Structural Ambiguity

How different parse trees may be produced from the same sentence or phrase

- Attachment ambiguity: where a constituent may attach to the rest of the tree
 - I saw a man with a telescope
- Coordination ambiguity: How to group the arguments of a conjunction
 - Spicy rice and apples
- Disambiguation relies on applying additional knowledge
 - Of language, e.g., what verbs and nouns or prepositions go together
 - Of the real world
 - Of the context, such as prior sentences or conversations

Jurafsky's Miniature Grammar, \mathscr{L}_1

Omitting the lexicon

 $\mathsf{S} \longrightarrow \mathsf{NP} \mathsf{VP}$

S → Auxiliary-Verb NP VP

 $\mathsf{S} \longrightarrow \mathsf{VP}$

 $NP \longrightarrow Pronoun$

NP ->> Proper-Noun

NP --> Determiner Nominal

Nominal \longrightarrow Noun

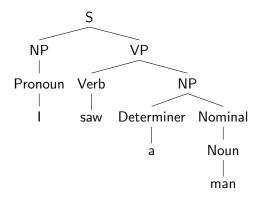
Nominal — Nominal Noun

Nominal PP

 $VP \longrightarrow Verb$

 $VP \longrightarrow Verb NP$

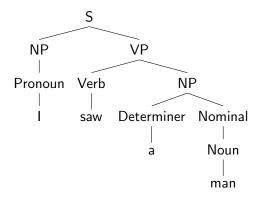
 $VP \longrightarrow Verb NP PP$


 $VP \longrightarrow Verb PP$

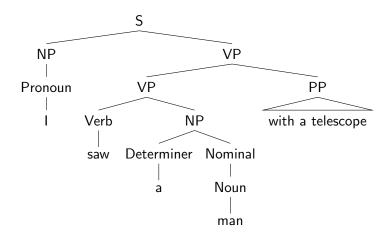
 $VP \longrightarrow VP PP$

PP --> Preposition NP

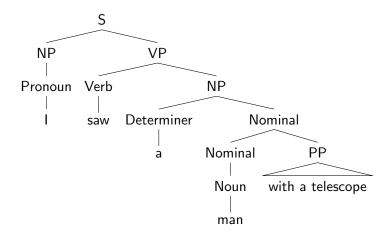
Attachment Ambiguity: Setting the Stage


I saw a man

Attachment Ambiguity: Example


I saw a man with a telescope

Modify the following tree for the above sentence


Attachment Ambiguity: 1

I saw a man with a telescope

Attachment Ambiguity: 2

I saw a man with a telescope

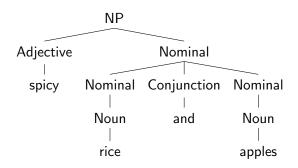
Simple Coordination Productions

Add these to the earlier grammar

```
NP → NP Conjunction NP

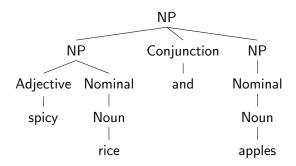
Nominal → Nominal Conjunction Nominal

VP → VP Conjunction VP


PP → PP Conjunction PP

Also, for adjectives include

NP → Adjective Nominal
```


Coordination Ambiguity: 1

Spicy rice and apples

Coordination Ambiguity: 2

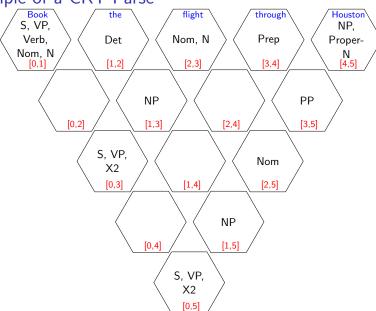
Spicy rice and apples

Sentences in Practice

A. A. Milne, Winnie the Pooh

Eeyore's take on writing

"This writing business. Pencils and what-not. Over-rated, if you ask me. Silly stuff. Nothing in it."

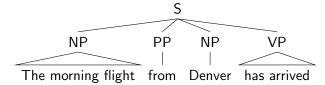

- Five sentences
- Do you identify verbs in them?
- ▶ What grammar would generate these sentences?

Parsing with a Context-Free Grammar

Cocke-Kasami-Younger (CKY) algorithm

- Apply dynamic programming
 - Build up solutions incrementally
 - ► Reusing them in larger solutions
- Convert to Chomsky Normal Form
- Each constituent is based on
 - A single terminal
 - ► Two nonterminals (constituents)
- ► Compute and store all possible constituents for each cell in a matrix
 - Allow duplicates to accommodate ambiguity
 - Store provenance of each value
- When we arrive at a cell the cells it relies upon are already computed
- ► The nonterminal in the final cell represents the constituent for the entire input (if any)
- Reconstruct parse tree from the provenance

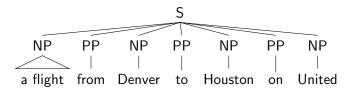
Example of a CKY Parse


Improving CKY for Practical Use

- Generalize to arbitrary grammars (not just Chomsky Normal Form)
 - Ensures parses produced reflect grammarians' intuitions
- In statistical parsing, accommodate probabilities to
 - Select likelier parses
 - Avoid exponentially many parses

Partial or Shallow Parsing

Applicable when we don't need a complete parse to produce a valuable product


- Produce flat trees
 - Avoid decisions about nesting and ambiguity that a full parser must contend with
- Chunking: Identify constituents for nonoverlapping segments
- Exclude hierarchical structure (i.e., slightly above POS tagging)
 - ► [Pro I] [V saw] [NP a man] [PP with a telescope]

Identifying Base Phrases

Alternative to chunking

- A base phrase (some variation in definitions)
 - Doesn't (recursively) contain constituents of the same type
 - Includes the headword and any prehead modifiers (or any post-head material)
 - Excludes post-head modifiers (to avoid attachment ambiguity)
 - Can be difficult to use as a result since boundaries are less clear
 - Can yield outcomes where an NP or PP may contain nothing other than its head

Machine Learning for Chunking

An application of sequence learning

- Introduce 2n+1 tags (given n chunk types)
 - \triangleright B_k : Beginning of chunk type k
 - I_k: Inside of chunk type k
 - O: Outside of all chunk types
 - No need for end of a chunk since the beginning of the next (or end of sentence) indicates its end
- Example of IOB chunking

```
I saw a man with a telescope B_{NP} B_{VP} B_{NP} I_{NP} B_{PP} I_{PP} I_{PP} I_{NP} I_{NP}
```

- Training data: from existing treebanks
 - Identify head words of a constituent
 - Include head and prehead words within the constituent
 - Exclude post-head words

Evaluation Metrics for Chunking

- Correct chunk: whose tag (label) and segment are correct
- Metrics adopted from information retrieval

Precision,
$$P = \frac{\text{Number of correct chunks identified}}{\text{Number of chunks identified}}$$

Recall,
$$R = \frac{\text{Number of correct chunks identified}}{\text{Number of (correct) chunks existing}}$$

F-measure,
$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

$$\mathsf{F}_1, \mathsf{F}_1 = \frac{2PR}{P+R}$$

- F-measure trades off precision and recall
 - ▶ F₁ gives equal importance to precision and recall