Classification in NL

Text categorization

- Spam: yes/no
- Language: Polish/Czech/Slovak/Hungarian
- ► Authorship: Shakespeare/Marlowe
- Persuasive argument: yes/no
- ► Inference: entailed/contradictory/neither
- Sentiment: positive/neutral/negative
 - Of word/sentence/paragraph/review/article/corpus
 - ► Toward a target, e.g., hotel/phone/restaurant/app
 - ▶ With respect to (aspect) cleanliness/screen/service

Bayes Basics

- $P(x \wedge y) = P(x|y)P(y) = P(y|x)P(x)$
- $P(x|y) = \frac{P(y|x)P(x)}{P(y)}, \text{ assuming } P(y) \neq 0$
- Given observation d and classes C
 - ▶ We want $\hat{c} = \operatorname{argmax} P(c|d)$, where $c \in C$ (sometimes omitted)
 - Estimate P(c|d) via

$$\hat{c} = \underset{c}{\operatorname{argmax}} \frac{P(d|c)P(c)}{P(d)}$$

- ▶ Get rid of normalization by P(d), fixed for all c
- $\hat{c} = \operatorname{argmax} P(d|c)P(c) = \operatorname{Likelihood} \times \operatorname{Prior}$

Representing Documents

Sometimes not even a complete sentence

- ▶ Document d maps to (values for) features $F = \{f_1 ... f_n\}$
- What features are apparent in a document?
 - ► Words, punctuation, paragraph breaks
 - Assume just the words
- How do the features in a document interact?
 - ▶ Word order, negation, adjectives, ...
 - Bag of Words (BoW): assume the word counts but nothing else matters
 - Includes bags of n-grams
- Remove stop words
 - From a preset list
 - ▶ The top K most frequent words with K = 10 or 100, for example

Naïve Bayes for Documents

Naïve: Words are conditionally independent of each other given the class

- $P(f_1 \dots f_n | c) = P(f_1 | c) \dots P(f_n | c)$
- ► Set of classes *C*, e.g., {pos, neg}
- ► Set of features *F*

$$c\hat{\mathsf{NB}} = \operatorname*{argmax}_{c \in C} P(c) \prod_{f \in F} P(f|c)$$

- Feature: word
- ► Feature value: Boolean or frequency
- Use in logspace to avoid arithmetic underflow and improve complexity (addition instead of multiplication)

$$\hat{c_{\mathsf{NB}}} = \operatorname*{argmax} \log P(c) \sum_{i \in \mathsf{positions}} \log P(w_i | c)$$

Linear classifier: linear function of input features

Training

- V: vocabulary, i.e., set of words
- N: number of documents
- \triangleright N_c : number of documents in class c

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w_i|c) = \frac{\text{count}(w_i,c)}{\sum_{w \in V} \text{count}(w,c)}$$

Suppose for some w_i

$$\frac{\operatorname{count}(w_i,c)}{\sum_{w\in V}\operatorname{count}(w,c)}=0$$

- ▶ Then, our estimate $\hat{P}(w_i|c) = 0$
- \triangleright Then, because of the \prod , the net probability is zero
- Smoothing to the rescue
 - Laplace (add 1) remains common for text categorization

Variations for Sentiment

- Remove duplicates within each document before counting
- Generate fake negated tokens
 - From negative word until next punctuation
 - didn't like this movie, but
 - \Rightarrow

didn't NOT_like NOT_this NOT_movie, but

- Use established sentiment lexicon
 - Fixed positive and negative meanings (all else are neutral)
 - Work well when there isn't enough training data
 - Ignore domain and context

Spam Detection

- Nontextual features
 - Ratio of text to images
 - HTML errors
- Suspicious phrases and tokens
 - Millions of dollars
 - Urgent
 - !!!
- Email message properties
 - Subject line
 - Existence of URLs in the message body

Language Identification

- Subword features
- Bigrams of letters
- ► Think about languages whose scripts are not letter based
- ▶ Think about connection with unknown words

Evaluation

- Ground truth also known as gold labels
- ► How obtained?
 - People: in what setting? how reliable (same person from time to time; agreement between different people)? how many people?
 - Implicit versus explicit
 - ► Some other process—as for word vectors (coming up)

Contingency Table and Metrics

Other metrics to come up later

	Gold positive	Gold negative
Classified positive	True Positive	False Positive
Classified negative	False Negative	True Negative

- $\blacktriangleright \text{ (Top row) Precision} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$
- (Left column) Recall = $\frac{TP}{TP+FN}$
- $\blacktriangleright \text{ (AII) Accuracy} = \frac{\text{TP+TN}}{\text{TP+FP+TN+FN}}$
- F-measure,

$$F = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Macroaveraging and Microaveraging

Suited for multinomial classification, e.g., for three classes

- Microaveraging: dominated by most frequent class
 - A simple method such as majority class would dominate
 - ▶ Imagine a single, 3×3 contingency table
 - ► Each row gives the precision for its class
 - Each column gives the recall for its class
- ► Macroaveraging: treats all classes equally
 - More cautious than microaveraging
 - ▶ Separate 2×2 true/false contingency table for each class
 - Precision, recall as before

Test Sets and Cross-Validation

- Ideal
 - Training set
 - Devset or Development test set to tune parameters
 - Test set (unseen until testing) to evaluate
- Training-dev-test split costs too much data
- Cross-validation: in each fold
 - Split training data randomly, e.g., for 10-folds
 - Use one part to train, e.g., 90%
 - ▶ Remainder to test, e.g., 10%
- Pollutes our understanding since we see the data
 - We may choose features that suit it well
 - Overfitting
 - Poor performance on real data
- Split off main test set and hold it aside
- Cross-validate within the training set
- Test on the test set to report results

Comparing Classifiers via the Bootstrap Test

Using accuracy as an example

- Methods being compared: A, B
- Test set x of n entries
- ▶ Performance gain of A over B $\delta(\cdot)$
- ▶ Draw bootstrap samples from the test set
 - Surrogates for having real new data
 - ▶ Draw b samples $x^{*(i)}$, each of a fixed number n of instances
 - ► The b samples can overlap
 - ▶ Compute $\delta(x^{*(i)})$, expected to be $\delta(x)$
- Compute statistics on the b samples
 - ▶ Percentile: count $x^{*(i)}$ where $\delta(x^{*(i)}) > 2\delta(x)$
- ► Empirical bootstrap: from observations
- Parametric bootstrap: from some parametrized distribution