
Deep Learning for NL

Neural Language Models
From Jurafsky and Martin

▶ Long been discussed; began to take off ∼2013

▶ Recurrent neural nets

▶ Transformers: the major idea

▶ Many improvements in computing and architecture
▶ Separate pretraining (large, expensive) from fine-tuning

(targeted, efficient)
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Forward Inference in a Feedforward Neural Language Model
Figure 7.17. Shows a context of three preceding tokens
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Learning Embeddings
Figure 7.18. Learn embeddings based on loss with respect to the actual word
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Forward Inference: Sliding Window
Figure 9.1 (from a previous edition)
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Recurrent Neural Network (RNN)
Figure 8.2. The hidden state is incrementally built up
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RNN Unrolled Over Time
Figure 8.4. Notice the long chain

Munindar P. Singh (NCSU) Natural Language Processing Fall 2024 349

https://go.ncsu.edu/nlp


Deep Learning for NL

Training an RNN as a Language Model
Figure 8.6. Trains iteratively
Uses correct token for subsequent steps so the errors don’t accumulate
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POS Tagging via an RNN
Figure 8.7. Example of sequence labeling
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Sequence Classification
Figure 8.8. Uses the last hidden state to classify
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Autoregressive Generation with an RNN Language Model
Figure 8.9
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Stacked RNNs
Figure 8.10. Each layer captures a distinct level of abstraction
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Bidirectional RNN
Figure 8.11. Each output is a concatenation of the forward and backward outputs
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Bidirectional RNN for Sequence Classification
Figure 8.12. Combines the last hidden states of forward and backward components
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Long Short-Term Memory (LSTM) Unit, Computationally
Figure 8.13.
Inputs: current token, previous hidden state, previous context
Outputs: new hidden state, new context
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Comparing Neural Units
Figure 8.14. Feedforward neuron; RNN unit; LSTM unit
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Self-Attention: Information Flow
Figure 9.3. Each unit attends to all previous tokens
Unlike in RNNs, there is no information flow between the units
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Query-Key-Value Paradigm for Self-Attention
Figure 9.4. Causal (left-to-right) self-attention to calculate the third element
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Transformer Block
Figure 9.6. Residual connections bypass complex layers to improve learning

Munindar P. Singh (NCSU) Natural Language Processing Fall 2024 361

https://go.ncsu.edu/nlp


Deep Learning for NL

Multihead Self-Attention: Capturing Distinct Concerns
Figure 9.19 from a previous edition
Separate heads (separate query-key-value matrices) for syntax, semantics, discourse, . . .
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Multihead Self-Attention: Capturing Distinct Concerns
Figure 9.5.
h heads, each with its key, query, value matrices
Concatenate value vectors produced by the heads
Project down to the same size as the input

Munindar P. Singh (NCSU) Natural Language Processing Fall 2024 363

https://go.ncsu.edu/nlp


Deep Learning for NL

Positional Embeddings to Model Word Order
Figure 9.13. Learn embeddings for each position similarly to token embeddings
add position embeddings to embeddings of the respective tokens
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Training a Transformer as a Language Model
Figure 10.4
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Autoregressive Text Completion with Transformers
Figure 10.1. Similar to what we saw with RNNs
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Summarization with Transformers
Figure 10.3. Train with actual story-summary pairs
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Causal, Backward Looking Transformer
Figure 11.1a. (Same as Figure 9.3)
Causal because it doesn’t look at “future” tokens
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Bidirectional Self-Attention Model
Figure 11.1b. Looks at future (subsequent) tokens
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Masked Language Model Training
Figure 11.3. In BERT, 15% tokens are sample, of which 80% become [MASK], 10%
become another random token, 10% remain unchanged
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Next Sentence Prediction
Figure 11.4
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Sentiment Classification
Figure 11.9
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Contextual Embeddings
Figure 11.5. The outputs encode each token’s meaning in context
Customary to use the mean of the last four layers
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