , res

T 7→ M: pr iceRequest [out reqID , out query]
T 7→ M: pr iceRequest [in reqID , in query]

M 7→ T : priceResponse [in reqID , in query , out res]
M 7→ T : priceResponse [in reqID , in query , in res]
}

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 31 / 34

The Multilateral Price Discovery protocol

MPD {
role Taker , Exchange , Maker
parameter out reqID key , out query , out res

GBPD(Taker , Exchange , out reqID , out query , in res)
GBPD(Exchange , Maker , in reqID , in query , out res)
}

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 32 / 34

Shopping Cart

Shopping Cart {
role B, S
parameter out ID key , out l i n e I D key , out i tem , out qty , out

pr ice , out f i n a l i z e

B 7→ S: create [out ID]
S 7→ B: quote [in ID , out l i ne ID , in i tem , out p r i ce]
B 7→ S: add [in ID , in l i ne ID , in i tem , out qty , in p r i ce]
B 7→ S: remove [in ID , in l i n e I D]

S 7→ B: t o t a l [in ID , out sum]
B 7→ S: s e t t l e [in ID , in sum, out f i n a l i z e]
B 7→ S: d iscard [in ID , out f i n a l i z e]
}

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 33 / 34

Directions

I Implementation of LoST
I Methodology for specifying practical protocols
I Expansions of the language to handle role hierarchies
I Theoretical results

I Decision procedures for judging consistent enactability
I Treatment of recursive protocols

singh@ncsu.edu (NCSU) Blindingly Simple Protocol Language April 2011 34 / 34

