Actors for Reactive Programming

Actors
Origins

v

Hewitt, early 1970s (1973 paper)

Around the same time as Smalltalk

v

v

Concurrency plus Scheme
Agha, early 1980s (1986 book)
Erlang (Ericsson), 1990s
Akka, 2010s

v

\4

v

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017 46

https://go.ncsu.edu/service-oriented

Actors: Way of Thinking

» Key idea: support for autonomy
» Designed for concurrency
» Equally good for distribution
» Shared nothing
» Style of thinking
» Architecture: no longer a single locus of control and storage
» Programming: reacting to events propagated via messages
> Eschew states, visibility of internal information, synchronization
primitives (locks)
> Forget threads as a programming abstraction—threads may implicitly
do the work but not to program them
» Messaging and no shared memory

» Resource management
» Start additional actors as needed for work and resources available
» Stop actors when not needed

» Migrate actors when needed, taking advantage of a universal actor
reference

» Handle exceptions through monitoring and supervision

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017 47

https://go.ncsu.edu/service-oriented

Actors for Reactive Programming

Actor Basics

» An actor

» Encapsulates local state (memory)—hence, the state may not be
directly accessed from outside an actor
» Encapsulates a thread
» Mailbox (incoming)
> Processed in order of arrival, though could be reordered (e.g.,
PriorityMailbox)

> ActorRef: globally unique ID (serializable)
>
» To create an actor class in Akka,
» Extend appropriate abstract class (or, in Scala, trait)
» Define a "receive method
> Define corresponding "Props™ configuration class

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017

https://go.ncsu.edu/service-oriented

HelloAkkaJava.java (Messages)

public class HelloAkkaJava {
//MPS: The first message is Greet; it has no parameters; its
// expected outcome is to send a greeting
public static class Greet implements Serializable {}

//MPS: The second message is WhoToGreet; it has one parameter,
// the target of the greeting; its expected outcome is for
// the recipient to change the target
public static class WhoToGreet implements Serializable {
public final String who;
public WhoToGreet(String who) {
this.who = who;
}

}

//MPS: The third message is Greeting; it has one parameter, the
// greeting message; it is a message to be sent
public static class Greeting implements Serializable {
public final String message;
public Greeting(String message) {
this.message = message;
}

}

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017 49

https://go.ncsu.edu/service-oriented

HelloAkkaJava.java (Actor)

public static class Greeter extends AbstractActor {

String greeting = ""; //internal state of the actor
©@Override

//MPS: Mapping of messages to behaviors. This snippet
// handles the two incoming messages; it doesn’'t mention

// the outgoing message (Greeting)
public Receive createReceive() {
return receiveBuilder ()
.match (WhoToGreet. class , this::onWhoToGreet)
.match(Greet.class, this::onGreet)
.build () ;

}

// MPS: Update internal state on receiving a WhoToGreet message
private void onWhoToGreet(WhoToGreet whoToGreet) {

greeting = "hello, " + whoToGreet.who;
}

// MPS: Send greeting message on receiving a Greet message
private void onGreet(Greet greet) {
// Send the current greeting back to the sender
getSender (). tell (new Greeting(greeting), getSelf());

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017

https://go.ncsu.edu/service-oriented

HelloAkkaJava.java (Main 1)

public static void main(String [] args) {
try {
// Create the helloAkka actor system and the greeter actor
final ActorSystem system = ActorSystem.create(” helloAkka");
final ActorRef greeter =
system.actorOf (Props.create(Greeter.class), "greeter”);

// MPS: The inbox (apparent misnomer) functions as an actor to
// communicate with actors; sort of a "main” for actors to use
// as a place for send and receive

final Inbox inbox = Inbox.create(system);

// Tell the greeter to change its 'greeting ' message
greeter. tell (new WhoToGreet(” akka”), ActorRef.noSender());

// Ask for the current greeting; reply to go to inbox
inbox .send (greeter , new Greet());

// Wait 5 seconds for the reply with the ’'greeting ' message

final Greeting greetingl = (Greeting)
inbox.receive(Duration.create (5, TimeUnit.SECONDS)) ;

System.out.println (" Greeting one: " + greetingl . message);

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017

https://go.ncsu.edu/service-oriented

HelloAkkaJava.java (Main 2)

// Initially after O seconds, send a Greet message every second to
the greeter; Spoof sender as GreetPrinter (new Actor below)
final ActorRef greetPrinter =
system.actorOf (Props.create(GreetPrinter.class));
system.scheduler().schedule(Duration.Zero(), Duration.create(1,
TimeUnit .SECONDS), greeter , new Greet(),
system .dispatcher (), greetPrinter);
} catch (TimeoutException ex) {
System .out. println (" Got a timeout waiting for reply from an
actor”);
ex.printStackTrace();

}

}

public static class GreetPrinter extends AbstractActor {
Q@Override

public Receive createReceive() {
return receiveBuilder ()
.match(Greeting.class, (greeting) —>
System .out. println (greeting . message))
.build () ;

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017

https://go.ncsu.edu/service-oriented

The Receive Method

> » A reaction rule for each type of message to be handled
> In Akka, the set of rules must be exhaustive in that all other messages
will publish an "UnhandledMessage™ to the ActorSystem's
TEventStream™
» Best practice is to include a default rule (using "matchAny™ in Java)
for unexpected messages
» Good practice to
» Separately describe the allowed message types, e.g., as static classes in
Java
> Write each message’s handler as a separate little method

» An actor’s "receive ' method
» A (partial) function object stored within the actor
» Hot swapping the "receive™ Avoid unless essential

» Changed through "context.become™ method
» Alternative: push new behavior and use "unbecome™ to post

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017

https://go.ncsu.edu/service-oriented

Actors for Reactive Programming

Messages

» Immutable objects
» Not enforced by Java, so beware
No delivery guarantees, pairwise FIFO
» May be lost
» May be duplicated
» Option to ensure at least once delivery
Pairwise FIFO
> If
> An actor A sends two messages to actor B and
> Both messages arrive
» Then
> They arrive in order
Messages to same recipient from distinct originating actors are
unrelated
» May be arbitrarily interleaved
If your application requires some assumptions of delivery
» Verify them yourself: use acknowledgments
> Achieve them yourself: use retries

v

v

v

v

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017

https://go.ncsu.edu/service-oriented

Actors for Reactive Programming

Messages: Programming

> tell”

» Asynchronous
» Send message and return immediately
> Preferable to maximize decoupling

> Mask™
» Asynchronous

» Send message and return a "Future™ what will contain the reply
> Greater overhead in maintaining the context than for "tell”

Timeout t = new Timeout(Duration.create (5, TimeUnit.SECONDS));

CompletableFuture<Object> future2 = ask(actorB, "another request”,
t).toCompletableFuture () ;

» The "CompletableFuture™ class supports joining futures, piping, and
so on

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017 55

https://go.ncsu.edu/service-oriented

Actors for Reactive Programming

ActorSystem

/ root (and its guardian or supervisor)
/user user space (and its guardian or supervisor), called Guardian
/system system space (and its guardian or supervisor)

» Any actors we create are under " /user™, although we create actors
through
» Tsystem.actorOf™: children (called “top-level” actors) of /user
» Tcontext.actorOf ™ their descendants (all levels)

» Every actor has a parent or supervisor in whose scope it is created
» Stopping an actor: recursively: children first; then self

» TgetContext().stop(child)™

» getContext().stop(getSelf())™

> TPoisonPill™ message to stop an actor in its tracks after the previously
arrived (enqueued) messages are processed

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017 56

https://go.ncsu.edu/service-oriented

Actors for Reactive Programming

Exceptions

» Current message
» Already removed from mailbox and potentially lost
> Unless explicit action to save the message or process it again
Mailbox
» Preserved, as remaining after the current message was removed
> Available to the restarted actor, if any

» Supervision: An exception throwing actor is suspended and control

passed to its supervisor
The supervisor decides the fate of the actor
» Resume: back to where it was when the exception occurred
> Restart: reset its internal state to initial
» Stop: end it
Akka provides a rich set of hooks through which to customize
behavior
» Pre and post of the major events
» Start, Stop, Restart
» For example, "preRestart()™

v

v

\4

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017

https://go.ncsu.edu/service-oriented

Actors for Reactive Programming

Exceptions: Supervisor Strategy

» No call stack to pass an exception

» Traditional idea doesn't work
» Not clear which past or future caller should get the exception

» Therefore, pass to supervisor
» Can apply its strategy
» A couple of strategies are predefined
» One for One Strategy
> If a child (supervisee) actor produces an exception, deal with that actor
» All for One Strategy
» If the child actors are performing pieces of the same transaction and
those not throwing an exception may be affected
» Predefined (fixed set of) directives on how to deal with a spoiled child
> Resume
» Stop
> Restart
> Escalate

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017 58

https://go.ncsu.edu/service-oriented

Exception Handling: Throwing

String) extends Exception(msg) {}

class MadeUpException(msg:
String) extends Exception(msg) {}

class JustBecauseException (msg:

class SuperviseeActor(id: Int) extends Actor with ActorlLogging {

override def receive: Receive = {
case SuperviseeActor. Fail =
log.info(s” $self fails now,
ActorRef = $this")
throw new JustBecauseException(s” $self ,
$identifier , upon receiving a Fail
case SuperviseeActor.Nudge =>
import wutil.Random
if (Random.nextBoolean())

throw new MadeUpException(s” $self , identifier =
$identifier , random effect on a Nudge message”)

log.info(s” $self receives nudge from $sender, identifier =
$identifier; ActorRef = $this")

identifier = $identifier;

identifier =
message”)

Service-Oriented Computing Fall 2017

Munindar P. Singh (NCSU)

https://go.ncsu.edu/service-oriented

Exception Handling: “Catching”

class SupervisorActor extends Actor with ActorLogging {

val child = context.actorOf (...)
override def receive: Receive = {
case SupervisorActor. FailChild => child ! SuperviseeActor. Fail
case SupervisorActor.NudgeChild => child ! SuperviseeActor.Nudge

}

override val supervisorStrategy =
OneForOneStrategy (maxNrOfRetries = 1, withinTimeRange = 5
second) {

case _: ArithmeticException => Resume
case _: NullPointerException => Restart
case _: lllegalArgumentException => Stop
case _: |OException => Stop

case x: JustBecauseException = {
log.error(s” JustBecauseException occurred for the most
outrageous reason;\n<<<$x>>>\n Restarting")
Restart
}
case _: MadeUpException = {
log.error(s” MadeUpException occurred;\n Resuming”)
Resume

}

case _: Exception => Escalate

End-to-End Principle

Popularized by Jerome Saltzer, David Reed, and David Clark

» Originally formulated for computer network protocols
» Usual examples pertain to error checking and performance
> A similar case could be made for encryption
» Applies to (distributed) computing more generally
» Any functionality that reflects application meaning must be verified at

the end points
» Such functionality

> Does not need to be provided in the interior of the network, because it
would need to be repeated at the end points
» Functionality that is not needed for a layer should not be provided in
that layer because it is
» Either superfluous—hence wastes resources
» Or is replicated—hence wastes resources
» In the case of actors
» Ignoring message reliability and ordering is wise
» But why not also discard pairwise FIFO

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017 61

https://go.ncsu.edu/service-oriented

Actors for Reactive Programming

Actors and Protocols

Protocols to be introduced later

» Actors
» Separate business logic from infrastructure
» Protocols
» Separate reasoning from coordination
» Concordance: Protocols are geared for coordination of actor-like
computational entities

» Asynchronous (nonblocking) messaging
» Shared nothing representation of local state

» Complementarity

Actors assume pairwise FIFO

Actors lack a model of multiparty interactions

Actors lack an explicit model of causality for messages

Actors don't provide an information model for messages

Protocols deal with interactions; actors deal with computations that
can interact

vV vy vy VvYyy

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2017

https://go.ncsu.edu/service-oriented

	Actors for Reactive Programming

