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Abstract
In this paper we describe the JavaScript Interface for Visu-
alization of User Interaction (JIVUI): a modular, Web-based,
and customizable visualization tool that shows an animation of
the trace of a user interaction with a graphical interface, or of
predictions made by cognitive models of user interaction. Any
combination of gaze, mouse, and keyboard data can be repro-
duced within a user-provided interface. Although customiz-
able, the tool includes a series of plug-ins to support common
visualization tasks, including a timeline of input device events
and perceptual and cognitive operators based on the Model Hu-
man Processor and TYPIST. We talk about our use of this tool
to support hypothesis generation, assumption validation, and
to guide our modeling efforts.
Keywords: Typing; Cognitive Modeling; Visualization; Re-
play; Tool; Data Visualization; Input Device; Cognition;
Inter-keystroke Interval; Mouse Clicks; Mouse Motion; Eye-
tracking; Gaze Data; Human-Computer Interaction; Human
Information Processing; Human Behavior.

Introduction
Visually representing data is a common technique used to a)
succinctly summarize and communicate information, and b)
gain a better understanding of the process that generated said
data. In its most common form—charts—data visualization
is generally used for the former. For the latter, however, vi-
sualizations are generally more complex and are built ad-hoc
according to the originating data’s context. This results in an
increased effort required to visualize similar, but not identical
datasets.

Examples of data that are generally visualized to be better
understood come from cognitive modeling and empirical user
interaction with graphical user interfaces. In both cases, the
data correspond to a particular context (e.g., the user interface
being used or modelled), to a particular set of input devices
(e.g., mice, keyboards, eye-trackers, trackpads, etc.), and has
a particular set of spatial and temporal properties (e.g., loca-
tions on the screen or relative to on-screen items, time elapsed
between keyboard or mouse events, etc). A consequence of
this need for specialization is a reduced number of available
tools that are suitable to visualize a specific dataset. In cases
where there exists a suitable tool, an added inconvenience is
that it may not support the researcher’s preferred operating
system, or it may require the installation of dependencies that
the researcher may prefer not to install.

In this paper we present the JavaScript Interface for Visual-
ization of User Interaction (JIVUI)—a modular, Web-based,
and customizable tool that addresses these problems, provid-
ing the ability to visualize and replay a user’s interaction with
a graphical user interface on any platform through any mod-
ern Web browser.

Data produced from cognitive models of input device us-
age is generally similar to that collected from a user, with the
addition of annotations for the cognitive operators related to
the user’s observed interactions. Through a flexible data rep-
resentation, JIVUI supports both. In addition to user and/or
model data, JIVUI is capable of rendering a replay of the in-
teraction over a customizable UI that can be crafted to repre-
sent the task from which the data was collected.

Related and Prior Work
Visualization tools are a staple in cognitive modeling re-
search. Models can grow to be very complex, and understand-
ing the subtleties of their behavior in carrying out specific
tasks often requires more than textual descriptions or traces,
tables of quantitative trace information, or summary statis-
tics. A variety of tools are available for presenting models
and user data in graphical form.

The ACT-R 6.0 Environment (Bothell, 2004) provides con-
trols and information about a model in a graphical user inter-
face. A stepper function is described as the most useful tool
in the environment. It is comparable to a stepper in a con-
ventional programming environment, supporting pauses be-
fore events and a range of choices for running a model until
a specified condition becomes true (when a given duration is
exceeded, a given production fires, or an event is generated
by a given module). A graphical trace is provided, with time
along one axis and events of different types in rows, filling
the other axis. The environment can also display a state chart
diagram, a directed graph showing the productions selected
and fired in a model. Other, more specialized visualizations
are also supported.

SANLab-CM (Patton & Gray, 2010) is a tool for activity
network modeling, specifically models that include stochastic
operators. SANLab-CM gives a modeler the ability to con-
struct and edit a model in the form of a specialized directed
graph that captures elementary cognitive, perceptual, and mo-
tor operators and the dependencies between them, as well as
compositions called interactive routines. The modeler can vi-
sualize the model as a Gantt chart that shows the execution
of operators over time; a histogram shows the distribution of
model execution times. By selecting a specific critical path,
the modeler can focus the visualization on the associated sub-
set of operators.

NAV (Kriete, House, Bodenheimer, & Noelle, 2005) is a
tool for generating animations of cognitive model execution,
showing different visualizations to help non-expert users un-
derstand the dynamics of a model. The focus is on giving a
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Figure 1: Example of replay and control interfaces illustrating
the playback of typing and gaze data.

modeler the facilities needed to build a presentation-quality
animation to convey the necessary information. For example,
in a semantic network visually represented as nodes and arcs,
the modeler can opt to show node activation levels over time
by changing color or size. Annotations can be added to the
visualization, which can also change over time.

SIMCog-JS (Simplified Interfacing for Modeling Cogni-
tion - JavaScript) (Halverson, Reynolds, & Blaha, 2015) ad-
dresses the continuing challenge of building cognitive models
that can interact with external software, in this case the inter-
action between Java ACT-R and HTML/JavaScript. SIMCog-
JS does not provide visualization facilities per se. Due to
its integration with JavaScript, however, SIMCog-JS makes it
very easy to instrument a Web interface to replay the behavior
of a user interacting with the interface or to simulate a cog-
nitive model using the interface—e.g. Dong and St. Amant
(2016). One novel use of SIMCog-JS in this way has been to-
ward the visualization of eye movements (Balint, Reynolds,
Blaha, & Halverson, 2015). A Model Visualization Dash-
board can play the trace of a model performing tasks in a
given interface, along with other types of visualizations. Fur-
ther, the environment contains an embodied virtual character
that simulates eye and head movements predicted for a human
being carrying out tasks in the interface.

An Overview of JIVUI
JIVUI is a Web framework designed to simplify the visualiza-
tion of gaze, keyboard, and mouse data, and can visually rep-
resent perceptual and cognitive operators associated with the
data on a timeline. It supports data generated by a cognitive
model as well as data collected empirically. The data is pro-
vided to JIVUI in JSON (ECMA International, 2013) format
either in the page’s source or by loading it through the Web
interface. The JSON structure and data flow are explained in
more detail in the JSON DATA DESCRIPTION section.

We designed JIVUI to run completely in a Web browser
without the need for a back-end, making it immediately us-

able on any platform. A typical JIVUI instance will render
a Web page with a replay interface, a playback control inter-
face, and a timeline. The replay interface, illustrated at the
top of Figure 1, renders the animated user interaction over a
user interface that can be customized to look and behave like
the experimental environment seen by participants. The play-
back control interface, illustrated at the bottom of Figure 1,
is used to start, pause, and stop the replay animation, as well
as to specify the playback speed and to move forward and
backward in the animation. Finally, the timeline, shown in
Figure 2, will display interaction events such as keystrokes,
clicks, and gaze fixations, but can also display perceptual
and cognitive operators associated with the interaction events
based on a cognitive model.

JIVUI is designed to be extensible, meaning that all of
the components described above are provided as plug-ins that
can be modified or replaced without modifying JIVUI’s core.
This plug-in-based architecture allows the visualization ex-
perience to be highly customizable to support a wide range
of user interfaces and data attributes. JIVUI’s extensibility
is made possible through its support of plug-ins for almost all
its functionality, as described in the JIVUI’S ARCHITECTURE
section.

JSON Data Description
JIVUI works with millisecond precision. It expects a JSON
string containing a “settings” object and a “data” object
(an example is shown in Listing 1). The “settings” ob-
ject is required to contain a “start” numeric attribute in-
dicating the smallest millisecond contained in the data, and
an “end” numeric attribute indicating the largest millisecond
contained in the data. It can also contain three optional at-
tributes, “title”, “startOffset” and “endOffset”, pro-
viding a label to the data, time padding at the beginning, and
time padding at the end of the visualization, respectively.

The “data” object is where user or model data will be pro-
vided. It is expected to contain an arbitrary number of en-
tries where the keys are milliseconds. Each entry can con-
tain any combination of event types that occurred at that mil-
lisecond, keyed by the event type as follows: “click” for
mouse clicks, “key” for keystrokes, “mouse” for mouse po-
sition, and “gaze” for eye-tracking data. In turn, each of
these event types will include a set of required and optional
attributes. Because multiple clicks can occur at the same time
(e.g. from different mouse buttons), a “click” event is an ar-
ray where each element is expected to contain the x and y
coordinates where the click happened, as well as the button
that was pressed (e.g. “left”, “right”, or “middle”), and it
can also contain an optional “duration” attribute indicating
for how long was the mouse button pressed. If not specified,
a mouse click is assumed to last 100ms for visualization pur-
poses. Multiple keystrokes can also occur at the same time, so
a “key” event is also an array where each element is expected
to contain the key that was pressed, and can also contain op-
tional attributes for the “duration” of the keystroke, whether
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Figure 2: Timeline

{
"settings": {

"title": "Participant 31", // optional

"start": 200,
"end": 250,
"startOffset": 100, // optional

"endOffset": 200 // optional

},
"data": {

"200": {
"click": [{

"button": "left",
"x": 200, "y": 150,
"duration": 60 // optional

}],
"key": [{

"key": "t",
"duration": 88, // optional

"correct": true, // optional

"word": "the" // optional

}]
},
"250": {
"gaze": {

"x": 220, "y": 170,
"fixated": false // calculated

},
"mouse": {

"x": 210, "y": 151,
"drag": true // calculated

}
}

}
}

Listing 1: Example of simple input data in JSON format.

the keystroke correctly matched an expected keystroke (use-
ful for transcription typing, or when the expected keystroke
is otherwise known), and a word context where the keystroke
occurred. If not specified, a keystroke is assumed to last
100ms for visualization purposes. The “gaze” and “mouse”
events are expected to contain the x and y screen coordinates
of the position of the eye-tracking and mouse pointer data,
respectively.

Following the JSON standard, this data representation pro-
vides a few advantages. First, it guarantees that there is only
one data entry per millisecond. Second, it guarantees that ev-
ery entry contains at most one instance of each event type.
Third, attributes and objects can be added to the data either
before it is input to JIVUI, or dynamically by plug-ins, as
discussed in the PLUG-INS section. More importantly, this

representation is a string that can be easily produced from
empirical data as well as from the output of cognitive model-
ing tools, and is supported by virtually all programming lan-
guages either natively or through popular libraries.

JIVUI’s Architecture
At its core, JIVUI consists of a timing engine, a state man-
ager, and a plug-in manager. The timing engine is used on
playback to maintain a stable animation framerate regardless
of any browser’s constraints or performance limitations. Be-
cause JIVUI works with millisecond precision, the default
framerate is 1000 frames per second (FPS) as an attempt to
render the visualization in real-time. This value is config-
urable, even as an animation is being played. When the tim-
ing engine cannot render at the specified speed, it provides the
number of frames that are lagging behind. This allows JIVUI
to compensate for this lost time to ensure that the animation
has accurate timing based on the set speed and the data’s total
duration.

As the name suggests, the state manager keeps track of
JIVUI’s state, which includes the currently loaded dataset (if
any), the playback speed, the current frame, and whether the
animation is playing, paused, or stopped. The state manager
also provides an API to control an animation. Specifically,
through the state manager a module can control the anima-
tion speed, advance and rewind to a specific frame, and can
play, pause, and stop the animation.

The plug-in manager maintains a list of registered plug-ins,
and provides an API to register and remove them.

Plug-ins
JIVUI supports two types of plug-ins: preprocessors and UI
modules. We designed the plug-in API so that a single com-
ponent could serve as a preprocessor and a UI module in the
interest of maximizing JIVUI’s applicability to varied use
cases. Each plug-in is described by a JSON file that lists
all the resources that it depends on, such as JavaScript files,
HTML templates, and/or CSS files.

Preprocessors are exclusively invoked on data load and
their main task is to augment the data by performing calcu-
lations on it. For example, a preprocessor can be used on
gaze data to determine fixations, or work with mouse motion
and click data to add attributes that indicate when the mouse
motion is occurring within the context of a drag operation.

As shown in Figure 3, JIVUI invokes every preprocessor by
calling their “onDataLoaded(settings, data)” method,
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Figure 3: Sequence diagram of the data loading phase, where
preprocessors annotate and augment the data, and UI modules
initialize the Web interface.

Figure 4: Sequence diagram of the playback phase, where UI
modules are provided frame and event data to be rendered.

providing the dataset’s “settings” and “data” objects as ar-
guments. This tells every preprocessor that a new dataset has
been loaded and allows them augment data entries.

UI modules are responsible for rendering elements on the
Web page and providing functionality to the end user. They
are initialized on data load, and are invoked by JIVUI during
playback, following the process illustrated in Figure 4. Ex-
amples of UI modules are a replay area to visually reproduce
keystrokes and mouse motion, playback controls, and time-
lines.

JIVUI’s Included Plug-ins
In order to make JIVUI usable out of the box, and to showcase
its potential, we include with it a set of plug-ins that are suit-
able for the most common user interaction cases. We include
basic preprocessors for gaze, keyboard, and mouse data, as
well as a cognitive preprocessor. For UI modules, we include
a replay region, a set of animation controls, and a timeline.

Preprocessor Modules
Gaze Preprocessors: Two gaze preprocessors are included.
One determines fixations using an implementation of the I-
DT algorithm as described by Salvucci and Goldberg (2000).
For every gaze event, it adds a boolean attribute “fixated”.
The second one uses an implementation of the 1e filter
(Casiez, Roussel, & Vogel, 2012) to stabilize noisy gaze data,

adding numeric “filteredX” and “filteredY” attributes
with smoothed eye position values.

Mouse Preprocessor: The included mouse preprocessor
augments mouse motion data by adding a boolean “dragged”
attribute to every mouse motion event. When a mouse motion
event occurs within the duration window of a click, as spec-
ified by the click’s “duration” attribute, this value is set to
true; otherwise it is set to false.

Keyboard Preprocessor: The keyboard preprocessor
augments keystroke events by adding the number of millisec-
onds elapsed between the start of the current keystroke and
the end of the previous one, as well as between the start of
the current keystroke and the start of the previous one.

Cognitive Preprocessor: This preprocessor annotates
keystroke data with cognitive and perceptual operators based
on the Model Human Processor (MHP) (Card, Moran, &
Newell, 1986) and the TYPIST model (John, 1996). For ev-
ery keystroke, this preprocessor creates a cognitive operator
that precedes it, lasting 50ms. Similarly, before the first cog-
nitive operator of every word, this preprocessor includes an-
other cognitive operator that also lasts 50ms. Also for every
word, a 340ms perceptual operator is created. The TYPIST
model describes a working memory capacity of three words,
thus perceptual operators for three words are created by this
preprocessor at the beginning of the timeline; it waits for the
typing of the first word to be completed before creating the
perceptual operator for the next word, and so on.

UI Modules
Replay Region: This UI module instantiates a text area
where keystrokes appear as key events are received. It also
loads two additional UI modules: one to overlay gaze data
and the other to overlay mouse motion and clicks. The gaze
and mouse UI modules consist of a “canvas” element each,
and render gaze and mouse motion as moving dots overlaid
on the interface. Click events appear as two concentric cir-
cles. To improve visibility, the eye and mouse indicators are
rendered in different colors that contrast with the background,
and are configured to leave a “trail” that fades away as the an-
imation progresses.

Animation Controls: This UI module is used to manipu-
late the animation. It provides controls to move the animation
forward or backward to any particular frame, buttons to start,
stop and pause the animation, and controls to set the anima-
tion’s speed. As the animation is played, this plug-in updates
the current millisecond being visualized to reflect the current
frame in the animation. It also provides two keyboard short-
cuts to control the animation: pressing the space bar will play
and pause the animation, while pressing the backspace key
will stop it.

Timeline: The included timeline plug-in is designed to
look for the augmented data provided by the preprocessors
described above and displays events and operators in five dif-
ferent tracks: gaze, mouse, keyboard, cognitive, and percep-
tual, as shown in Figure 2. Events on each track are displayed
as boxes with their length based on the event’s duration, and
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Figure 5: Example of JIVUI being used to visualize gaze and
keystroke data collected from The Typing Game.

can sometimes overlap. The gaze track displays fixations,
the mouse track displays clicks, and the keyboard track dis-
plays keystrokes. The cognitive and perceptual tracks display
their corresponding operators. Each element on the timeline
displays a tooltip on mouse hover providing more informa-
tion about the event, such as the millisecond value when it
occurred, its duration, and other corresponding data (e.g., po-
sition of a click, key pressed on a keystroke, etc.), as well
as annotations provided by preprocessors, such as the time
elapsed after the previous event of the same type.

JIVUI in Use
We used JIVUI to visualize the data we collected from a study
involving a computer game, which consisted of participants’
typing and gaze data. We were able to replay players’ experi-
ences from trace data as a simulation of their participation. A
screenshot of one of the play traces is shown in Figure 5. As
our study only collected participants’ typing and gaze data,
we used every plug-in included with JIVUI with the excep-
tion of the mouse preprocessor. In this case, we used a mod-
ified version of the replay region to mimic the game’s user
interface, and to respond appropriately to the simulated key
presses as if it were the real game.

The use of JIVUI facilitated hypothesis generation for our
study. The visualization helped us quickly identify touch typ-
ists among our participants, and to generally assess their typ-
ing skill, by looking at how often a participant’s gaze sud-
denly dropped off the bottom of the screen, indicating that
the participant was looking at the keyboard while typing.

One slightly unexpected discovery in our use of JIVUI
came in the examination of typing patterns in the typing
game. Participants were asked to type the sentence, “The
quick brown fox jumps over the lazy dog,” so that the game
could be adjusted to their approximate typing speed. Our ini-

tial assumption was that this sentence would be typed in a
similar way to transcription typing. Following the TYPIST
model of transcription typing, we would expect a visual atten-
tion shift to a word to occur several keystrokes before the first
letter in the word. Possibly because of the way the interface
is set up, with the text to be typed visible on the screen, over-
written by gray characters as each is correctly typed, a differ-
ent pattern typically emerged: the visualization showed that
their gaze tended to stay on a word until the word was almost
completely typed. We judge that without the animated re-
play provided by the visualization, it would have taken much
longer for us to realize that one of our basic assumptions (the
appropriateness of the model) was incorrect.

As a result, we have a new ACT-R model (still under de-
velopment) with tighter constraints between perceptual and
motor processing. In the model, a visual attention shift (in-
cluding eye movements, using the EMMA (Salvucci, 2000)
extension to ACT-R) occurs at the end of each word. The
model under-predicts the elapsed time between the fixation
on a word and the first keystroke for that word, at around 150
ms, where the elapsed time for participants is closer to 400
ms. Despite this, the model does preserve a general pattern,
a relatively small variance in the distribution of elapsed times
between fixations and the first keystrokes of words. Our mod-
eling effort in this area continues.

JIVUI also allowed us to assess the quality of our gaze data,
helping us identify eye tracker calibration biases, and poor
gaze data in general. Being able to visualize calibration biases
is incredibly helpful as a guide to correct a participant’s gaze
data, making it usable, whereas it would have otherwise been
discarded.

As a Web tool, we deployed JIVUI on a centralized server
allowing multiple researchers to use it simultaneously and on
the same dataset. Some of our ongoing efforts using JIVUI to
visualize our game data include identifying word segmenta-
tion. One approach for doing so is to allow multiple people to
visualize our data and manually label segmentation bound-
aries, resulting in a dataset from which agreement metrics
could be computed to determine word segments.

To showcase JIVUI’s versatility, we also show in Figure 6
a visualization of data we collected from another game. In
this case we visualize mouse motion (overlaid on the game
screen) and mouse clicks (as timeline events.

Discussion and Conclusion
The main contribution of this paper is JIVUI itself, which
is being made available online1. In addition to the source
code, we are also providing basic documentation, example
data files, and a working demo.

The most salient advantages of JIVUI are its flexible data
format, its extensibility, and its portability. With minimal ex-
pectations on data structure, JIVUI can be used with both
simple and complex datasets, where extended attributes could
be easily added to configure the visualization (through the

1
http://go.ncsu.edu/jivui
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Figure 6: Example of JIVUI being used to visualize mouse
motion and click data collected from The Concentration
Game.

“settings” object), and to provide a richer dataset (by
adding elements to the data entries). This allows JIVUI to
support input data generated from different cognitive model-
ing methods, as well as data collected from a real user.

JIVUI’s heavy reliance on plug-ins allows it to be highly
customizable not just to support a wide range of data at-
tributes to visualize, but also to perform calculations on the
data and to completely customize how the data is finally
played back in the Web interface. Additionally, JIVUI’s in-
cluded plug-ins are designed to accommodate the most com-
mon user interaction visualization use cases, making it ap-
proachable for newcomers. The included plug-ins also serve
as examples for end users to build upon when creating more
complex preprocessors and UI modules.

Because JIVUI is based entirely on Web standards, it re-
quires only a modern Web browser to run. This allows JIVUI
to be platform-agnostic. It can be hosted on a local com-
puter or on a server, allowing a single instance to be used by
multiple people simultaneously. JIVUI does not require any
specific dependencies and can be hosted on any Web server.
With appropriate UI modules, JIVUI can be used to visualize
data on mobile devices as well.

In addition to presenting the tool itself, we have also pro-
vided a few examples of how JIVUI has helped us visualize
and obtain insight into data collected from our experiments.
It can also be applied to visually compare predicted user be-
havior as cognitive models with actual user data.
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