
Electronic Commerce Technologies
CSC 513, Spring 2008

Munindar P. Singh
singh@ncsu.edu

Department of Computer Science
North Carolina State University

c©Munindar P. Singh, CSC 513, Spring 2008 p.1

Module 1: Introduction

Scope
Grading
Policies

c©Munindar P. Singh, CSC 513, Spring 2008 p.2

http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Scope of this Course

Directed at computer science students
Emphasizes concepts and theory
Requires a moderate amount of work
Includes necessary tool-specific details
Intensive!

c©Munindar P. Singh, CSC 513, Spring 2008 p.3

Electronic Business

B2C: retail, finance
B2B: supply chains (more generally, supply
networks)
Different perspectives

Traditionally: merchant, customer,
dealmaker
Trends: collaboration among various
parties; virtual enterprises; coalition
formation

Main technical consequence: interacting across
enterprise boundaries or administrative domains

c©Munindar P. Singh, CSC 513, Spring 2008 p.4

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Properties of Business Environments

Traditional computer science deals with
closed environments
Business environments are open

Autonomy: independent action (how will
the other party act?)
Heterogeneity: independent design (how
will the other party represent
information?)
Dynamism: independent configuration
(which other party is it?)

Usually, also large scale
Need flexible approaches and arms-length
relationships

c©Munindar P. Singh, CSC 513, Spring 2008 p.5

Autonomy

Independence of business partners
Sociopolitical or economic reasons

Ownership of resources by partners
Control, especially of access privileges
Payments

Technical reasons: opacity with respect to
key features, e.g., precommit

Model components as autonomous to
simplify interfaces “assume nothing”
Model components as autonomous to
accommodate underlying exceptions

c©Munindar P. Singh, CSC 513, Spring 2008 p.6

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Heterogeneity

Independence of component designers and
system architects

Historical reasons
Sociopolitical reasons

Differences in local needs
Difficulty of achieving agreement

Technical reasons: difficulty in achieving
homogeneity

Conceptual problems: cannot easily
agree
Fragility: a slight change can mess it up

c©Munindar P. Singh, CSC 513, Spring 2008 p.7

Dynamism

Independence of system configurers and
administrators

Sociopolitical reasons
Ownership of resources
Changing user preferences or economic
considerations

Technical reasons: difficulty of maintaining
configurations by hand

Same reasons as for network
administration
Future-proofing your system

c©Munindar P. Singh, CSC 513, Spring 2008 p.8

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Coherence

Global information (cutting across
administrative domains) is essential for
coherence

Locations of services or agents
Applicable business rules
Data, schemas, constraints

c©Munindar P. Singh, CSC 513, Spring 2008 p.9

Locality

A way to deal with openness
Global information causes

Inconsistencies
Difficulties in maintenance

Approach: relax global constraints
Lazy: obtain global knowledge as needed
Optimistic: correct rather than prevent
violations
Inspectable: specify rules for when,
where, and how to make corrections

c©Munindar P. Singh, CSC 513, Spring 2008 p.10

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Integration

Yields with one integrated entity
Yields central decision making by
homogeneous entity
Requires resolving all potential
inconsistencies ahead of time
Fragile and must be repeated whenever
components change

c©Munindar P. Singh, CSC 513, Spring 2008 p.11

Interoperation

Ends up with the original number of entities
working together

Yields decentralized decision making by
heterogeneous entities
Resolves inconsistencies incrementally
Potentially robust and easy to swap out
partners as needed

Also termed “light integration” (bad terminology)

c©Munindar P. Singh, CSC 513, Spring 2008 p.12

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Example: Selling

Update inventory, take payment, initiate shipping
Record a sale in a sales database
Debit the credit card (receive payment)
Send order to shipper
Receive OK from shipper
Update inventory

c©Munindar P. Singh, CSC 513, Spring 2008 p.13

Potential Problems

What if the order is shipped, but the payment
fails?
What if the payment succeeds, but the order
was never entered or shipped?
What if the payments are made offline, i.e.,
significantly delayed?

c©Munindar P. Singh, CSC 513, Spring 2008 p.14

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

In a Closed Environment

Transaction processing (TP) monitors ensure
that all or none of the steps are completed,
and that systems eventually reach a
consistent state
But what if the user is disconnected right
after he clicks on OK? Did order succeed?
What if line went dead before
acknowledgment arrives? Will the user order
again?
The TP monitor cannot get the user into a
consistent state

c©Munindar P. Singh, CSC 513, Spring 2008 p.15

In an Open Environment: 1

Reliable messaging (asynchronous
communication, which guarantees message
delivery or failure notification)
Maintain state: retry if needed
Detect and repair duplicate transactions
Engage user about credit problems

Matter of policies to ensure compliance

c©Munindar P. Singh, CSC 513, Spring 2008 p.16

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

In an Open Environment: 2

Not immediate consistency
Eventual “consistency” (howsoever
understood) or just coherence
Sophisticated means to maintain shared
state, e.g., conversations

c©Munindar P. Singh, CSC 513, Spring 2008 p.17

Challenges

Information system interoperation
Business process management
Exception handling
Distributed decision-making
Personalization
Service selection (location and assessment)

c©Munindar P. Singh, CSC 513, Spring 2008 p.18

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Information System Interoperation

Supply chains: manage the flow of materiel
among a set of manufacturers and integrators to
produce goods and configurations that can be
supplied to customers

Requires the flow of information and
negotiation about

Product specifications
Delivery requirements
Prices

c©Munindar P. Singh, CSC 513, Spring 2008 p.19

Business Processes
Modeling and optimization

Inventory management
Logistics: how to optimize and monitoring
flow of materiel

c©Munindar P. Singh, CSC 513, Spring 2008 p.20

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Exception Conditions

Virtual enterprises to construct enterprises
dynamically to provide more appropriate,
packaged goods and services to common
customers

Requires the ability to
Construct teams
Enter into multiparty deals
Handle authorizations and commitments
Accommodate exceptions

Real-world exceptions
Compare with PL or OS exceptions

c©Munindar P. Singh, CSC 513, Spring 2008 p.21

Distributed Decision-Making: 1

Manufacturing control: manage the operations of
factories

Requires intelligent decisions to
Plan inflow and outflow
Schedule resources
Accommodate exceptions

c©Munindar P. Singh, CSC 513, Spring 2008 p.22

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Distributed Decision-Making: 2

Automated markets as for energy distribution
Requires abilities to

Set prices, place or decide on others’ bids
Accommodate risks

Pricing mechanisms for rational resource
allocation

c©Munindar P. Singh, CSC 513, Spring 2008 p.23

Personalization

Consumer dealings to make the shopping
experience a pleasant one for the customer

Requires
Learning and remembering the
customer’s preferences
Offering guidance to the customer (best if
unintrusive)
Acting on behalf of the user without
violating their autonomy

c©Munindar P. Singh, CSC 513, Spring 2008 p.24

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Service Selection

What are some bases for selecting the parties to
deal with?

Specify services precisely and search for
them

How do you know they do what you think
they do (ambiguity)?
How do you know they do what they say
(trust)?

Recommendations to help customers find
relevant and high quality services

How do you obtain and aggregate
evaluations?

c©Munindar P. Singh, CSC 513, Spring 2008 p.25

Module 2: Web Technologies in Brief

A quick look at web programming technologies
JSP
Servlets
Enterprise Java Beans

c©Munindar P. Singh, CSC 513, Spring 2008 p.26

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Static versus Dynamic Pages

Static: known ahead of time
Dynamic: created on demand (or created
frequently)

Depend on user request
Depend on backend data
Depend on processes executing in the
backend system
Involve an application of policies

c©Munindar P. Singh, CSC 513, Spring 2008 p.27

Shallow and Deep Webs: 1

Shallow Web: primarily static pages that we
ordinarily access

Links from a page to another are fixed
Links can be followed without need of a
special account
Therefore, potentially crawled and indexed
by search engines

c©Munindar P. Singh, CSC 513, Spring 2008 p.28

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Shallow and Deep Webs: 2

Deep Web: dynamic pages extracted from
databases or applications

Where most of the world’s data is
Typically residing in intranets or extranets
Often require an account to access
Require custom queries rather than following
links
Therefore, largely missed by search engines

c©Munindar P. Singh, CSC 513, Spring 2008 p.29

Common Gateway Interface

CGI is a way for invoking processes from a Web
server

Create an OS process for every request
Coded in any language; generally not safe
languages (Web hosting companies may
limit the functionality on shared hardware)
Poor performance
No support for threading

c©Munindar P. Singh, CSC 513, Spring 2008 p.30

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Server-Side Scripting Languages

Typified by PHP
Powerful and popular: recall the LAMP
acronym
Produces a page, which is sent to the
requester
Lacks the type safety of Java
Better suited when display functions
dominate

Our intention is to get into message-oriented
middleware

c©Munindar P. Singh, CSC 513, Spring 2008 p.31

Servlet

An entry point for a service request that comes
over the Web

Capture business logic of the “controller”
Invoke a backend component
Generally the model part of the functionality
is split off into Enterprise Java Beans

c©Munindar P. Singh, CSC 513, Spring 2008 p.32

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Servlet Functions
Read in data sent and action requested by
client: use a “request” object that provides a
handle to the current HTTP request
Perform necessary computations
Produce a response for the client: use a
“response” object that provides a handle to
the HTTP response for the current HTTP
request

c©Munindar P. Singh, CSC 513, Spring 2008 p.33

Servlet Views: 1
A servlet is a Java program written according to
a certain standard

Provides certain APIs, which the program
assumes
Requires that a class HttpServlet be
extended
Requires that a method such as doGet be
implemented, overriding the eponymous
method in the above class

c©Munindar P. Singh, CSC 513, Spring 2008 p.34

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Servlet Views: 2
A servlet is a computational entity

Analogous to a running thread of control and
which might initiate one or more transactions
Could be coded in some other method, e.g.,
as a JSP

c©Munindar P. Singh, CSC 513, Spring 2008 p.35

Servlet Snippet

1 p u b l i c c lass OrderServ le t extends H t tpS e rv l e t {
p u b l i c vo id doGet (Ht tpServ le tRequest req ,

HttoServletResponse resp)
throws Serv le tExcept ion , IOException {

resp . setContentType (" t e x t / html ") ;
6 P r i n t W r i t e r out = resp . ge tWr i t e r () ;

out . p r i n t l n (" < html > . . . < / html > ") ;
}

}

c©Munindar P. Singh, CSC 513, Spring 2008 p.36

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Java Server Pages or JSP

These describe a view (termed “page” as in a
Web page) to be rendered by a client browser

Provides support for a variety of markup
(conventionally termed “tags”)
Tags are customizable
Separate the roles of user interface
designers from programmers
In simple terms, Java code embedded in
HTML
Alternative way to create a Servlet

c©Munindar P. Singh, CSC 513, Spring 2008 p.37

JSP Snippet

1 <!DOCTYPE HTML PUBLIC " . . . " >
<html >
<head> . . . </head>
<body>
<h2>Course Page</ h2>

6 <%= package . c lass . method (args) %>
</body>

c©Munindar P. Singh, CSC 513, Spring 2008 p.38

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Servlet Container: 1
A system module that hosts servlets
Corresponds to a process (or exists within an
application server process); each servlet
instance is a thread in the container
Runs in conjunction with a Web server and
provides

Remote method invocation
Threading
Connection pool management: many
servlet instances access the same or few
databases by sharing connection
overhead

c©Munindar P. Singh, CSC 513, Spring 2008 p.39

Servlet Container: 2

Separates the functions of programmer and
administrator
Behaves like an operating system for servlets
Shields servlets from each other, and keeps
different instances apart
Applies policies for controlling user access

c©Munindar P. Singh, CSC 513, Spring 2008 p.40

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Servlet Container: 3
For example, Tomcat

Typically simpler than a full-blown application
server, which also supports EJBs, for
example, JBoss
Sometimes considered a part of an
application server: many containers may
exist within one application server
In terms of source code, the containment
could be in the other direction: JBoss used
to come packaged with Tomcat

c©Munindar P. Singh, CSC 513, Spring 2008 p.41

Packaging Web Components

Each container product can dictate its way of
packaging servlets and other resources
The package should include all the
resources the servlet needs
Never refer to external resources (that is, use
no absolute paths within a servlet), yielding
improved

Security
Portability
Good containers prevent a servlet from
referring to external resources

Put the packaging intelligence in the build
script

Recommend: single archive for entire deliverable
c©Munindar P. Singh, CSC 513, Spring 2008 p.42

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Enterprise Java Beans

A kind of business component, meant to be
hosted by a suitable container

Capture business logic of the “model”
Mediate between clients and backend
systems
Of three main kinds

Entity beans
Session beans
Message-driven beans ≈ interface to
MoM

c©Munindar P. Singh, CSC 513, Spring 2008 p.43

Containers and EJBs: 1

A container
Is an environment on an application server
that hosts Enterprise Java Beans
Defines a contract between server vendors
and EJB programmers
Invokes specific “management” methods on
EJBs, which the bean programmer must
supply

These methods include ejbCreate() and
such

c©Munindar P. Singh, CSC 513, Spring 2008 p.44

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Containers and EJBs: 2

The EJB programmer can pretend that his or
her EJB is the only component that is
executing on the container
A container provides important functionality
to a programmer, such as

Remote method invocation
Threading
Thread pool management

Write your code normally; the container
supplies the thread management for free

c©Munindar P. Singh, CSC 513, Spring 2008 p.45

Entity Beans

Correspond to database objects (typically tuples
in relational database tables)

Offer persistence of entities
Long-lived
Mapping to databases may be

Container-managed persistence (CMP):
automatically taken care of
Bean-managed persistence (BMP):
programmer takes care of it

c©Munindar P. Singh, CSC 513, Spring 2008 p.46

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Session Beans

Correspond to ongoing interactions
Nonpersistent: short-lived
Help manage conversations with clients
Classically two-party conversations

c©Munindar P. Singh, CSC 513, Spring 2008 p.47

Stateless Session Beans
The invocations are logically independent

Single-method call
No conversational state maintained by bean
Other objects (or state information) may be
referenced by the bean, e.g., to manage
database connections, but the container may
arbitrarily discard and recreate such
information
Easy to manage: use a pool of beans to
serve clients, because they are mutually
indistinguishable

Is it possible to carry out a multistep conversation
using such beans?

c©Munindar P. Singh, CSC 513, Spring 2008 p.48

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Stateful Session Beans
As in shopping carts stored on a server

Multistep conversational state
Suitable for things like shopping carts
Harder to manage: imagine a server
implemented on a cluster

How many parties can there be to such a
conversation?

c©Munindar P. Singh, CSC 513, Spring 2008 p.49

Context
Encapsulates the computational environment
in which the bean functions
Could be used to get a handle on
transactional (such as whether this bean
method is being invoked within a transaction)
or security objects (such as who is the
principal behind the current request)

The container calls methods such as
setSessionContext, which are provided by the
bean (often trivially implemented)

c©Munindar P. Singh, CSC 513, Spring 2008 p.50

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Using EJBs: 1

Mediated by two main proxy objects
Stub: client-side proxy
Skeleton: server-side proxy
Each implements the remote interface of the
EJB

Also a local interface to save network overhead
when not needed

c©Munindar P. Singh, CSC 513, Spring 2008 p.51

Using EJBs: 2

A factory or home object
Create
Find, if already created (and with a persistent
identity)
Remove

Also a local home interface to save network
overhead when not needed

c©Munindar P. Singh, CSC 513, Spring 2008 p.52

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

JNDI

Java Naming and Directory Interface
To use a bean, our code must call an object
whose identity and location are established
only at runtime
Hence, need for a directory system
JNDI is the Java approach for directories;
usable for purposes besides beans
Needs a context within which it performs a
search: usually boilerplate code

c©Munindar P. Singh, CSC 513, Spring 2008 p.53

Important Methods for Session Beans

ejbCreate(): required; can also define
versions with arguments for stateful beans
ejbPassivate() and ejbActivate(): trivial for
stateless, but for stateful, these save and
restore state
ejbRemove(): free all resources

c©Munindar P. Singh, CSC 513, Spring 2008 p.54

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Important Methods for Entity Beans

ejbCreate()
ejbLoad() and ejbStore(): help synchronize
bean with database
ejbFindByPrimaryKey(): find or create bean
getPrimaryKey(): to identify the underlying
database object

c©Munindar P. Singh, CSC 513, Spring 2008 p.55

EJB Trend

Way too much complexity in the present (up
to 2.1) standards
Movement toward POJOs: Plain Old Java
Objects
EJB 3.0 is heading toward a greatly
simplified standard

c©Munindar P. Singh, CSC 513, Spring 2008 p.56

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Module 3: Architecture

In the sense of information systems
Web architectures
Enterprise architectures
Interoperation architectures
Message-oriented middleware

c©Munindar P. Singh, CSC 513, Spring 2008 p.57

Architecture Conceptually

How a system is organized
An over-used, vaguely defined term

Software architecture
Standards, e.g., Berners-Lee’s “layer
cake”
May include processes
May include human organizations

c©Munindar P. Singh, CSC 513, Spring 2008 p.58

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Understanding Architecture

Two main ingredients of a system
Components
Interconnections

Openness entails specifying the
interconnections cleanly

Physical components disappear
Their logical traces remain

Information environments mean that the
interconnections are protocols

c©Munindar P. Singh, CSC 513, Spring 2008 p.59

Understanding Protocols

Protocols encapsulate interactions
Connect: conceptual interfaces
Separate: provide clean partitions among
logical components

Wherever we can identify protocols, we can
Make interactions explicit
Enhance reuse
Improve productivity
Identify new markets and technologies

Protocols yield standards; their
implementations yield products

c©Munindar P. Singh, CSC 513, Spring 2008 p.60

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Architectural Examples

When viewed architecturally, each logical
component class serves some important function

Power: UPS
Network connectivity
Storage: integrity, persistence, recovery
Policy management
Decision-making
Knowledge and its management

What are some products in the above component
classes?

c©Munindar P. Singh, CSC 513, Spring 2008 p.61

IT Architectures
The term is used more broadly in serious IT
settings

The organization of a system
The human organization in a system taken
broadly
The extensibility and modification of a
system
Even the processes by which a system is
updated or upgraded
Sometimes even nontechnical aspects, such
as flows of responsibility

c©Munindar P. Singh, CSC 513, Spring 2008 p.62

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Enterprise Models: 1

Capture static and dynamic aspects of
enterprises
Document information resources

Databases and knowledge bases
Applications, business processes, and the
information they create, maintain, and use

c©Munindar P. Singh, CSC 513, Spring 2008 p.63

Enterprise Models: 2

Capture organizational structure
Document business functions

Rationales behind designs of databases
and knowledge bases
Justifications for applications and
business processes

c©Munindar P. Singh, CSC 513, Spring 2008 p.64

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Enterprise Models: 3

By being explicit representations, models enable
Integrity validation
Reusability
Change impact analysis
Automatic database and application
generation via CASE tools

c©Munindar P. Singh, CSC 513, Spring 2008 p.65

Enterprise Architecture Objectives

At the top-level, to support the business
objectives of the enterprise; these translate into

Accommodating change by introducing new
Applications
Users
Interfaces and devices

Managing information resources
Preserving prior investments, e.g., in
legacy systems
Upgrading resources

Developing blueprints for IT environment:
guiding resource and application installation
and decommissioning

c©Munindar P. Singh, CSC 513, Spring 2008 p.66

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Enterprise Architecture Observations

Continual squeeze on funds, staffing, and time
available for IT resources

Demand for rapid development and
deployment of applications
Demand for greater ROI
Essential tension

Need to empower users and
suborganizations to ensure satisfaction of
their local and of organizational needs
Ad hoc approaches with each user or
each suborganization doing its own IT
cause failure of interoperability

c©Munindar P. Singh, CSC 513, Spring 2008 p.67

Enterprise Architecture Principles

Business processes should drive the technical
architecture

Define dependencies and relationships
among users and suborganizations of an
organization
Message-driven approaches are desirable
because they decouple system components
Event-driven approaches are desirable
because they help make a system
responsive to events that are potentially
visible and significant to users

c©Munindar P. Singh, CSC 513, Spring 2008 p.68

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Architecture Modules: Applications

Often most visible to users
Application deployment
Data modeling and integrity
Business intelligence: decision support and
analytics
Interoperation and cooperation

Ontologies: representations of domain
knowledge

Component and model repositories
Business process management

c©Munindar P. Singh, CSC 513, Spring 2008 p.69

Architecture Modules: Systems

Functionality used by multiple applications
Middleware: enabling interoperation, e.g., via
messaging
Identity management
Security and audit
Accessibility
Policy repositories and engines

c©Munindar P. Singh, CSC 513, Spring 2008 p.70

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Architecture Modules: Infrastructure

Connectivity
Platform: hardware and operating systems
Storage
System management

c©Munindar P. Singh, CSC 513, Spring 2008 p.71

Enterprise Functionalities: 1

It helps to separate the key classes of
functionality in a working software system

Presentation: user interaction
A large variety of concerns about device
constraints and usage scenarios

Business logic
Application logic
General rules

c©Munindar P. Singh, CSC 513, Spring 2008 p.72

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Enterprise Functionalities: 2

Data management
Ensuring integrity, e.g., entity and
referential integrity (richer than
storage-level integrity)
Enabling access under various kinds of
problems, e.g., network partitions
Supporting recovery, e.g., application,
operating system, or hardware failures

c©Munindar P. Singh, CSC 513, Spring 2008 p.73

Enterprise Functionalities: 3

Bases for choosing the above three-way
partitioning as opposed to some other

Size of implementations
Organizational structure: who owns what
and who needs what
Staff skill sets

User Interface: usability and design
Programming
Database
Policy tools

Products available in the marketplace

c©Munindar P. Singh, CSC 513, Spring 2008 p.74

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

One-Tier and Two-Tier Architectures

One tier: monolithic systems; intertwined in
the code base

Historically the first
Common in legacy systems
Difficult to maintain and scale up

Two-tier: separate data from presentation
and business logic

Classical client-server (or fat client)
approaches
Mix presentation with business rules
Change management

c©Munindar P. Singh, CSC 513, Spring 2008 p.75

Three-Tier Architecture: 1

Presentation tier or frontend
Provides a view to user and takes inputs
Invokes the same business logic
regardless of interface modalities: voice,
Web, small screen, . . .

Business logic tier or middle tier
Specifies application logic
Specifies business rules

Application-level policies
Inspectable
Modifiable

c©Munindar P. Singh, CSC 513, Spring 2008 p.76

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Three-Tier Architecture: 2
Data tier or backend

Stores and provides access to data
Protects integrity of data via concurrency
control and recovery

c©Munindar P. Singh, CSC 513, Spring 2008 p.77

Multitier Architecture

Also known as n-tier (sometimes treated
synonymously with three-tier)

Best understood as a componentized version
of three-tier architecture where

Functionality is assembled from parts,
which may themselves be assembled
Supports greater reuse and enables
greater dynamism
But only if the semantics is characterized
properly

Famous subclass: service-oriented
architecture

c©Munindar P. Singh, CSC 513, Spring 2008 p.78

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Architectural Tiers Evaluated

The tiers reflect logical, not physical partitioning
The more open the architecture the greater
the decoupling among components

Improves development through reuse
Enables composition of components
Facilitates management of resources,
including scaling up
Sets boundaries for organizational control

In a narrow sense, having more moving parts
can complicate management
But improved architecture facilitates
management through divide and conquer

c©Munindar P. Singh, CSC 513, Spring 2008 p.79

XML-Based Information System

Let’s place XML in a multitier architecture

c©Munindar P. Singh, CSC 513, Spring 2008 p.80

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

How About Database Triggers?

Pros: essential for achieving high efficiency
Reduce network load and materializing
and serializing costs
Leave the heavy logic in the database,
under the care of the DBA

Cons: rarely port well across vendors
Difficult to introduce and manage
because of DBA control
Business rules are context-sensitive and
cannot always be applied regardless of
how the data is modified

c©Munindar P. Singh, CSC 513, Spring 2008 p.81

Implementational Architecture: 1

Centered on a Web server that
Supports HTTP operations
Usually multithreaded

c©Munindar P. Singh, CSC 513, Spring 2008 p.82

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Implementational Architecture: 2

Application server
Mediates interactions between browsers and
backend databases: runs computations,
invoking DB transactions as needed
Provides a venue for the business logic
Different approaches (CGI, server scripts,
servlets, Enterprise JavaBeans)

c©Munindar P. Singh, CSC 513, Spring 2008 p.83

Implementational Architecture: 3

Database Servers
Hold the data, ensuring its integrity
Manage transactions, providing

Concurrency control
Recovery

Transaction monitors can manage transactions
across database systems, but within the same
administrative domain

c©Munindar P. Singh, CSC 513, Spring 2008 p.84

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Data Center Architecture

Demilitarized zone (DMZ)
External router
Load balancer

Firewall: only the router can contact the
internal network

Internal network
Web servers
Application servers
Database servers

c©Munindar P. Singh, CSC 513, Spring 2008 p.85

Web Architecture
Principles and constraints that characterize
Web-based information systems

URI: Uniform Resource Identifier
HTTP: HyperText Transfer Protocol
Metadata must be recognized and respected

Enables making resources
comprehensible across administrative
domains
Difficult to enforce unless the metadata is
itself suitably formalized

c©Munindar P. Singh, CSC 513, Spring 2008 p.86

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Uniform Resource Identifier: 1
URIs are abstract
What matters is their (purported) uniqueness
URIs have no proper syntax per se
Kinds of URIs include

URLs, as in browsing: not used in
standards any more
URNs, which leave the mapping of names
to locations up in the air

c©Munindar P. Singh, CSC 513, Spring 2008 p.87

Uniform Resource Identifier: 2

Good design requirements
Ensure that the identified resource can be
located
Ensure uniqueness: eliminate the possibility
of conflicts through appropriate
organizational and technical means
Prevent ambiguity
Use an established URI scheme where
possible

c©Munindar P. Singh, CSC 513, Spring 2008 p.88

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

HTTP: HyperText Transfer Protocol

Intended meanings are quite strict, though not
constrained by implementations

Text-based, stateless
Key verbs

Get
Post
Put

Error messages for specific situations, such
as resources not available, redirected,
permanently moved, and so on

ReST: Representational State Transfer

c©Munindar P. Singh, CSC 513, Spring 2008 p.89

Representational State Transfer

ReST is an architectural style for networked
systems that constrains the connectors

Models the Web as a network of hyperlinked
resources, each identified by a URI
Models a Web application as a (virtual) state
machine
A client selecting a link effects a state
transition, resulting in receiving the next
page (next state) of the application

c©Munindar P. Singh, CSC 513, Spring 2008 p.90

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Characteristics of ReST

Client-Server
Statelessness: requests cannot take
advantage of stored contexts on a server

What is an advantage of statelessness?
Where is the session state kept then?

Uniform Interface: URIs, hypermedia
Caching: responses can be labeled as
cacheable

c©Munindar P. Singh, CSC 513, Spring 2008 p.91

Basic Interaction Models
Interactions among autonomous and
heterogeneous parties

Adapters: what are exposed by each party to
enable interoperation

Sensors ⇐ information
Effectors ⇒ actions

Invocation-based adapters
Message-oriented middleware
Peer-to-peer computing

c©Munindar P. Singh, CSC 513, Spring 2008 p.92

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Invocation-Based Adapters: 1

Distributed objects (EJB, DCOM, CORBA)
Synchronous: blocking method invocation
Asynchronous: nonblocking (one-way)
method invocation with callbacks
Deferred synchronous: (in CORBA) sender
proceeds independently of the receiver, but
only up to a point

c©Munindar P. Singh, CSC 513, Spring 2008 p.93

Invocation-Based Adapters: 2

Execution is best effort: application must detect
any problems

At most once
More than once is

OK for idempotent operations
Not OK otherwise: application must check

c©Munindar P. Singh, CSC 513, Spring 2008 p.94

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Message-Oriented Middleware: 1

Queues: point to point, support posting and
reading messages
Topics: logical multicasts, support publishing
and subscribing to application-specific
topics; thus more flexible than queues
Can offer reliability guarantees of delivery or
failure notification to sender

Analogous to store and forward networks
Some messages correspond to event
notifications

c©Munindar P. Singh, CSC 513, Spring 2008 p.95

Message-Oriented Middleware: 2

Varies in reliability guarantees
Usually implemented over databases
Can be used through an invocation-based
interface (i.e., registered callbacks)

c©Munindar P. Singh, CSC 513, Spring 2008 p.96

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Peer-to-Peer Computing

Symmetric client-server: (callbacks) each
party can be the client of the other
Asynchrony: while the request-response
paradigm corresponds to pull, asynchronous
communication corresponds to push

Generally to place the entire intelligence
on the server (pushing) side

Federation of equals: (business partners)
when the participants can enact the
protocols they like

c©Munindar P. Singh, CSC 513, Spring 2008 p.97

Application Servers

Architectural abstraction separating business
logic from infrastructure

Load balancing
Distribution and clustering
Availability
Logging and auditing
Connection (and resource) pooling
Security

Separate programming from administration roles

c©Munindar P. Singh, CSC 513, Spring 2008 p.98

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Middleware: 1

Components with routine, reusable functionality
Abstracted from the application logic or the
backend systems
Any functionality that is being repeated is a
candidate for being factored out into
middleware
Enables plugging in endpoints (e.g., clients
and servers) according to the stated
protocols
Often preloaded on an application server
Simplify programmer’s task and enable
refinements and optimizations

c©Munindar P. Singh, CSC 513, Spring 2008 p.99

Middleware: 2

Software components that implement
architectural interfaces, e.g., transaction,
persistence, . . .

Explicit:
Invoke specialized APIs explicitly
Difficult to create, maintain, port

Implicit:
Container invokes the appropriate APIs
Based on declarative specifications
Relies on request interceptions or
reflection

c©Munindar P. Singh, CSC 513, Spring 2008 p.100

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Containers
Discussed above in connection with EJBs
Architectural abstraction geared for hosting
business components

Remote method invocation
Threading
Messaging
Transactions

c©Munindar P. Singh, CSC 513, Spring 2008 p.101

Message-Driven Beans

A standardized receiver for messages
Clients can’t invoke them directly; must send
messages to them
No need for specialized interfaces, such as
home, remote, . . .
Easy interface to implement: mainly
onMessage(), but limited message typing
Stateless: thus no conversations

c©Munindar P. Singh, CSC 513, Spring 2008 p.102

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Methods for Message-Driven Beans

onMessage(): define what actions to take
when a message arrives on the destination
this bean is watching

c©Munindar P. Singh, CSC 513, Spring 2008 p.103

Module 4: XML Representation

Concepts
Parsing and Validation
Schemas

c©Munindar P. Singh, CSC 513, Spring 2008 p.104

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

What is Metadata?
Literally, data about data

Description of data that captures some
useful property regarding its

Structure and meaning
Provenance: origins
Treatment as permitted or allowed:
storage, representation, processing,
presentation, or sharing

Markup is metadata pertaining to media
artifacts (documents, images), generally
specified for suitable parsable units

c©Munindar P. Singh, CSC 513, Spring 2008 p.105

Motivations for Metadata
Mediating information structure (surrogate for
meaning) over time and space

Storage: extend life of information
Interoperation for business
Interoperation (and storage) for regulatory
reasons
General themes

Make meaning of information explicit
Enable reuse across applications:
repurposing compare to screen-scraping
Enable better tools to improve productivity

Reduce need for detailed prior agreements
c©Munindar P. Singh, CSC 513, Spring 2008 p.106

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Markup History
How much prior agreement do you need?

No markup: significant prior agreement

Comma Separated Values (CSV): no nesting

Ad hoc tags

SGML (Standard Generalized Markup L): complex,
few reliable tools; used for document management

HTML (HyperText ML): simplistic, fixed, unprincipled
vocabulary that mixes structure and display

XML (eXtensible ML): simple, yet extensible subset of
SGML to capture custom vocabularies

Machine processible
Comprehensible to people: easier debugging

c©Munindar P. Singh, CSC 513, Spring 2008 p.107

Uses of XML

Supporting arms-length relationships
Exchanging information across software
components, even within an administrative
domain
Storing information in nonproprietary format
XML documents represent semistructured
descriptions:

Products, services, catalogs
Contracts
Queries, requests, invocations, responses
(as in SOAP): basis for Web services

Relational DBMSs work for highly structured
information, but rely on column names for
meaning

c©Munindar P. Singh, CSC 513, Spring 2008 p.108

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Example XML Document

<?xml vers ion ="1.0"? > <!−− processing i n s t r u c t i o n −−>
<topelem a t t r 0 =" foo "> <!−− exac t l y one roo t −−>

3 <subelem a t t r 1 ="v1 " a t t r 2 ="v2">
Opt iona l t e x t (PCDATA) <!−− parsed charac te r data −−>
<subsubelem a t t r 1 ="v1 " a t t r 2 ="v2 " / >

</subelem>
<nul l_e lem / >

8 <short_elem a t t r 3 ="v3 " / >
</ topelem >

c©Munindar P. Singh, CSC 513, Spring 2008 p.109

Exercise
Produce an example XML document
corresponding to a directed graph

c©Munindar P. Singh, CSC 513, Spring 2008 p.110

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Compare with Lisp

List processing language
S-expressions
Cons pairs: car and cdr
Lists as nil-terminated s-expressions
Arbitrary structures built from few primitives
Untyped
Easy parsing
Regularity of structure encourages recursion

c©Munindar P. Singh, CSC 513, Spring 2008 p.111

Exercise
Produce an example XML document
corresponding to

An invoice from Locke Brothers for 100 units
of door locks at $19.95, each ordered on 15
January and delivered to Custom Home
Builders
Factor in certified delivery via UPS for
$200.00 on 18 January
Factor in addresses and contact info for each
party
Factor in late payments

c©Munindar P. Singh, CSC 513, Spring 2008 p.112

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XML Namespaces: 1

Because XML supports custom vocabularies
and interoperation, there is a high risk of
name collision
A namespace is a collection of names
Namespaces must be identical or disjoint

Crucial to support independent
development of vocabularies
MAC addresses
Postal and telephone codes
Vehicle identification numbers
Domains as for the Internet
On the Web, use URIs for uniqueness

c©Munindar P. Singh, CSC 513, Spring 2008 p.113

XML Namespaces: 2
1 <!−− xml∗ i s reserved −−>

<?xml vers ion ="1.0"? >
< a r b i t : top xmlns ="a URI " <!−− d e f a u l t namespace −−>

xmlns : a r b i t =" h t t p : / / wherever . i t . might . be / a r b i t −ns "
xmlns : random=" h t t p : / / another . one / random−ns">

6 < a r b i t : aElem a t t r 1 ="v1 " a t t r 2 ="v2">
Opt iona l t e x t (PCDATA)
< a r b i t : bElem a t t r 1 ="v1 " a t t r 2 ="v2 " / >

</ a r b i t : aElem>
<random : simple_elem/ >

11 <random : aElem a t t r 3 ="v3 " / >
<!−− compare a r b i t : aElem −−>

</ a r b i t : top >

c©Munindar P. Singh, CSC 513, Spring 2008 p.114

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Uniform Resource Identifier
URIs are abstract
What matters is their (purported) uniqueness
URIs have no proper syntax per se
Kinds of URIs

URLs, as in browsing: not used in
standards any more
URNs, which leave the mapping of names
to locations up in the air

Good design: the URI resource exists
Ideally, as a description of the resource in
RDDL
Use a URL or URN

c©Munindar P. Singh, CSC 513, Spring 2008 p.115

RDDL
Resource Directory Description Language

Meant to solve the problem that a URI may
not have any real content, but people expect
to see some (human readable) content
Captures namespace description for people

XML Schema
Text description

c©Munindar P. Singh, CSC 513, Spring 2008 p.116

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Well-Formedness and Parsing

An XML document maps to a parse tree (if
well-formed; otherwise not XML)

Each element must end (exactly once):
obvious nesting structure (one root)
An attribute can have at most one
occurrence within an element; an
attribute’s value must be a quoted string

Well-formed XML documents can be parsed

c©Munindar P. Singh, CSC 513, Spring 2008 p.117

XML InfoSet

A standardization of the low-level aspects of XML
What an element looks like
What an attribute looks like
What comments and namespace references
look like
Ordering of attributes is irrelevant
Representations of strings and characters

Primarily directed at tool vendors

c©Munindar P. Singh, CSC 513, Spring 2008 p.118

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Elements Versus Attributes: 1

Elements are essential for XML: structure
and expressiveness

Have subelements and attributes
Can be repeated
Loosely might correspond to
independently existing entities
Can capture all there is to attributes

c©Munindar P. Singh, CSC 513, Spring 2008 p.119

Elements Versus Attributes: 2
Attributes are not essential

End of the road: no subelements or
attributes
Like text; restricted to string values
Guaranteed unique for each element
Capture adjunct information about an
element
Great as references to elements

Good idea to use in such cases to improve
readability

c©Munindar P. Singh, CSC 513, Spring 2008 p.120

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Elements Versus Attributes: 3

< invo ice >
2 < p r i ce currency = ’USD’ >

19.95
</ pr ice >

</ invo ice >

Or
< invo i ce amount = ’19.95 ’ currency = ’USD’ / >

Or even
< invo i ce amount = ’USD 19.95 ’ / >

c©Munindar P. Singh, CSC 513, Spring 2008 p.121

Validating

Verifying whether a document matches a given
grammar (assumes well-formedness)

Applications have an explicit or implicit
syntax (i.e., grammar) for their particular
elements and attributes

Explicit is better have definitions
Best to refer to definitions in separate
documents

When docs are produced by external
software components or by human
intervention, they should be validated

c©Munindar P. Singh, CSC 513, Spring 2008 p.122

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Specifying Document Grammars

Verifying whether a document matches a given
grammar

Implicitly in the application
Worst possible solution, because it is
difficult to develop and maintain

Explicit in a formal document; languages
include

Document Type Definition (DTD): in
essence obsolete
XML Schema: good and prevalent
Relax NG: (supposedly) better but not as
prevalent

c©Munindar P. Singh, CSC 513, Spring 2008 p.123

XML Schema

Same syntax as regular XML documents
Local scoping of subelement names
Incorporates namespaces
(Data) Types

Primitive (built-in): string, integer, float,
date, ID (key), IDREF (foreign key), . . .
simpleType constructors: list, union
Restrictions: intervals, lengths,
enumerations, regex patterns,
Flexible ordering of elements

Key and referential integrity constraints

c©Munindar P. Singh, CSC 513, Spring 2008 p.124

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XML Schema: complexType

Specifies types of elements with structure:
Must use a compositor if ≥ 1
subelements
Subelements with types
Min and max occurrences (default 1) of
subelements

Elements with text content are easy
EMPTY elements: easy

Example?
Compare to nulls, later

c©Munindar P. Singh, CSC 513, Spring 2008 p.125

XML Schema: Compositors

Sequence: ordered list
Can occur within other compositors
Allows varying min and max occurrence

All: unordered
Must occur directly below root element
Max occurrence of each element is 1

Choice: exclusive or
Can occur within other compositors

c©Munindar P. Singh, CSC 513, Spring 2008 p.126

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XML Schema: Main Namespaces

Part of the standard
xsd: http://www.w3.org/2001/XMLSchema

Terms for defining schemas: schema,
element, attribute, . . .
The schema element has an attribute
targetNamespace

xsi: http://www.w3.org/2001/XMLSchema-
instance

Terms for use in instances:
schemaLocation,
noNamespaceSchemaLocation, nil, type

targetNamespace: user-defined

c©Munindar P. Singh, CSC 513, Spring 2008 p.127

XML Schema Instance Doc

<!−− Comment −−>
<Music xmlns =" h t t p : / / a . b . c / Muse"

xmlns : x s i =" the standard−x s i "
4 x s i : schemaLocation ="schema−URI schema−l o ca t i on−URL">

<!−− Not ice space charac te r i n above s t r i n g −−>
. . .

</ Music>

Define null values as
<aElem x s i : n i l =" t r u e " / >

c©Munindar P. Singh, CSC 513, Spring 2008 p.128

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XML Schema: Nillable
An xsd:element declaration may state
nillable=’true’

An instance of the element might state
xsi:nil="true"
The instance would be valid even if no
content is present, even if content is
required by default

c©Munindar P. Singh, CSC 513, Spring 2008 p.129

Creating XML Schema Docs: 1

Included into the same namespace as the
including doc
<xsd : schema xmlns : xsd =" the−standard−xsd "

xsd : targetNamespace =" the−t a r g e t ">
< inc lude xsd : schemaLocation =" par t−one . xsd " / >

4 < inc lude xsd : schemaLocation =" par t−two . xsd " / >
<!−− schemaLocation as i n xsd , not x s i −−>

</ xsd : schema>

c©Munindar P. Singh, CSC 513, Spring 2008 p.130

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Creating XML Schema Docs: 2

Use import instead of include
Imports may have different targets
Included schemas have the same target
Specify namespaces from which
schemas are to be imported
Location of schemas not required and
may be ignored if provided

c©Munindar P. Singh, CSC 513, Spring 2008 p.131

Foreign Attributes in XML Schema

XML Schema elements allow attributes that are
foreign, i.e., with a namespace other than the xsd
namespace

Must have an explicit namespace
Can be used to insert any additional
information, not interpreted by a processor
Specific usage is with attributes from the
xlink: namespace

<xsd : schema>
<xsd : element name= ’ course ’ type = ’cT ’

x l i n k : r o l e = ’ work ’ ncsu : o f f e r i n g = ’ t rue ’ >
4 </ xsd : schema>

c©Munindar P. Singh, CSC 513, Spring 2008 p.132

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XML Schema Style Guidelines: 1

Flatten the structure of the schema
Don’t nest declarations as you would a
desired instance document
Make sure that element names are not
reused
Unqualified attributes cannot be global
If dealing with legacy documents with the
same element names having different
meanings, place them in different
namespaces where possible

Use named types where appropriate

c©Munindar P. Singh, CSC 513, Spring 2008 p.133

XML Schema Style Guidelines: 2

Don’t have elements with mixed content
Don’t have attribute values that need parsing
Add unique IDs for information that may
repeat
Group information that may repeat
Emphasize commonalities and reuse

Derive types from related types
Create attribute groups

c©Munindar P. Singh, CSC 513, Spring 2008 p.134

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XML Schema Documentation
xsd:annotation

Should be the first subelement, except for
the whole schema
Container for two mixed-content
subelements

xsd:documentation: for humans
xsd:appinfo: for machine-processible data

Such as application-specific metadata
Possibly using the Dublin Core
vocabulary, which describes library
content and other media

c©Munindar P. Singh, CSC 513, Spring 2008 p.135

Module 5: XML Manipulation

Key XML query and manipulation languages
include

XPath
XQuery
XSLT

c©Munindar P. Singh, CSC 513, Spring 2008 p.136

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Metaphors for Handling XML: 1

How we conceptualize what XML documents are
determines our approach for handling such
documents

Text: an XML document is text
Ignore any structure and perform simple
pattern matches

Tags: an XML document is text interspersed
with tags

Treat each tag as an “event” during
reading a document, as in SAX (Simple
API for XML)
Construct regular expressions as in
screen scraping

c©Munindar P. Singh, CSC 513, Spring 2008 p.137

Metaphors for Handling XML: 2

Tree: an XML document is a tree
Walk the tree using DOM (Document
Object Model)

Template: an XML document has regular
structure

Let XPath, XSLT, XQuery do the work
Thought: an XML document represents a
graph structure

Access knowledge via RDF or OWL

c©Munindar P. Singh, CSC 513, Spring 2008 p.138

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XPath

Used as part of XPointer, SQL/XML, XQuery,
and XSLT

Models XML documents as trees with nodes
Elements
Attributes
Text (PCDATA)
Comments
Root node: above root of document

c©Munindar P. Singh, CSC 513, Spring 2008 p.139

Achtung!

Parent in XPath is like parent as traditionally
in computer science
Child in XPath is confusing:

An attribute is not a child of its parent
Makes a difference for recursion (e.g., in
XSLT apply-templates)

Our terminology follows computer science:
e-children, a-children, t-children
Sets via et-, ta-, and so on

c©Munindar P. Singh, CSC 513, Spring 2008 p.140

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XPath Location Paths: 1
Relative or absolute
Reminiscent of file system paths, but much
more subtle

Name of an element to walk down
Leading /: root
/: indicates walking down a tree
.: currently matched (context) node
..: parent node

c©Munindar P. Singh, CSC 513, Spring 2008 p.141

XPath Location Paths: 2

@attr: to check existence or access value of
the given attribute
text(): extract the text
comment(): extract the comment
[]: generalized array accessors
Variety of axes, discussed below

c©Munindar P. Singh, CSC 513, Spring 2008 p.142

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XPath Navigation

Select children according to position, e.g., [j],
where j could be 1 . . . last()
Descendant-or-self operator, //

.//elem finds all elems under the current
node
//elem finds all elems in the document

Wildcard, *:
collects e-children (subelements) of the
node where it is applied, but omits the
t-children
@*: finds all attribute values

c©Munindar P. Singh, CSC 513, Spring 2008 p.143

XPath Queries (Selection Conditions)

Attributes: //Song[@genre="jazz"]
Text: //Song[starts-with(.//group, "Led")]
Existence of attribute: //Song[@genre]
Existence of subelement: //Song[group]
Boolean operators: and, not, or
Set operator: union (|), which behaves like
choice
Arithmetic operators: >, <, . . .
String functions: contains(), concat(),
length(), starts-with(), ends-with()
distinct-values()
Aggregates: sum(), count()c©Munindar P. Singh, CSC 513, Spring 2008 p.144

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XPath Axes: 1
Axes are addressable node sets based on the
document tree and the current node

Axes facilitate navigation of a tree
Several are defined
Mostly straightforward but some of them
order the nodes as the reverse of others
Some captured via special notation

current, child, parent, attribute, . . .

c©Munindar P. Singh, CSC 513, Spring 2008 p.145

XPath Axes: 2

preceding: nodes that precede the start of
the context node (not ancestors, attributes,
namespace nodes)
following: nodes that follow the end of the
context node (not descendants, attributes,
namespace nodes)
preceding-sibling: preceding nodes that are
children of the same parent, in reverse
document order
following-sibling: following nodes that are
children of the same parent

c©Munindar P. Singh, CSC 513, Spring 2008 p.146

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XPath Axes: 3
ancestor: proper ancestors, i.e., element nodes (other
than the context node) that contain the context node,
in reverse document order

descendant: proper descendants

ancestor-or-self: ancestors, including self (if it
matches the next condition)

descendant-or-self: descendants, including self (if it
matches the next condition)

c©Munindar P. Singh, CSC 513, Spring 2008 p.147

XPath Axes: 4

Longer syntax: child::Song
Some captured via special notation

self::*:
child::node(): node() matches all nodes
preceding::*
descendant::text()
ancestor::Song
descendant-or-self::node(), which
abbreviates to //
Compare /descendant-or-self::Song[1]
(first descendant Song) and //Song[1]
(first Songs (children of their parents))

c©Munindar P. Singh, CSC 513, Spring 2008 p.148

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XPath Axes: 5
Each axis has a principal node kind

attribute: attribute
namespace: namespace
All other axes: element

* matches whatever is the principal node kind of the
current axis

node() matches all nodes

c©Munindar P. Singh, CSC 513, Spring 2008 p.149

XPointer

Enables pointing to specific parts of documents
Combines XPath with URLs
URL to get to a document; XPath to walk
down the document
Can be used to formulate queries, e.g.,

Song-
URL#xpointer(//Song[@genre="jazz"])
The part after # is a fragment identifier

Fine-grained addressability enhances the
Web architecture

High-level “conceptual” identification of node sets

c©Munindar P. Singh, CSC 513, Spring 2008 p.150

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XQuery

The official query language for XML, now a
W3C recommendation, as version 1.0
Given a non-XML syntax, easier on the
human eye than XML
An XML rendition, XqueryX, is in the works

c©Munindar P. Singh, CSC 513, Spring 2008 p.151

XQuery Basic Paradigm

The basic paradigm mimics the SQL
(SELECT–FROM–WHERE) clause

1 f o r $x i n doc (’ q2 . xml ’) / / Song
where $x / @lg = ’ en ’
r e t u r n
<Engl ish−Sgr name= ’ { $x / Sgr /@name} ’ t i = ’ { $x / @ti } ’ / >

c©Munindar P. Singh, CSC 513, Spring 2008 p.152

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

FLWOR Expressions

Pronounced “flower”
For: iterative binding of variables over range
of values
Let: one shot binding of variables over vector
of values
Where (optional)
Order by (sort: optional)
Return (required)

Need at least one of for or let

c©Munindar P. Singh, CSC 513, Spring 2008 p.153

XQuery For Clause

The for clause
Introduces one or more variables
Generates possible bindings for each
variable
Acts as a mapping functor or iterator

In essence, all possible combinations of
bindings are generated: like a Cartesian
product in relational algebra
The bindings form an ordered list

c©Munindar P. Singh, CSC 513, Spring 2008 p.154

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XQuery Where Clause

The where clause
Selects the combinations of bindings that are
desired
Behaves like the where clause in SQL, in
essence producing a join based on the
Cartesian product

c©Munindar P. Singh, CSC 513, Spring 2008 p.155

XQuery Return Clause

The return clause
Specifies what node-sets are returned based
on the selected combinations of bindings

c©Munindar P. Singh, CSC 513, Spring 2008 p.156

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XQuery Let Clause

The let clause
Like for, introduces one or more variables
Like for, generates possible bindings for
each variable
Unlike for, generates the bindings as a list in
one shot (no iteration)

c©Munindar P. Singh, CSC 513, Spring 2008 p.157

XQuery Order By Clause

The order by clause
Specifies how the vector of variable bindings
is to be sorted before the return clause
Sorting expressions can be nested by
separating them with commas
Variants allow specifying

descending or ascending (default)
empty greatest or empty least to
accommodate empty elements
stable sorts: stable order by
collations: order by $t collation
collation-URI: (obscure, so skip)

c©Munindar P. Singh, CSC 513, Spring 2008 p.158

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XQuery Positional Variables

The for clause can be enhanced with a positional
variable

A positional variable captures the position of
the main variable in the given for clause with
respect to the expression from which the
main variable is generated
Introduce a positional variable via the at $var
construct

c©Munindar P. Singh, CSC 513, Spring 2008 p.159

XQuery Declarations

The declare clause specifies things like
Namespaces: declare namespace
pref=’value’

Predefined prefixes include XML, XML
Schema, XML Schema-Instance, XPath,
and local

Settings: declare boundary-space preserve
(or strip)
Default collation: a URI to be used for
collation when no collation is specified

c©Munindar P. Singh, CSC 513, Spring 2008 p.160

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XQuery Quantification: 1

Two quantifiers some and every
Each quantifier expression evaluates to true
or false
Each quantifier introduces a bound variable,
analogous to for

1 f o r $x i n . . .
where some $y i n . . .
s a t i s f i e s $y . . . $x
r e t u r n . . .

Here the second $x refers to the same variable
as the first

c©Munindar P. Singh, CSC 513, Spring 2008 p.161

XQuery Quantification: 2

A typical useful quantified expression would use
variables that were introduced outside of its
scope

The order of evaluation is
implementation-dependent: enables
optimization
If some bindings produce errors, this can
matter
some: trivially false if no variable bindings
are found that satisfy it
every: trivially true if no variable bindings are
found

c©Munindar P. Singh, CSC 513, Spring 2008 p.162

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Variables: Scoping, Bound, and Free

for, let, some, and every introduce variables
The visibility variable follows typical scoping
rules
A variable referenced within a scope is

Bound if it is declared within the scope
Free if it not declared within the scope

1 f o r $x i n . . .
where some $x i n . . .
s a t i s f i e s . . .
r e t u r n . . .

Here the two $x refer to different variables

c©Munindar P. Singh, CSC 513, Spring 2008 p.163

XQuery Conditionals

Like a classical if-then-else clause
The else is not optional
Empty sequences or node sets, written (),
indicate that nothing is returned

c©Munindar P. Singh, CSC 513, Spring 2008 p.164

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XQuery Constructors

Braces { } to delimit expressions that are
evaluated to generate the content to be included;
analogous to macros

document { }: to create a document node
with the specified contents
element { } { }: to create an element

element foo { ’bar’ }: creates
<foo>Bar</foo>
element { ’foo’ } { ’bar’ }: also evaluates
the name expression

attribute { } { }: likewise
text { body}: simpler, because anonymous

c©Munindar P. Singh, CSC 513, Spring 2008 p.165

XQuery Effective Boolean Value

Analogous to Lisp, a general value can be
treated as if it were a Boolean

A xs:boolean value maps to itself
Empty sequence maps to false
Sequence whose first member is a node
maps to true
A numeric that is 0, negative, or NaN maps
to false, else true
An empty string maps to false, others to true

c©Munindar P. Singh, CSC 513, Spring 2008 p.166

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Defining Functions

1 dec lare f u n c t i o n l o c a l : i t em f top ($ t)
{

l o c a l : i t em f ($t , ())
} ;

Here local: is the namespace of the query
The arguments are specified in parentheses
All of XQuery may be used within the
defining braces
Such functions can be used in place of
XPath expressions

c©Munindar P. Singh, CSC 513, Spring 2008 p.167

Functions with Types

1 dec lare f u n c t i o n l o c a l : i t em f top ($ t as element ())
as element () ∗

{
l o c a l : i t em f ($t , ())

} ;

Return types as above
Also possible for parameters, but ignore such
for this course

c©Munindar P. Singh, CSC 513, Spring 2008 p.168

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XSLT

A programming language with a functional flavor
Specifies (stylesheet) transforms from
documents to documents
Can be included in a document (best not to)

<?xml vers ion ="1.0"? >
<?xml−s t y l eshee t type =" t e x t / x s l "

h re f ="URL−to−xs l−sheet "?>
<main−element >

5 . . .
</main−element >

c©Munindar P. Singh, CSC 513, Spring 2008 p.169

XQuery versus XSLT: 1

Competitors in some ways, but
Share a basis in XPath
Consequently share the same data model
Same type systems (in the type-sensitive
versions)
XSLT got out first and has a sizable
following, but XQuery has strong backing
among vendors and researchers

c©Munindar P. Singh, CSC 513, Spring 2008 p.170

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XQuery versus XSLT: 2

XQuery is geared for querying databases
Supported by major relational DBMS
vendors in their XML offerings
Supported by native XML DBMSs
Offers superior coverage of processing
joins
Is more logical (like SQL) and potentially
more optimizable

XSLT is geared for transforming documents
Is functional rather than declarative
Based on template matching

c©Munindar P. Singh, CSC 513, Spring 2008 p.171

XQuery versus XSLT: 3

There is a bit of an arms race between them
Types

XSLT 1.0 didn’t support types
XQuery 1.0 does
XSLT 2.0 does too

XQuery presumably will be enhanced with
capabilities to make updates, but XSLT could
too

c©Munindar P. Singh, CSC 513, Spring 2008 p.172

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XSLT Stylesheets

A programming language that follows XML
syntax

Use the XSLT namespace (conventionally
abbreviated xsl)
Includes a large number of primitives,
especially:

<copy-of> (deep copy)
<copy> (shallow copy)
<value-of>
<for-each select="...">
<if test="...">
<choose>

c©Munindar P. Singh, CSC 513, Spring 2008 p.173

XSLT Templates: 1

A pattern to specify where the given
transform should apply: an XPath expression

This match only works on the root:
< x s l : template match =" / " >

. . .
</ x s l : template >

Example: Duplicate text in an element
< x s l : template match=" t e x t () " >

2 < x s l : value−of s e l e c t = ’ . ’ / >
< x s l : value−of s e l e c t = ’ . ’ / >

</ x s l : template >

c©Munindar P. Singh, CSC 513, Spring 2008 p.174

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XSLT Templates: 2

If no pattern is specified, apply recursively on
et-children via <xsl:apply-templates/>
By default, if no other template matches,
recursively apply to et-children of current
node (ignores attributes) and to root:

1 < x s l : template match = "∗ | / " >
< x s l : apply−templates / >

</ x s l : template >

c©Munindar P. Singh, CSC 513, Spring 2008 p.175

XSLT Templates: 3

Copy text node by default
Use an empty template to override the
default:
< x s l : template match="X" / >

2 <!−− X = des i red pa t t e rn −−>

Confine ourselves to the examples discussed in
class (ignore explicit priorities, for example)

c©Munindar P. Singh, CSC 513, Spring 2008 p.176

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XSLT Templates: 4

Templates can be named
Templates can have parameters

Values for parameters are supplied at
invocation
Empty node sets by default
Additional parameters are ignored

c©Munindar P. Singh, CSC 513, Spring 2008 p.177

XSLT Variables
Explicitly declared
Values are node sets
Convenient way to document templates

c©Munindar P. Singh, CSC 513, Spring 2008 p.178

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Document Object Model (DOM)

Basis for parsing XML, which provides a
node-labeled tree in its API

Conceptually simple: traverse by requesting
element, its attribute values, and its children
Processing program reflects document
structure, as in recursive descent
Can edit documents
Inefficient for large documents: parses them
first entirely even if a tiny part is needed
Can validate with respect to a schema

c©Munindar P. Singh, CSC 513, Spring 2008 p.179

DOM Example

DOMParser p = new DOMParser () ;
p . parse (" f i lename ") ;

3 Document d = p . getDocument ()
Element s = d . getDocumentElement () ;
NodeList l = s . getElementsByTagName (" member ") ;
Element m = (Element) l . i tem (0) ;
i n t code = m. g e t A t t r i b u t e (" code ") ;

8 NodeList k ids = m. getChi ldNodes () ;
Node k id = k ids . i tem (0) ;
S t r i n g elemName = ((Element) k i d) . getTagName () ; . . .

c©Munindar P. Singh, CSC 513, Spring 2008 p.180

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Simple API for XML (SAX)

Parser generates a sequence of events:
startElement, endElement, . . .

Programmer implements these as callbacks
More control for the programmer

Processing program does not necessarily
reflect document structure

c©Munindar P. Singh, CSC 513, Spring 2008 p.181

SAX Example: 1

c lass MemberProcess extends Defau l tHand ler {
p u b l i c vo id s ta r tE lement (S t r i n g u r i , S t r i n g n ,

S t r i n g qName, A t t r i b u t e s a t t r s) {
i f (n . equals (" member ")) code = a t t r s . getValue (" code ")

5 i f (n . equals (" p r o j e c t ")) i n P r o j e c t = t r ue ;
b u f f e r . rese t () ;

}

. . .

c©Munindar P. Singh, CSC 513, Spring 2008 p.182

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

SAX Example: 2

1

. . .

p u b l i c vo id endElement (S t r i n g u r i , S t r i n g n ,
S t r i n g qName) {

6 i f (n . equals (" p r o j e c t ")) i n P r o j e c t = f a l s e ;
i f (n . equals (" member ") && ! i n P r o j e c t)

. . . do something . . .
}

}

c©Munindar P. Singh, CSC 513, Spring 2008 p.183

SAX Filters
A component that mediates between an
XMLReader (parser) and a client

A filter would present a modified set of
events to the client
Typical uses:

Make minor modifications to the structure
Search for patterns efficiently

What kinds of patterns, though?
Ideally modularize treatment of different
event patterns
In general, a filter can alter the structure of
the document

c©Munindar P. Singh, CSC 513, Spring 2008 p.184

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Creating XML from Legacy Sources

Often need to read in information from non-XML
sources

From relational databases
Easier because of structure
Supported by vendor tools

From flat files, CSV documents, HTML Web
pages

Bit of a black art: lots of heuristics
Tools based on regular expressions

c©Munindar P. Singh, CSC 513, Spring 2008 p.185

Programming with XML

Limitations
Difficult to construct and maintain
documents
Internal structures are cumbersome;
hence the criticisms of DOM parsers

Emerging approaches provide superior
binding from XML to

Programming languages
Relational databases

Check pull-based versus push-based parsers

c©Munindar P. Singh, CSC 513, Spring 2008 p.186

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Module 6: XML Storage

The major aspects of storing XML include
XML Keys
Concepts: Data and Document Centrism
Storage
Mapping to relational schemas
SQL/XML

c©Munindar P. Singh, CSC 513, Spring 2008 p.187

Integrity Constraints in XML

Entity: xsd:unique and xsd:key
Referential: xsd:keyref
Data type: XML Schema specifications
Value: Solve custom queries using XPath or
XQuery

Entity and referential constraints are based on
XPath

c©Munindar P. Singh, CSC 513, Spring 2008 p.188

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XML Keys: 1

Keys serve as generalized identifiers, and are
captured via XML Schema elements:

Unique: candidate key
The selected elements yield unique field
tuples

Key: primary key, which means candidate
key plus

The tuples exist for each selected element
Keyref: foreign key

Each tuple of fields of a selected element
corresponds to an element in the
referenced key

c©Munindar P. Singh, CSC 513, Spring 2008 p.189

XML Keys: 2

Two subelements built using restricted
application of XPath from within XML Schema

Selector: specify a set of objects: this is the
scope over which uniqueness applies
Field: specify what is unique for each
member of the above set: this is the identifier
within the targeted scope

Multiple fields are treated as ordered to
produce a tuple of values for each
member of the set
The order matters for matching keyref to
key

c©Munindar P. Singh, CSC 513, Spring 2008 p.190

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Selector XPath Expression

A selector finds descendant elements of the
context node

The sublanguage of XPath used allows
Children via ./child or ./* or child
Descendants via .// (not within a path)
Choice via |

The subset of XPath used does not allow
Parents or ancestors
text()
Attributes
Fancy axes such as preceding,
preceding-sibling, . . .

c©Munindar P. Singh, CSC 513, Spring 2008 p.191

Field XPath Expression

A field finds a unique descendant element
(simple type only) or attribute of the context node

The subset of XPath used allows
Children via ./child or ./*
Descendants via .// (not within a path)
Choice via |
Attributes via @attribute or @*

The subset of XPath used does not allow
Parents or ancestors
text()
Fancy axes such as preceding, . . .

An element yields its text()
c©Munindar P. Singh, CSC 513, Spring 2008 p.192

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XML Foreign Keys

<keyre f name = " . . . " r e f e r =" pr imary−key−name">
< s e l e c t o r xpath = " . . . " / >
< f i e l d name = " . . . " / >

</ keyref >

Relational requirement: foreign keys don’t
have to be unique or non-null, but if one
component is null, then all components must
be null.

c©Munindar P. Singh, CSC 513, Spring 2008 p.193

Placing Keys in Schemas

Keys are associated with elements, not with
types
Thus the . in a key selector expression is
bound
Could have been (but are not) associated
with types where the . could be bound to
whichever element was an instance of the
type

c©Munindar P. Singh, CSC 513, Spring 2008 p.194

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Data-Centric View: 1

1 < r e l a t i o n name= ’ Student ’ >
< tup le >< a t t r 1 >V11</ a t t r 1 >

. . .
< a t t r n >V1n</ a t t r n >

</ tup le >
6 . . .

</ r e l a t i o n >

Extract and store via mapping to DB model
Regular, homogeneous structure

c©Munindar P. Singh, CSC 513, Spring 2008 p.195

Data-Centric View: 2
Ideally, no mixed content: an element
contains text or subelements, not both
Any mixed content would be templatic, i.e.,

Generated from a database via suitable
transformations
Generated via a form that a user or an
application fills out

Order among siblings likely irrelevant (as is
order among relational columns)

Expensive if documents are repeatedly parsed
and instantiated

c©Munindar P. Singh, CSC 513, Spring 2008 p.196

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Document-Centric View
Irregular: doesn’t map well to a relation
Heterogeneous data
Depending on entire doc for
application-specific meaning

c©Munindar P. Singh, CSC 513, Spring 2008 p.197

Data- vs Document-Centric Views
Data-centric: data is the main thing

XML simply renders the data for transport
Store as data
Convert to/from XML as needed
The structure is important

Document-centric: documents are the main
thing

Documents are complex (e.g., design
documents) and irregular
Store documents wherever
Use DBMS where it facilitates performing
important searches

c©Munindar P. Singh, CSC 513, Spring 2008 p.198

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Storing Documents in Databases

Use character large objects (CLOBs) within
DB: searchable only as text
Store paths to external files containing docs

Simple, but no support for integrity
Use some structured elements for easy
search as well as unstructured clobs or files
Heterogeneity complicates mappings to
typed OO programming languages

Storing documents in their entirety may
sometimes be necessary for external reasons,
such as regulatory compliance

c©Munindar P. Singh, CSC 513, Spring 2008 p.199

Database Features

Storage: schema definition language
Querying: query language
Transactions: concurrency
Recovery

c©Munindar P. Singh, CSC 513, Spring 2008 p.200

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Potential DBMS Types for XML: 1

Object-oriented
Nice structure
Intellectual basis of many XML concepts,
including schema representations and
path expressions
Not highly popular in standalone products

Relational
Limited structuring ability (1NF: each cell
is atomic)
Extremely popular
Well optimized for flat queries

c©Munindar P. Singh, CSC 513, Spring 2008 p.201

Potential DBMS Types for XML: 2

Object relational: hybrids of above
Not highly popular in standalone products

Custom XML stores or native XML
databases

Emerging ideas: may lack core database
features (e.g., recovery, . . .)
Enable fancier content management
systems
Leading open source products:

Apache Xindice (server; XPath)
Berkeley DB XML (libraries; XQuery)

c©Munindar P. Singh, CSC 513, Spring 2008 p.202

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XML to Relational Databases
Using large objects
Flatten XML structures
Referring to external files

Recall that for a relational schema, its entire set
of attributes is necessarily a superkey

c©Munindar P. Singh, CSC 513, Spring 2008 p.203

Artificial Representation: Repetitious

Capturing an object hierarchy in a relation
Imagine an artificial identifier for each node
Construct a relation with three main
relational attributes or columns

One column for the identifier
One column for the name of an attribute
(i.e., element name)
One column for the value (assumes the
value would fit into the same relational
type: potentially this could be CLOB or
BLOB)

c©Munindar P. Singh, CSC 513, Spring 2008 p.204

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Artificial Representation: Graph

Use four generic relations to represent a graph
Vertices:

Element ID, Name
Contents

Element ID, Text, number (to allow
multiple text nodes)

Attributes
ID, Attribute name, Attribute value

Edges
Source ID, Target ID

Better typed than repetitious style because this
has no nulls

c©Munindar P. Singh, CSC 513, Spring 2008 p.205

Shallow Representation: 1

The “natural” approaches are based on
tuple-generating elements (TGEs)

Choose one XML element type as the TGE
TGE corresponds to a tuple
The key is based on an ID attribute or text
of the TGE

A relational attribute (column) for each
subelement or attribute
Easiest if there is an attribute for IDs and
there are no other attributes

c©Munindar P. Singh, CSC 513, Spring 2008 p.206

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Shallow Representation: 2

Consequences
Nulls for missing subelements can
proliferate
Subelements with structure (subelements
or attributes) aren’t represented well
Ancestors cannot be searched for

c©Munindar P. Singh, CSC 513, Spring 2008 p.207

Deep Representation

Also called shredding an XML document
Choose a TGE as before
A column for each descendant, except that

Can skip wrapper elements (no text, only
subelements), but must reconstruct them
to create an XML document

Consequences
Nulls for missing subelements
Lots of columns in a relation
Ancestors cannot be searched for
Loses structural information

c©Munindar P. Singh, CSC 513, Spring 2008 p.208

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Representing Ancestors

Ancestors are the elements that are above the
scope of the given TGE

Choose a TGE as before
A column for each descendant as before
A column for each ancestor (that needs to be
searched)

Appropriate attributes or text fields to
make the search worthwhile

Consequences
Nulls for missing subelements
Lots of columns in a relation

c©Munindar P. Singh, CSC 513, Spring 2008 p.209

Generalized TGE

Each element is a TGE, yielding a different
relation
A column for each terminal child: attribute or
text
A column for each ancestor to capture the
entire path from root to this node

Must promote uniquifying content so that
each TGE yields unique tuples

Consequences
Nulls for missing subelements
Lots of relations
Lots of columns in a relation

c©Munindar P. Singh, CSC 513, Spring 2008 p.210

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Variations in Structure

Create separate relations for each variant
Consequences

Lots of possible structures to store
Queries would not be succinct
Acceptable only if we know in advance
that the number of variants is small and
the data in each is substantial

c©Munindar P. Singh, CSC 513, Spring 2008 p.211

Semistructured Representation

Create two (sets of) relations
Specific part: one (or more) relations based
on one of the natural approaches
Generic part: one relation based on an
artificial approach

c©Munindar P. Singh, CSC 513, Spring 2008 p.212

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Thoughtful Design

The above approaches are not sensitive to
the meaning and motivation behind the XML
structure
Understand the XML structure via a
conceptual model (in terms of entities and
relationships)
Avoid unnecessary nesting in the XML
structure, if possible
Design a corresponding relational schema by
hand

This is not always possible, though

c©Munindar P. Singh, CSC 513, Spring 2008 p.213

Evaluation

How does the above work for data-centric and
document-centric views?

Compare with respect to
Document structure
Document “roundtripping” (compare &,
&, #a39)
Normalization

Are the documents unique?
Are the documents unique up to
“isomorphism”?

c©Munindar P. Singh, CSC 513, Spring 2008 p.214

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Schema Evolution

A big problem for databases in practical settings
For relational schemas, certain kinds of
updates are simpler than others
Can have consequences on optimization
XML schemas can be evolved by using XSLT
to map old data to new schema

c©Munindar P. Singh, CSC 513, Spring 2008 p.215

From Relations to XML

Mapping a relation schema (set of relations plus
functional dependencies) to an XML document

Map relation R to an element RE with key or
unique constraints
Map column C of R to an attribute of RE or
equivalently a child element with just text
Map relation S with a foreign key to R to

A child element SE of RE (omit foreign
key content from SE): works if only one
such RE for SE; OR
An element SE that includes the foreign
key content, and includes a keyref to RE

c©Munindar P. Singh, CSC 513, Spring 2008 p.216

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Null Value: 1
A special value, not in any domain, but
combinable with any domain

Need?
Possible meanings

Not applicable
Unknown: missing
Questionable existence
Absent (known but absent)

Hazards of null values?

c©Munindar P. Singh, CSC 513, Spring 2008 p.217

Null Value: 2

XML Schema enables developing custom null
values for each domain

Create an arbitrary value that
Matches the given data type
Is not a valid value of the domain,
however

Design applications to understand specific
restricted type

c©Munindar P. Singh, CSC 513, Spring 2008 p.218

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XML Schema Null

<elem/> (equivalently <elem></elem>)
means that the element contains the empty
string

This is not null
xsi defines the attribute nil

Used as <elem xsi:nil="true"/> if elem is
declared nillable (via nillable="true")

c©Munindar P. Singh, CSC 513, Spring 2008 p.219

Quick Look at SQL

Structured Query Language
Data Definition Language: CREATE TABLE
Data Manipulation Language: SELECT,
INSERT, DELETE, UPDATE
Basic paradigm for SELECT
SELECT t1 . column−1, t1 . column−2 . . . tm . column−n
FROM tab le −1 t1 , tab le−m tm

3 WHERE t1 . column−3=t4 . column−4 AND . . .

c©Munindar P. Singh, CSC 513, Spring 2008 p.220

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

SQL 2003

Standardized by ANSI/ISO; next version after
SQL 1999

Includes SQL/XML: SQL extensions for XML
(other aspects of SQL 2003 are not relevant
here)
Distinct from Microsoft’s SQLXML
SQL/XML is included in products

By DBMS vendors, sometimes with
different low-level details (MINUS versus
EXCEPT)
DBMS-independent products

c©Munindar P. Singh, CSC 513, Spring 2008 p.221

XML Type in SQL/XML

A specialized data type for XML content;
distinct from text
Usable wherever an SQL data type is
allowed: type of column, variable, tuple cell,
and so on . . .
Value rooted on the XML Root information
item (described next)

c©Munindar P. Singh, CSC 513, Spring 2008 p.222

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

XML Root Information Item: 1

Based on the XML InfoSet document information
item, this can be an

XML root (as in SQL/XML)
XML element
XML attribute
XML parsed character data (text; aka
PCDATA)
XML namespace declaration
XML processing instruction
XML comment

And some more possibilities from the InfoSet . . .

c©Munindar P. Singh, CSC 513, Spring 2008 p.223

XML Root Information Item: 2

Unlike the XML InfoSet root (which allows
exactly one child element), this allows zero
or more children

Partial results need not be documents
IS DOCUMENT: a predicate that checks if
the argument XML value has a single root
An XML value can be

NULL, as usual for SQL
An XML root item, including whatever it
includes

c©Munindar P. Singh, CSC 513, Spring 2008 p.224

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

SQL/XML Builtin Operators

xmlparse(): maps a string (char, varchar,
clob) to a value of type XML (stripping
whitespace by default)
xmlserialize(): maps a value of type XML to a
string
xmlconcat(): combines values into a forest
xmlroot(): create or modify the root node of
an XML value

c©Munindar P. Singh, CSC 513, Spring 2008 p.225

SQL/XML Publishing Functions: 1

These are templates that go into a SELECT
query; all with names that begin “xml”

xmlelement(name ’Song’, ·)
Needs a value: an SQL column or
expression or an attribute or an element
Yields a value (an element)
Can be nested, of course

xmlattributes(column [AS cname], column
[AS cname],. . .)

Creates XML attributes from the columns
Inserts into the surrounding XML element

c©Munindar P. Singh, CSC 513, Spring 2008 p.226

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

SQL/XML Publishing Functions: 2

xmlforest()
Creates XML elements from columns
Analogous to a node-set in XPath
Must be placed within an element;
otherwise not well-formed XML

xmlagg(): combines a collection of rows,
each with a single XML value into a single
forest
xmlnamespaces()
xmlcomment(): comment
xmlpi(): processing instruction

c©Munindar P. Singh, CSC 513, Spring 2008 p.227

SQL/XML Example: 1

SELECT xmlelement (Name ’ Sgr ’ ,
2 x m l a t t r i b u t e s (z . sg r Id AS student−ID) ,

z . sgrName)
FROM Singer z
WHERE . . .

yields something like
<Sgr student−ID = ’ s1 ’ >

Eagles
</Sgr>

c©Munindar P. Singh, CSC 513, Spring 2008 p.228

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

SQL/XML Example: 2

SELECT xmlelement (Name ’ Sgr ’ ,
2 x m l a t t r i b u t e s (z . sg r Id AS student−ID) ,

z . sgrName ,
xmlelement (Name ’Song ’ , ’ Hotel ’))

FROM Singer z
WHERE . . .

yields something like
<Sgr student−ID = ’ s1 ’ >

Eagles
<Song>Hotel </Song>

4 </Sgr>

c©Munindar P. Singh, CSC 513, Spring 2008 p.229

SQL/XML Mapping Rules

A number of low-level matters, which are
conceptually trivial but complicate combining
SQL and XML effectively; captured as mapping
rules

Lexical encodings in names and content
Mapping datatypes in each direction, e.g.,
SQL date and XML Schema date
Mapping SQL tables, schemas, catalogs to
and from XML

c©Munindar P. Singh, CSC 513, Spring 2008 p.230

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Tool Support for SQL 2003

Oracle 10g, IBM DB2, Sybase support it
Apparently, Microsoft doesn’t or won’t [not
sure]
Oracle 9i release 2 supports similar
constructs, but in proprietary syntax

c©Munindar P. Singh, CSC 513, Spring 2008 p.231

Oracle 9i SQL/XML: 1

1 CREATE TABLE s inger (sg r Id VARCHAR2(9) NOT NULL,
sgrName VARCHAR2(15) NOT NULL,
s g r I n f o SYS.XMLTYPE NULL,
CONSTRAINT singer_key
PRIMARY KEY (sgr Id)) ;

c©Munindar P. Singh, CSC 513, Spring 2008 p.232

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Oracle 9i SQL/XML: 2

INSERT INTO s inger VALUES (’ Sgr −01 ’ , ’ Eagles ’ ,
SYS.XMLTYPE. createXML (’ < genre>rock </ genre > ’)) ;

INSERT INTO s inger VALUES (’ Sgr −04 ’ , ’ Beat les ’ ,
5 SYS.XMLTYPE. createXML (

’ < t r i v i a ><conv ic t i ons >freedom </ conv ic t i ons >
<genre>rock </ genre > </ t r i v i a > ’)) ;

SELECT z . sgrName , z . s g r I n f o . e x t r a c t (’ / genre / t e x t () ’)
10 . getClobVal ()

FROM singer z ;

c©Munindar P. Singh, CSC 513, Spring 2008 p.233

Oracle 9i SQL/XML: 3

SELECT z . sgrName , z . s g r I n f o . e x t r a c t (’ / / genre / t e x t () ’)
. getClobVal ()

FROM singer z
4 WHERE z . s g r I n f o . e x t r a c t (

’ / / genre / t e x t () ’) . ge tS t r i ngVa l () l i k e ’ r % ’;

SELECT z . sgrName , z . s g r I n f o . e x t r a c t (’ / genre / t e x t () ’)
. getClobVal ()

9 FROM singer z
WHERE z . s g r I n f o . existsNode (’ / / genre ’) = 1 ;

c©Munindar P. Singh, CSC 513, Spring 2008 p.234

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Oracle 9i SQL/XML: 4

SELECT SYS_XMLAGG(SYS_XMLGEN(z . sgrname) ,
SYS.XMLGENFORMATTYPE. crea te fo rmat (’ FooList ’))

. getClobVal ()
FROM singer z

5 WHERE z . sg r Id IS NOT NULL
GROUP BY z . sgrname ;

c©Munindar P. Singh, CSC 513, Spring 2008 p.235

Modern Information Systems

Three legs of modern software systems
Documents: as in XML
Tuples: as in the information stored in
relational databases
Objects: as in programming languages

A lot of effort goes into managing translations
among these at the level of programming
But deeper challenges remain . . .

c©Munindar P. Singh, CSC 513, Spring 2008 p.236

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Limitations of XML
Doesn’t represent meaning
Doesn’t represent conceptual structure
Enables multiple representations for the
same information

Give an example

Transforms can be robustly specified and
accurately documented only if models are
known, but usually the models are not known

c©Munindar P. Singh, CSC 513, Spring 2008 p.237

Directions in XML

Trends: sophisticated approaches for
Querying and manipulating XML, e.g., XSLT
and XQuery
Sophisticated storage and access
techniques in traditional relational databases
Tools that shield programmers from low-level
details
Semantics, e.g., RDF, OWL, . . .

c©Munindar P. Singh, CSC 513, Spring 2008 p.238

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Module 7: Rationality

Basis for understanding interactions among
autonomous parties
Many questions reduce to resource
allocation
What is an optimal or correct resource
allocation

c©Munindar P. Singh, CSC 513, Spring 2008 p.239

What is an Agent?

Abstraction to support autonomy and
heterogeneity

In general, an agent is an active
computational entity that

Carries a persistent (i.e., long-lived)
identity
Perceives, reasons about, and initiates
activities in its environment
Adapts its behavior based on others’
behavior
Communicates (with other agents)

Example: an agent in a market or supply chain

c©Munindar P. Singh, CSC 513, Spring 2008 p.240

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Negotiation

The key to adaptive, cooperative behavior
The essence of business
Involves several nontechnical considerations
The computer science role is to provide
representations and algorithms to facilitate
negotiation

c©Munindar P. Singh, CSC 513, Spring 2008 p.241

Explicit Negotiation

Achieving agreement among a small set of
agents, e.g., to construct a supply chain

Based on “dialog” moves
Such as propose, counter-propose,
support, accept, reject, dismiss, retract
Composed into protocols allowing valid
“conversations”

Presupposes a common abstraction of the
problem, and a common content language

Relate the moves to resource allocations,
contracts, and post-contractual events

c©Munindar P. Singh, CSC 513, Spring 2008 p.242

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Deals: Joint Plans Among Agents

Possible outcomes of negotiation
Utility of a deal for an agent is its benefit
minus its cost
Negotiation set: set of deals (joint plans) with
positive utility for each agent

Conflict: the negotiation set is empty
Compromise: each agent prefers to work
alone, but will agree to a negotiated deal
Cooperation: all deals in the negotiation
set are preferred by both agents over
achieving their goals alone

c©Munindar P. Singh, CSC 513, Spring 2008 p.243

Simple Negotiation Protocol

Each party, in turn, proposes a joint plan
They proceed as long as they agree
Any conflicts are resolved randomly (e.g.,
“flip a coin” to decide which agent would
satisfy its goal)

Example: two friends each want coffee; one of
them (selected via a coin toss) will fetch coffee
for both

c©Munindar P. Singh, CSC 513, Spring 2008 p.244

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Mechanism Design

Mechanism: a set of rules of an environment
under which agents operate

Honor systems
Honor systems with social censure (as a
penalty)
Auctions
Paying taxes (voluntary, but with selective
audits and severe penalties for violators)

How do the above compare?
Mechanism design: Creating a mechanism
to obtain desired system-level properties,
e.g., participating agents interact
productively and fairly

c©Munindar P. Singh, CSC 513, Spring 2008 p.245

Example Mechanism: Puzzle

Given two horses to be raced for a mile
Owner of horse proved faster wins a reward

Each owner is or hires a jockey
The horses are raced against each other
The winner of the race wins

Owner of horse proved slower wins a reward
Might consider rewarding the loser of a
race, but such a race won’t terminate
because each rider will want to go slower
than the other

c©Munindar P. Singh, CSC 513, Spring 2008 p.246

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Economic Abstractions
A well-established approach to capture complex
systems of autonomous agents (people or
software)

Incomplete by themselves
Support achieving optimal resource
allocations
Provide a basis for achieving some
contractual behaviors, especially in helping

An individual agent decide what to do
Agents negotiate

c©Munindar P. Singh, CSC 513, Spring 2008 p.247

How Can Trade Work?
Whether barter or using money

Why would rational agents voluntarily
participate?
Both cannot possibly gain; or can they?
Consider the following. Would you trade

A dollar bill for another dollar bill?
A US dollar for x Euros?
Money for a bottle of drinking water?
A bottle of drinking water for money?

It comes down to your valuations: differences in
valuations make trade possible

c©Munindar P. Singh, CSC 513, Spring 2008 p.248

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Markets Introduced

Compare stock with specific real-estate
Can be

Public
Private: part of restricted exchanges

Can restrict kinds of goods traded
Endogenous: NASDAQ
Exogenous: eBay, where physical goods
are traded outside the scope of the
market

Offer some form of nonrepudiation

c©Munindar P. Singh, CSC 513, Spring 2008 p.249

Centrality of Prices

A price is a scalar: easy to compare
The computational state of a market is
described completely by current prices for
the various goods
Communications are between each
participant and the market, and only in terms
of prices
Participants reason about others and choose
strategies entirely in terms of prices being bid

c©Munindar P. Singh, CSC 513, Spring 2008 p.250

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Functions of a Market

Provides this information to participants
Takes requests (buy, sell bids) from
participants, enforcing rules such as bid
increments and time limits
Decides outcome based on messages from
participants, considering rules such as
reserve prices, . . .

c©Munindar P. Singh, CSC 513, Spring 2008 p.251

Achieving Equilibrium

When supply equals demand
At equilibrium, the market has computed the
allocation of resources

Dictates the activities and consumptions
of the agents

Under certain conditions, a simultaneous
equilibrium of supply and demand across all
goods exists

That is, the market “clears”
Reachable via distributed bidding
Pareto optimal: you cannot make the
allocation better for one agent without
making it worse for another

c©Munindar P. Singh, CSC 513, Spring 2008 p.252

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Pareto Optimality

Allocation: how resources are allocated to
different parties
Think of a vector of allocations, one
dimension for each participant
An allocation is Pareto optimal if
improvements along any dimension must be
accompanied by a reduction along another
dimension

c©Munindar P. Singh, CSC 513, Spring 2008 p.253

Using Agents for Resource Allocation

Consumer agents: exchange goods for
money
Producer agents: transform some goods into
other goods
Assume individual impact on market is
negligible
Both types of agents bid so as to maximize
profits (or utility with respect to their
valuations)

The agents’ strategies can be complex,
especially if time matters, goods have multiple
attributes, and agents have multiple criteria

c©Munindar P. Singh, CSC 513, Spring 2008 p.254

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Market-Oriented Programming

An economic approach where the market is a
mediating party and authority

Market price mechanisms are effective for
coordinating the activities of many agents
with minimal direct communication
Build computational economies to solve
problems of distributed resource allocation to
serve individual preferences

Contrast with direct bartering and with central
control

c©Munindar P. Singh, CSC 513, Spring 2008 p.255

Auctions in Markets

Computational mechanism to manage supply
and demand: support dynamic pricing

Exchange common object (money) for goods
Ascending (English) vs. Descending
(Dutch)
Silent (auctioneer names a price; bids are
silent) vs. outcry (bids name prices;
auctioneer listens)
Hidden identity or not
Combinatorial: involve bundles or sets of
goods

c©Munindar P. Singh, CSC 513, Spring 2008 p.256

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

English Auction

Buyers bid for an item
Prices start low and increase
Highest bidder gets the object and pays the
price bid
Variations:

Minimum bid increment
Reserve price (no sale if too low)
Limited time

c©Munindar P. Singh, CSC 513, Spring 2008 p.257

Dutch Auction

Price “clock” or counter starts high and winds
down
First to stop the clock wins and pays the
price on the clock
In other words, the highest bidder wins and
pays the price bid

c©Munindar P. Singh, CSC 513, Spring 2008 p.258

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Winner’s Curse: 1

If you just won an English or a Dutch auction
You just paid $x for something
How much can you sell it for?
Obviously, you will be able to sell it for . . .

Not quite a curse if inherently valuable, but
perhaps could have obtained the item for less

c©Munindar P. Singh, CSC 513, Spring 2008 p.259

Winner’s Curse: 2

Sealed bid; no resale
A group of mutually independent people
estimate the values of different goods and
bid accordingly
Assume that the group is smart

The average is about right as an estimate
of the true value

The winner bid the maximum

c©Munindar P. Singh, CSC 513, Spring 2008 p.260

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Fish Market Auction

Imagined scenario is based on a Spanish fish
market

Auctioneer calls out prices
If two or more bidders

repeat with higher price
If no bidders

repeat with lower price

c©Munindar P. Singh, CSC 513, Spring 2008 p.261

Suckers’ Auction

Consider two bidders bidding for $1 currency
Bid in increments of 10c|
Highest bidder wins
Both bidders pay (i.e., loser also pays)
Once you are in, can you get out?

The myopically rational strategy is to bid
The outcome is not pleasant

c©Munindar P. Singh, CSC 513, Spring 2008 p.262

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Sealed Bid First-Price Auction
Also known as tenders: bidding to buy

One-shot bidding without knowing what other
bids are being placed
Used by governments and large companies
to give out certain large contracts (lowest
price quote for stated task or procurement)

All bids are gathered
Auctioneer decides outcomes based on
given rules (e.g., highest bidder wins and
pays the price it bid)

c©Munindar P. Singh, CSC 513, Spring 2008 p.263

Vickrey Auction

Second-price sealed bid auction
Highest bidder wins, but pays the second
highest price

c©Munindar P. Singh, CSC 513, Spring 2008 p.264

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Pricing

General theme: allocate resources to those
who value them the most
Kinds of pricing

Fixed: slowly changing, based on various
criteria
Dynamic: rapidly changing, based on
actual demand and supply

c©Munindar P. Singh, CSC 513, Spring 2008 p.265

Fixed Pricing: Example Criteria

Flexibility: (restrict rerouting or refundability
in air travel)
Urgency: (convenience store vs. warehouse)
Customer preferences (coupons:
price-sensitive customers like them; others
pay full price)
Demographics
Artificial (Paris Metro, Delhi “Deluxe” buses)
Predicted demand (New York subway, phone
rates)

c©Munindar P. Singh, CSC 513, Spring 2008 p.266

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Dynamic Pricing Motivation

Under certain assumptions, markets ensure
a resource allocation where all the goods
that can be sold (for the market price) are
sold and all the goods that can be bought
(for the market price) are bought
Fixed pricing leaves some revenue that other
parties exploit (e.g., in secondary markets
such as black markets as in football ticket
scalping)
Participants seek to maximize individual
utility; those who value something more will
pay more for it

c©Munindar P. Singh, CSC 513, Spring 2008 p.267

Continuous Double Auction
As in stock markets, a way to accomplish
dynamic pricing

Multiple sellers and buyers, potentially with
multiple sell and buy bids each
Buy bids are like upper bounds
Sell bids are like lower bounds
Clears continually:

The moment a buyer and seller agree on
a price, the deal is done and the matching
bids are taken out of the market
Possibly, a moment later a better price
may come along, but it will too late then

c©Munindar P. Singh, CSC 513, Spring 2008 p.268

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Auction Management: Bidding

Bidding rules to govern, e.g.,
Whose turn it is
What the minimum acceptable bid is, e.g.,
increments
What the reserve price is, if any

Compare these for outcry, silent, sealed bid, and
continuous auctions

c©Munindar P. Singh, CSC 513, Spring 2008 p.269

Auction Management: Information

What information is revealed to participants?
Bid value (not in sealed bid auctions)
Bidder identity (not in sealed bid auctions or
stock exchanges)
Winning bid or current high bid
Winner
How often, e.g., once per auction, once per
hour, any time, and so on

c©Munindar P. Singh, CSC 513, Spring 2008 p.270

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Auction Management: Clearing

Bids are cleared when they are executed and
taken out of the market

What defines a deal: how are bids matched?
What prices? If uniform, then matching is
not relevant
Who?

How often?
Until when?

c©Munindar P. Singh, CSC 513, Spring 2008 p.271

Mth and (M+1)st Price Auctions: 1

L = M+N single-unit sealed bids, not
continuously cleared

M sell bids
N buy bids

Mth price clearing rule
Price = Mth highest among all L bids
English: first price; M=1

Seller’s reserve price is the sole sell bid
(assume minimum value, if no explicit
reserve price)

c©Munindar P. Singh, CSC 513, Spring 2008 p.272

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Mth and (M+1)st Price Auctions: 2

(M+1)st price clearing rule
Price = (M+1)st highest among all L bids
Vickrey: second price; M=1

c©Munindar P. Singh, CSC 513, Spring 2008 p.273

Mth and (M+1)st Price Auctions: 3

The Mth and (M+1)st prices delimit the
equilibrium price range, where supply and
demand are balanced

Above Mth price: no demand from some
buyers
Below (M+1)st price: no supply from some
sellers

Restrict to M=1

c©Munindar P. Singh, CSC 513, Spring 2008 p.274

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Kinds of Valuations

How do agents place values of goods?
Independent (and private): Agents value
goods in a manner that is unaffected by
others

Consume or use: cake
Common: Agents value goods entirely based
on others’ valuations, leading to symmetric
valuations

Resale: treasury bills
Correlated: Combination of above

Automobile or house

c©Munindar P. Singh, CSC 513, Spring 2008 p.275

Concepts About Matching: 1

Buy and sell bids can be matched in various
ways, which support different properties:

Equilibrium prices: those at which supply
equals demand, also known as market price
Individually rational: each agent is no worse
off participating than otherwise
Efficient: No further gains possible from
trade (agents who value goods most get
them): i.e., Pareto optimal

c©Munindar P. Singh, CSC 513, Spring 2008 p.276

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Concepts About Matching: 2

Uniform price: Multiple units, if
simultaneously matched, are traded at the
same price
Discriminatory: Trading price for each pair of
bidders can be different
Incentive compatible: Agents optimize their
expected utility by bidding their true
valuations

c©Munindar P. Singh, CSC 513, Spring 2008 p.277

Incentive Compatibility

Incentives are such it is rational to tell the truth
Ramification: Agents can ignore subtle
strategies and others’ decisions: hence
simpler demands for knowing others’
preferences and reasoning about them
Basic approach: payoff depends not on
decisions (bids) by self
Example: Vickrey (second-price sealed bid)
auctions for independent private valuations

Underbid: likelier to lose, but price paid
on winning is unaffected by bid
Overbid: likelier to win, but may pay more

c©Munindar P. Singh, CSC 513, Spring 2008 p.278

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Economic Rationality

Space of alternatives or outcomes
Each agent has some ordinal (i.e., sorted)
preferences over the alternatives, captured
by a binary relation, �

� is a strict ordering
Asymmetric, Transitive (implies
irreflexive)

� is not total
Another binary relation, ∼, captures
indifference

c©Munindar P. Singh, CSC 513, Spring 2008 p.279

Lotteries
Probability distributions over outcomes or
alternatives (add up to 1)

In essence, define potential outcomes
Flip a coin for a dollar: [0.5: $1; 0.5: –$1]
Buy a $10 ticket to win a car in a raffle:
[0.0001: car−$10; 0.9999: −$10]
Four choices:
[p : A; q : B; r : C; 1 − p − q − r : D]

c©Munindar P. Singh, CSC 513, Spring 2008 p.280

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Using Lotteries

Infer (rational) agents’ preferences based on
their behavior with respect to the lotteries

What odds will a specific person accept?
For example, [0.01: car−$10; 0.99: −$10]

c©Munindar P. Singh, CSC 513, Spring 2008 p.281

Properties of Lotteries

Substitutability of indifferent outcomes
If A ∼ B, then
[p : A; (1−p) : C] ∼ [p : B; (1−p) : C]

Monotonicity (for preferred outcomes)
If A � B and p > q, then
[p : A; (1−p) : B] � [q : A; (1−q) : B]

Decomposibility (flatten out a lottery)
Compound lotteries reduce to simpler
ones
[p : [q : A; 1 − q : B]; 1 − p : C] = [pq :
A; p − pq : B; 1 − p : C]

c©Munindar P. Singh, CSC 513, Spring 2008 p.282

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Expected Payoff

Expresses the value of a lottery as a scalar
(i.e., in monetary terms)
Expected payoff is sum of utilities weighted
by probability

Calculate for [0.0001: car−$10; 0.9999:
−$10] where the car is worth $25,010

c©Munindar P. Singh, CSC 513, Spring 2008 p.283

Completeness of Nonstrict Preferences

Same as indifference being an equivalence
relation

Given outcomes A and B
Either A � B or B � A

That is, A ∼ B if and only if A � B and
B � A

Thus, ∼ is an equivalence relation
Reflexivity: A ∼ A
Symmetry: A ∼ B implies B ∼ A
Transitivity: (A ∼ B and B ∼ C) implies
A ∼ C

c©Munindar P. Singh, CSC 513, Spring 2008 p.284

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Continuity of Preferences

A � B � C implies that there is a
probability p, such that

[p : A; 1 − p : C] ∼ B

Consider A, B, and C to be ice-cream,
yogurt, and cookies, respectively

Informally, this means we can price
alternatives in terms of each other
Is this reasonable in real life? Why or why
not?

c©Munindar P. Singh, CSC 513, Spring 2008 p.285

Utility Functions

One per agent
Map each alternative (outcome) to a scalar
(real number), i.e., money

U : {alternatives} 7→ R
For agents with irreflexive, transitive,
complete, continuous preferences, there is a
utility function U such that

U(A) > U(B) implies A � B

U(A) = U(B) implies A ∼ B

U([p : A; 1 − p : C]) =
p × U(A) + (1 − p) × U(C) (weighted
sum of utilities)

c©Munindar P. Singh, CSC 513, Spring 2008 p.286

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Risk: 1
According to the above, two lotteries with the
same expected payoff would have equal
utility
In practice, risk makes a big difference

Raffles
Insurance
Business actions with unpredictable
outcomes

c©Munindar P. Singh, CSC 513, Spring 2008 p.287

Risk: 2

Showing utilities instead of outcomes
Consider two lotteries

L1 = [1 : x]

L2 = [p : y; 1 − p : z]

Where x = py + (1 − p)z. That is, L1
and L2 have the same expected payoff

An agent’s preferences reflect its attitude to
risk

Averse: U(L1) > U(L2)

Neutral: U(L1) = U(L2)

Seeking: U(L1) < U(L2)

c©Munindar P. Singh, CSC 513, Spring 2008 p.288

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Beyond Simple Utility

Other factors besides expected payoff and
risk are relevant in real life:

Total deal value: $10 discount for a t-shirt
vs. for a car
Current wealth: 1st million vs. 10th million
Altruism or lack thereof

Leads to social choice theory

c©Munindar P. Singh, CSC 513, Spring 2008 p.289

Sharing Resources

Consider two scenarios for sharing—only
requirement is that the parties agree on the split

Splitting a dollar: relative sizes are obvious.
Should splits consider the relative wealth of
the splitters? Should splits consider the tax
rates of the splitters?
Sharing a cake: relative sizes and other
attributes (e.g., amount of icing) can
vary—several cake-cutting algorithms exist

c©Munindar P. Singh, CSC 513, Spring 2008 p.290

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Simplifying Assumptions

Participants are risk neutral
Willing to trade money for any of their
resources at a price independent of how
much money they already have

Participants know their valuations, which are
independent and private

c©Munindar P. Singh, CSC 513, Spring 2008 p.291

Pareto Optimality

A distribution of resources where no agent
can be made better off without making
another agent worse off
Example: A has goods g and values g at $1;
B values g at $3

It is Pareto optimal for B to buy g at a
price between $1 and $3, say $2.50
A’s gain: $2.50–$1 = $1.50
B’s gain: $3–$2.50 = $0.50

No further gains can be made from trade

c©Munindar P. Singh, CSC 513, Spring 2008 p.292

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Allocations

How do we find Pareto optimal allocations in
general?

Private valuations
No central control

Design mechanisms that are efficient and
where participants have an incentive to bid
their private values

Buyers and sellers are symmetrical: may
need to flip a coin

c©Munindar P. Singh, CSC 513, Spring 2008 p.293

Incentive Compatibility of Vickrey

That is, buy bids equal private valuations
Consider a single seller
Consider two buyer agents A1 and A2, with
private valuations v1 and v2, bidding b1 and
b2

If b1 > b2, A1 wins and pays b2

A1’s utility in that case is v1 − b2: could
be positive or negative

If b1 < b2, A1 loses the auction: utility = 0
(assuming no bidding costs)

c©Munindar P. Singh, CSC 513, Spring 2008 p.294

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Argument for Incentive Compatibility

Utility to bidder A1: (v1 − b2)

If (v1 − b2) > 0 (i.e., v1 > b2)
Then A1 benefits by maximizing
Prob(b1 > b2)

Underbid: likelier to lose, but would pay
the same price if it wins

Else A1 benefits by minimizing
Prob(b1 > b2)

Overbid: likelier to win, but may pay
more than the valuation

Thus, setting the bid equal to valuation is the
best strategy

c©Munindar P. Singh, CSC 513, Spring 2008 p.295

Basic Idea

If A1 wins, what A1 pays depends on bids by
other agents
A1 should try to

Win when it would benefit by winning
Lose when it would suffer by winning

How do the above ideas apply when a buyer is
bidding for multiple units of the same item?

c©Munindar P. Singh, CSC 513, Spring 2008 p.296

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Mth and (M+1)st Price Auctions

Vickrey = (M+1)st price, with one unit for sale
For single-unit buyers, (M+1)st price induces
truthfulness
For multiunit buyers, NO!

A buyer may artificially lower some bids to
lower the price for other bids

c©Munindar P. Singh, CSC 513, Spring 2008 p.297

Dominant Strategies

One which yields a greater payoff for the agent
than any of its other strategies (regardless of
what others bid)

Under Vickrey auctions, the dominant
strategy for a buyer is bidding according to
its true value
Under first-price auctions, the dominant
strategy for a seller is to bid its true value

c©Munindar P. Singh, CSC 513, Spring 2008 p.298

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Multiunit Auctions
Multiunit bids are divisible when not
necessarily the whole set needs to be
bought or sold
When multiunit bids are divisible,

Treat multiunit bids as multiple copies of
single-unit bids
If indivisible, e.g., sets of two or four tires,
then treat as bundled goods

c©Munindar P. Singh, CSC 513, Spring 2008 p.299

Desirable Properties of Markets
Efficient: the one values it most gets it

If seller’s valuation < buyer’s valuation,
they trade

Truthful
Rational to bid true valuation for both
sellers and buyers

Individually rational
No participant is worse off for participating

Budget balanced, i.e., no subsidy from the
market: Σpayment = Σrevenue

Seller receives what the buyer pays
Can all of the above be satisfied?

c©Munindar P. Singh, CSC 513, Spring 2008 p.300

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Impossibility Result

Given a sealed buy bid b and a sealed sell bid s
(Meyerson & Satterthwaite)

Valuations of each from overlapping
distributions
Ultimately buyer pays pb and seller gets ps

For truthfulness, pb = s and ps = b
But the deal happens only if b > s, else
irrational
Thus buyer pays less than the seller
receives, i.e., a deficit!

That is, subsidize or relax another requirement

c©Munindar P. Singh, CSC 513, Spring 2008 p.301

McAfee’s Dual Price Auction: 1
Let p be a price in the equilibrium range

That is, Mth to (M+1)st

Let’s choose the midpoint to be specific
Omits the lowest buyer at or above Mth and
the highest seller at or below (M+1)st

Which of the above properties does the dual
price auction violates?

c©Munindar P. Singh, CSC 513, Spring 2008 p.302

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

McAfee’s Dual Price Auction: 2
Individually rational
Promotes truthfulness
Budget balanced
Inefficient

Discards the lowest valued match
Not good if it is the only one

c©Munindar P. Singh, CSC 513, Spring 2008 p.303

Kinds of Prices

Uniform: all matches at the same price
Mth, (M+1)st, Dual

Discriminatory: prices vary for each match
Chronological: prices = earlier (or later)
bid
Each match at one of the bid prices

Buyer’s
Seller’s

c©Munindar P. Singh, CSC 513, Spring 2008 p.304

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Auction Example: 1

A1: (sell $1) at time 1
A2: (buy $3) at time 2
A3: (sell $2) at time 3
A4: (buy $4) at time 4
Consider (A1 → A4), (A3 → A2),
(A3 → A4), (A1 → A2)

c©Munindar P. Singh, CSC 513, Spring 2008 p.305

Auction Example: Uniform

Mth: (A1 → A4: $3), (A3 → A2: $3),
(A3 → A4: $3), (A1 → A2: $3)
(M+1)st: (A1 → A4: $2), (A3 → A2: $2),
(A3 → A4: $2), (A1 → A2: $2)
Dual: (A1 → A4: $2.5), (A3 → A2: NA),
(A3 → A4: NA), (A1 → A2: NA)

c©Munindar P. Singh, CSC 513, Spring 2008 p.306

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Auction Example: Discriminatory

Earliest: (A1 → A4: $1), (A3 → A2: $3),
(A3 → A4: $2), (A1 → A2: $1)
Latest: (A1 → A4: $4), (A3 → A2: $2),
(A3 → A4: $4), (A1 → A2: $3)
Buyers: (A1 → A4: $4), (A3 → A2: $3),
(A3 → A4: $4), (A1 → A2: $3)
Sellers: (A1 → A4: $1), (A3 → A2: $2),
(A3 → A4: $2), (A1 → A2: $1)

c©Munindar P. Singh, CSC 513, Spring 2008 p.307

Continuous Double Auctions (CDAs)

As in stock markets
Bid quote: what a seller needs to offer to
form a match
Ask quote: what a buyer needs to offer to
form a match
The bid-ask spread represents the difference
between the buyers and the sellers

c©Munindar P. Singh, CSC 513, Spring 2008 p.308

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Mth and (M+1)st as Bid-Ask

Generalize English, Vickrey, double auctions

The Mth price generalizes the ask quote
The (M+1)st price generalizes the bid quote
When the standing bids overlap

Beating the ask price either matches an
unmatched seller, or displaces a matched
buyer

c©Munindar P. Singh, CSC 513, Spring 2008 p.309

Mth and (M+1)st Winning Bid

A buy bid b wins if either of the following
holds

Either b > pask

Or b = pask and pask > pbid

If b = pask = pbid, then it is not clear if b is
winning
Symmetric result for the seller

c©Munindar P. Singh, CSC 513, Spring 2008 p.310

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Module 8: Summary and Directions

Collective concept map

c©Munindar P. Singh, CSC 513, Spring 2008 p.311

Key Ideas

Information system interoperation
Architecture conceptually
Importance of metadata
XML technologies
Elements of rational resource allocation

c©Munindar P. Singh, CSC 513, Spring 2008 p.312

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

Business Environments

Theme of this course: How is computer science
different for open environments?

Autonomy
Messaging, not APIs
Markets

Heterogeneity
Capturing structure of information
Transforming structures

Dynamism
Partially addressed through above

Support flexibility and arms-length relationships

c©Munindar P. Singh, CSC 513, Spring 2008 p.313

Course: Service-Oriented Computing

Takes the ideas of this course closer to their
natural conclusions
For autonomous interacting computations

Basic standards that build on XML
Descriptions through richer
representations of meaning
Engagement of parties in extended
transactions and processes
Collaboration among parties
Selecting the right parties

How to develop and maintain flexible,
arms-length relationships

c©Munindar P. Singh, CSC 513, Spring 2008 p.314

http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/
http://www.csc.ncsu.edu/faculty/mpsingh/
http://courses.ncsu.edu/csc513/lec/001/

	Module 1: Introduction
	Scope of this Course
	Electronic Business
	Properties of Business Environments
	Autonomy
	Heterogeneity
	Dynamism
	Coherence
	Locality
	Integration
	Interoperation
	Example: Selling
	Potential Problems
	In a Closed Environment
	In an Open Environment: 1
	In an Open Environment: 2
	Challenges
	Information System Interoperation
	Business Processes
	Exception Conditions
	Distributed Decision-Making: 1
	Distributed Decision-Making: 2
	Personalization
	Service Selection
	Module 2: Web Technologies in Brief
	Static versus Dynamic Pages
	Shallow and Deep Webs: 1
	Shallow and Deep Webs: 2
	Common Gateway Interface
	Server-Side Scripting Languages
	Servlet
	Servlet Functions
	Servlet Views: 1
	Servlet Views: 2
	Servlet Snippet
	Java Server Pages or JSP
	JSP Snippet
	Servlet Container: 1
	Servlet Container: 2
	Servlet Container: 3
	Packaging Web Components
	Enterprise Java Beans
	Containers and EJBs: 1
	Containers and EJBs: 2
	Entity Beans
	Session Beans
	Stateless Session Beans
	Stateful Session Beans
	Context
	Using EJBs: 1
	Using EJBs: 2
	JNDI
	Important Methods for Session Beans
	Important Methods for Entity Beans
	EJB Trend
	Module 3: Architecture
	Architecture Conceptually
	Understanding Architecture
	Understanding Protocols
	Architectural Examples
	IT Architectures
	Enterprise Models: 1
	Enterprise Models: 2
	Enterprise Models: 3
	Enterprise Architecture Objectives
	Enterprise Architecture Observations
	Enterprise Architecture Principles
	Architecture Modules: Applications
	Architecture Modules: Systems
	Architecture Modules: Infrastructure
	Enterprise Functionalities: 1
	Enterprise Functionalities: 2
	Enterprise Functionalities: 3
	One-Tier and Two-Tier Architectures
	Three-Tier Architecture: 1
	Three-Tier Architecture: 2
	Multitier Architecture
	Architectural Tiers Evaluated
	XML-Based Information System
	How About Database Triggers?
	Implementational Architecture: 1
	Implementational Architecture: 2
	Implementational Architecture: 3
	Data Center Architecture
	Web Architecture
	Uniform Resource Identifier: 1
	Uniform Resource Identifier: 2
	HTTP: HyperText Transfer Protocol
	Representational State Transfer
	Characteristics of ReST
	Basic Interaction Models
	Invocation-Based Adapters: 1
	Invocation-Based Adapters: 2
	Message-Oriented Middleware: 1
	Message-Oriented Middleware: 2
	Peer-to-Peer Computing
	Application Servers
	Middleware: 1
	Middleware: 2
	Containers
	Message-Driven Beans
	Methods for Message-Driven Beans
	Module 4: XML Representation
	What is Metadata?
	Motivations for Metadata
	Markup History
	Uses of XML
	Example XML Document
	Exercise
	Compare with Lisp
	Exercise
	XML Namespaces: 1
	XML Namespaces: 2
	Uniform Resource Identifier
	RDDL
	Well-Formedness and Parsing
	XML InfoSet
	Elements Versus Attributes: 1
	Elements Versus Attributes: 2
	Elements Versus Attributes: 3
	Validating
	Specifying Document Grammars
	XML Schema
	XML Schema: complexType
	XML Schema: Compositors
	XML Schema: Main Namespaces
	XML Schema Instance Doc
	XML Schema: Nillable
	Creating XML Schema Docs: 1
	Creating XML Schema Docs: 2
	Foreign Attributes in XML Schema
	XML Schema Style Guidelines: 1
	XML Schema Style Guidelines: 2
	XML Schema Documentation
	Module 5: XML Manipulation
	Metaphors for Handling XML: 1
	Metaphors for Handling XML: 2
	XPath
	Achtung!
	XPath Location Paths: 1
	XPath Location Paths: 2
	XPath Navigation
	XPath Queries (Selection Conditions)
	XPath Axes: 1
	XPath Axes: 2
	XPath Axes: 3
	XPath Axes: 4
	XPath Axes: 5
	XPointer
	XQuery
	XQuery Basic Paradigm
	FLWOR Expressions
	XQuery For Clause
	XQuery Where Clause
	XQuery Return Clause
	XQuery Let Clause
	XQuery Order By Clause
	XQuery Positional Variables
	XQuery Declarations
	XQuery Quantification: 1
	XQuery Quantification: 2
	Variables: Scoping, Bound, and Free
	XQuery Conditionals
	XQuery Constructors
	XQuery Effective Boolean Value
	Defining Functions
	Functions with Types
	XSLT
	XQuery versus XSLT: 1
	XQuery versus XSLT: 2
	XQuery versus XSLT: 3
	XSLT Stylesheets
	XSLT Templates: 1
	XSLT Templates: 2
	XSLT Templates: 3
	XSLT Templates: 4
	XSLT Variables
	Document Object Model (DOM)
	DOM Example
	Simple API for XML (SAX)
	SAX Example: 1
	SAX Example: 2
	SAX Filters
	Creating XML from Legacy Sources
	Programming with XML
	Module 6: XML Storage
	Integrity Constraints in XML
	XML Keys: 1
	XML Keys: 2
	Selector XPath Expression
	Field XPath Expression
	XML Foreign Keys
	Placing Keys in Schemas
	Data-Centric View: 1
	Data-Centric View: 2
	Document-Centric View
	Data- vs Document-Centric Views
	Storing Documents in Databases
	Database Features
	Potential DBMS Types for XML: 1
	Potential DBMS Types for XML: 2
	XML to Relational Databases
	Artificial Representation: Repetitious
	Artificial Representation: Graph
	Shallow Representation: 1
	Shallow Representation: 2
	Deep Representation
	Representing Ancestors
	Generalized TGE
	Variations in Structure
	Semistructured Representation
	Thoughtful Design
	Evaluation
	Schema Evolution
	From Relations to XML
	Null Value: 1
	Null Value: 2
	XML Schema Null
	Quick Look at SQL
	SQL 2003
	XML Type in SQL/XML
	XML Root Information Item: 1
	XML Root Information Item: 2
	SQL/XML Builtin Operators
	SQL/XML Publishing Functions: 1
	SQL/XML Publishing Functions: 2
	SQL/XML Example: 1
	SQL/XML Example: 2
	SQL/XML Mapping Rules
	Tool Support for SQL 2003
	Oracle 9i SQL/XML: 1
	Oracle 9i SQL/XML: 2
	Oracle 9i SQL/XML: 3
	Oracle 9i SQL/XML: 4
	Modern Information Systems
	Limitations of XML
	Directions in XML
	Module 7: Rationality
	What is an Agent?
	Negotiation
	Explicit Negotiation
	Deals: Joint Plans Among Agents
	Simple Negotiation Protocol
	Mechanism Design
	Example Mechanism: Puzzle
	Economic Abstractions
	How Can Trade Work?
	Markets Introduced
	Centrality of Prices
	Functions of a Market
	Achieving Equilibrium
	Pareto Optimality
	Using Agents for Resource Allocation
	Market-Oriented Programming
	Auctions in Markets
	English Auction
	Dutch Auction
	Winner's Curse: 1
	Winner's Curse: 2
	Fish Market Auction
	Suckers' Auction
	Sealed Bid First-Price Auction
	Vickrey Auction
	Pricing
	Fixed Pricing: Example Criteria
	Dynamic Pricing Motivation
	Continuous Double Auction
	Auction Management: Bidding
	Auction Management: Information
	Auction Management: Clearing
	Mth and (M+1)st
Price Auctions: 1
	Mth and (M+1)st
Price Auctions: 2
	Mth and (M+1)st
Price Auctions: 3
	Kinds of Valuations
	Concepts About Matching: 1
	Concepts About Matching: 2
	Incentive Compatibility
	Economic Rationality
	Lotteries
	Using Lotteries
	Properties of Lotteries
	Expected Payoff
	Completeness of Nonstrict Preferences
	Continuity of Preferences
	Utility Functions
	Risk: 1
	Risk: 2
	Beyond Simple Utility
	Sharing Resources
	Simplifying Assumptions
	Pareto Optimality
	Allocations
	Incentive Compatibility of Vickrey
	Argument for Incentive Compatibility
	Basic Idea
	Mth and (M+1)st
Price Auctions
	Dominant Strategies
	Multiunit Auctions
	Desirable Properties of Markets
	Impossibility Result
	McAfee's Dual Price Auction: 1
	McAfee's Dual Price Auction: 2
	Kinds of Prices
	Auction Example: 1
	Auction Example: Uniform
	Auction Example: Discriminatory
	Continuous Double Auctions (CDAs)
	Mth and (M+1)st
as Bid-Ask
	Mth and (M+1)st
Winning Bid
	Module 8: Summary and Directions
	Key Ideas
	Business Environments
	Course: Service-Oriented Computing

