Distributional Hypothesis

- Zellig Harris: words that occur in the same contexts tend to have similar meanings
- Firth: a word is known (characterized) by the company it keeps
- Statistical basis for lexical semantics
- ► How can we learn computational representations of words
 - ► Representational learning: unsupervised
 - Contrast with feature engineering

Lemmas and Senses

- Lemma or citation form: general form of a word (e.g., mouse)
 - May have multiple senses
 - May come in multiple parts of speech
 - ▶ May cover variants (word forms) such as for plurals, gender, ...
- ► Homonymous lemmas
 - With multiple senses
 - Challenges in word sense disambiguation
- Principle of contrast: difference in form indicates difference in meaning

Synonyms and Antonyms

- Synonyms: Words with identical meanings
 - ▶ Interchangeable without affecting *propositional* meaning
 - Are there any true synonyms?
- Antonyms: Words with opposite meanings
 - Opposite ends of a scale
 - Antonyms would be more similar than different
- Reversives: subclass of antonyms
 - Movement in opposite directions, e.g., rise versus fall

Word Similarity

Crucial for solving many important NL tasks

- Similarity: Ask people
- ightharpoonup Relatedness pprox association in psychology, e.g., coffee and cup
 - ► Semantic field: domain, e.g., surgery
 - Indicates relatedness, e.g., surgeon and scalpel

Vector Space Model

Foundation of information retrieval since early 1960s

- ► Term-document matrix
 - ► A row for each word (term)
 - ► A column for each document
 - ► Each cell being the number of occurrences
 - Dimensions
 - \blacktriangleright Number of possible words in the corpus, e.g., $\approx [10^4, 10^5]$
 - Size of corpus, i.e., number of documents: highly variable (small, if you talk only of Shakespeare; medium, if New York Times; large, if Wikipedia or Yelp reviews)
- ► The vectors (distributions of words) provide some insight into the content even though they lose word order and grammatical structure

Document Vectors and Word Vectors

- Document vector: each column vector represents a document
 - ► The document vectors are sparse
 - ► Each vector is a point in the 10⁵ dimensional space (one dimension per word)
- Word vector: each row vector represents a word
 - Better extracted from another matrix

Word-Word Matrix

- $ightharpoonup |V| \times |V|$ matrix
 - Each row and column: a word
 - ► Each cell: number of times the row word appears in the *context* of the column word
 - The context could be
 - ► Entire document ⇒ co-occurrence in a document
 - ▶ Sliding window (e.g., ± 4 words) \Rightarrow co-occurrence in the window

Measuring Similarity

▶ Inner product ≡ dot product: Addition of element-wise products

$$\vec{v} \cdot \vec{w} = \sum_{i} v_{i} w_{i}$$

- Highest for similar vectors
- Zero for orthogonal (dissimilar) vectors
- Inner product is biased by vector length

$$|\vec{v}| = \sqrt{\sum_{i} v_i^2}$$

Cosine of the vectors: Inner product divided by length of each

$$\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}$$

- ▶ Normalize to unit length vectors if length doesn't matter
 - ► Cosine = inner product (when normalized for length)
 - Not suitable for applications based on clustering, for example

TF-IDF: Term Frequency–Inverse Document Frequency

Basis of relevance; used in information retrieval

► TF: higher frequency indicates higher relevance

$$\mathsf{tf}_{t,d} = \left\{ egin{array}{ll} 1 + \mathsf{log}_{10} \, \mathsf{count}(t,d) & \mathsf{if} \, \mathsf{count}(t,d) \ \mathsf{otherwise} \end{array}
ight.$$

► IDF: terms that occur selectively are more valuable when they do occur

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

- N is the total number of documents in the corpus
- ightharpoonup df_t is the number of occurrences in which t occurs
- TF-IDF weight

$$w_{t,d} = \mathsf{tf}_{t,d} \times \mathsf{idf}_t$$

▶ These weights become the vector elements

Applying TF-IDF Vectors

- ► Word similarity as cosine of their vectors
- Define a document vector as the mean (centroid)

$$d_D = \frac{\sum_{t \in D} \vec{w}_t}{|D|}$$

- ▶ *D*: document
- \triangleright w_t : TF-IDF vector for term t

Pointwise Mutual Information (PMI)

How often two words co-occur relative to if they were independent

For a target word w and a context word c

$$PMI(w,c) = \lg \frac{P(w,c)}{P(w)P(c)}$$

- ▶ Negative: less often than naïvely expected by chance
- ► Zero: exactly as naïvely expected by chance
- ▶ Positive: more often than naïvely expected by chance
- Not feasible to estimate for low values
 - ▶ If $P(w) = P(c) = 10^{-6}$, is $P(w,c) \ge 10^{-12}$?
- PPMI: Positive PMI

$$\mathsf{PPMI}(w_i, c_j) = \max(\lg \frac{P(w, c)}{P(w)P(c)}, 0)$$

Estimating PPMI: Positive Pointwise Mutual Information

▶ Given co-occurrence matrix $F = W \times C$, estimate cells

$$p_{ij} = \frac{f_{ij}}{\sum_{i}^{W} \sum_{j}^{C} f_{ij}}$$

Sum across columns to get a word's frequency

$$p_{i*} = \sum_{j}^{C} p_{ij}$$

Sum across rows to get a context's frequency

$$p_{*j} = \sum_{i}^{W} p_{ij}$$

▶ Plug in these estimates into the PPMI definition

$$\mathsf{PPMI}(w,c) = \mathsf{max}(\lg \frac{p_{ij}}{p_{i*} \times p_{*i}}, 0)$$

Correcting PPMI's Bias

- ▶ PPMI is biased: gives high values to rare words
 - ▶ Replace P(c) by $P_{\alpha}(c)$

$$P_{\alpha}(c) = \frac{\operatorname{count}(c)^{\alpha}}{\sum_{d} \operatorname{count}(d)^{\alpha}}$$

- Heuristically suggested $\alpha = 0.75$
- Improved definition for PPMI

$$\mathsf{PPMI}(w,c) = \max(\lg \frac{P(w,c)}{P(w)P_{\alpha}(c)},0)$$

Word2Vec

- ▶ TF-IDF vectors are long and sparse
- How can we achieve short and dense vectors?
 - ▶ 50–500 dimensions
 - ▶ Dimensions of 100 and 300 are common
- Easier to learn on: fewer parameters
- Superior generalization and avoidance of overfitting
 - Better for synonymy since the words aren't themselves the dimensions

Skip Gram with Negative Sampling

Representation learning

- Instead of counting co-occurrence
- ▶ Train a classifier on a binary task: whether a word w will co-occur with another word v (\approx context)
- Implicit supervision—gold standard for free!
 - ▶ If we observe that *v* and *w* co-occur, then that's a positive label for the above classifier
 - ▶ A target word and a context word are positive examples
 - Other words, which don't occur in the target's context, are negative examples
- With a context window of ± 2 ($c_{1:4}$), consider this snippet ...lemon, a tablespoon of apricot jam, a pinch of ... c_1 c_2 t c_3 c_4
 - \triangleright Estimate probability P(yes|t,c)

Skip Gram Probability Estimation

- ▶ Intuition: $P(\text{yes}|t,c) \propto \text{similarity}(t,c)$
 - ▶ That is, the embeddings of co-occurring words are similar vectors
- Similarity is given by inner product, which is not a probability distribution
- Transform via sigmoid

$$P(\mathsf{yes}|t,c) = \frac{1}{1 + e^{-t \cdot c}}$$

$$P(\mathsf{no}|t,c) = \frac{e^{-t \cdot c}}{1 + e^{-t \cdot c}}$$

 Naïve (but effective) assumption that context words are mutually independent

$$P(\text{yes}|t, c_{1:k}) = \prod_{i=1}^{k} \frac{1}{1 + e^{-t \cdot c_i}}$$

Learning Skip Gram Embeddings

- Positive examples from the window
- Negative examples couple the target word with a random word (≠ target)
- Number of negative samples controlled by a parameter
- Probability of selecting a random word from the lexicon
 - Uniform
 - Proportional to frequency: won't hit rarer words a lot
 - ▶ Discounted as in the PPMI calculations, with $\alpha = 0.75$

$$P_{\alpha}(w) = \frac{\operatorname{count}(w)^{\alpha}}{\sum_{v} \operatorname{count}(v)^{\alpha}}$$

- Maximize similarity with positive examples
- Minimize similarity with negative examples
 - ► Maximize and minimize inner products, respectively

Learning Skip Gram Embeddings by Gradient Descent

- Two concurrent representations for each word
 - As target
 - As context
- ▶ Randomly initialize W (each column is a target) and C (each row is a context) matrices
- ▶ Iteratively, update *W* and *C* to increase similarity for target-context pairs and reduce similarity for target-noise pairs
- At the end, do any of these
 - Discard C
 - \triangleright Sum or average W^T and C
 - ► Concatenate vectors for each word from W and C
- Complexity increases with size of context and number of noise words considered

CBOW: Continuous Bag of Words

Alternative formulation and architecture to skip gram

- Skip gram: maximize classification of words given nearby words
 - Predict the context
- CBOW
 - Classify the middle word given the context
- CBOW versus skip gram
 - CBOW is faster to train
 - ► CBOW is better on frequent words
 - ► CBOW requires more data

Semantic Properties of Embeddings

Semantics \approx meaning

- Context window size
 - ► Shorter: immediate context ⇒ more syntactic
 - \blacktriangleright ±2 Hogwarts \rightarrow Sunnydale (school in a fantasy series)
 - ► Longer: richer context ⇒ more semantic
 - Topically related even if not similar
 - \blacktriangleright ±5 Hogwarts \rightarrow Dumbledore, half-blood
- Syntagmatic association: first-order co-occurrence
 - When two words often occur near each other
 - Wrote vis à vis book, poem
- Paradigmatic association: second-order co-occurrence
 - ▶ When two words often occur near the same other words
 - ► Wrote vis à vis said, remarked

Analogy

A remarkable illustration of the magic of word embeddings

- Common to visualize embeddings by reducing the dimensions to two
 - t-SNE (T-distributed Stochastic Neighbor Embedding), which produces a small dimension representation that respects similarity (Euclidean distance) between vectors
- Offsets (differences) between vectors reflect analogical relations
 - $\overrightarrow{\text{king}} \overrightarrow{\text{man}} + \overrightarrow{\text{woman}} \approx \overrightarrow{\text{queen}}$ $\overrightarrow{\text{Paris}} \overrightarrow{\text{France}} + \overrightarrow{\text{Italy}} \approx \overrightarrow{\text{Rome}}$

 - Similar ones for
 - Brother:Sister::Nephew:Niece
 - Brother:Sister::Uncle:Aunt

Language Evolution

- ► Changes in meanings over time
- Consider corpora divided over time (decades)
- Framing changes, e.g., in news media
 - ▶ Obesity: lack of self-discipline in individuals ⇒ poor choices of ingredients by the food industry
- Likewise, changing biases with respect to ethnic names or female names

Bias

- Word embeddings discover biases in language and highlight them
 - ► (From news text) $\overrightarrow{\text{man}} \overrightarrow{\text{programmer}} + \overrightarrow{\text{woman}} \approx \overrightarrow{\text{homemaker}}$ ► $\overrightarrow{\text{doctor}} \overrightarrow{\text{father}} + \overrightarrow{\text{mother}} \approx \overrightarrow{\text{nurse}}$
- GloVE (an embedding approach) discovers implicit association biases
 - Against African Americans
 - Against old people
- Sometimes these biases would be hidden and simply misdirect the applications of embeddings, e.g., as features for machine learning
- These biases could also be read explicitly as "justification" by a computer of someone's bias

Evaluation of Embeddings

- ▶ Use manually labeled data, e.g., on conceptual similarity or analogies
- Use existing language tests, e.g., TOEFL (Test of English as a Foreign Language)

fastText

- Deals with unknown words
- Uses character-level, i.e., subword, n-grams
 - ► ⟨ word start
 -) word end
 - Where ⇒ where, ⟨wh, whe, her, ere, re⟩ (original plus five trigrams)
- Learn the skipgram embedding for each n-gram
- Obtain word embedding as sum of the embeddings of its n-grams