Word Senses

- Polysemy: many meanings
- The book uses "aspect" in these senses

Informal	One aspect of the meaning of a word	
Sentiment analysis	Aspect of an entity for sentiment	
Formal linguistics	Aspect of a verb	

► Word sense: a discrete representation of one meaning

- Notationally, just a new term: bank¹ versus bank²
- How can we express the semantics or content of a word sense?
- Gloss: dictionary meaning of a sense
 - Informal
 - Notoriously circular as a set, sometimes even individually
 - $\blacktriangleright \mathsf{Red} \Rightarrow \mathsf{blood}; \mathsf{blood} \Rightarrow \mathsf{red}$
 - Often accompanied by precedents, sentences indicating usage
 - Can be mined for understanding

Splitting Senses

	- 1
Delta serves breakfast	ł
	÷.
Delta serves Atlanta	-
	-i
Delta serves Atlanta and breakfast	

- Zeugma: conjunction of antagonistic readings
 - Sound anomalous since conjunction forces alignment
- Conjoin two readings
 - Anomaly (zeugma) is evidence for the senses being distinct
- Syntactic variation
 - Noun versus verb: black mark or mark time
 - Within syntactic category: serve food or serve as editor
- Dictionaries may split senses to too fine a grain
 - Clustering similar senses can be useful for NLP

Word Embeddings

Basic embeddings, as in word2vec

- Disregard context
- Don't separate out senses but provide a single vector that aggregates all the occurrence contexts of a word
- Interestingly, place a word and its antonyms close together
- Contextual embeddings, e.g., ELMo and BERT, are superior
 - They too don't separate out senses discretely

Relations Between Senses

- Homonymy: Unrelated senses of a word
- Polysemy (early in the chapter): Unrelated senses, synonym of homonymy
- Polysemy (later in the chapter): Related senses
- Synonymy: Two senses of different words are nearly identical
 - Specific to senses: big \approx large but big sister \neq large sister
- Antonymy: opposite with respect to some scale or axis
 - Differ on that axis
 - Highly similar otherwise
 - Confound word embeddings
- Hypernymy (antonym of hyponymy)
 - Superclass (sometimes called superordinate)
- Meronymy: part-whole
 - Leg as a meronym of chair
 - Chair as a holonym of leg

Structured Polysemy

Relations between senses of the same word

Metonymy: using one aspect of an entity to refer to other aspects of (or to the entire) entity

- These are captured in the same word
- ▶ Organization ≈ Organization → Address → Component
- Downing Street (~ UK Prime Minister's office) is making plans for Brexit
- Work \approx Author (read Shakespeare)
- Synecdoche: subcategory of metonymy broadly
 - Part for a whole
 - Whole for a part
- These terms do not have set meanings
 - Sometimes defined not as subclasses

WordNet: Lexical Relations

Called a sense inventory

- Focuses on nouns (~118k), verbs (~11k), adjectives (~22k), adverbs (~4k)
- Provides a lemma entry for each included word, e.g., for "view"
 - Senses: nouns (9) and verbs (3)—ordered by decreasing popularity
 - Glosses
 - Examples
- Synset: near-synonyms of a WordNet sense
 - {view², aspect³, prospect⁴, scene³, vista¹, panorama¹}
 - Each member points to all others
 - Each member has the same synset gloss
- Synsets induce an equivalence relation: synsets are disjoint or equal

Supersenses: High-Level Conceptual Categories

Each synset identifies one supersense or lexname

Supersenses for nouns:

Category	Example	Category	Example	Category	Example
ACT	service	GROUP	place	PLANT	tree
ANIMAL	dog	POSSESSION	price	LOCATION	area
ARTIFACT	car	MOTIVE	reason	PROCESS	process
ATTRIBUTE	quality	NATURAL EVENT	experience	QUANTITY	amount
BODY	hair	NATURAL OBJECT	flower	RELATION	portion
COGNITION	way	OTHER	stuff	SHAPE	square
PERSON	people	COMMUNICATION	review	STATE	pain
FEELING	discomfort	PHENOMENON	result	TIME	day
FOOD	food	SUBSTANCE	oil		

Additionally, 15 for verbs, 2 for adjectives, 1 for adverbs

Sense Relations in WordNet

Noun relations: Relation

Hypernym Hyponym Instance Hypernym Instance Hyponym Part Meronym Part Holonym Antonym Derivation

Definition

From concepts to superordinates From concepts to subtypes From instances to their concepts From concepts to their instances From wholes to parts From parts to wholes Semantic opposition between lemmas Lemmas w/same morphological root

Example

 $\begin{array}{l} \mathsf{breakfast}^1 \to \mathsf{meal}^1 \\ \mathsf{meal}^1 \to \mathsf{lunch}^1 \\ \mathsf{Austen}^1 \to \mathsf{author}^1 \\ \mathsf{composer}^1 \to \mathsf{Bach}^1 \\ \mathsf{table}^2 \to \mathsf{leg}^3 \\ \mathsf{course}^7 \to \mathsf{meal}^1 \\ \mathsf{leader}^1 \leftrightarrow \mathsf{follower}^1 \\ \mathsf{destruction}^1 \leftrightarrow \\ \mathsf{destroy}^1 \end{array}$

Verb relations: Relation	Definition	Example
Hypernym	From events to superordinate events	$fly^9 {\rightarrow} travel^5$
Troponym	From events to subordinate event	$walk^1 o stroll^1$
Entails	From verbs (events) to the verbs (events) they entail	$snore^1 \!\! \to sleep^1$
Antonym	Semantic opposition between lemmas	$increase^1 \leftrightarrow decrease^1$

WSD: Word Sense Disambiguation

- Lexical sample task: map
 - Small, fixed set of target words
 - Senses for each word from a lexicon
 - Supervised classification works well
- Semantic concordance = Corpus, each word labeled with its sense
 - SemCor \subseteq Brown Corpus
 - 226k words, manually tagged using WordNet
 - Example with POS as subscript and sense as superscript
 - You will find⁹_v that avocado¹_n is¹_v unlike¹_j any other¹_j fruit¹_n you have ever¹_t tasted²_v
- All-words task
 - Entire lexicon of words and senses
 - Data sparseness
- Choose the correct WordNet sense

Evaluation of WSD Approaches

- F₁ score on held-out corpus
- Effective baseline: Most frequent sense in WordNet
 - Also a good default
- One sense per discourse
 - A word tends to retain its sense, especially among unrelated senses (homonyms)
 - Not an effective baseline
 - Useful heuristic for disambiguation

Contextual Word Embeddings

Assumes a contextual embedding technique, such as BERT or ELMo

- Embedding of sense (synset): mean of embeddings of the words in it
 - \triangleright c_i is labeled with sense s
 - There are n occurrences of words labeled s in the corpus

$$v_s = \frac{1}{n} \sum_{i}^{n} c_i$$

- Example counts: [view: 100; prospect: 111; panorama: 1,000]
- Precompute sense embeddings
- At test time, compute the contextual embedding of a word
 - Find the nearest sense embedding of that word (same lemma)
- For words with unknown sense embeddings
 - Use most frequent sense in WordNet as default
 - Works because SemCor is a small subset of WordNet
 - Won't work for words not present in WordNet

Estimating Missing Sense Embeddings using WordNet

Loureiro and Jorge's alternative to most frequent sense

- Apply WordNet relations, in increasing order of abstraction
- Estimate each level based on estimates of lower levels
- For a given word, use the mean sense embedding of the first abstraction level that has data for that word
 - Synset: mean of other synset members with known embeddings
 - Embedding: mean of known embeddings of words in it
 - If the synset's embedding is known, use it; skip the rest
 - Else, Hypernyms: mean of hypernyms with known embeddings
 - Embedding: mean of known embeddings of synsets below it
 - ► If the hypernym's embedding is known, use it; skip the rest
 - Else, Lexnames: if some lexname (supersense) have known embeddings, take their mean
 - Embedding: mean of known embeddings of synsets in it
 - If the lexname's embedding is known, use it

Other Sources for Word Sense Information

Wikipedia

- Use the URI of a page as a sense
- Thesauruses, especially for handling antonyms
 - Modify embedding technique to use antonym relations
 - Retrofitting or counterfitting
 - Train static embeddings as usual
 - Modify those embeddings to bring synonyms closer and take antonyms farther

Word Sense Induction

Unsupervised learning

- Compute a context embedding for each occurrence of a word w
- Cluster these embeddings
 - Predefined number of clusters
- Each cluster expresses a sense of w
- The centroid of a cluster is a sense embedding
- Upon receiving the word (in some new context)
 - Compute its context embedding
 - Assign the word to the closest sense