Neural Language Models

From Jurafsky and Martin

- ▶ Long been discussed; began to take off ~2013
- Recurrent neural nets
- Transformers: the major idea
 - Many improvements in computing and architecture
 - Separate pretraining (large, expensive) from fine-tuning (targeted, efficient)

Forward Inference in a Feedforward Neural Language Model

Figure 7.17. Shows a context of three preceding tokens

Munindar P. Singh (NCSU)

Learning Embeddings

Figure 7.18. Learn embeddings based on loss with respect to the actual word

Forward Inference: Sliding Window

Figure 9.1 (from a previous edition)

Recurrent Neural Network (RNN)

Figure 8.2. The hidden state is incrementally built up

RNN Unrolled Over Time

Figure 8.4. Notice the long chain

Training an RNN as a Language Model

Figure 8.6. Trains iteratively

Uses correct token for subsequent steps so the errors don't accumulate

POS Tagging via an RNN

Figure 8.7. Example of sequence labeling

Sequence Classification

Figure 8.8. Uses the last hidden state to classify

Autoregressive Generation with an RNN Language Model Figure 8.9

Stacked RNNs

Figure 8.10. Each layer captures a distinct level of abstraction

Bidirectional RNN

Figure 8.11. Each output is a concatenation of the forward and backward outputs

Bidirectional RNN for Sequence Classification

Figure 8.12. Combines the last hidden states of forward and backward components

Long Short-Term Memory (LSTM) Unit, Computationally

Figure 8.13.

Inputs: current token, previous hidden state, previous context

Outputs: new hidden state, new context

Comparing Neural Units

Figure 8.14. Feedforward neuron; RNN unit; LSTM unit

Self-Attention: Information Flow

Figure 9.3. Each unit attends to all previous tokens Unlike in RNNs, there is no information flow between the units

Query-Key-Value Paradigm for Self-Attention

Figure 9.4. Causal (left-to-right) self-attention to calculate the third element

Transformer Block

Figure 9.6. Residual connections bypass complex layers to improve learning

Multihead Self-Attention: Capturing Distinct Concerns

Figure 9.19 from a previous edition

Separate heads (separate query-key-value matrices) for syntax, semantics, discourse, ...

Multihead Self-Attention: Capturing Distinct Concerns

Figure 9.5.

h heads, each with its key, query, value matrices Concatenate value vectors produced by the heads Project down to the same size as the input

Positional Embeddings to Model Word Order

Figure 9.13. Learn embeddings for each position similarly to token embeddings add position embeddings to embeddings of the respective tokens

Training a Transformer as a Language Model Figure 10.4

Autoregressive Text Completion with Transformers

Figure 10.1. Similar to what we saw with RNNs

Summarization with Transformers

Figure 10.3. Train with actual story-summary pairs

Causal, Backward Looking Transformer

Figure 11.1a. (Same as Figure 9.3) Causal because it doesn't look at "future" tokens

Bidirectional Self-Attention Model

Figure 11.1b. Looks at future (subsequent) tokens

Masked Language Model Training

Figure 11.3. In BERT, 15% tokens are sample, of which 80% become [MASK], 10% become another random token, 10% remain unchanged

Next Sentence Prediction

Figure 11.4

Sentiment Classification

Figure 11.9

Contextual Embeddings

Figure 11.5. The outputs encode each token's meaning in context Customary to use the mean of the last four layers

