Parts of Speech

Nouns, verbs, adjectives, adverbs, prepositions, ...

- Efficiently assignable with high accuracy
- Valuable in many NLP tasks
- Commonly thought of as mapping to the real world
 - Objects
 - Properties
 - Actions
- In linguistics, understood via
 - ▶ Distributional properties (co-occurrences with other words)
 - ▶ Morphology, including the affixes they take, e.g., -tion, -ize
 - Intonational
- ▶ 45 POS tags defined in the Penn Treebank (≈ 1993)
 - Includes variants such as tense and aspect
 - ► Includes punctuation

Closed versus Open Class

- Borrowings need special handling
 - a priori
 - schadenfreude
- Distinguishing mass nouns from count nouns
 - ► No plurals vs. plurals
 - Roughly, Real numbers vs. Natural numbers, but not quite (give examples)
- Syntactic substitutability
- Conjoinable, i.e., with and

Closed versus Open Class

- Closed class or function words
 - Change slowly
 - ightharpoonup Prepositions, particles, determiners (\sim articles), conjunctions, pronouns, auxiliary verbs, numerals
 - ► Lend structure to language
- Open classes
 - Nouns
 - Verbs
 - Adjectives
 - Adverbs

Penn Treebank Tagset

From the Wall Street Journal and Brown corpora Dependency grammars (introduced later) have another tagset

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	**	left quote	' or "
LS	list item marker	1, 2, One	TO	"to"	to	,,	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	.1?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	: ;

Penn Treebank Markup Example

Large effort on developing NL resources: tagset, labeled datasets, ...

Preliminary findings were reported in today's New England Journal of Medicine.

Preliminary/adjective were/verb-past in/preposition 's/possessive England/proper-noun-singular of/preposition ./sentence-ending

findings/plural-noun reported/verb-part-participle today/singular-noun

New/proper-noun-singular Journal/proper-noun-singular Medicine/proper-noun-singular

- Typical way of writing: Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN today/NN 's/POS New/NNP England/NNP Journal/NNP of/IN Medicine/NNP ./.
- Does today possess the New England Journal of Medicine?
- Why isn't all of New England Journal of Medicine one noun?

Part of Speech Tagging Challenge

- Many words can take multiple tags depending on context
 - $ho \sim$ 14–15% of the words in the Wall Street Journal and Brown corpora

Adjective	earnings growth took a back/JJ seat					
Mass noun	a small building in the back/NN					
Verb present tense	a clear majority of senators back/VBP the bill					
Verb	Dave began to back/VB toward the door					
Particle	enable the country to buy back/RP about debt					
Adverb	I was twenty-one back/RB then					

Simple baseline: most frequent class

Part of Speech Tagging as Sequence Tagging

- Markov (first-order): next state depends on current state but not history
 - Suffix closure
 - Fusion closure
 - Limit closure
- Hidden Markov Model (HMM)
 - ► States, *Q*: parts of speech or POS tag
 - ► Transition probability, A: one POS to the next
 - Observations, O: (sequence of) words from vocabulary
 - Observation likelihood, B: probability of word given POS
 - ▶ Initial probability distribution, π : of starting with a POS
- HMM assumptions
 - Probability of POS depends only on previous POS
 - Probability of word depends only on POS

HMM Part of Speech Tagging: Estimation

Estimate transition probabilities via bigram model on corpus

$$P(q_i|q_{i-1}) = \frac{\mathsf{count}(q_{i-1},q_i)}{\mathsf{count}(q_{i-1})}$$

- Estimate *i*th part of speech given the previous part of speech
- Estimate emission probabilities via POS distributions on corpus

$$P(o_i|q_i) = \frac{\mathsf{count}(q_i, o_i)}{\mathsf{count}(q_i)}$$

HMM Part of Speech Tagging: Final Form

We seek the most probable POS sequence $(Q = q_1^n)$ for a given word sequence

$$\hat{Q} = \operatorname*{argmax}_{Q} P(Q|O)$$

Applying Bayes

$$\hat{Q} = \underset{Q}{\operatorname{argmax}} \frac{P(O|Q)P(Q)}{P(O)}$$

- ▶ The observation sequence is given—thus, P(O) is fixed, so drop it
- Markov: each POS depends only on its predecessor
- Each word depends only on the POS
- Combined model

$$\widehat{q_1^n} = \operatorname*{argmax} \prod_{q_1^n}^n P(o_i|q_i) P(q_i|q_{i-1})$$

Viterbi Algorithm

Dynamic programming

- Like the minimum edit distance algorithm, but involves
 - Products of probabilities, not sums of edit costs
 - Maximum over a different set of paths
- To compute a Viterbi matrix, V
 - ► Each column: an observation (word)
 - ► Each row: a state (POS)
 - V[s,t]: (maximum) probability of being at POS s after seeing the first t words
 - ▶ Three probabilities: π , entry; A, transition; B, emission
- ► Initialize first column to product of probability of beginning from the respective state and the probability of emitting the first word from it

$$V_{s,1}=\pi_s B_s(o_1)$$

Iteratively, compute

$$V_{s,t} = \max_{i}^{N} V_{[i,t-1]} A_i B_s(o_t)$$

Extensions

Languages like Turkish with complex morphology remain difficult

- Use trigrams instead of bigrams
 - ▶ Gain in accuracy \sim 0.5%
 - Need to extend Viterbi to look at a history of two
- Usual need for addressing sparsity: smoothing and interpolation
- **Proof** Beam search: limit search to beam width $\beta \ll N$
- Insert end of sentence marker to facilitate search
- Unknown words
 - ▶ Base POS probabilities on affixes, e.g., -tion indicates nouns, -ize verbs, -ly adverbs, and -able adjectives