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Human Subtlety Proofs: Using Computer Games to Model Cognitive Processes for
Cybersecurity

Ignacio X. Domínguez, Prairie Rose Goodwin, David L. Roberts, and Robert St. Amant

Department of Computer Science, North Carolina State University, Raleigh, North Carolina, USA

ABSTRACT
This article describes an emerging direction in the intersection between human–computer interaction
and cognitive science: the use of cognitive models to give insight into the challenges of cybersecurity
(cyber-SA). The article gives a brief overview of work in different areas of cyber-SA where cognitive
modeling research plays a role, with regard to direct interaction between end users and computer
systems and with regard to the needs of security analysts working behind the scenes. The problem of
distinguishing between human users and automated agents (bots) interacting with computer systems is
introduced, as well as ongoing efforts toward building Human Subtlety Proofs (HSPs), persistent and
unobtrusive windows into human cognition with direct application to cyber-SA. Two computer games
are described, proxies to illustrate different ways in which cognitive modeling can potentially contribute
to the development of HSPs and similar cyber-SA applications.

1. Introduction

Cognitive science is the study of the mind and intelligence,
where intelligence manifests itself in human behavior
through perception, decision making, learning, remembering,
taking action, and so forth (Busemeyer & Diederich, 2010;
Thagard, 2014). Within cognitive science, researchers have
developed explicit models of cognition that can be expressed
both qualitatively and in terms of mathematics or a compu-
ter program (Farrell & Lewandowsky, 2015), for purposes
ranging from testing theories of cognition (Anderson et al.,
2004) to improving the design of decision support tools
(Segall, Kaber, Taekman, & Wright, 2013). This article
focuses on such models in the context of human–computer
interaction and cybersecurity (cyber-SA).

Cognitive issues have informed computer security for dec-
ades. Saltzer and Schroeder (1975) identified psychological
acceptability as an essential aspect of human–computer inter-
faces to secure systems; such acceptance should make correct
use of protection mechanisms “routine.” Some early evalua-
tions of interactive security mechanisms made reference to
cognitive phenomena. For example, in the 1980s, Barton and
Barton (1984) drew out relationships between password selec-
tion and the need to recall passwords from long-term mem-
ory. Given the basic division between semantic and episodic
memory, they observe that general factual knowledge in
semantic memory may be widely shared, which means that
users must choose carefully to avoid their password being
easily guessed; the typically autobiographical knowledge in
episodic memory may be more personal but also public

knowledge, again requiring care. (These recommendations
focused on guessability by human attackers, before the com-
mon use of dictionary-based attacks.)

Comparable work on passwords has continued based on
qualitative accounts of cognition—for example, using graphics
for authentication (Mihajlov, Jerman-Blažič, & Shuleska,
2016) or the check-off password system (Warkentin, Davis,
& Bekkering, 2004). These efforts can lead to useful guidance,
offering theoretical and empirical support for our intuitions.
For example, a system-generated password will typically be
harder to remember than a password derived from one’s own
knowledge and experience. Our intuition tells us that this is
true, and a cognitive account explains why.

Cognitive models, applied to comparable problems, gener-
ally go deeper into the details of cognition to produce more
precise, even quantitative predictions. These models, whether
they consist of tracing information through the cognitive
system, computational simulations, or closed-form equations,
can give more insight than a purely qualitative model of
human behavior. Further, such models are based on general
principles of cognition (in contrast to data-driven statistical
models like regression models or factor analysis that simply
need to fit the data), which can support easier generalization
to new phenomena (Busemeyer & Diederich, 2010).

In the remainder of this article, we will explore work on
cognitive modeling in different areas of cyber-SA. We can break
down this work along a few different dimensions. One distinc-
tion is between modeling to improve security in the direct
interaction between end users and computer systems versus
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modeling that improves the abilities of security analysts working
behind the scenes. In the former area, we find modeling for
automated agent detection, password recall, mental representa-
tion of tasks, and expected normal user behavior. In the latter
area, cognitive models can be used to support information
presentation to analysts seeking to detect and understand
cyber-SA exploits; when used for adversary modeling, they can
also identify or predict security weaknesses in a system.

Gonzalez, Ben-Asher, Oltramari, and Lebiere (2014)
observe that “the development of cognitive models and com-
putational approaches to represent and support cyber [situa-
tion awareness] and decision making of the analyst are only in
their infancy.” The same is true of cognitive modeling in other
areas of cyber-SA. Progress is being made, however.

This article has several goals. One is to highlight areas of
cyber-SA in which cognitive modeling research plays a role.
Another is to give a brief account of different cognitive
modeling approaches, showing how they can be applied to
problems in cyber-SA. A third goal is to explicate the process
of building cognitive models in this domain—not a unique or
canonical process, but one that illustrates the strengths and
limitations of modeling in this domain. In particular, we focus
on cognitive models that can enable Human Subtlety Proofs
(HSPs)—a mechanism to differentiate human behavior from
that of automated agents—which we describe below in the
context of games research.

2. Related Work

Cognitive modeling techniques have been applied to a range
of topics in cyber-SA. This section gives an overview of a few
representative approaches on representative problems.

Recalling passwords, as mentioned above, is a topic of con-
tinuing interest. Zhang, Luo, Akkaladevi, and Ziegelmayer
(2009) take on a modern problem faced by computer users:
remembering not only a single password but also multiple pass-
words and correctly associating them with different systems.
Zhang et al. (2009) rely on the stage of memory theory (SMT)
(Atkinson & Shiff 1968) to understand why users find difficulty
recalling passwords from long-term memory. SMT posits three
stages of memory: information is sensed as a stimulus–response
pair, this information advances (if it is not lost) to a short-term
store, it then enters long-term storage (again, if it is not lost).
Retrieval of the information is hindered by decay, interference,
and loss of “trace strength.”

Participants in an experiment were asked to create four
passwords for four different accounts, following conventional
requirements (a minimum of eight characters, at least one
number, one uppercase and one lowercase letter, and so
forth), and then to recall those passwords to log in to those
accounts. A control group was shown a conventional login
screen. In one treatment group, the login screen also showed
the first character of the user’s password for the associated
account; in another treatment group, the rules for construct-
ing passwords were shown. Zhang et al. (2009) identified and
analyzed different types of errors in recalling passwords. As
expected, errors were due to numbers and special characters,
common across the experiment conditions, but interference
errors—where having used multiple passwords for different

accounts hampers the ability to recall any specific password—
were by far the most common in the control group, occurring
three times as often as in either treatment groups. This work
relies on a structural model of memory processing, drawing
on the assumptions of the model to identify potential diffi-
culties in carrying out a security task.

These experiments serve both a theoretical and a practical
purpose: they help cyber-SA researchers better understand the
challenge of multiple passwords, in cognitive terms, and they
suggest potential strategies for end users in selecting pass-
words that may be more easily recalled.

Blythe and Camp (2012) describe more detailed cognitive
models over a broader set of security behaviors. Their modeling
work is based on the identification by Wash and Rader (2011)
of different mental models—mental representations of a task or
of beliefs and attitudes of others—relevant to security. The
authors divided mental models into two categories: “virus”
models focused on any generic malware, and “hacker” models
that focused on the attacker. End users decide to follow security
advice based on their understanding of malware as “buggy”
software, software that causes “mischief,” or software to aid in
cyber “crime;” they conceptualize attackers as “burglars,” “van-
dals,” or those interested in “big fish” (entities more important
than ordinary users).

Blythe and Camp (2012) developed explicit representations
of these mental models, as operators in a simulation that can
be executed to determine the security implications of specific
actions. For example, will a user find antivirus software of
value? Not if the user holds a burglar or big-fish mental
model, in which data on the computer under attack are stolen
but not destroyed. These models were validated against the
survey responses provided by Wash and Rader (2011), giving
a good match to the human data.

Blythe (2012) also describes the more general framework in
which this work is situated: a cognitive architecture in which
reasoning can be modeled at different time scales, allowing for
a rich account of security-relevant behavior in different con-
texts: immediate response to a stimulus, deliberative reason-
ing, and long-term strategic planning.

In a different area of cyber-SA, support for analysis, we find
other approaches to cognitive modeling. Benjamin (2007)and
Benjamin, Pal, Webber, Rubel, and Atigetchi (2008) describe the
development of a cognitive agent for cyber-SA, monitoring users
on a network for signs of suspicious activities, focusing in parti-
cular on intrusion detection and vulnerability analysis. Their
agent can create virtual copies of a network, simulate the actions
of an attacker, and compare with the unfolding results on the
real network. Internally, the agent relies on a set of rules for the
cognitive architecture Soar (Laird, Newell, & Rosenbloom,
1987). Soar encodes long-term memory as production rules
and short-term memory as a semantic graph where object attri-
butes and relationships are maintained. These production rules
and encoded knowledge can be used to plan, reason, and execute
actions. Several advantages are described for the use of Soar: it
can learn from experience, it can reason about attacker’s plans
and attempt to predict future behavior, it can engage in natural
language communication with human analysts.

Gonzalez et al. (2014) describe how the processes in a cogni-
tive model can be mapped onto the concepts of situation
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awareness in cyber-SA. They identify several gaps that need to be
filled in order for progress to bemade in the area. Themost basic
is the lack of an explicit model, at the detailed level of a cognitive
architecture, of cyber-SA. Other gaps include the decision gap
(models of learning, experience, and decision-making), the
semantic gap (language and concepts for the domain), the
adversarial gap, and the network gap (between models of indi-
viduals and of larger security contexts and entities).

Dutt, Ahn, and Gonzalez (2011) and Gonzalez (2013)
describe development of a model of cyber-SA based on
Instance-Based Learning Theory (IBLT). IBLT represents
learning and decision-making for dynamic tasks in terms of
situations, decisions, and outcomes/utilities, each of which
forms an instance. Instances from past decisions are accumu-
lated over time and used for current situations; an IBLT
model chooses among alternative actions based on their com-
puted value. This computation takes into account the retrieval
probability of a situation, its outcome, the degree of match to
the current situation, and other factors.

IBLT is a cognitive approach in that it relies on the memory
mechanismsof the cognitive architecture,ACT-R (Anderson et al.,
2004), including base-level activation of instances (based on
recency and frequency of use) and spreading activation (in
which instances can “reinforce” each other). ACT-R is a general
cognitive architecture that has been used in HCI research. The
architecture simulates internal cognitive processing (shifts of
attention, memory storage and retrieval, decisions) and external
(visual andmotor) behavior. Structurally, ACT-R contains a set of
modules, each representing a different cognitive faculty, with
buffers that act as interfaces for the exchange of information
between the modules. A model represents specific tasks to be
carried out, in the form of production rules to be executed by the
architecture.

These research projects give some idea of the scope and
promise of cognitive modeling for cyber-SA. We have exam-
ples of structural cognitive models and models based on
unified cognitive architectures. We see cognitive models
applied toward the improvement of practice for end users in
security contexts as well as better results for cyber-SA ana-
lysts. In the next section, we focus on understanding end users
with respect to specific problems in cyber-SA—distinguishing
human behaviors from those of automated bots—using casual
games as a research platform.

3. HSPs and Cyber-SA Modeling Using Games

User authentication is a critical issue for cyber-SA.
Authentication, typically in the form of challenge and response,
is something most of us experience every day on our own desktop
and laptop computers, on social media Web sites, even when
paying for groceries at the store or using a banking machine. In
this section, we expand the common view of user authentication,
as the process by which users identify themselves individually, to
include users confirming that they are members of a group
authorized to carry out tasks.

This generalization is useful in framing a relatively new chal-
lenge for cyber-SA, the use of bots. Bots are software programs that
use a computer, typically a personal computer, formalicious use or
use unintended by its owner. For example, so-called aiming bots

were once very popular in online multiplayer first-person shooter
games; they allowed players to bypass the game mechanics for
targeting opponents, giving them perfect aim every time, and
enabling them to artificially improve their standing in the game.
Today, bots are more commonly used to register for free email
accounts and send spam or phishing messages. Bot detection
techniques are designed to prevent such exploits.

Two families of techniques for bot detection are in com-
mon use. One is represented by CAPTCHA (Completely
Automated Public Turing test to tell Computers and
Humans Apart) technology (Von Ahn, Blum, Hopper, &
Langford, 2003). The premise behind CAPTCHA technology
is to require a human to interactively solve a problem that is
difficult (or more desirably impossible) for a computer to
solve. The now ubiquitous CAPTCHA technology on the
Internet involves having users look at distorted images of
words or listen to distorted audio of words and type in the
letters. CAPTCHAs have also been explored on touch-enabled
mobile interfaces (Leiva & Álvaro, 2015). Another approach,
common in massively multiuser online games (MMOGs),
involves monitoring a user’s input to identify characteristic
differences between human and bot-like behavior.
Gianvecchio, Wu, Xie, and Wang (2009), for example, show
that differences in the distributions of keystroke durations
and the efficiency of mouse movement can be used to distin-
guish humans from bots. In online poker, systems can use this
information to identify poker bots, along with other heuristics
such as playing too many games continuously for too long a
period of time.

Both of these approaches require users to “prove” that they
are human; one requires explicit action on the part of the user,
while the other is passive. In other words, one is a human
interactive proof (HIP), the other a human observational proof
(HOP) (Gianvecchio et al., 2009). Some HIPs can be viewed as
challenge-response techniques; they can be integrated into an
interactive system to support one-time or periodic bot detection.
For example, a poker site might pop up a CAPTCHA between
games to ensure that a given player is human. For the human
player, this is clearly an extra effort unrelated to the game itself.
A different approach can be applied in some games, however.
Chow, Susilo, and Zhou (2010) propose that CAPTCHAs can be
integrated into a MMOG as a mini-game: for example, making
progress in a fantasy adventure game might require players to
decode spells, presented visually as CAPTCHAs.

HOPs, in contrast, passively examine the ways in which
users complete the tasks they would normally be completing
and look for patterns that are indicative of humans versus
bots. An example of an observational proof is examining the
spatial signature of mouse click locations as influenced by an
interface layout (Jorgensen & Yu, 2011). A major advantage to
HOPs is that they tend to satisfy the criteria for natural
interfaces, making them less obtrusive to users and more
likely to be accepted. Another advantage of HOPs over HIPs
is that the latter only provides a check at the point in time
where it is presented, whereas the former can constantly
monitor usage as the task is being performed, making it
harder to bypass.

HIPs and HOPs both have significant limitations, however.
HOPs are susceptible to imitation attacks, in which bots carry
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out scripted actions designed to look like human behavior.
Imperfect HOP implementations may also incorrectly classify a
legitimate user as a bot. HIPs, on the other hand, tend to be more
secure because they require explicit action from a user to complete
a dynamically generated test. Because these tests are dynamically
generated, solutions to them cannot (reasonably) be predicted,
scripted, or generated by computer systems; however, because
humans have to expend cognitive effort in order to pass HIPs,
they can be disruptive or reduce productivity, and even result in
users seeking alternative systems to use.

In response to these limitations, we propose HSPs as an
emerging alternative; one that blends the stronger security char-
acteristics of HIPs with the unobtrusiveness of HOPs. HSPs also
incorporate the “always-on” property of HOPs in that they
monitor usage as it happens. Our approach is to examine how
cognitive biases affect interaction with software in predictable
and repeatable ways by looking at input device usage patterns.
Our goal is to leverage those biases to make small changes to
interfaces that will subtly, but not substantively, affect the inter-
action of either bots or humans. By making changes to inter-
faces strategically and looking for physical manifestations of the
subtle changes in the cognitive processes that only humans
would exhibit—and bots would find difficult to fake—we expect
HSPs to combine the strengths of both HIPs and HOPs.

We are working with computer games in our research, which
provides some advantages. First, because game mechanics often
result in changes to the details of tasks, users tend to be more
accepting of changes to an interface or expectations on their
performance. Second, computer games provide motivational
context. In order to get reasonable data, users need to have an
incentive to perform the task well. The “gamification” of tasks
enables us to study users under experimental conditions with
relatively higher engagement when compared with more con-
ventional information processing tasks. Third, using games
allows us to precisely control the complexity of the task, in a
consistent context. This is important for experimental control
and is familiar to players. However, HSPs are applicable to not
just games, but to any task that can be slightly altered to trigger
subtle changes in cognitive processes.

We describe two games to illustrate different ways in which
cognitive modeling can potentially contribute to cyber-SA,
and in particular to the development of HSPs.

3.1. The Concentration Game

The Concentration Game, also known as the Memory Game, is
a classic solitaire card game in which cards are laid face down
on a board or table. On each turn, the player turns over a first
card and then a second card so that both are face up. If the two
cards match (i.e., if they show the same symbol), the cards are
removed from the board. If the cards mismatch, then they are
turned face down again and the next turn proceeds. The object
of the game is to turn over pairs of matching cards until all of
the cards have been removed from the board. For every card on
the board, there exists exactly one matching card.
Concentration has been used for decades in cognitive science
to study memory (Eskritt, Lee, & Donald, 2001) and reasoning
about probabilities (Kirkpatrick, 1954).

We implemented a computer-based version of the
Concentration game, as shown in Figure 1. The interface consists
of a 4 × 4 grid of tiles, each tile of 100 pixels square, to represent
cards. When representing a face-down card, a tile is black. A face-
up tile shows a white background with a single-centered black
letter from the set A, B, C, E,H, I, P, andQ. Letters are presented in
the Helvetica Neue LT Std 65 Medium typeface. We chose these
letters and typeface to minimize letter confusion (Mueller &
Weidemann, 2012).

In a game, a turn consists of two actions: turning over a tile by
clicking it (which we refer to as a first-tile move), and then clicking
a different tile (a second-tile move). After the second-tile move, the
symbols of both tiles are displayed for 1 s; at that point, both tiles
are turned face down (in case of a mismatch) or cleared from the
board (in case of a match). The player may proceed without
waiting for the system to turn tiles back over, by clicking on any
face-down tile in the case of match, or by clicking on any tile at all
in the case of a mismatch. In either case, the clicked tile then
becomes the first-tile move for the next turn. A game is complete
when all tiles have been cleared from the board.

We instrumented our implementation of the game to collect
mouse pointer motion (position) and click events time stamped
with millisecond precision. We associated these events with the
state of the game, and of the board. Specifically, each recorded
event was annotated with the tile that was clicked or hovered, the
turn in which the event occurred, and whether it occurred
within the first-tile or second-tile move of the turn.

Modeling the Concentration Game (1)
Our first Concentration Game experiment examined players’
abilities to trade off speed versus accuracy, a well-studied
phenomenon in psychology (Wickelgren, 1977). The condi-
tions were distinguished by instructions and payoffs. In the
accuracy condition, experiment participants were shown the
number of mismatches on the screen during their game play,
and they were scored on their ability to minimize mismatches,

Figure 1. The Concentration interface, speed condition.
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a surrogate for the number of turns in a game. In the speed
condition, participants were continuously shown the elapsed
time in minutes and seconds on the screen, and they were
scored on minimizing the time that it takes to clear the board.

To recruit participants, we used snowball sampling, a technique
in which initial participants help recruit additional acquaintances
through various online social networks. After confirming a
recruitment message, participants completed a consent form fol-
lowed by an optional survey asking for their age, gender, computer
skills, and the type of pointing device that they would use for the
study. The participant then played a small practice round with an
in-game tutorial using a 2 × 2 board to become familiar with the
game rules. Finally, the participants played the game.A total of 179
out of 260 participants (69%) finished the experiment, though not
all answered every survey question.

Participants in the accuracy condition averaged 15.7 turns and
40.99 s to complete the game; under the speed condition, they took
18.4 turns and 32.11 s. Full results are described elsewhere (Barik,
Chakraborty, Harrison, Roberts, & St. Amant, 2013); here, our
discussion is limited to the model developed for the accuracy
condition, which we will call the baseline model. As is not uncom-
mon in modeling, our analysis was in part exploratory: it is not
always obvious which factors determine behavior, or how they
should be modeled.

For example, one question for model design is whether tile
locations should be treated as positions in space or simply as
unique identifiers. We initially hypothesized that after a first-
tile move, if the participants have already seen the match, they
will either select that match or make a mistake by choosing a
nearby tile. We found no clear pattern in the spatial distribu-
tion of errors of this type, however. Figure 2 shows a repre-
sentative distribution over all participant trials, for a matching
tile in the top left corner. Given the small probabilities, we
chose to model the locations of tiles only as identifiers.

A related issue is the interaction between vision and memory
when exploring the board. To narrow the space of possible
mechanisms for this choice, we examined the relationship
between the duration between clicks and the number of tiles
seen; we found a near-zero correlation. We also saw no relation-
ship between click duration and the number of tiles remaining
on the board. This suggests that if memory is involved in the
choice of new tiles, it is not a simple serial elimination of tiles
that have been seen. For simplicity in modeling, we adopted a
mechanism in which when a new tile is chosen, it comes from
the set of those that have not been recently visually attended.

We considered a number of such issues in the analysis of
the experiment data and built a model in the ACT-R archi-
tecture. Our goal in modeling with ACT-R is to use the
architecture to explain how our experimental results could
arise. We worked within the basic architecture, without

extensions, and we altered ACT-R parameters to fit models
to participant data under the different conditions.

The baseline model begins by choosing a visually unattended
tile, clicking it, and reading the symbol. The chunk in the visual
buffer is copied into the imaginal buffer for storage. The model
then attempts to retrieve from memory a second tile that
matches the first. If a matching tile is found (subject to memory
limitations), the motor module is directed to click that tile.
Otherwise, another unattended tile is chosen, clicked, read, and
stored in memory. In terms of production firing and module
behaviors, the baseline model represents the sequence of actions
after the mouse click for a first-tile move as in Figure 3.

A comparison between the baseline model and participant
results is shown in Table 1. These cannot be taken as predictions,
because the model was fitted to the participant data; instead, the
model acts as a contingent explanation of participant perfor-
mance. Another limitation is that the model is of aggregate
(mean) participant performance rather than individual behavior.
This can be seen in Figures 4 and 5, where the variance due to
different board configurations does not account for the spread in
participant performance, which we attribute to individual differ-
ences and behaviors that are not captured by the model.

The baseline model is nevertheless a reasonable model of
participant performance, at an abstract level. Most of its
estimates of the performance measures listed above are within
15% of the observed values, with the exception of Revisit2− at
39%. These estimates work at two levels: they are quantitative
timing estimates and they indicate specific choices among

Figure 2. Participant probability of correctly choosing a previously visited tile,
top left (with raw counts) in the accuracy condition. The grid represents the
4 × 4 game board.

Figure 3. Cognitive processing in the baseline model.

Table 1. Mean participant and model performance, for turns and time per game; time per move, between clicks; mean probability per game of visiting a previously
seen tile on a first-tile move (Revisit1), visiting a second tile when it is a match (Revisit2+), and visiting the second tile when it is not a match (Revisit2−); the mean
probability of choosing a matching second tile when it has been seen before.

Turns Time (s) Move interval (s) Revisit1 Revisit2+ Revisit2− Match

Participants 15.7 40.99 1.048 0.336 0.883 0.226 0.740
Baseline model 15.9 36.60 1.113 0.383 0.848 0.315 0.805
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alternatives that we expect players of the Concentration game
to exhibit.

Although we have not discussed the model for the speed con-
dition in the experiment, it provides a comparable match to
human performance. It differs from the baseline model in that it
may skip thememory retrieval of a possiblematch after visiting the
first tile on a turn and instead choose an unattended file.We based
this on the intuition that participants may sometimes bypass the
time needed formemory retrievals, at the cost of missingmatches,
in order to act faster. It is well understood in psychology that
changes to payoffs can influence performance; more specifically,
that people can control the tradeoff between speed and accuracy
appropriately under different payoff conditions. Our work
extended the set of domains for ACT-R modeling in which a
speed–accuracy tradeoff can be observed and captured.Our results
also suggested features that may be useful in identifying character-
istically human behavior: the spatial distribution of tile choices
early in the game (most players began in the top left corner and
worked their way first to the right and then down), the lack of a
spatial correlation between the location of a correct second-tile
choice and an incorrect tile, the performance statistics given in
Table 1. HSPs could leverage these subtle characteristics of human
behavior to differentiate legitimate users from automated agents,
particularly in tasks where the user’s goal may differ from that of a
malicious bot (i.e., when the user strives for accuracy while the bot
aims for speed, or vice versa).

Modeling the Concentration Game (2)
In a second experiment, we modified the game to support
examination of a phenomenon more directly related to cyber-
SA: deception. The game is as described above, but depending

on the experimental condition, some players had the option to
use the space bar on their keyboards to toggle reveal mode.
This mode would allow players to see the letter of every
available tile when these were face down, essentially allowing
them to cheat. To avoid confusion about the state of a tile, we
used gray for the color of the letters of face down tiles when
reveal mode was enabled, as shown in Figure 6.

We used snowball sampling to recruit participants for our
study. The recruiting message contained a link to a website
where interested people could read the consent form and sign
up for a study time slot. Participants were offered a base
compensation of $5.00 for participating, a maximum of an
additional $2.00 for each game round they played, for a total
compensation amount of up to a maximum of $25.00. Their
compensation for a round began at the highest value ($2.00)
and decreased by $0.10 (until it is $0) for every mismatch that
the participant made on that round. Because our control
group did not have the ability to enable reveal mode, partici-
pants on this condition were given an additional $5.00 on
their base compensation for a total of $10.00 base compensa-
tion. The compensation received for the round is displayed at
the bottom right of the game screen, as shown on Figure 6.

The full experiment and results are described elsewhere
(Domínguez, Goel, Roberts, & St. Amant, 2015); here, we
focus on two conditions: a reveal condition and a no reveal
condition, depending on whether reveal mode was enabled or
disabled. The difference was made known to participants in
the language used when providing instructions in the in-game
tutorial and game rounds. Participants with the option to
enable reveal mode could toggle it on and off at their leisure
during a round. In order to promote deceptive behavior, some
participants were told that a cheating detection module was
active in the game, and that if they were caught cheating, they

Figure 5. Turns per game, accuracy condition.

Figure 6. The concentration interface, reveal condition.

Figure 4. Time per game, accuracy condition.
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would forfeit their entire compensation. In reality, no such
module existed.

In terms of mathematical utility, participants in this experi-
ment have the same goal as those in the accuracy condition of
the first concentration experiment: to minimize mismatches.
The difference between the two experiments is motivational.
While participants in the first experiment were trying to
achieve a higher score, participants in this experiment were
trying to maximize their monetary compensation. Particularly
in the no reveal condition, where no deceptive behavior is
expected, a monetary reward—as opposed to the intrinsic
motivation of playing the game—is the only difference from
the accuracy condition of the first experiment. To explore the
effects of this motivational change, the baseline model from
the first experiment was used to predict performance in the
no reveal condition.

While it is well understood that people can control the
tradeoff between speed and accuracy under different payoff
conditions, deceptive behavior has not been as extensively
explored. This, and the fact that participants could toggle reveal
mode on and off at any given time, made fitting a model to
participant data difficult. For this reason, a new revealed model
was developed for the reveal condition that relied on visual
search to find matches, as a simple bot might do, without
attempting to model any specific deception strategy.

The revealed model is a modification of the baseline model
that bypasses the storage of a tile’s text in memory after a first-
tile move, instead relying on its persistence in the visual envir-
onment. The attempt to retrieve a matching tile from memory
for the second-tile move is also unneeded. All of the tiles are
revealed so that a match can be determined visually. Further,
because the letters chosen for the game are visually distinct, we
model the process of identifying a visual match as a pop out
effect, making the location of the match available in constant
time. In the revealed model, the sequence of actions given in
Figure 3 is streamlined to the form shown in Figure 7.

This allows the revealed model to complete a game with no
incorrect choices and a completion time mean of 15.15 s,
from the baseline model estimate of 36.6 s. The time interval
per move, between clicks, is reduced to 0.947 s (baseline
model estimate, 1.113 s).

The predictions of the baseline model have relatively large
error for basic performance measures in this experiment, as
shown in Table 2. the mean number of turns taken is over-
predicted by about 9%, and the total time is underpredicted
by about 20%. The revisit statistics show large prediction
errors as well. It appears that participants in this experiment
follow a superior strategy compared with those in the first
experiment. Notably, the lower value for Revisit1 suggests that

they explore more than in the first experiment; if a participant
had perfect memory, it is easy to see that this would result in
better performance than choosing an already seen tile as a
first-tile move.

In the end, the results of cognitive modeling for the
Concentration game to improve our understanding of decep-
tion are equivocal. More detailed models may help, but the
difference in motivation between the two experiments—the
intrinsic motivation of playing the game versus playing for a
small monetary reward—appears to produce differences in
performance. Further, it is unclear exactly how the participants
are spending the time; it may be a rehearsal process to improve
later recall, for example, but we have little evidence on which to
base a model. What this means for HSPs, however, is that the
effects of motivation on human behavior can be leveraged as a
mechanism to differentiate humans from bots.

This is not to say that these results are not predictable per se.
A data-driven statistical model, relying on measures including
the time between clicks, the time between a click and a succeed-
ing mouse movement, change in direction of mouse movement,
the number of times the mouse hovers over specific regions,
gives almost perfect accuracy in prediction (Domínguez et al.,
2015). In practice, and for this particular task, this statistical
model can be used as an HSP to classify and distinguish between
human and bot activity. However, these measures are at too low
a level for our models to capture, which is needed to properly
understand the cognitive processes involved and produce HSPs
that can better generalize to different tasks.

3.2. A Touch Target Selection Game

The final project we discuss is based on touch interfaces on
tablet computers. Touch interfaces are associated with a much
higher error rate in target selection than GUI interfaces used
with a mouse or touchpad, and in practice, a touch sometimes
fails to register. Our work in this area is qualitative rather than
quantitative.

The target selection game is a simple one, comparable to
those used in Fitts’ Law experiments (MacKenzie, 1992). The
game presents a scattering of circular red targets on the

Figure 7. Cognitive processing in the revealed model.

Table 2. Mean participant and model performance across conditions, for turns and time per game; time per move, between clicks; mean probability per game of
visiting a previously seen tile on a first move (Revisit1), visiting the second tile when it is a match (Revisit2+), and visiting the second tile when it is not a match
(Revisit2−); the mean probability of choosing a matching second tile when it has been seen before.

Turns Time (s) Move interval (s) Revisit1 Revisit2+ Revisit2− Match

No reveal condition 14.6 50.42 1.727 0.285 0.571 0.429 0.857
Baseline model 15.9 36.60 1.113 0.383 0.848 0.315 0.803
Reveal condition 8.3 30.14 1.722 0.017 0.969 0.031 0.063
Baseline model 8.0 15.15 0.947 0.000 1.000 0.000 0.000
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display; to complete a round of the game, the player taps all
the targets, in any order. The experimental apparatus con-
sisted of an EyeTribe eye tracker attached to the bottom front
of a Surface Pro 2 tablet. Both devices were attached to an
adjustable height tripod with a universal mount; the neck of
the tripod could be raised or lowered to adjust to a user’s
height. Software instrumentation collected touch timing and
locations as well as gaze data.

Participants were told that the experiment focused on how
users perceive error on a touch screen device. When the
program started, a start button would appear. Once this
button was pressed, participants would see five red targets to
select with touch input. When a target was touched success-
fully, it turned grey, as seen in Figure 8. After all targets were
touched, the screen cleared itself. Ten participants completed
the experiment; all who wore glasses removed them before the
experiment began and reported no trouble seeing the targets.

Without greater constraints on the task, users prioritized
accuracy over speed. The result was that users did not make
target selection errors. Instead, the interface introduced artifi-
cial errors by ignoring some events. While performing the
experiment task, the system manipulated the nominal error
rate, at one of six levels: 0%, 10%, 20%, 30%, 40%, and 50%.
For example, in the 10% condition, one out of every ten suc-
cessful touches is ignored, simulating a missed touch. This
accounts for cases in which a participant touches outside the
boundary of any target; such a touch is unsuccessful.
Nevertheless, it does not capture cases in which a participant
touches inside a target boundary and the touch is not detected
or misidentified by the system. The experiment started with
three rounds of 0% error so that the user could familiarize him
or herself with the task. After this initial training, each error
level was seen three times but in random order so that every
participant completed 21 iterations of the game.

After each round (i.e., once a screen has been cleared of
targets), participants were asked to guess the total error rate
for that screen, choosing from 10 decile percentages.
Participants selected the button corresponding to what they
believed to be the closest value. The start button then reap-
peared for the next round.

Our goal in this experiment was to identify and represent
patterns participants exhibited under different error rates.
One behavior involves a gaze fixation on a target, a tap, and
then a pause to verify that the tap has been recognized. If the
tap is successful, the next target is handled, but if the tap fails,
then the target is tapped again. Another behavior is to tap
targets without waiting for verification, returning to those that

were missed. In either case, visual attention may remain on
the target under consideration until a successful tap or move
to the next target. A different behavior, apparently derived
from gaming experience, relies on peripheral vision to locate
targets, with no obvious relationship between gaze fixations
and tap locations. Yet, another behavior involves a brief
planning phase in which gaze moves between different targets
before any one is tapped.

These behaviors can be interpreted in cognitive terms as
micro-strategies: low-level processes that describe the inter-
active behavior between the design of the available artifacts
and the cognitive, perceptual, and motor processors (Gray &
Boehm-Davis, 2000). Strategies can be identified by analysis of
gaze fixations, tap locations, and the duration and ordering of
events.

Touch Models
GOMS (goals, operators, methods, and selection) is a model-
ing framework introduced by Card, Newell, and Moran’s The
Psychology of Human–Computer Interaction (Card, Moran, &
Newell, 1983). It is specifically designed to compare alterna-
tive ways to complete a task. The goals are objectives to be
accomplished using the available operators (i.e., actions) that
a user can perform. The Methods are the goals and subgoals
necessary to complete the task. When a goal can be accom-
plished more than one way, the path branches with every
alternative method. When the model encounters a branch,
selection rules based on contextual heuristics choose which
path is taken.

Our models of behavior for this experiment are created in
Cogulator (The MITRE Corporation, 2014), a calculator for
constructing task analysis models using GOMS. Cogulator
defines a basic set of 21 GOMS operators. Each operator has
a name, an optional label, and a default duration. New opera-
tors can be defined, and default durations can be modified.

Exploratory data analysis led to the identification of several
reoccurring microstrategies, in different categories we have
defined. Selected microstrategies are visualized in Figure 9.

The first category involves searching for a target to acti-
vate. Three patterns are evident.

● Visual search (VS) comprises multiple sequential fixa-
tions with no touch input. This microstrategy suggests
that some decision-making takes place about what
action to perform next. VS occurs in 50% of all screens,
and the number of fixations in the search versus its
occurrence decreases in a logarithmic pattern. It is not
correlated with error rate.

● No visual search is the absence of visual search.
● Peripheral focus (PF) represents a single, unmoving fixa-

tion during multiple touch events. Unlike the other
microstrategies, this is likely a conscious strategy by
the user to keep their eyes still and only use their
peripheral vision. Seen in so-called twitch gaming, the
user is trying to minimize reaction time by eliminating
eye movement. It was only used by one participant three
times, all in low-error situations. The PF microstrategy
below is a continuation of this one.Figure 8. The target selection game interface. One target has been successfully

activated.
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The second category deals with shifting attention away
from a target.

● No visual feedback (NVF) comprises a fixation start, a
fixation end, and then a touch. Both successful and
unsuccessful touches are grouped together in this strat-
egy, because they are the same action in a cognitive
sense, differentiated only by the effect on the environ-
ment. The user anticipates the completion of a touch
action without waiting for visual feedback on its success.
It is most likely to be used in low-error environments,
although it is only used about 20% of the time.

● With visual feedback (WVF) comprises a fixation start, a
touch, and then a fixation end, or a fixation start, an
unsuccessful touch, a repeated touch, etc. This micro-
strategy is by far the most common one identified in all
error levels. Occurring in 96% of all rounds, it appears
on average 4.6 times per round.

● PF represents cases where the eyes do not move, imply-
ing that shifts of attention are entirely cognitive. This
microstrategy can result in either NVF or WVF.

The third category deals with choosing the next action.

● Success with feedback comprises a fixation start, a suc-
cessful touch, and a fixation end. In this case, there is no
need for error recovery, and the user will either return
to the first category of microstrategies, searching for a
target, or the task will end.

● Delayed error recovery comprises an unsuccessful touch, a
fixation end, a sequence of unspecified actions, and finally
a touch on a different target. This microstrategy is defined
by an indication that the user has noticed the error but has
chosen to move on and come back to it later. This micro-
strategy is seen most in high-error environments.

● Immediate error recovery (IER) is defined by an unsuc-
cessful touch followed by another touch on the same
target, indicating that the participant saw the error and
attempt to fix it immediately. In this microstrategy,
fixations can be in many places. This strategy is used
twice as often as IER and is most seen in high-error
environments.

Table 3 shows the counts of the microstrategies described
above, over all participants, grouped into low (<20%), med-
ium (20–40%), and high (>40%) error conditions.

Notably, participants were able to estimate the error rate
with some accuracy: over all participants, the mean perceived
error rate was 5% higher than the nominal error rate (stan-
dard deviation 15%) produced by system manipulation, with
the median estimate being 3% higher than the nominal error
rate. Per participant, estimates differed by an average of 12%
(standard deviation 10%).

While these results remain to be validated in larger experi-
ments, they suggest further avenues for exploration. Our
results indicate that microstrategies vary, but whether or not
users perceive the errors as coming from themselves or
whether they are losing trust in the system remains an open
question. If users are changing their behavior based on per-
sonal actions, it opens the possibility of interventions and
observation of user behavior. If the error is perceived as
coming from the system, then behavior can be matched to a
taxonomy of responses based on human trust of the system
reliability (Muir, 1994). Our results indicate only that touch-
based systems do not impede users’ sensitivity to different
error rates.

Critically, we can influence the target selection error rate,
either directly (by making targets larger or smaller) or indir-
ectly (by simply ignoring taps, with some probability). The
implication for HSPs is that if users are sensitive to the
difference in error rates (we have evidence that this is the

Figure 9. Visualizations of six microstrategies along a timeline. Rounded rectan-
gles represent fixations, with shade uniquely mapping to a target. Touch events
are shown as a rectangle above the fixations at the time they occurred. The gray
square that is sometimes attached is indicative of a successful action. The
rectangle by itself represents an error. The shade of the rectangle follows the
same scheme as fixations. Therefore, if a black rectangle appears above a black
rounded rectangle, it represents a touch on the target that the participant is
currently fixating upon. From top to bottom, the visualization shows the follow-
ing microstrategies: Delayed-Error-Recovery, With-Visual-Feedback (left), No-
Visual-Feedback (right), Immediate-Error-Recovery (left), Visual-Search (right),
and Peripheral Focus.

Table 3. Count of microstrategy occurrences by type in low-, medium-, and
high-error conditions.

Total Low Medium High

With visual feedback 930 423 250 257
No visual feedback 189 80 52 57
Immediate error recovery 307 24 90 193
Delayed error recovery 192 68 58 100
Visual search (≥2 targets) 192 68 66 58
Visual search (≥3 targets) 58 22 23 13
Peripheral focus 3 3
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case), then we may be able to manipulate the interface to see if
the user reacts in a way that we expect, for example adopting a
slower, more “careful” strategy for a higher error rate.
Multiple target selection is a common enough task in touch-
based interfaces that it could potentially act as the background
for an HSP; this is part of our ongoing research.

4. Conclusion

Nicol, Sanders, Scherlis, and Williams (2012) identify “under-
standing and accounting for human behavior” as one of the
five hard problems to address at the foundation of the science
of security. Modeling behavior of both users and adversaries
can help security analysts and computer systems to identify
and differentiate microstrategies employed by legitimate users
from those with malicious intent. Furthermore, cognition, as a
predictable and measurable human characteristic, can be
leveraged to recognize the differences between human beha-
vior and that of an automated agent.

What do these microstrategies and models tell us about
cyber-SA? The answers lie in the future of HSPs described in
this article. Every interaction we have with a computer is a
task that requires certain predictable cognitive, perceptual,
and motor processes to successfully complete. Interaction
designers have long leveraged this insight in the modeling
and implementation of new interfaces. These approaches to
interface design involve the specification of interface tasks
while taking into account how those tasks will require differ-
ent cognitive processes. For example, we know that under
normal circumstances, the Concentration game players rely
on working memory, but under our “reveal mode” condition,
the game requires visual search. This subtle change in beha-
vior, while natural for humans, would be difficult for bots to
replicate. While that example may seem a bit contrived, it
highlights an important point about human interface usage
and how it can be modeled and leveraged to improve security:

Changing the tasks humans perform with interfaces has predict-
able, albeit sometimes probabilistic, effects on the cognitive, per-
ceptual, and motor processes required to complete them that can
be detected through the modeling of input device and sensor
analytics.

In other words, by making small changes to the tasks
people perform with interfaces, we can have detectable effects
on the various perceptual, cognitive, and motor processes
required to complete those tasks. By modeling how these
changes in cognitive, perceptual, and motor operations
occur in humans and comparing them with observed beha-
vior, we can determine whether the observed actions are being
made by a human or a bot.

While this work is in its early stages, what we have learned so
far is encouraging. First and foremost, the settings in which we
have conducted experiments have all revealed actionable insights
that will contribute to the base of knowledge for HSPs in the
coming years. Beyond that, storage, processing, and sensing
technologies havematured enough tomake data-driven explora-
tion of these phenomena feasible using inexpensive, commer-
cially available hardware. When our understanding of how
cognitive, perceptual, and motor phenomena manifest

themselves in interface analytics matures beyond the early stages
of the research, we described that in this article, the technology
of HSPs will enable new advances in persistent security proofs
for a wide range of software systems, not only in differentiating
human behaviors form those of bots, but also in differentiating
desired from undesired human behavior.
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