
WWCCAAEE 22000022

WWoorrkksshhoopp oonn CCoommppuutteerr
AA rrcchhii tt eecctt uurree EEdduuccaatt ii oonn

AA nncchhoorraaggee,, AA ll aasskkaa

MM aayy 2266,, 22000022

WWoorrkksshhoopp PPrroocceeeeddii nnggss

Welcome Message

Welcome to the Workshop on Computer Architecture Education! By my unofficial count, this is the
tenth such workshop since the series began at HPCA-1 in January 1995. I am pleased to announce that
this WCAE received the second largest number of submissions ever, and the overall quality of the
papers appears to meet or exceed that of all past workshops. This year’s keynote address will be given
by Fayé A. Briggs, who has a long and distinguished career as a researcher and textbook writer in acade-
mia, and now as director of chipset architecture for the world’s largest manufacturer of processor chips.

A new feature of the workshop is discussion periods in every session, giving participants a chance to
explore important aspects of teaching with the presenters. I hope that this will give you ideas you can
take back to use in your own teaching, and then report on them at future WCAEs. I look forward to
excellent presentations and excellent interactions with all of you.

Edward F. Gehringer, Workshop Organizer
Dept. of Electrical & Computer Engineering
Dept. of Computer Science
North Carolina State University
http://www4.ncsu.edu/~efg
efg@ncsu.edu

Table of Contents

Session 1. Welcome and Keynote 8:30–9:20

 8 :30 Welcome Edward F. Gehringer, workshop organizer

 8 :35 Keynote address: “Introducing new variables and constraints into computer architecture education,”
Fayé A. Briggs, Intel Corporation .. 3

Session 2. Teaching New Perspectives on Computer Architecture 9:20–10:00

 9 :20 “Teaching processor architecture with a VLSI perspective," Mircea R. Stan and Kevin Skadron,
University of Virginia .. 4

 9 :35 “Teaching students computer architecture for new nanotechnologies," Michael T. Niemier and
Peter M. Kogge, University of Notre Dame... 10

 9 : 5 0 Discussion

Break 10:00–10:30

Session 3. Teaching with Custom Computer Architectures 10:30–11:15

10:30 “Using custom hardware and simulation to support computer systems teaching,” Murray Pearson,
Dean Armstrong, and Tony McGregor, University of Waikato.. 19

10:45 “On the design of a new CPU architecture for pedagogical purposes,“ Daniel Ellard, David
Holland, Nicholas Murphy, and Margo Seltzer, Harvard University ... 27

11:05 Discussion

Session 4. Active Learning 11:15–12:00

11:15 “Questions to enhance active learning in computer architecture," Mark Fienup and J. Philip East,
University of Northern Iowa .. 34

11:25 "An active learning environment for intermediate computer architecture courses,“ Jayantha Herath,
Sarnath Ramnath, Ajantha Herath, and Susantha Herath, St. Cloud State University........................... 41

11:35 Discussion

Lunch (on your own) 12:00–1:30

Session 5. Simulators and Tools 1:30–3:30

 1 :30 “Effective support of simulation in computer architecture instruction,” Christopher T. Weaver,
Eric Larson, Todd Austin, University of Michigan ... 48

 1 :50 “Web-based training on computer architecture: The case for JCachesim," Irina Branovic,
University of Siena, and Roberto Giorgi and Antonio Prete, University of Pisa.................................. 56

 2 :10 “Digital LC-2: From bits & gates to a Little Computer,” Albert Cohen, INRIA, and Olivier
Temam, Université Paris-Sud .. 61

 2 :30 “MipsIt—A simulation and development environment using animation for computer architecture
education,” Mats Brorsson, KTH, Royal Institute of Technology .. 65

 2 : 5 0 “CoDeNios: A function-level co-design tool,” Yann Thoma and Eduardo Sanchez, Swiss Federal
Institute of Technology, Lausanne ... 73

 3 : 1 0 Discussion

Break and Poster Session 3:30–4:15

“How computers really work: A children's guide,” Shirley Crossley and Hugh Osborne, University
of Huddersfield, and William Yurcik, Illinois State University.. 79

“Update Plans: pointers in teaching computer architecture,” Hugh Osborne and Jir˘í Mencák,
University of Huddersfield ... 84

“CASTLE: Computer Architecture Self-Testing and Learning System,” Aleksandar Milenkovic,
University of Alabama in Huntsville, Bosko Nikolic and Jovan Djordjevic, University of Belgrade........ 89

“Development of a digital instrument as a motivational component in teaching embedded
computers," Gracián Triviño and Felipe Fernández, Universidad Politécnica 93

”ILP in the undergraduate curriculum,” Daniel Tabak, George Mason Univeristy 98

Session 6. Resources for Architecture Courses 4:15–6:00

 4 :15 ”PECTOPAH: Promoting Education in Computer Technology Using an Open-Ended
Pedagogically Adaptable Hierarchy,” Hugh Osborne, Shirley Crossley and Jir˘í Mencák, University
of Huddersfield, William Yurcik, Illinois State University .. 102

 4 :35 “Read, use, simulate, experiment and build: An integrated approach for teaching computer
architecture,” Ioannis Papaefstathiou and Christos Sotiriou, University of Crete 105

 4 :55 “An integrated laboratory for computer architecture and networking," Takamichi Tateoka, Mitsugu
Suzuki, Kenji Kono, Youichi Maeda and Kôki Abe, University of Electro-Communications............... 110

 5 :10 “A lab course of computer organization,” J. Real, J. Sahuquillo, A. Pont, and A. Robles,
Technical University of Valencia ... 118

 5 :30 “A survey of Web resources for teaching computer architecture,” William Yurcik, Illinois State
University and Edward F. Gehringer, North Carolina State University .. 125

 5 : 4 5 Discussion

Visit the workshop on the Web, http://www4.ncsu.edu/~efg/wcae2002.html. PDF of all the
proceedings, color screenshots, and more!

Introducing New Variables and Constraints into Computer
Architecture Education

Keynote Address

Fayé A. Briggs
Director of Chipset Architecture, Intel Corporation

Abstract: Computer architecture education has evolved significantly over the last 30 years, especially in
academia. Businesses have often sought to provide their internal education on various aspects of computer
architecture. The goal of this talk is to provide an overview of many other variables and constraints that
could further enrich the education of computer architecture. The intent is to suggest some new aspects of
computer architecture education curriculum that will enrich the development of architecture & associated
evaluation criteria

TeachingProcessorArchitecturewith a VLSI Perspective

MirceaR. Stan Kevin Skadron
ECEDepartment CSDepartment

Universityof Virginia Universityof Virginia
Charlottesville,VA 22904 Charlottesville,VA 22904
mircea@virginia.edu skadron@cs.virginia.edu

Abstract—This paper proposesa new approachto teach-
ing computer architecture by placing an explicit emphasis
on circuit and VLSI aspects.This approachhas the poten-
tial to enhancethe teaching of both architecture and VLSI
classes,to impr ove collaboration betweenCS and ECE de-
partments and to lead to a better understanding of the cur-
rent difficulties facedby microprocessordesignersin indus-
try .

Keywords: computerarchitecture,microprocessorde-
sign,VLSI design

I. INTRODUCTION

Theteachingof computerarchitecturetypically focuses
on theinteractionof instructionsetarchitecture(ISA), in-
structionsperclock cycle (IPC),andprocessorclock rate.
Yet the circuit-designexigenciesthat profoundly impact
theimplementationof architecture-level conceptsoftenre-
ceive little consideration.For example,the popularHen-
nessyandPattersontextbooks[1], [2] andothers,despite
their many strengths,have very limited informationabout
logic and circuit issues. On the other hand, the VLSI
anddigital integratedcircuit textbooks[3], [4] rarelycon-
sider the implicationsof their methodsfor microproces-
sor designat thearchitecturelevel. This division is often
perpetuatedby traditional academicboundaries. In this
paper we make the casethat a new course is needed
that crossestheseboundariesand teachescomputer ar-
chitecture with an explicit VLSI perspective and vice-
versa.

A. Whyteaching computerarchitecture with a VLSI per-
spective

Teachingcomputerarchitecture,asany otherdiscipline,
is differentfrom schoolto school,but therehave beenat-
temptsto unify it, either in an informal, grassrootsway,
e.g., by theincreasedpopularityof sometextbooksthatare
widely adoptedanddominatethefield; or in a formal way
by the different accreditationmechanisms,e.g., ABET,

* This work was supportedin part by NSF CAREER grant CCR-
0133634,NSFCAREERgrantMIP-9703440,andby a researchgrant
from Intel MRL.

CSAB,andthecreationandpublicationby IEEE/ACM of
genericcurricula for ComputerScienceandEngineering
degrees.1 In sucha proposedcurriculum,themaincom-
puterarchitectureconceptsarecoveredin a “core” class,
CS 220 - ComputerArchitecture,with moredetailedmi-
croarchitectureand circuit issuesbeing left to the non-
core, “advanced”classes,CS 320 - AdvancedComputer
Architecture andCS 323 - VLSI development. We agree
that not all studentscan, or should, learn all the details
normallypresentedin thesethreeclasses,but wealsothink
thatit is importantto teachthemicroarchitectureandVLSI
aspectstogether for thosestudentsthat elect to learn the
advancedconceptsand preparefor careersas micropro-
cessorarchitectsor circuit designers.In brief, we propose
thecreationof a combinedclass,CS320/323- Advanced
ComputerArchitecture: a VLSIPerspective, seefigure1.

Suchaclasswouldbeusefulfrom many pointsof view.
First, it breaksthe artificial boundarybetweenmicroar-
chitectsand circuit designers. Both in industry and in
academia,such differencesclearly exist but are mostly
detrimental. Whenarchitectsdo not have a goodunder-
standingof VLSI/circuit issues,they maytake unwisede-
cisionsthat penalizeoverall costandperformance;when
circuit designersdon’t understandtheoverall architecture,
they cannotfully takeadvantageof thedegreesof freedom
in designor exploit synergistic designchoicesacrossmul-
tiple levelsof abstraction.A courselike CS320/323- Ad-
vancedComputerArchitecture: a VLSIPerspectivewould
preparestudentswith acomplex view of botharchitecture
andcircuit aspects.

Second,the classwould alsohelp asa bridgefor aca-
demic programsin ComputerScience,ComputerEngi-
neeringandElectricalEngineering.A quicksearchof dif-
ferentexisting classesandprogramsat differentuniversi-
ties revealsthat ComputerArchitectureclassesaremany
timestaughtin bothCSandECEdepartments,with more
of them on the CS side, while VLSI classesare mostly
taughtin ECE andEE departments,with few CS depart-
mentsofferingthem.Thisis exactlythecaseattheUniver-

�
http://www.computer.org/education/cc2001

sity of Virginia, wheretherearetwo classesin Computer
Architecture,onein theCS, theotherin theECE depart-
ment, but only one VLSI class,in the ECE department.
A courselike CS 320/323- AdvancedComputerArchi-
tecture: a VLSIPerspectivewould beequallyattractive to
bothCSandECEstudentsanddepartments.

The third and final point is that such a classwould
bring new ideasandexcitementinto teachingboth Com-
puter Architectureand VLSI. While in industry the em-
phasison circuit designaspectsis clearly requiredfor the
high-performancemicroprocessorsof todayandtomorrow
(assupportedby the many publicationsat ISSCCandin
JSSC),this trendis not yet fully reflectedin thecomputer
architectureclassesbeingofferedin academia.Thesitua-
tion with theVLSI classesis evenmoreseriousasvery lit-
tle progresshasbeenmadein theteachingVLSI sincethe
seminaltextbookby MeadandConnway. Eventhenewest
VLSI textbooksstill usethesamebottom-upapproachof
first presentingdevice physics,followed by simple logic
circuit design,combinationalandsequential,followed by
layoutandfinally a few casestudies[3], [4]. Suchanap-
proach,quite successfulin the past,hasbecomeslightly
datedasit clearlytargets“hard-core”ElectricalandCom-
puterEngineeringstudentsandis not interestingto most
ComputerSciencestudents.EventheVLSI textbooksfo-
cusingon ASIC designarenot appropriatefor micropro-
cessordesigners,whoneedabalancedapproachthatcom-
bines both customand semicustomdesignmethods. A
courselike CS 320/323- AdvancedComputerArchitec-
ture: a VLSIPerspectivewould make bothComputerAr-
chitecture,andespeciallyVLSI design,moreattractive to
awiderspectrumof studentsandgivethemgreaterbreadth
of training.

I I . COMPUTER ARCHITECTURE WITH A VLSI
PERSPECTIVE: A BIRD’ S EYE VIEW

The goal of the classis to give equalweight to both
computermicroarchitectureandcircuit designaspects.In
order to do this effectively the topics will be presented
in parallel,with architectureconceptsbeingusedto pro-
vide a “natural” way to introduceVLSI andcircuit design
concepts. Accommodatingboth architectureand VLSI
will necessarilyentailsacrificingsomematerialfromtradi-
tionaladvanced-architectureandVLSI syllabi. Ourphilos-
ophyis thatwith asoundtrainingin fundamentals,thede-
tails areeasilylearnedindependently. For example,once
thefundamentalsof branchpredictionandcachingareun-
derstood,studentscanasneededteachthemselvesthevar-
iousadvancedbranch-predictionandcachingschemes,as
well as variationslike value predictionand prefetching.
As anotherexample,oncethefundamentalsof [MIRCEA:

VLSI].
To minimize the needfor pre-requisites,the classwill

assumeonly asophomore-level assembly-languageandin-
troductorycomputer-organization courseaspre-requisite.
CS 320/323will startwith a quick overview of Architec-
ture(“ComputerArchitecture101”) andVLSI (“VLSI De-
sign101”) to introducethemainideas.

A. Overview: ProcessorArchitecture

Theoverview of processorarchitecturetopicswill start
with a classic,single-issue(scalar)processor. We plan to
usea modernembeddedprocessorexample,like theDigi-
tal StrongArm,or its successor, theIntel XScale.Thiswill
includethe basicoperationsof instructionfetch, instruc-
tion decode,registerfile access,integerandfloating-point
execution,andresultwriteback. In a genericfashion,we
will alsointroducethe notionsof pipelining andpipeline
control, result forwarding, instruction and data caches,
control and datahazards,exceptions,etc. The quantita-
tive evaluationof performancethroughbenchmarkingand
simulationwill alsobeintroducedhere.

B. Overview: VLSIdesign

The overview of basicVLSI designconceptswill start
with abrief introductionof active devicebehavior andcir-
cuits,first at theswitchlevel andonly laterwith morede-
tailed analysisandcircuit-level modelingandsimulation.
Next we will touchon combinationalvs. sequentiallogic
andcircuits,staticvs. dynamiccircuit concepts,andbasic
ideasof possibledesignflows,includingcustom,semicus-
tom,andfully automated.Wealsobriefly touchontheidea
of alayout,andthecorrespondingCAD stepsof floorplan-
ning,placementandrouting.

Following this quick introduction the coursewill get
into moredetaileddiscussionof eachprocessorarchitec-
turetopicandits “associated”VLSI circuit concept.There
will beaclearattemptto presentbotharchitectureandcir-
cuit issuesin a logicalmanner, in generalby following the
typical order of a processorpipeline for the architecture
concepts,andassociatingthe most importantandnatural
circuit issueto thearchitecture,suchthat therearefew or
no repetitionsandall theimportantaspectsarecovered.

I I I . INSTRUCTION FETCH AND DECODE:
COMBINATIONAL LOGIC DESIGN

The classicalprocessorpipelinestartswith instruction
fetchanddecode,soit is naturalto startourdetailedtreat-
menthereaswell. Sincecachesareusedbothfor instruc-
tion anddata,andsincememorystructuresarenot natu-
rally bestsuitedasa first introductionto circuit concepts,

FETCH

DECODE

EXECUTE

MEMORY

� � � � � � � � 	

ICACHEPC

� �
 � � � �

ALU

+
4

DCACHE

?

 � �

� � � � �

� � � � �

 � �
� � � � �

� � � � �

 � �

� � �

� � �

� � � � � � � � �

� � � � �� � � �

 � �
� � � � �

� � � � �

� � � � �

 � �

! " #

! " #

! " # ! " # ! " #

� ! " # � ! " #

FAST SELECT B

SLOW SELECT B

DATA IN B

DATA IN A

FAST SELECT A

SLOW SELECT A

DATA OUT
SOFT LATCH

FAST SELECT B

DATA IN B

DATA IN A

FAST SELECT A

SLOW SELECT A

SLOW SELECT B

DATA OUT

CLK CLK
D Q

$ % $ %$ %
$ & '

()

*

A. B. C.

"classical"
CA

"classical"

COURSE
NEW

VLSI

Fig. 1. New classonComputerArchitecturewith aVLSI perspectivewill combineelementsfrom “classical”ComputerArchitec-
tureclassesandfrom “classical”VLSI designclasses:A. typical5-stageprocessorpipeline,B. typicalsimplifiedmicroarchitecture,
C. typical VLSI conceptsat thelogic andcircuit levels.

we postponethe actualdiscussionof VLSI conceptsfor
memoriesto a latersection.

A. Architecture: InstructionFetch andDecode

Herewestartwith aquickdiscussionof instructionfor-
mats, the CISC vs. RISC debate,and how decodinga
RISC instructionset is “easy” comparedto a CISC. We
will useMIPSasanexampleRISCarchitecture(wewould
have usedAlpha,but now it is a “defunct” processorline)
and x86 as an exampleof CISC, thus covering both ex-
tremes.

B. VLSI: BasicCombinationalLogic

We can usedecodingas a typical exampleof combi-
national logic circuits, and use it to illustrate the most
importantcircuit designconcepts. We start with simple
static circuit techniques,including complementarystatic
CMOS,pass-transistorandpass-gatelogic, andshow how
they applyto simplelogic gateswith muxesanddecoders

as a typical example. We then explain the advantages
of complementarystaticCMOS(generalapplicability, ro-
bustness,regenerationof logic levels)aswell asits disad-
vantages(size,suboptimalperformance).We thenshow
that otherparticularlogic stylescanoutperformcomple-
mentaryCMOSin specialcases,andexemplify with pass-
transistor logic and pseudo-NMOSfor muxes and de-
coders.We postponethe issueof dynamiccombinational
circuit designto a futuresection.

C. VLSI: Layout

Herewe introducelayout techniquesandthe main fig-
uresof merit for VLSI circuits: performance(propagation
delay), area(cost), power dissipation,reliability, robust-
nessto noise,etc. We also introducethe notion of dig-
ital designas a trade-off amongthe possiblefigures of
merit. We show simplebottom-up“polygon pushing”de-
signsteps.

IV. PIPELINING: SEQUENTIAL LOGIC DESIGN

One of the most effective ways to increaseprocessor
performanceis to usepipeliningof thevariousoperations.
Thisprovidestheperfectmotivationfor lookingat thecir-
cuit designof sequentialcircuits.

A. Architecture: Pipelining

We first presentthe “classical” 4-stageand 5-stage
pipelines, demonstratethe increased throughput that
pipeliningachieves,andexplore thetradeoffs betweenla-
tency and throughputfor a pipelinedprocessor. We fol-
low upwith moreadvancedconceptslike superpipelining,
andshow thetrade-offs dueto anincreasein thework per
pipelinestagevs. overheaddueto latchoverhead.

B. VLSI: Floorplanning

Thesimpleexistenceof apipelinegivesa level of regu-
larity to thedesignthatcanbeusedfor top-down floorplan-
ning. Hereweexplaintheimportanceof blockadjacencies
for reducedarea(lessrouting)andincreasedperformance
(shorterwires).

C. VLSI: SynchronousSequentialCircuits

A pipelineis basedon the overlap(in time) of the dif-
ferentfunctions;this overlapcanbe achieved with either
synchronousor with asynchronousmethods.Virtually all
current processorsare synchronous,so we start by ex-
plainingsimplesynchronousdesignconceptssuchasset-
up andhold timesandpropagationdelay, edge-triggered
flip-flop vs. transparentlatchvs. pulsedregister, etc. We
presentsimplestaticCMOSimplementationsof suchflip-
flops,registersandlatches,thenintroducedynamiclogic,
followed by dynamicversionsof thesestateelementsfor
higherperformancebut alsohigherpower andlessnoise
immunity. Weexemplify with a few of themostimportant
typesof flip-flopsusedin severalmicroprocessors,includ-
ing TSPC,theEarlelatch,etc.

D. VLSI: Clocking

The issuesof clock generation,clock distribution and
their influenceon clock skew areexplained. We explain
the trade-offs for clock-spines,clock-planes,H-tree and
X-tree clock distribution schemes,aswell asthe notions
of centralizedand distributed clocking schemes. Here
we alsodiscussthe issueof optimally driving large loads
throughtheplacementandsizingof buffers.

E. VLSI: Low-PowerDesign

We explain thedifferencesbetweendynamicandstatic
power, power consumptionand power dissipation,etc.

Moreadvancedconceptsliketime-borrowing anddynamic
voltage/frequency scalingarealsopresentedhere,aswell
asclock-gatingandotherlow-powermethods.Wealsoin-
troducetheenergy-delayproduct.

F. VLSI: AsynchronousDesign

In order to provide a balancedview, we also present
asynchronousdesign conceptssuch as micro-pipelines,
wave pipelining,and“hybrid” methodssuchasglobally-
asynchronous,locally-synchronous approaches.We also
give the (few) exampleswheresuchmethodshave actu-
ally madeit into real commercialmicroprocessors(e.g.,
wave-pipeliningfor addressdecoders).

V. EXECUTION UNITS: DATAPATH STRUCTURES

After instruction fetch and decode,the next step in a
simple,scalar, processoris registerreadandexecution.We
postponediscussingregisterfile issuesto thenext section
anddiscussexecutionunitshere.

A. Architecture: Integer Execution

Herewe discussbriefly different issuesrelatedto inte-
gerdatapaths,especiallymicroarchitectureandlogic level
computerarithmeticalgorithms,including addition, sub-
traction,multiplication,division andtranscendentaloper-
ations.Two’scomplementnotationis introducedaspartof
this topic. Wealsobriefly explain MMX andothersignal-
processingenhancementtechniquesfor general-purpose
processors.

B. Architecture: Floating-Point Execution

We follow the integer datapathissueswith the more
complex issuesrelatedto FParithmetic,includingdatafor-
matslike IEEE.

C. VLSI: DatapathandComputerArithmetic

Herewe explorein moredepththedifferencesbetween
staticanddynamiccombinationallogic circuits, with the
higher performanceof dynamiclogic beingwidely used
for datapathcircuits. We thenpresentdifferentaddercir-
cuit styles (e.g. Kogge-Stone),multiplier circuit styles,
shifterstyles,etc.

D. VLSI: Placement

TheVLSI structurespresentedin previoussectionswere
moreor less“random” logic. For datapathcircuits there
is an obvious one-dimensionalregularity (the numberof
“bits”) that can, and should, be exploited as bit-sliced
design. Bit-slices are an example of regular placement
of logic along one dimension. Here we also discuss

aboutcustomandsemicustomdesignmethodologiesand
give examplesof customdatapathdesignandsemicustom
standard-cell-based randomlogic.

VI. CACHES AND REGISTER FILES: MEMORY DESIGN

Finally we presentcachesand data-arraystructures.
Cachesareusedfor instructionsanddata,while dataar-
raysareusedfor registerfiles,queues,etc.

A. Architecture: Caches

Westartby presentingissuesrelatedto cacheassociativ-
ity, first thetwo extremes,direct-mappedcacheandfully-
associativecache,followedby “in-between”caseslikeset-
associative cacheandCAM-RAM structures.Weconsider
the issuesof write-throughvs. write-back,fills andwrite
buffers.TLBs andgenericbuffersareothertypesof mem-
ory structuresthatarepresentedhere.As advancedtopics
we presentnon-blockingcachesandmulti-level cachehi-
erarchies.

B. Architecture: RegisterFiles

For registerfileswestartbypresentingarchitecturalreg-
istersandtheir implementation.We considermulti-porting
aswell assplit-phaseregisteraccess.

C. VLSI: MemoriesandData Arrays

In order to implementmemoriesand data arrayswe
presentthe main circuit building blocks. We start with
the row and column decoders,followed by memory-cell
design.Static/6Tvs. dynamic/1Tor 4T aswell asword-
linesandbitlines,precharging, for readandwrite arethen
discussed.Senseampdesignandissuesrelatedto leakage
andthresholdwrap-upthedesignaspects.We follow by a
brief discussionof defects,yield, andredundancy methods
(sparerowsandcolumnswith reconfiguration)for increas-
ing yield for memorystructures.

D. VLSI: Routing

Physicaldesignissuesfor memoriesareextremelyim-
portant, in particularthe issueof pitch-matchingfor the
varioussubsections.This is an exampleof self-routing
by abutmentwhichshows theimportanceof regularity for
VLSI design. Generalrouting for “random” logic is a
muchmoredifficult problem.

VII . PIPELINE CONTROL: STATE MACHINES

A. Architecture: PipelineControl

We first show how forwardingworks andhow the PC
getsupdated. We then introducebranchpredictionand
show how instructionsget “squashed”. As an advanced

topic we introducemultiple (in-order) issue-superscalar
and the associatedscoreboardingand contrastthis with
VLIW techniques.

B. VLSI: StateMachines

Herewe discussdifficultiesof longerpipelinesin terms
of forwardingcomplexity andmispredictionpenalty. We
introducePLAs asan alternative for combinationallogic
implementation.

VII I . VLSI: INTERCONNECT, BUSSES AND I /O

We presentmajor difficulties relatedto long intercon-
nect,RCandRLC delayissues,andrevisit buffer-insertion
to reducequadraticdelay. We alsoshow I/O designand
system-interconnectissues,including the needfor multi-
voltagedesign.

IX. WHEN THINGS GO WRONG: EXCEPTIONS,
VERIFICATION, TESTING

A. Architecture: Exceptions

An essentialpart of architectureis exceptionhandling.
We discussprecisevs. impreciseexceptions,explore the
challengesof exceptionhandlingfrom the ISA level, and
thenproceedto describetherequisitehardwarestructures.
We first presentinterrupt/traphardware,supervisormode,
exceptionsandtrap vectors. We thentracethe sequence
of stepsfor syscalltrap, I/O interrupt. For dealingwith
exceptionswhile alreadyhandlinganexceptionweexplain
the needfor interruptmasks,processorstatusword, etc.
As an advancedtopic we presentthe BIOS anddescribe
theprocessof bootstrappingthecomputer.

B. VLSI: Verification,Testing, andPackaging

We explain the issuesrelatedto verification and vali-
dation(makingsurethat the designis correct)aswell as
to testingandbuilt-in self test(BIST—makingsurethata
correctdesignis correctlyfabricated).Thenotionsof de-
fects,faultsanderrorsis exploredin moredetail. A brief
overview of manufacturing,packaging,binningisalsopre-
sentedhere.

C. VLSI: Powerdistribution

With reducedvoltagesand increasingpower, the cur-
rentsthat needto be distributedon chip areincreasingat
an alarmingrate. Here we discussissuesrelatedto IR-
drop,electromigration,andtheir influenceonperformance
andreliability. We briefly mentionaluminumandcopper
interconnectandSOI.

X. OUT-OF-ORDER EXECUTION: VLSI
METHODOLOGY

A. Architecture: Out-of-Order Execution,Register Re-
naming

Herewe explain the benefitsof out-of-orderexecution
(OOE)andtheneedfor renaming.Webriefly describeba-
sic OOEstructures(registerupdateunit vs. issuequeues,
etc.) as well as wakeup and selectlogic and renaming
logic.

B. VLSI: QueuesandVLSIMethodology

The issuequeuehasbecomeoneof the mostcomplex
structuresin a modernout-of-ordersuperscalarmicropro-
cessor. We choosetheissuequeueto do anin-depthanal-
ysis andexemplify with multiple casestudiesof real de-
signs. We usethis asa motivation for a look at different
designmethodologyalternativeswith theiradvantagesand
disadvantages.

XI. CONCLUSION

We have madethecasefor a classthat teachesproces-
sorarchitecturewith a VLSI perspective. We believe that
sucha classwould have a strongimpactin academiaand
will also betterpreparestudentsfor jobs aseitherarchi-
tectsor circuit designers.We expecttheclassto bequite
popularwith a wide spectrumof studentsin CSandECE
departments.Sincenocurrenttextbookusesthisapproach
we alsobelieve that therearesignificantopportunitiesfor
filling this void with a “new andimproved” textbook that
could be used,eitherfor teachingComputerArchitecture
with a VLSI perspective, or, alternatively, for teaching
VLSI for ComputerSciencestudents.

REFERENCES

[1] J. L. Hennessyand D. A. Patterson, ComputerArchitecture: A
QuantitativeApproach, SecondEdition, MorganKaufmannPub-
lishers,1995, ISBN 1-55860-329-8.

[2] D. A. Pattersonand J. L. Hennessy, ComputerOrganization&
Design: The Hardware/Software Interface, Morgan Kaufmann,
SanMateo,1993.

[3] JanM. Rabaey andMassoudPedram,Eds., Low Power Design
Methodologies, Kluwer AcademicPublishers,Boston,MA, 1996.

[4] Neil Westeand KamranEshraghian,Eds., Principles of CMOS
VLSIDesign, AddisonWesley, Reading,MA, 1993.

Abstract:
Given the potential limitations facing CMOS, there has
been an influx of work and research in various nano-
scale devices. Most of the work related to
nanotechnology has been done strictly with devices,
with little attention given to circuits or architectures of
them – the desired end result. In the past, these studies
have usually lagged device development by many years.
However, we propose a curriculum to help integrate the
communities – device physicists and computer
architects – earlier. One goal of such a curriculum
would be to teach students how to generate a
“Mead/Conway” methodology for a given
nanotechnology. This would teach students not only
how to help technology change and evolve, but
eventually teach students how to adapt to changes after
a technology evolution. Another goal would be to
facilitate more (and earlier) interaction between device
physicists and computer architects to prevent these two
groups from developing diverging views of what is
physically and computationally possible in a system of
nano-scale devices.

1. Introduction:
Consider the following “quote” from the preface of a
future book on nano-scale design:

“Until recently the design of integrated circuitry for
nano-scale devices has been the province of circuit and
logic designers working within nanotechnology firm
research laboratories and select “pockets” of academia.
Computer architects have traditionally composed
systems from standard self-assembled nano-circuits
designed and manufactured by these entities but have
seldom participated in the specification and design of
these circuits. Nano-engineering and Computer
Science (NE/CS) curricula reflect this tradition with
courses in nano-scale device physics and integrated
circuit design (if any at all) aimed at a different group
of students than those interested in digital system
architecture and computer science. This text is written
to fill a current gap in the literature and to introduce all
NE/CS students to integrated system architecture and
design for emerging nano-technologies. Combined
with individual study in related research areas and
participation in large system design projects, this text

provides the basis for a course-sequence in integrated
nano-systems.” (Mead/Conway v)

With the potential physical and economic
limitations facing CMOS, there has been a recent
proliferation in research related to nano-scale devices –
particularly those targeted toward computational
systems. Much of this early work has been relegated to
the development of the physical devices themselves;
and while circuits and systems have probably been
envisioned within each specific nanotechnology being
considered, their development has usually not
progressed beyond the conceptual stage. Furthermore,
historically, computer architects have been disjoint
from the process of actual circuit designs, and in the
case of CMOS, comprehensive and integrated
architectural and circuit design methodologies were not
published until the late 1970s when Carver Mead and
Lynn Conway's groundbreaking work appeared [1].

Interestingly, the above paragraph of this work is
essentially verbatim from the preface of Mead and
Conway's VLSI text. While written almost 25 years
ago, it illustrates a problem that they faced – computer
architects, who might be the “lowest common
denominator” in designing a system to perform useful
and efficient computation, did not take part in the
development of the devices and basic circuits with
which they were required to design. We are beginning
to face this same problem now with regard to nano-
scale devices, and this paper will propose the
beginnings of a curriculum to help alleviate it.

At a recent NSF sponsored workshop on molecular
scale devices and architectures [2], Lynn Conway
reiterated that during the early years of CMOS
development, while architects would sometimes work
with MOS technologists, as a “group”, most individuals
did not span the whole range of knowledge required to
design a complete computer system. Likewise, the
scope required to do complex designs is large and it is
not completely feasible for a device physicist to
understand all of the issues a computer architect must
consider. In the pre-Mead/Conway era, the
development flow was for system architects to express
a design at a high level, such as Boolean equations, and
then turn it over to logic designers who converted the
designs into “netlists” of basic circuits. Fab experts
would then lay out implementations of the individual

Teaching Students Computer Architecture for New, Nanotechnologies

Michael Thaddeus Niemier
University of Notre Dame

Dept. of Comp. Sci. and Eng.
Notre Dame, IN 46545

mniemier@nd.edu

Peter M. Kogge
University of Notre Dame

Dept. of Comp. Sci. and Eng.
Notre Dame, IN 46545

kogge@wizard.cse.nd.edu

logic blocks, and “just wire them together.” Interaction
between the architects and fab experts was limited. In
terms of technology, MOS FETS were considered
“slow and sloppy,” and real design was in sophisticated
bipolar devices.

The invention of the self-aligning FET gate
allowed Mead and Conway to bridge this gap by
changing the focus of fab from considering chips “in
cross section” to an “overhead view” where it is the
interconnect that is most visible. They did this by
developing a set of design rules and abstractions that a
computer architect could use to involve himself or
herself in the circuit design process. They reduced the
physics-dependent device descriptions to a scale-
independent set of parameters based largely on area and
shape, with some simple rules for first order modeling
of how such devices would interact in combination with
each other. They also introduced some simple but
useful circuit primitives that changed the discussion
from isolated logic gate performance to interconnect.
This allows architects, who are experts in hierarchical
designs, to extend their hierarchies one level down – to
potentially new basic structures, and then take
advantage of these structures in implementing larger
and larger systems. The introduction and use of clever
circuits using pass transistors is just one example of
such an insight.

When coupled with the ability to cheaply fabricate
real chips through MOSIS, this revolutionized the
academic computer architecture community. Now,
inexpensive, but adventuresome, prototyping could be
carried on in an academic setting, by students (and
faculty) whose growing expertise was in expressing and
analyzing novel regular and hierarchical designs.

Before proposing any new and targeted curriculum
for nanotechnologies, we will first revisit the existing
core of the computer architecture curriculum at the
University of Notre Dame – a representative subset of
courses that would be taken by a student wishing to
specialize in computer architecture. Also, because we
propose that in the future there should be greater
integration between communities of computer
engineers/architects and those actually working on nano
device development, we will include an overlay of
relevant electrical engineering curriculum – especially
that which is targeted toward electrical engineers
interested in computer systems. This will be used to
show how electrical and computer engineering curricula
currently interact and will help define a base for an
integrated curriculum targeted toward nano-scale
architectures.

Fig. 1 illustrates the existing curriculum. It also
includes a listing of goals and topics relevant to each
course, shows any overlap between the two curricula,
documents popular course sequences, and highlights
available course sequences. By examining this figure

one can clearly see that all of the pieces are in place to
facilitate interaction and understanding between
electrical and computer engineers (or device physicists
and architects!). A set curriculum is already in place
for electrical engineers who have an interest in
computer systems and several course sequences are
available for computer engineers interested in the
“physics” of logic. (Note: an interesting side project
might be to integrate this “roadmap” into the first
course, Logic Design (CSE 221), of this sequence to
help students see and understand the “bigger picture”
earlier.)

At the same workshop mentioned above, when
speaking of nano-scale devices, Conway also posed the
question of when will there be some emerging areas
where designers will be able to compile enough basic
information to start generating interesting circuits. At
the University of Notre Dame, we believe that one
promising “emerging area” is the Quantum-dot Cellular
Automata (QCA). QCA stores information within
“cells” consisting of multiple quantum dots via the
positions of single electrons, and performs logic
functions not by electron flow, but by Coulombic
interactions between electrons in neighboring QCA
cells. Real QCA cells have been fabricated by Notre
Dame device physicists that demonstrate the key
properties of computation, information transfer, and
storage. Also, researchers are on the verge of creating
QCA cells consisting of single molecules which may be
“self-assembled” into larger structures via attachment to
DNA tilings. Truly, QCA is in the nano-scale realm
and a subset of actual devices – both theoretical and
experimentally proven – exists.

Prior to the beginning of the authors’ research on
design with QCA, little work had been done in
considering systems of, circuits for, or an architecture
for QCA devices. Ironically (and rather
unintentionally), our initial work mimicked the
experiences of Mead and Conway in more ways than
one. First, our interactions with technologists were not
as successful as they could have been – because “as a
group, most individuals did not span the range of
knowledge required to design a complete computer
system.” As a particular example, recently we
discovered that a QCA circuit characteristic that we (as
architects) deemed essential for useful and efficient
circuits, was not a priority for device physicists.
Clearly, this illustrates the need for better
communication and understanding between the two
communities. Second, when examining our design
process, it has by in large mirrored the path proposed
by Mead and Conway to help circuit designers
understand the architectural possibilities of a
technology.

Now, with many other nanotechnologies consisting
of at least a subset of experimental devices, we propose

developing a curriculum to teach students how to
develop a set of guidelines for computer architects and
circuit designers for a specific nanotechnology. The
context will include our experiences with QCA and the
proven methodologies proposed by Mead and Conway
for one of the most commercially successful
computational mediums -- CMOS. Eventually an end
result might be a “Mead/Conway” study for a specific
nanotechnology. However, another (and earlier) goal
of the curriculum is to teach students how to actually
develop a “Mead/Conway” study for any
nanotechnology. We also propose an extension of their
work – namely, preparing computer architects and
circuit designers to work with device physicists during
actual device development. The end result envisioned
is as a group, individuals who span the range of
knowledge required to design better devices and
complete computer systems.

With these thoughts in mind, Fig. 1 has been
augmented in Fig. 2 to show a parallel curriculum that

will end with a “Frontiers of Nano-Systems course” and
accomplish one of the first goals stated above – namely
educate students on how to develop a “Mead/Conway”
for any nanotechnology. Interestingly, the second goal
(preparing computer architects and circuit designers to
work with device physicists during actual device
development) should be accomplished by the course
sequence itself as a.) it (like a VLSI or logic design
course) would be targeted toward both electrical and
computer engineers and b.) “the big picture” detailed in
the figure below will be explained to students at the
beginning of the sequence and act as a roadmap to help
the students understand what they are working toward.
Finally, Fig. 2 illustrates an approximate time sequence
as to where these courses would fit into existing
electrical and computer engineering curriculum. They
could easily occur simultaneously with or after an
appropriate course in “conventional” electronics and
architectures. However, they could also be taught
before the similar “conventional” course. This is based

Spring Semester,
Sophomore Year

Fall Semester,
Junior Year

Spring Semester,
Junior Year

Fall Semester,
Senior Year

Spring Semester,
Senior Year

CSE 321
Comp. Arch. I

Design/evaluate
arch. vs. org. vs.
implementation;
understand basic

CPU

CSE 322
Comp. Arch. II

Understand arch.
features of modern
computer systems;

complete large
design project

CSE 462
VLSI Design
Learn design

methodologies of
Mead/Conway;
build CSE 321

circuits in CMOS

EE 347
Semiconductors I
Learn physical

phenomena
fundamental to

transistors, Si IC
technology

EE 357
Semiconductors II
Apply transport
phenomena to

explain terminal
behavior of FETs,
MOS devices, etc.

CSE 341
Operating Systems
Understand how

processor talks with
system software

CSE 422
Comp. Sys. Design
Provides view of

integrated HW/SW
tradeoffs for

systems (i.e. space,
power, speed…)

EE 446
IC Fab. Lab

Introduce students
to principles of

IC Fab. (i.e.
photolithography,

impurities…)

CSE 498A
Adv. Comp. Arch.

Understand current
high perf. Arch,

system-level comp.
archs., & learn

R&D skills

CSE/EE 498B
“Front. of µµSys.”
Develop relations

B/t integrated
elec. sys. design,
device tech., sys.
archs, and apps

CSE 443
Compilers

Help students
develop complete
understanding of
relationships b/t

ISA & arch.

CSE 221
Logic Design

Understand info.
On binary logic/
building blocks

implementable in
CMOS

EE 242
Electronics

Understand how
actual transistor

works; learn basics
of VLSI circuit

Available
EE “Bits-to-Chips”

Concentration

An ideal
“integration”

of device
background

and
architecture

for computer
architects

Some typical
computer

engineering
sequences

Required by
EE & CSE

Required by
only CSE

Required by
only EE

Fig. 1: Existing “core” of “conventional” computer architecture curriculum.

on the idea that someone who is trying to develop an
architecture for a specific nanotechnology might have
better success with less knowledge of previous design
evolutions and/or design methodologies. Would a
potential computer architect be better off with just a
sound basis of knowledge in the nanotechnology that he
or she is trying to develop a “Mead/Conway” for?
Would this lead to the best possible design
methodology and architecture for that particular nano-
scale device? Arguments will be made for both cases
based on our experiences with QCA.

The rest of this paper will discuss the “CMOS
independent” parts of our current curriculum, and what
needs to be kept intact from it – largely the hierarchical
design approach. We will also detail how we propose to
educate students to accomplis h the above goals. We
will first discuss our proposed curriculum in detail and
discuss what background students should bring to it and

learn from it. The next section will discuss why we
should – and how to – encourage students to think
"outside the box" with regard to circuits and
architectures for nanotechnologies. Next, we will
consider mechanisms, examples, etc. for introducing
students to the actual development of circuit design
rules, techniques, and architectures. Finally, we will
conclude and discuss future work. Interestingly, each
of these sections will be introduced with an excerpt
from the text of the Mead/Conway preface indicative of
the fact that architects studying nanotechnology will
have to face and solve many of the same problems that
were first experienced during the last technology
evolution.

2. (Student) Background:

“We have chosen to provide and assume that
students will bring with them just enough essential

Biochemistry for
engineers

Quantum Mech.
for engineers

Spring Semester,
Sophomore Year

Fall Semester,
Junior Year

Spring Semester,
Junior Year

Fall Semester,
Senior Year

Spring Semester,
Senior Year

CSE 321
Comp. Arch. I

Design/evaluate
arch. vs. org. vs.
implementation;
understand basic

CPU

CSE 322
Comp. Arch. II

Understand arch.
features of modern
computer systems;

complete large
design project

CSE 462
VLSI Design
Learn design

methodologies of
Mead/Conway;
build CSE 321

circuits in CMOS

EE 347
Semiconductors I

Learn physical
phenomena

fundamental to
transistors, Si IC

technology

EE 357
Semiconductors II
Apply transport
phenomena to

explain terminal
behavior of FETs,
MOS devices, etc.

CSE 341
Operating Systems
Understand how

processor talks with
system software

CSE 422
Comp. Sys. Design
Provides view of

integrated HW/SW
tradeoffs for

systems (i.e. space,
power, speed…)

EE 446
IC Fab. Lab

Introduce students
to principles of

IC Fab. (i.e.
photolithography,

impurities…)

CSE 498A
Adv. Comp. Arch.

Understand current
high perf. Arch,

system-level comp.
archs., & learn

R&D skills

CSE/EE 498B
“Front. of µµSys.”
Develop relations

B/t integrated
elec. sys. design,
device tech., sys.
archs , and apps

CSE 443
Compilers

Help students
develop complete
understanding of
relationships b/t

ISA & arch.

CSE 221
Logic Design

Understand info.
On binary logic/
building blocks

implementable in
CMOS

EE 242
Electronics

Understand how
actual transistor

works; learn basics
of VLSI circuit

Available
EE “Bits-to-Chips”

Concentration

An ideal
“integration”

of device
background

and
architecture
for computer

architects

Some typical
computer

engineering
sequences

Required by
EE & CSE

Required by
only CSE

Required by
only EE

Frontiers of
Nano-systems

Nano-scale
Devices

Fig. 2: Existing “core” of computer architecture curriculum augmented with proposed “nano”-curriculum.

information about devices, circuits, fabrication
technology, logic design techniques, and system
architecture to enable them to fully span the entire
range of abstractions from the underlying physics to
complete VLSI digital computer systems.”
(Mead/Conway vi)

As stated in the introduction, an initial end goal of
our curriculum is to teach students how to design a
Mead/Conway study for any nanotechnology. The
above excerpt from the actual Mead/Conway preface
describes what knowledge the authors expected
students (including computer architects!) to have in
order to understand the design rules provided for VLSI
systems. While the existing and “conventional”
computer architecture course sequences will provide
some needed background for a concentration in nano-
scale design, clearly, preparing students for a
technological evolution will require additional and
different fundamental information as well.

It should be reemphasized that Mead and Conway
were proposing a “capstone” class in VLSI design,
while we are proposing a curriculum to teach the
development of their methodologies as an end goal
(which will hopefully, eventually lead to an analogous
“capstone” course for a specific nanotechnology).
Consequently, we must also define what background –
devices, logic design methods, fabrication techniques,
etc. – students will need to meet this goal. This
“background” must be provided in two different ways.
First, an entirely new subset of courses must be
developed to teach students the fundamentals of nano-
scale devices and nano-scale fabrication techniques.
What should such a sequence entail? This question can
best be answered by looking at the different disciplines
that are part of various nano-scale device developments.
For example, in addition to electrical engineers,
physicists, and computer architects, chemists are an
integral part of the development of QCA. Additionally,
other emerging nanotechnologies – DNA-based
computing, carbon nanotubes, etc. – all have roots in
chemistry. With this in mind we believe that any
curriculum designed to teach students how to develop
systems of nano-scale devices should include a course
in biochemistry – but targeted toward engineers.

Other background information can most likely be
derived from existing courses, albeit retargeted for
different ends. For example, many emerging
nanotechnologies are also rooted in quantum mechanics
– Q-bits, QCA, etc. – and at the University of Notre
Dame a course in quantum mechanics is available as
part of the electrical engineering graduate curriculum
(and available to interested undergraduates as well).
Part of this existing course could easily be
augmented/spun-off and should be targeted toward

engineering students who are interested in circuit and
system design.

Together, these two courses – biochemistry for
engineers and quantum mechanics for engineers –
would provide the foundation for a course in nano-scale
devices which would eventually segway into a course
intended to teach the development of Mead/Conway-
esq design rules and methodologies. This specific
course sequence is highlighted in Fig. 3 and each course
is paired with its “conventional equivalent”. By
examining Fig. 3, one can conclude that the sequence of
biochemistry for engineers and quantum mechanics for
engineers would provide the same functionality for
students desiring to study systems of nano-scale devices
that the electrical engineering semiconductors course
currently provides for students desiring to study
systems of MOS devices. Namely, both teach students
about the materials from which computational devices
and their substrates can be built.

In the existing curriculum at the University of
Notre Dame a course in electronics, which teaches
students how computational devices constructed with
various semiconductors actually function, occurs in
parallel with the semiconductors course. Our proposed
and parallel course in nano-scale devices fills the same
role as a course in MOS electronics but occurs only
after students have studied the fundamentals of how
various nano-scale devices can actually be constructed.
We believe that sequencing these course sets will
provide engineering students with the greatest level of
understanding about the computational devices.

Our course sequence concludes with a “Frontiers of
Nano-Systems” course. The particular class is currently
“paired” with the existing VLSI course (which employs
and teaches the Mead/Conway design rules and
methodologies for MOS) as well as the Frontiers of
Microsystems course (which seeks to help students
understand the relationships between integrated circuit
design, device technology, system architecture, and
applications for MOS devices) [3]. However, because
there are many promising nano-scale devices and no
heir-apparent to CMOS, our proposed “Frontiers of
Nano-Systems” currently exists essentially as a
combination of its two MOS equivalents. While it
might involve case studies of architectures and design
rules for existing and promising computational devices,
it is more targeted toward helping students understand
how such design rules were actually developed.
Essentially, the goal of this course is to teach students
how to help technology evolve.

Ideally, work completed and skills learned in a
Frontiers of Nano-Systems course will someday lead to
a specific Mead/Conway-esq course for a specific
nanotechnology. Such a course might be offered when
a nanotechnology has evolved enough that a MOSIS-
like conglomerate exists for it. For MOS devices,

MOSIS (Metal Oxide Semiconductor Implementation
Service) provides system designers with a single
interface to the constantly changing technologies of the
semiconductor industry and allows for the fabrication
of their circuits. Were an “NIS” (“Nanotechnology
Implementation Service) to exist, a set of design rules
(or single interface) for a specific nanotechnology
would also exist. It is these design rules that would
form the core of a course that would not teach students
how to help technology evolve. Instead, such a course
would not only allow computer architects to prototype
and analyze novel and regular devices for a
nanotechnology, it would also help a community adapt
to a new computational medium. Essentially Frontiers
of Nano-Systems would become two courses – one to
teach students how to adapt, the other to teach students
how to keep evolving. (Also, even those who do not
participate in an eventual “NIS-targeted” course will
have at least seen and experienced what is required to
adapt to a new technology).

Finally, there are three important generalizations to
make about our proposed curriculum for designing with
nano-scale devices. First, when examining its
“conventional equivalent” one can see that it consists of
a mix of electrical engineering and computer
engineering courses – specifically one electrical
engineering elective, one electrical engineering and
computer engineering requirement, and one computer
engineering elective. Note that it contains no explicit or
existing computer architecture courses (more on this
next). However, it does contain a significant
“deviation” from the “conventional” curriculum.
Namely, previously, a semiconductors course was not a
requirement or even a common elective for computer
engineers (i.e. computer architects). However, because
we want to facilitate closer interactions between
electrical and computer engineers (device physicists
and computer architects) who are trying to develop
nano-scale devices, we believe a semiconductors-like
course should be part of the core curriculum. Here this
takes the form of biochemistry and quantum mechanics

for engineers which will help ensure that computer
architects understand the limits and constraints of what
can be built, constructed, or designed with a specific
nano-scale device.

Second, as mentioned above, there are no explicit
logic design or computer architecture courses that are
part of our proposed curriculum. New or retargeted
courses are not proposed because in order to understand
a simple CPU or build simple computational logic
circuitry students still must learn basic logic design
techniques and hierarchical design methodologies that
“conventional” classes like logic design and computer
architecture provide. Now, if a semiconductors-like
background should be a requirement for any computer
architect working on developing nano-scale devices,
then similarly a background in logic design/computer
architecture would be ideal for device physicists.
While a bits-to-chips sequence for electrical engineers
is highlighted in Fig. 1, the front-end of that sequence –
logic design and computer architecture – is most
essential for cementing a close working relationship.

Third, and finally, in the introduction we posed the
question of whether it would be best for a student to
take part in this curriculum with either a through or a
minimal background in logic design, device physics,
and principle of VLSI design methodologies. Until
now, we have left our proposed course sequences vague
with regard to where they would fit into an academic
timeline. One could make the argument that it would
be best to teach students how to design for a nano-scale
device before little or any of the “conventional
curriculum” is taught (where “conventional curriculum”
refers to MOS equivalent courses as well as courses in
computer architecture or VLSI design). This way a
student would have no preconceived notions of what a
circuit or system must look like or has looked like and
might develop the best set of system design rules for a
particular nano-scale device. However, an argument
against this approach would obviously be that a student
would have little if any knowledge about basic design
or even how a simple CPU works, severely limiting

EE 347
Semiconductors I
Learn physical

phenomena
fundamental to

transistors, Si IC
technology

EE 242
Electronics

Understand how
actual transistor

works; learn basics
of VLSI circuit

CSE/EE 462
VLSI Design
Learn design

methodologies of
Mead/Conway;
build CSE 321

circuits in CMOS

Quantum mechanics
for engineers

Biochemistry
for engineers

Frontiers of
Nano-systems

Nano-scale
Devices

CSE/EE 498B
“Front. of µµSys.”
Develop relations

B/t integrated
elec. sys. design,
device tech., sys.
archs, and apps

Fig. 3: The core of the “nano”-curriculum with “conventional” curriculum equivalents.

what he or she might design. One could also argue that
it would be best to prepare students for a technology
change only after they have experienced all of the
“conventional curriculum”. Then, they would will have
not only learned basic principles of logic and CPU
design, but also will have learned advanced architecture
techniques and studied design rules and methodologies
for a proven computational medium – CMOS.
However, this approach does not separate the process of
technology from the process of design and may cloud
students’ thinking by teaching them one way to design
and study large systems of integrated circuits. Would
this result in the best, original set of design rules for a
particular nano-scale device?

A better answer might actually be a mix of the two
arguments. A nano-engineering course in quantum
mechanics and/or biochemistry should take place
concurrently with a “conventional” semiconductors or
electronics class. This way, students will learn the
fundamentals of each technology in parallel and will be
less inclined to “think” in terms of one technology over
another. Similarly, a nano-scale device course should
take place concurrently with a computer architecture
course sequence and after a “conventional” electronics
class. This will allow students to consider how basic
CPU requirements and hierarchical design
methodologies learned in computer architecture might
apply to nano-scale devices. Also, the “conventional”
electronics course will provide a student with a good
foundation of what a computational device has to do,
but not necessarily how it must do it. Finally, the
Frontiers of Nano-Systems class could take place in
conjunction with a “conventional” VLSI class (so
students thinking is left “unclouded”) or after it (for a
better foundation in what designing a Mead/Conway set
of design rules is all about). However, we would
suggest that students take it before some of the more
advanced computer architecture classes. Why?
Students will have a generic idea of what a CPU must
do but will not be tied to more complex architectural
techniques – hopefully leading to a set of original,
targeted, and unclouded set of design rules for a
particular nano-scale device. Additionally, one could
always take advanced architecture courses later and
apply techniques learned in them to an existing nano-
scale system.

3. Out of the Box:

“VLSI electronics presents a challenge, not only to
those involved in the development of fabrication
technology, but also to computer scientists and
computer architects. The ways in which digital systems
are structured, the procedures used to design them, the
trade-offs between hardware and software, and the
design of computational algorithms will all be greatly

affected by the coming changes in integrated
electronics.” (Mead/Conway v)

This Mead/Conway excerpt essentially describes
what biochemistry for engineers, quantum mechanics
for engineers, and nano-scale devices must teach
students to do in our new and parallel curriculum.
Obviously a major purpose of these classes and the case
studies that will be analyzed in them will be to help
students learn “the basics” of the promising
nanotechnologies and initialize a close working
relationship between device physicists and computer
architects. This relationship is critical to prevent these
two groups/entities from developing diverging views of
what is physically and computationally possible in a
system of nano-scale devices. It is best illustrated and
explained here (and eventually to students in a class)
with a short case study from our experiences with QCA.

Earlier, we alluded to the fact that a QCA circuit
characteristic that we (as architects) deemed essential
for useful and efficient circuits was not a priority for
device physicists. Specifically, an idealized QCA
device (or cell) can be viewed as a set of four charge
containers or “dots” positioned at the corners of a
square. The cells contain two extra mobile electrons
which can quantum mechanically tunnel between dots
but, by design, cannot tunnel between cells. The
configuration of charge within the cell is quantified by
cell polarization, which can vary between P=-1,
representing a binary “0”, and P=+1, representing a
binary “1”. Unlike CMOS (in which multiple layers
of metal can facilitate data routing), there really is no
“third dimension” in which to route wire in QCA.
However, a wire formed by QCA cells rotated by 45
degrees can cross a wire formed by 90-degree
(unrotated) QCA cells in the plane with no interference
of either value on either wire. Early in our
architectural/circuit design study of QCA, this property
was considered to be of the utmost importance as it
provided our only other “dimension” of routing.
However, when discussing our designs with chemists
(who are working on DNA substrates on which QCA
molecules could be attached) we realized that they had
not yet even considered the interaction of 45-degree
cells with 90-degree cells (as for them, this was a very
complex design problem). This early collaboration has
resulted in some relatively minor changes in the way
our circuit and system designs will be structured and
has led the device physicists and chemists to reconsider
this problem. The result should be a more feasible
design with potential for earlier implementation.

Now, we also mentioned in the previous section
that the courses in our sequence discussed above would
and should take place in parallel with “conventional”
logic design and computer architecture curriculum.
This should allow and facilitate student thinking about

how the fundamental computational and CPU
requirements detailed in these courses could best be
mapped to systems of nano-scale devices. This brings
us to the second purpose of this course sequence and
one that was alluded to when detailing the nano-scale
devices course. Namely, by now students will have
realized that computational devices have to do certain
things. However, with nanotechnology, how they do
them is very much “up in the air”. Students must be
taught to embrace this and how to think outside of the
box. Again, this is best presented with a short case
study.

An important feature of MOS electronics is a pass
transistor that essentially allows current (i.e. binary
information) to flow between a and b in either
direction. However, in QCA information is not moved
by electron flow but rather by Coulombic interaction
between electrons in quantum dots. Because nearness
between QCA cells is required to move information
from a to b there is no obvious way to create the
equivalent of a pass transistor (either bi- or uni-
directional) using only QCA devices. (For example,
this would make generating the equivalent of a
switching matrix – i.e. for a simple FPGA – in QCA
much more difficult – although not impossible). Also,
unlike the standard CMOS clock, the QCA clock is not
a signal with a high or low phase. Rather, the clock
changes phases when potential barriers that affect a
group of QCA cells (a clocking zone) pass through four
clock phases: switch (unpolarized QCA cells are driven
by some input and change state), hold (QCA cells are
held in some definite polarization -- i.e. some binary
state), release (QCA cells lose their polarization), and
relax (QCA cells remain unpolarized). One clock cycle
occurs when a given clocking zone has cycled through
all four clock phases. To understand how the
equivalent of at least a uni-directional QCA pass
transistor or switch might be implemented, its
worthwhile to consider the exact purpose of the relax
clock phase. Without it, QCA cells in the switch phase
could be driven from two different directions (i.e. from
cells with a definite polarization in the adjacent hold
phase and cells with an initial polarization in the
adjacent release phase). The relax phase acts as a
buffer to ensure that this does not occur. Thus, the
relax phase has the effect of “removing” a group of
QCA cells from a given design. Using this idea,
routing could be accomplished by using the clock to
selectively “turn off” groups of QCA cells to create
switches.

The timeline of this integrated, “conventional”
curriculum and “nano” curriculum is ideal because
students will have acquired some knowledge about the
fundamental requirements for a CPU and logic as well
as what devices are commonly used to implement them
in their “conventional” courses. However,

simultaneously, courses such as nano-scale devices will
teach students what is and what is not physically
possible in the “nano”-realm. One lesson might show
how some functionality and logic will certainly map
from a standard technology to an evolved technology
(i.e. CMOS à QCA). However, another lesson might
best be summarized as follows: “You understand
device X, you’ve used X a lot, well, now X is no longer
physically possible and you’ll need to find a new way
to either recreate its functionality or a completely
different way to do task Y.”

4. Frontiers:

“In any given technology, form follows function in
a particular way. The most efficient first step towards
understanding the architectural possibilities of a
technology is the study of carefully selected existing
designs. However, system architecture and design, like
any art, can only be learned by doing. Carrying a
small design from conception through to successful
completion provides the confidence necessary to
undertake larger designs.” (Mead/Conway vii)

The above quotation from the Mead/Conway
preface actually describes both courses which could
eventually result from the sequence
biochemistry/quantum mechanics for engineers and
nano-scale devices. In the nearer term, a Frontiers of
Nano-Systems course will teach students how to
develop a set of design rules and system architecture
using the methods described in the above excerpt.
Explaining how this will be done will best be
accomplished (and illustrated) via a series of case
studies and comparisons between them.

For example, let’s revisit our work with QCA.
Prior to our research, little work had been done in
considering systems of, circuits for, or an architecture
for QCA devices. Consequently, as with other
technologies that preceded it, and like Mead and
Conway proposed above, initial studies of QCA started
off by designing basic circuit elements that would be
needed for a processor. Next, it was determined that a
simple microprocessor should be constructed QCA cell-
by-QCA cell (essentially in the same manner in which
many of the early Intel microprocessors were designed).
The processor of choice was simple enough to be
designed by hand, yet it still contained the basic
elements that are part of any microprocessor (i.e.
arithmetic and logic units, registers, latches, etc.).
Hence, solutions to the difficulties encountered and
overcome in this design would be applicable to even
more complex systems and processors. Problems
encountered during this design process were largely
related to floorplanning – which in turn arose from the
interdependence of layout and timing with QCA. As
we saw above, the nature of the QCA “clock” leads to

an inherent self-latching of the QCA device. Given this
constraint, and before making any further attempts at a
large scale design, we felt the need to develop methods
to successfully factor the constraints generated by the
inherent self-latching of QCA out of the “equation” of a
design and furthermore find a means to exploit it.
Thus, an extensive study of floorplanning was
conducted and several viable floorplans for QCA
circuits were developed. After the floorplanning study
was conducted, a complete layout of the dataflow for
our microprocessor was finished. During this design
process, register designs, feedback mechanisms,
interconnect problems, etc. were developed and/or
identified. Design rules were compiled and formed the
engine of a simulator written to test circuits for logical
correctness. These design tools were then used to
simulate and reanalyze existing design schematics.

Work then proceeded to studying control flow.
Interesting results from this work include the lack of a
need for an explicit flip-flop to hold a bit of state
information in a QCA state machine (the inherent
latching in wire stores the bit), more intelligent
floorplans to ensure that QCA cells representing bits of
state actually change clock phases and polarizations at
the proper time, an algorithm for intelligent state
placement, and a one-hot state machine that could
properly control a QCA dataflow and yet not maintain
the “classical” properties of a “true” one-hot (i.e. all
bits of state switch at a time relative to a set of inputs
that determine state). While physically unrealizable in
the short-term, when this work is finished the first
complete QCA microprocessor will have been
designed. Most importantly, this effort will provide the
first real insight into how an architecture for a (self-
latching) nanotechnology should be organized.
Furthermore, as discussed in the third section of this
paper, work with hand-crafted designs resulted in the
opportunities to review them and collaborate with
device physicists which in turn led to a more physically
realizable near-term implementation target.

A next logical step will be to examine similar
design rule evolutions and compare and contrast them –
particularly determining and teaching the characteristics
and needs for common threads between existing
“Mead/Conway”s (i.e. floorplanning). Finally, as
mentioned in the second section of this paper, when an
NIS conglomerate exists for a specific technology, this
class can itself evolve into a course that specifically
teaches that set of system design rules – and helps
students adapt to a new computational medium.

5. Wrap-up:

“The general availability of courses in VLSI
system design at major universities marks the beginning
of a new era in electronics. The rate of system
innovation using this remarkable technology need no

longer be limited by the perceptions of a handful of
semiconductor companies and large computer
manufacturers. New metaphors for computation, new
design methodologies, and an abundance of new
application areas are already arising within the
universities, within many system firms, and within a
multitude of new small enterprises. There many never
have been a greater opportunity for free enterprise than
that presented by these circumstances.”

After changing “VLSI” to “nanotechnology” in the
above Mead/Conway excerpt, nothing else need be
said.

Acknowledgements:
The authors would like to emphasize the depth of
insight we owe to Lynn Conway, whose comments at
the MAW workshop and in email exchanges during the
preparation of this paper were invaluable.

References:
[1] Carver Mead and Lynn Conway. Introduction to
 VLSI Systems. Addison-Wesley Publishing
 Company, Inc., Philippines, 1980.
[2] Molecular Architecture Workshop, Univ. of Notre
 Dame, Nov 12-13, 2001,
 www.cse.nd.edu/cse_proj/maw
[3] G.H. Bernstein, and J.B. Brockman, and G.L.
 Snider, and P.M. Kogge and B.E. Walvoord.
 “From Bits to Chips: A Multidisciplinary
 Curriculum for Microelectronics System Design
 Education”, American Society for Engineering
 Education IL/IN Sectional Conference, April 12,
 2002 – Illinois Institute of Technology, Chicago, IL
 2002.

Using Custom Hardware and Simulation to Support Computer Systems
Teaching

Murray Pearson, Dean Armstrong and Tony McGregor
Department of Computer Science

University of Waikato
Hamilton

New Zealand�
mpearson,daa1,tonym � @cs.waikato.nz

Abstract

Teaching computersystems,including computerar-
chitecture, assemblylanguageprogrammingandoperat-
ing systemsimplementation,is a challengingoccupation.
At theUniversityof Waikatowerequireall computersci-
enceand informationsystemsstudentsstudythis mate-
rial at secondyear. Thechallengesof teaching difficult
material to a wide range of studentshavedriven us to
find waysof makingthe material more accessible. The
corner-stoneof our strategy for deliveringthis material
is thedesignand implementationof a customCPU that
meetsthe needsof teaching. In addition to the custom
CPU we havedevelopedseveral simulators that allow
specifictopicsto bestudiedin detail.

This paperdescribesour motivationfor devloping a
customCPU andsupportingtools. We presentour CPU
andtheteachingboard anddescribetheimplementation
of the CPU in an FPGA.Thesimulators that that have
beendevelopedto supporttheteachingof thecourseare
thendescribed.

Thepaperconcludeswith a descriptionof thecurrent
statusof theproject.

1 Introduction

Teaching computer systems is a challenging but vi-
tal part of the computer science curriculum. In 1997
the Department of Computer Science at the University
of Waikato decided that computer systems was important
to all computer science and information science students
and made its computer systems course compulsory for
all second year students. Like most computer systems
courses Waikato’s uses assembly language programming
as a vehicle to understanding the inter-relationships and
interactions between the different components of a com-
puter system. The brief of the course is quite differ-

ent to an introductory computer architecture course, even
though it contains many of the same components. The
difference lies in the audience and motivation. Our
course is intended to be useful to all computer profes-
sionals, not just those who specialise in computer archi-
tecture. Our use of assembly language programming is
an example of the impact of this difference. Very few of
the students will continue to program in assembly lan-
guage after the course, however, we believe that it is im-
portant that they have an understanding of computer op-
eration at this level of abstraction. While we want to
teach a coherent and realistic architecture we have no
fundamental interest in details such as delay slots, ad-
dressing modes and word alignments. These are impor-
tant topics for a specialist, but do not significantly add
to the understanding of the operation of a computer sys-
tem as a whole, which is the goal of our course. Assem-
bly language is essential to this goal but many students
find assembly language programming difficult and this
detracts from the main thrust of the course, which is not
to teach assembly language per say.

We wish to focus on the role of the machine and the
interactions between the hardware and software compo-
nents including compilers, libraries and the operating
system, rather than spending a lot of time describing a
partticular manufactures performance oriented features.
This has led us to develop our own instruction set archi-
tecture called WRAMP. As described later the course has
a practical component; practical exercises reinforce the
content of the lecture material. To support the practi-
cal component of the course using the WRAMP instruc-
tion set has required the development of a platform to
allow students to assemble and execute WRAMP pro-
grams. The two choices considered were the develop-
ment a WRAMP simulator or a custom hardware plat-
form.

Using a simulator is easier and cheaper however we
believe that the lack of real hardware distorts the learning

environment by adding an extra, unnecessary, abstraction
when many students are struggling to come to grips with
the essential content of the course. A simulator it is itself
a program running on a computer. This makes it difficult
for students to readily identify the target system and they
tend to confuse the role of components of the system.
When this happens there is a risk that students will focus
on the most obvious difference between practical work in
this area and others: the programming language. When
real hardware is used, the real focus is more likely to be
on the target system.

For this reason, we believe that students should have
the benefit of real hardware when they first learning as-
sembly language programming. Until recently this would
have excluded a custom CPU design, however it has been
made possible by advances in reconfigurable logic. We
have used FPGA technology to develop a single board
computer (called REX) with with our own custom de-
signed CPU and IO devices.

Once the students have developed a clear mental
model of the components of a computer system, simu-
lation can be used to enhance their understanding of the
more complex topics in the course. To this end we have
developed simulators for use in the course, two of which
are presented here. The first of these, called RTLsim, is
used to simulate a simple non-pipelined MIPS proces-
sor to demonstrate how instructions can be fetched from
memory and executed. The second of the simulators is
a multi-tasking simulator that introduces students to the
ideas behind task swapping in a multitasking kernel.

The next section gives an outline of our computer sys-
tems course. Section 3 then describes, in more detail, the
motivation for developing a processor and board to sup-
port the teaching this course. Sections 4 and 5 describe
the design of the CPU and board. Section 6 then describe
the simulators that that are used in the course followed
by Section 7 which briefly describes the exercises carried
out by students on the course.

A brief description is then given of how we intend to
use the board in the third and fourth year computer archi-
tecture courses.

2 Course Outline

When the Department decided to make the second
year computer systems course compulsory, its curricu-
lum committee established a set of key topics that should
be covered by the course. These included: data repre-
sentation, machine architecture (including assembly lan-
guage programming), memory and IO, operating systems
and data communications.

Figure 1 shows the order of the topics that make up
the course and the relative levels of abstraction used to
describe them. The main content of the course can be

broken into two parts. The first part illustrates what hap-
pens to a high level program when it is compiled and ex-
ecuted on a computer system. This serves two purposes.
First, it demonstrates some of the major issues which de-
termine the performance of a computer system. Second,
it shows the likely consequences of writing a particular
construct in a high level programming language in terms
of speed and size of the code generated.

The aim of the second part of the course is to pro-
duce an understanding of operating system principles and
components, their role in supporting the user, and in the
execution of programs written in high level languages
such as C (the starting point of the course). The focus is
on achieving an understanding with the operating system
and the implications of hardware and software choices,
rather than an ability to write a new one.

There is a strong theme of interactions and relation-
ships between the components of a computer system. To
support this we base the whole course around a single
processor architecture so that the students could more
easily see the way the individual components of the sys-
tem contribute to the complete computer system.

3 Background

Because the goal of the course is to explain the role
and interaction of the components of a computer system,
not to teach assembly language programming for its own
sake, there are two main requirements for a architecture:

1. a simple, easy to learn instruction set

2. an architecture that can easily demonstrate the rela-
tionship between high and low level languages, and
user and kernel space.

These goals are at odds with most modern CPU ar-
chitectures which have been optimised to maximise per-
formance and not simplicity. To help achieve high perfor-
mance modern CPUs contain many performance oriented
techniques including the use of reorder buffers, regis-
ter renaming and reservation stations[6]. Because of the
complexity of these architectures it would not be possible
to fully describe the structure and functionality of one of
them in an introductory course.

While most architectures are optimised for perfor-
mance some (such as the 8-bit processors -e.g. the Mo-
torola HC11) are designed to be very cheap and simple.
However, this very simplicity often raises the complexity
required to program the CPU. For example, performing
16-bit indexed address access on an 8-bit processor that
only has an 8-bit ALU requires a series of instructions to
support the 16 bit addition rather than the single instruc-
tion available on larger word sized machine. Because of
the way CPUs developed through the late ’80s and early
’90s, processors with a large enough word size to make

Introduction

Compilation

Assembly
Language

Programming

Machine
Architecture

Input
Output

Operating
Systems
libraries

file system
memory

processes

Data
Comms

C

OS

ASM

RTL

Gate

A
bs

tr
ac

tio
n

 L
ev

el

Time

Part 1 Part 2

Figure 1. Topics Covered in the Course

those aspects of programming easy have other complex-
ities, such as many addressing modes, that are not avail-
able across all instructions or complex interrupt process-
ing. Although many modern CPUs are simpler, because
of the influence of the RISC philosophy, they have other
disadvantages, including branch and load delays as de-
scribed below.

In the past, we have used the MIPS R3000 family as a
compromise between the needs of our course and avail-
able CPU designs [4]. The MIPS CPUs have a relatively
simple programmer’s abstraction. The teaching process
is also supported by a number of very popular text books
including those written by Hennessey and Patterson [3]
[2] and Goodman and Millar [1]. For this reason our
computer systems course has been based around this pro-
cessor for the last six years. While we have found this
processor reasonably well suited to our needs, we have
identified a number of aspects of the architecture that
many students find difficult to understand and which are
not central to our teaching goals. These include:

� the presence of loaddelayslotswhich mean that the
instruction directly after a load instruction cannot
use the result of the load as it isn’t available yet.

� the presence of branch delayslotswhich mean that
the instruction directly after a branch instruction is
always executed regardless of whether the branch is
taken or not.

� the use of an intelligent assemblerwhich is capa-
ble of reordering instructions and breaking some as-
sembler instructions in two so that they can all be
encoded using a single 32-bit word.

� the requirement that all memoryaccessesto word
valuesareword aligned.

� the parameterpassingconventionsthat are designed

to minimise the number of stack manipulations in a
MIPS program.

While we do not believe that the complexities de-
scribed above are insurmountable, they do detract from
the goal of the course, that is to give a complete cover-
age of the computer systems area at an introductory level
without being distracted by the complexities associated
with describing a particular manufacturers quirks. This
is in keeping with the introductory level and broad audi-
ence that this course is intended for. Other courses at the
University are intended for students who will specialise
in computer architecture, and these do cover commercial
architectures, including exposure to many of these issues.

We have been unable to find a suitable commercial
CPU architecture to support the teaching of our computer
systems course so we developed our own.

Before discussing the architecture of the CPU we have
designed we consider the question of whether to use a
real CPU or a simulator. Most courses that teach com-
puter architecture or assembly language teaching make
use of CPU simulators. Using a simulated system offers
two main advantages. Firstly, it is possible to develop
a simulator for any CPU. This allows a CPU that is tai-
lored to the goals of the course to be used rather than be-
ing limited to those that are available commercially. The
second advantage of using a simulator is that simulators
normally offer better debugging facilities and visualisa-
tions of a program. These can be used to help reinforce
important concepts.

As noted in Section 1, using a simulator also intro-
duces difficulties for students. It is more likely that stu-
dents will confuse the boundries between the host sys-
tem and the simulated system. Our experience suggests
there is a tendency for students to focus on the program-
ming language when a course introduces a new language,
rather than conceptual material in the course. The use of
real hardware makes the distinctions between the target

system and the development tools concrete. The work
presented in this paper largely removes the disadvantages
of using a real CPU and enables both a simpler working
model and a CPU designed to meet the needs of teaching.
This includes good debugging facilites such as the ability
to single step and observe register and memory values as
the system executes.

4 Processor Design

In designing the processor a great deal of care has
been taken to keep the design as simple and regular as
possible while still being able support the complete range
of practical experiences we wish the students to be ex-
posed to. These experiences start with the writing of
simple assembly language programs and build up to the
development of a very simple multi-tasking kernel.

The resulting CPU design uses a 32 bit word, and is
based around a register-register load-store architecture,
very similar to the MIPS and DLX [5] processors. Most
computational instructions have a three operand format,
where the target and first source are general purpose reg-
isters, and the second source is either a register or an im-
mediate value. Regularity of the instruction set was a key
factor in maintaining the simplicity. Immediate flavours
of all computational instructions are provided, as well as
unsigned versions of all arithmetic instructions.

Care was taken to keep the correspondence between
assembly language instructions and actual machine in-
structions as a one-to-one relationship. To this end a ma-
jor feature of this CPU is the reduction of the address
width to 20 bits, and the number of registers to 16. This
allows an address, along with two register identifiers and
an opcode to fit into a single instruction word, removing
the need for assembler translation when a program label
is referenced.

The other main differences from MIPS and DLX are
the removal of the branch and load delay slots, and the
fact that the CPU is 32 bit word addressable rather than
byte addressable. Making the machine word addressable
only, greatly simplifies the operation of the CPU, and al-
lows us to present students with an easily understandable
model of it. Another advantage of a word addressable
machine is that it removes the possibility of word access
alignment problems which new students frequently en-
counter on a byte addressable machine.

The CPU only supports three instruction formats as
shown in Figure 2. It can also be seen from this figure
that the instructions have been encoded to allow for easy
manual disassembly from a hexadecimal number, with
all fields aligned on 4 bit boundaries.

While the CPU has been made as simple as possible
for the tasks we require it does include external and soft-
ware interrupts and has supervisor and user modes with
protection. These mechanisms are accessed through a

I-Type instruction

OPcode Rd Rs Func Immediate

R-Type instruction
OPcode Rd Rs Func 000000000000 Rt

J-Type instruction
OPcode Rd Rs Address

OPCode 4 bit operation code
Rd 4 bit destination register specifier
Rs 4 bit source register specifier
Rt 4 bit source register specifier
Func 4 bit function specifier
Immediate 16 bit immediate field
Address 20 bit address field

Figure 2. Instruction encoding formats

M
em

or
y

In
te

rf
ac

e

Te
m

p

PC

IR
 Control

A
LU

R
eg

is
te

r
Fi

le

Figure 3. Processor Block Diagram

special register file, similar to the MIPS’ coprocessor 0.
This means that these concepts need not be discussed for
students to begin programming in assembler, and when
desired, they can be introduced by describing the special
register file, and the two instructions needed to access its
contents.

The data-path of the processor is based around a three-
bus structure (as shown in Figure 3) and instructions take
multiple clock cycles to execute. As can be seen from
Figure 3 the CPU’s data-path is very simple making it
possible to completely explain the operation of the data-
path to second year students. In particular it is possible
to explain in detail how machine code instructions stored
in memory can be fetched, decoded, and executed on the
data-path.

The CPU has been represented in VHDL so that it can
be targeted to a reconfigurable logic device. The CPU
design when synthesised consumes a large portion of a
200 thousand gate Xilinx Spartan II FPGA device.

Figure 4. The Teaching Kit

5 Board Design

Figure 4 shows the REX board designed to support the
CPU described in the previous section. As can be seen
from the picture we have been careful to layout the board
so that the main components that make up a computer
system can be clearly identified. The main data-paths that
connect these components are also visible on the board.

Reconfigurable logic is used wherever possible on the
board to allow it to be as flexible as possible. In addi-
tion to making the design of our own CPU and IO de-
vices possible, this allows the architecture of these com-
ponents that students are presented with to be fine tuned
as the course develops. As explained later, it also allows
the board to be used for multiple teaching functions, in-
cluding FPGA and CPU design.

While it would have been possible to place most or
all of the reconfigurable designs into a single chip the
decision was made to use a separate chip for each IO de-
vice and the CPU, making it possible for the students to
physically identify each of these devices on the board.
The choice to use multiple RAM and ROM chips to pro-
vide the 32 bits of data rather than employing multiple
accesses to a single chip was also made with the inten-
tion of clarifying the operation for the students. Effort
was made, however to keep the number of non-essential
support components to a minimum.

The boards are intended to be connected to a work-
station where students can write and assemble programs,

which can then be loaded and run on the board. Because
we wanted to build a laboratory for a large class it was
important to make reconfiguration easy. In particular we
designed the board to support remote reconfiguration of
all programmable devices and the stored bootstrap pro-
gram code. Scripts have been developed that enable all of
the REX boards in a laboratory environment to be com-
pletely reconfigured from a single command. Cost has
also been kept to a reasonable level.

Although there are a number of features that support
teaching, one that had a large impact on both the board
and CPU design is support for cycle-by-cycle stepping of
the processor with an LCD display to indicate bus con-
tents, and LEDs to show device selection and exceptions.
We believe this feature will be a major asset for students
struggling with the many new abstractions and concepts
presented by the course.

6 Simulators

In the course we use a number of simulators to re-
inforce some of the more complex conceptual material.
The first simulator (RTLsim) has been developed to rein-
force the ideas associated with the execution of machine
code instructions on a data-path. The second simulator is
a multi-tasking simulator that introduces students to the
ideas behind task swapping in a multitasking kernel.

Figure 5. Screendump showing RTLsim in operation

6.1 RTLsim

In the first part of the course the students learn the re-
lationships between a program written in a high level lan-
guage such as “C” and its representation in assembler and
machine code. Following on from this we show the stu-
dents how a machine code instructions can be executed
on a simple processor data-path. In previous years a sim-
ulator called RTLsim which simulates the data-path of a
simple non-pipelined MIPS like processor has been used
to support the teaching of this component of the course.
Currently we are in the process of developing a WRAMP
version of the simulator. The rest of this section describes
the MIPS version of RTLsim.

RTLsim is written in C for a UNIX system running
X-windows. When the simulator is run the student (user)
acts as the control unit for the data path by selecting the
control signals that will be active in each control step.

Figure 5 shows the main window for the simulator
that comprises of two main components, a visual repre-
sentation of the data-path and a control signals window.
The data-path is made up of a 32-register register file,
ALU, Memory interface and a number of other registers
to store values such as the program counter and the cur-
rent instruction being executed. Three internal buses are
used to connect to connect these components together.
This combination of components and buses is sufficient
to fetch and execute most of the instructions in the MIPS
R3000 instruction set. The control signals section of at
the left hand end the main window is used by the student
to set the values of control signals that are going to be ac-

tive in the current control step. For example consider the
execution of the MIPS instruction add $3, $4, $5
that adds the contents of register 4 to register 5 and store
the result into register 3. Assuming the instruction has
been fetched into the instruction register during earlier
control steps then the settings shown in the controls sig-
nals window of 5 would cause the necessary actions to
occur to execute this instruction. As the student sets the
control signals for a control step they are given visual
feedback on the data-path of what will occur when the
control step is executed. For example if the PCout sig-
nal is selected the colours of the PC register and the B
Bus would change to show that the PC register is going
to output a value onto the Bbus. If two components try
to output to the same bus at the same time the bus would
turn red to indicate an illegal operation.

From the main window, other windows may be
opened that show the contents of memory and the regis-
ter file. In the case of the memory window it is possibly
to preload memory image from an file in s-record format
before starting a simulation. This is the same file format
used to upload programs to the MIPS board. This enables
the students to upload and execute the same program on
both a MIPS board and RTLsim, allowing the executions
to be compared.

The simulator can also record a trace of the operations
that are performed in each control step. This trace can be
used by the student to playback the operations in the sim-
ulator or used as input to an automated marking system.

Before RTLsim was introduced to the course the stu-
dents where given a paper-based exercise where they had

Figure 6. Multi-tasking simulator

to define the sequence of control steps necessary to ex-
ecute a set of MIPS instructions they were given. If the
students had not grasped the main concepts they com-
pleted the entire exercise incorrectly and were not given
any feedback until the assignments were marked and re-
turned to them several weeks later. However with the
introduction of RTLsim the students are given immedi-
ate feedback at several levels. Firstly as the students set
the control signals they are given visual feedback on the
data-path. Once they believe they have the necessary sig-
nals to execute the control step they can try it and ob-
serve the outcome in the registers and memory. If the
outcome is incorrect the simulator provides undo opera-
tions so they can try again. Lastly, an automated marking
system is used. If the exercise is not completed correctly
the marking system generates a set of comments that tells
the students where they went wrong so they can try again.

6.2 The Multi-tasking Simulator

One of the assignments undertaken by students in the
second year course using the boards is the development
of a very simple multi-tasking kernel. The kernel does
not include memory management, task creation or termi-
nation but it does share the CPU between three tasks, in-
cluding the saving and restoring of state and changing of
stacks between tasks. The tasks are designed to use dif-
ferent parts of the hardware. One reads the switches and
writes the value read to the seven segment display, an-
other reads characters from the secondary terminal and
writes the uppercase values to the terminal. The third
task displays the time on the primary serial port. Students
have already written these tasks in a single task environ-
ment, in earlier assignments.

Although the multi-tasking kernel does not require

very many lines of code, there are conceptual and coding
barriers to its implementation. We address these issues
in classes but have found it useful to re-enforce the ideas
using a multi-tasking simulator, before students attempt
their own implementation. The simulator is written in C
for X-windows and creates a number of windows. An ex-
ample of the windows is shown in figure 6. Each task has
two windows associated with it, the first is the stack and
the second is the saved state of the task (its process de-
scriptor). An example for one task is shown in the right
most two windows in figure 6. When the students use
the simulator there are three tasks; two have been omit-
ted here to save space. The link field is used to form a
linked list of tasks waiting for the CPU or waiting on a
semaphore for an event.

Moving to the left in figure 6 the middle window
shows the CPU registers. The simulated machine has
only two general purpose registers, a stack pointer, a
program counter, a status register and a saved program
counter which shows the value of the program counter
as it was at the last interrupt. The status register is di-
vided into the interrupt status (masked or enabled), the
interrupt status before the last interrupt (software inter-
rupts are taken even if interrupts are masked), the type
of interrupt (e.g. timer interrupt) and whether there is an
interrupt pending (when interrupts are disabled).

The window second to the left shows the values of
some shared memory variables. These include the head
of the CPU wait queue, the number of interrupts left in
this time slice, the job currently using the CPU the out-
put of two of the tasks (answer and two sum), and
semaphores that hold task 3 until these two tasks are
completed.

The left hand window, which gives a trace of the in-

structions that have been executed. The simulator exe-
cutes pseudo-code which has been designed to be close
enough to WRAMP assembly code that it is easy to imag-
ine the assembly code that matches a pseudo-code in-
struction, but without some of the confusing detail of
assembly code. The number at the left of the log win-
dow indicates the sequence number of the instructions
that have been executed. The letter/number code next
to the sequence number is the address of the instruction.
The letter in the address indicates what part of the code
(A = task A, F = first level interrupt handler, W = wait, S
= signal, etc.) the instruction belongs to.

As each step of the simulation is executed the values
that change are hilighted in red in the appropriate win-
dow. Students are able to change the values at any time
to alter the course of the simulation. The assignment en-
courages them to do this, including altering the time-slice
length.

Readers interested in obtaining the simulator should
contact the author at tonym@cs.waikato.ac.nz.

7 Assignments

The assignments that make up the practical compo-
nent of the course are shown in Table 7. Of particular
note is the implementation of a multitasking kernel by
the students. Given that most students are not computer
technology students and that most successfully complete
this exercise we belief this is a major indication of the
success of the course.

No. Name
1 Introduction to Unix
2 Data Representation
3 Introduction to REX
4 C and WRAMP assembly
5 RTL Design Exercise
6 Parallel and Serial IO
7 Interrupts
8 Multitasking Kernel Simulator
9 Multitasking Kernel Coding

10 Error Detection

Table 1. Assignments

8 Use of the Board by 3rd and 4th year Stu-
dents

We are currently teaching students in a third year com-
puter architecture course about design using VHDL. By
the end of the course the students will be able to de-
sign the main components (ALU, registers, finite state
machines, etc) that make up a CPU. In future years we
plan to use the REX boards to support the teaching of
this course.

In our fourth year computer architecture course, stu-
dents design and implement their own CPU. Last year
the students used a prototype version of the REX board
to implement their CPUs. With the introduction of the
new board and the experience gained using the board in
the second and third year courses, we hope to extend the
complexity of the project undertaken in this course.

9 Conclusions

This paper described the range of hardware and soft-
ware tools that have been developed to support the teach-
ing of the introductory Computer Systems course at the
University of Waikato.

There is much merit in the design of custom CPU and
IO devices for teaching purposes. Current reconfigurable
hardware devices have made it possible to build a single
board computer, with a custom CPU and IO devices, to
support the teaching of computer systems courses. Us-
ing this approach we have removed some of the ‘sharp
edges’ of assembly language programming, like branch
delay slots and complex CPU status control, that add
complexity to introductory teaching but do not add sig-
nificant value.

An additional advantage is that the board will provide
a consistent teaching platform across a range of courses.
We expect that this will considerably enhance the stu-
dents learning experience.

We have just installed 25 REX boards in one of the
Departments Computer Labs. Supporting tools such as
a monitor program for the board, a C compiler, an as-
sembler and linker are now largely complete. Over the
past couple of weeks students have been using the REX
boards to complete their assignments. All of the feed-
back we have had from the students todate has been very
positive and encouraging.

References

[1] J. Goodman and K. Millar. A Programmer’s View of Com-
puter Architecture with Assembly Language examples from
the MIPS RISC Architecture. Oxford Press, 1992.

[2] J. Hennessy and D. A. Patterson. Computer Architec-
ture: A Quantitative Approach, Second Edition. Morgan-
Kaufman, 1995.

[3] D. A. Patterson and J. Hennessy. Computer Organisation
and Design: The Hardware/Software interface. Morgan-
Kaufman, 1994.

[4] M. Pearson, A. McGregor, and G. Holmes. Teaching com-
puter systems to majors: A MIPS based approach. IEEE
Computer Society Computer Architecture Technical Com-
mittee News Letter, pages 22–24, Feb. 1999.

[5] P. M. Sailer and D. R. Kaeli. The DLX Instruction Set
Architecture Handbook. Morgan-Kaufmann, 1996.

[6] R. M. Tomasulo. An efficient algorithm for exploiting mul-
tiple arithmetic units. In IBM Journal of Research and De-
velopment, volume 11, pages 25–33. 1967.

On the Design of a New CPU Architecture
for Pedagogical Purposes

Daniel Ellard, David Holland, Nicholas Murphy, Margo Seltzer
{ellard,dholland,nmurphy,margo}@eecs.harvard.edu

Abstract

Ant-32 is a new processor architecture designed
specifically to address the pedagogical needs of
teaching many subjects, including assembly lan-
guage programming, machine architecture, compil-
ers, operating systems, and VLSI design. This paper
discusses our motivation for creating Ant-32 and the
philosophy we used to guide our design decisions
and gives a high-level description of the resulting
design.

1 Introduction

The Ant-32 architecture is a 32-bit RISC architec-
ture designed specifically for pedagogical purposes.
It is intended to be useful for teaching a broad va-
riety of topics, including machine architecture, as-
sembly language programming, compiler code gen-
eration, operating systems, and VLSI circuit design
and implementation.

This paper gives our motivation for creating Ant-
32, lists our design goals and how these goals influ-
enced our design decisions, discusses some of the
more important details of the resulting architecture,
and describes our future plans for continuing devel-
opment of the architecture and integrating it into ex-
isting curricula.

2 The Motivation for Ant-32

Before describing the process by which we created
Ant-32, it is important to saywhywe felt it was use-
ful to create Ant-32 at all. The courses at our uni-
versity have frequently used several different archi-
tectures to illustrate different points, and often each

course used a different architecture.

A negative result of using a multitude of archi-
tectures was that each course had to spend time and
energy teaching the particular details of the archi-
tectures used by that course. This forced the profes-
sor to make an unpleasant choice between remov-
ing other material from the course, or adding to the
workload of the course (which is already a problem
at our institution, where Computer Science has an
unfortunate reputation as one of the most arduous
majors).

In order to minimize this problem in our
introductory-level courses, several years ago we de-
signed a simple eight-bit architecture named Ant-
8, which is now used in both of our introductory
programming courses as well as the introductory
machine architecture course. This architecture has
been successful and is now in use at several other
institutions. Its utter simplicity and tiny size make
it easy to learn, while providing a realistic illustra-
tion of a machine architecture, capable of running
interesting applications.

Unfortunately, Ant-8 is too small and simple to
be used for higher-level courses, such as compil-
ers, operating systems, and advanced machine ar-
chitecture. Therefore, we decided to create a 32-
bit architecture, using the lessons we learned from
our eight-bit processor, but with the goal of creating
a single processor that can be used across a much
wider range of courses.

We felt that it was worth the effort to create a new
architecture, rather than using one of the myriad ex-
isting architectures, because we could not find any
that were truly suitable. The “real” architectures
(such as x86, alpha, and MIPS) are, in our opinion,
too complicated and require mastery of too many
arcane details in order to accomplish anything inter-

esting. The many architectures created for purely
pedagogical purposes offer more hope, but the sys-
tems of which we are aware are too finely tuned for
illustrating or experimenting with a small number
of concepts, and were never meant to be used as a
general framework.

3 Goals and Requirements

The core philosophy of the Ant-32 architecture is
that it must be clean, elegant, and easy to under-
stand, while at the same time it must support all of
the important functionality of a real processor. In
short, it must maximize the number of concepts it
can be used to teach, while minimizing the com-
plexity and number of unrelated details the students
must struggle through in order to absorb those con-
cepts.

The functional requirements of the Ant-32 ar-
chitecture can be described in terms of the differ-
ent curricula that Ant-32 is designed to augment:
simple assembly language programming, compiler
code generation, operating system implementation,
and VLSI design and implementation.

Addressing all of these different needs required a
number of trade-offs and difficult design decisions,
which are described in the remainder of this section.

3.1 Assembly Language and Machine Ar-
chitecture

In an introductory assembly language programming
unit, we believe that it is desirable to use an architec-
ture that has a small number of instructions and sim-
ple memory and exception architectures. We also
believe that it is important that the architecture be
based on RISC design principles, because we be-
lieve that RISC principles will be the dominant in-
fluences on future processor designs. In addition,
we have found that RISC architectures are generally
easier for students to understand and implement.

In an earlier project, several members of the Ant-
32 team were involved in the development of Ant-
8, an eight-bit RISC architecture designed for in-
troductory programming and introductory machine
architecture courses. This architecture is extremely
small, simple and easy to learn. We have had pos-

itive feedback from professors and students who
have used it, both at our institution and elsewhere.

The first draft of Ant-32 was a direct extension
of Ant-8 to thirty-two bits. It contained approxi-
mately twenty instructions, and was designed with
the intention that all of our second-year students
(who were familiar with the eight-bit architecture
from their introductory classes) would feel familiar
with the architecture and be able to read and write
Ant-32 assembly language programs almost imme-
diately. Like Ant-8, there was no support for virtual
memory or any form of protection, and the excep-
tion architecture consisted of having the machine
halt and dump core whenever any error occurs.

3.2 Code Generation

There are two aspects of the orignal Ant-32 de-
sign that made it unsatisfactory as the target of a
code generator: the absence of relative jumps and
branches and an overly simplified instruction set.

Our original Ant-8 architecture used absolute
jumps and branches, because our students found ab-
solute addressing more intuitive and easier to de-
bug than relative addressing. However, automated
code generators see the world in a different way than
their human counterparts, and in many contexts rel-
ative addresses are easier to generate. The ability to
use relative addresses also greatly simplifies sepa-
rate compilation and linking (which has never been
an issue for Ant-8, but which we expect will be im-
portant for Ant-32).

The original Ant-32 architecture also did not in-
clude any immediate arithmetic instructions. As a
result, simple and commonplace operations such as
incrementing the value in a register required at least
two instructions. Adding a rich set of immediate
arithmetic instructions make it possible to investi-
gate a number of useful code optimizations.

In addition, we found it useful to extend the orig-
inal Ant-32 programming model by adding basic
register usage conventions, in order to provide a
common framework for function calling and link-
age conventions. These conventions arenot part of
the architectural specification, however, and there is
nothing implicit in the architecture that limits how
the processor is programmed. For example, there
is no register dedicated to be the stack pointer in

the Ant-32 architecture, although programmers can
choose to adopt a register usage convention that
creates that impression. Programmers are free to
choose or experiment with different conventions.

3.3 Operating Systems

Operating systems courses require a more complex
view of the processor, including an exception and
virtual memory architecture, mechanisms to access
memory and processor state, and an interface to an
external bus to support devices separate from the
CPU.

It was a challenge to add the functionality re-
quired to support a full-featured operating system
without losing the ability to program Ant-32with-
out writing at least a bare-bones boot-strap OS. To
achieve this goal, we designed the processor so that
in its initial state, most of the higher-level function-
ality is disabled. This means that the programmer
only needs to understand the parts of the architec-
ture that they actually employ in their program.

3.4 Advanced VLSI Implementation

Considering the architecture from the perspective of
an actual VLSI implementation was an extremely
important influence on the design. It was often quite
tempting to add powerful but unrealistic features to
the architecture, in order to add “convenience” in-
structions, such as instructions to simplify the as-
sembly language glue required for exception han-
dlers, context switching, and related routines. Con-
sidering whether or not it would be realistic to ac-
tually implement these instructions in hardware was
an essential sanity check to make sure that we were
creating a plausible and realistic architecture.

3.5 Omitted Features

It is worth mentioning that there are a number of
features present in many architectures that we felt
comfortable omitting entirely from Ant-32, because
we felt that they added unnecessary complexity. If
necessary, the specification can be augmented to in-
clude these features. We have made an effort to
make our design flexible, and in fact several fea-
tures (such as support for floating point) were ac-

tually present in our design until late in the review
process, when we decided to omit them.

• Ant-32 does not contain any floating point in-
structions: for our intended audience we be-
lieve that these instructions are rarely neces-
sary, and they lengthen the specification of the
architecture (and increase the complexity of
implementing the architecture) to such an ex-
tent that we decided to drop them entirely.

• The Ant-32 architecture does not include a
specification for an external bus; the only re-
quirements are the ability to read and write
memory external to the CPU. The bus can
cause an interrupt to occur via a single IRQ
channel.

The separation of bus and processor architec-
tures, as well as the simplicity of the inter-
face to the bus, allows Ant-32 to integrate eas-
ily with many bus architectures. In our cur-
rent implementation, we use a simple (but full-
featured) bus architecture that was originally
designed for use with the MIPS processor ar-
chitecture, which allows us to use simulators
for devices already written for this bus.

• The Ant-32 memory interface is extremely
simple and does not include a specification of a
cache. However, it does not preclude the pres-
ence of a cache, and is designed to allow the
easy incorporation of nearly any caching archi-
tecture. In fact, our reference simulator for the
architecture is designed to allow easy experi-
mentation with different caching strategies.

• Ant-32 has a simple instruction execution
model. Our main focus has been on the
instruction-set architecture of Ant-32, and not
on the actual implementation details. We have
tried to avoid making any design decisions that
would prevent the implementation of an Ant-
32 processor with such contemporary features
as pipelining, super-scalar execution, etc. The
specification is written in such a way as to al-
low extension in this area. It is our belief that
the Ant-32 instruction set architecture can be
implemented in a number of interesting ways.

4 A Description of the Ant-32 Ar-
chitecture

The core of our architecture is a straight-forward
three-address RISC design, influenced heavily by
the MIPS design philosophy and architecture. Since
RISC architectures (and variants of MIPS) are ubiq-
uitous, we will not describe the general character-
istics of the architecture in detail, but will focus on
where our architecture differs.

In a nutshell, Ant-32 is a 32-bit processor, sup-
porting 32-bit words and addresses and 8-bit bytes.
All instructions are one word wide and must be
aligned on word boundaries. For all instructions,
the high-order 8 bits of an instruction represent the
opcode. There are a total of 62 instructions, includ-
ing four optional instructions. There are 64 general-
purpose registers. All register fields in the instruc-
tions are 8 bits wide, however, allowing for future
expansion. Virtual memory is made possible via
a TLB-based MMU, which is discussed in section
4.1. The processor has supervisor and user modes,
and there are instructions and registers that can only
be used when the processor is in supervisor mode.

The architecture also defines 8 special-purpose
registers that are used for exception handling. These
are described in section 4.2.

A somewhat unusual addition to the architecture
is 8 cycle and event counters. These include a cumu-
lative CPU cycle counter, a CPU cycle counter for
supervisor mode only, and counters for TLB misses,
IRQs, exceptions, memory loads and stores. We be-
lieve that these will be useful for instrumenting and
measuring the performance of software written for
the processor.

4.1 The Virtual Memory Architecture

The VM architecture was the focus of far more
philosophical debate (and contention) than any
other area of the architecture. Perhaps because of
the energy and passion we put into airing our di-
vergent views, and the fact that we eventually con-
verged on a design that satisfied everyone, we feel
that the resulting architecture is perhaps the most
important contribution of the overall Ant-32 archi-
tecture.

The main focus of the debate was how much

high-level support for virtual memory we should
provide in hardware. In real applications, TLB op-
erations (such as TLB miss exceptions, TLB inval-
idation during context switching, etc) are expensive
and it is more than worthwhile to provide architec-
tural support for them. For the purpose of pedagogy,
however, providing this support makes the design
and specification of the architecture considerably
more complex. We feel that the architecture must be
clear and elegant in order for the students to under-
stand it well, and we are more concerned with how
quickly students can implement their operating sys-
tems than how quickly their operating systems run.
At the same time, however, we were still guided by
the principle that our architecture must be realistic
and full-featured.

Ant-32 is a paged architecture, with a fixed 4K
page size. A software-managed translation look-
aside buffer (TLB) maps virtual addresses to physi-
cal addresses. The TLB contains at least 16 entries,
and may contain more. There are only three instruc-
tions that interact directly with the TLB:tlbpi ,
which probes the TLB to find whether a virtual ad-
dress has a valid mapping,tlble , which loads a
specific TLB entry into a register pair, andtlbse ,
which stores a register pair into a specific TLB en-
try.

In addition to the virtual to physical page map-
pings, each TLB entry contains information about
the mapping, including access control (to limit ac-
cess to any subset of read, write, and fetch), and
whether the TLB entry is valid.

Ant-32 has a one gigabyte physical address space.
Physical memory begins at address 0, but need not
be contiguous. Memory-mapped devices are typi-
cally located at the highest physical addresses, and
the last page is typically used for a bootstrap ROM,
but the implementor is free to organize RAM, ROM,
and devices in virtually any way they deem appro-
priate. The only constraint placed on the arrange-
ment of memory is that the last word of the physi-
cal address space must exist; this location is used to
store the address of the power-up or reset code.

Virtual addresses are 32 bits in length. The top
two bits of a virtual address determine the segment
that the address maps to. When the processor is in
user mode, only segment 0 is accessible, but all the
segments are accessible in supervisor mode. Ad-

dresses in segments 0 and 1 are mapped to physical
addresses via the TLB, while addresses in segments
2 and 3 are mapped directly to physical addresses.
Accesses to memory locations in segment 2 may be
cached (if the implementation contains a cache) but
accesses to memory locations in segment 3 may not
be cached.

4.2 The Exception Architecture

A realistic but tractable exception architecture is es-
sential to any processor used by an operating system
course. Exception handlers, and particularly their
entry/exit code, are among the most difficult parts
of the operating system to code, test and debug. For
most real 32-bit processors, searching the documen-
tation to learn how to save and restore all the neces-
sary aspects of the CPU state is a daunting task.

For Ant-32, our goal was to design an exception
architecture that is realistic and complete, but also
easy to understand and allows a simple implemen-
tation of the necessary glue routines for handling
exceptions and saving and restoring processor state.

In Ant-32, interrupts and exceptions are enabled
and disabled via special instructions. Interrupts
from external devices are treated as a special kind of
exception. Interrupts can be disabled independently
of exceptions.

When exceptions are enabled, any exception
causes the processor to enter supervisor mode, dis-
able exceptions and interrupts, and jump to the ex-
ception handler. If an exception other than an inter-
rupt occurs when exceptions are disabled, the pro-
cessor resets. If an interrupt occurs while exceptions
or interrupts are disabled, it is not delivered until in-
terrupts and exceptions are enabled.

System calls are made via thetrap instruction,
which triggers an exception. The transition from su-
pervisor mode to user mode is accomplished via the
rfe instruction.

The Ant-32 exception-handling mechanism con-
sists of eight special registers. These registers are
part of the normal register set (and therefore can be
addressed by any ordinary instruction), but they can
only be accessed when the processor is in supervi-
sor mode. Four of the registers are scratch registers,
with no predefined semantics. They are intended to
be used as temporary storage by the exception han-

dler. The other four registers contain information
about the state the processor was in when the ex-
ception occurred. These four registers are read-only,
and their values are only updated when exceptions
are enabled. When an exception occurs, further ex-
ceptions are immediately disabled, and these regis-
ters contain all the information necessary to deter-
mine the cause of the exception, and if appropriate
reconstruct the state of the processor before the ex-
ception occurred and restart the instruction:

e0 When exceptions are enabled, this register is
updated every cycle with the address of the cur-
rently executing instruction.

When an exception occurs,e0 contains the
address of the instruction that was being exe-
cuted. Depending on the exception, after the
exception handler is finished, this instruction
may be re-executed.

e1 When exceptions are enabled, this register is
updated every cycle to indicate whether inter-
rupts are enabled.

When an exception occurs, interrupts are dis-
abled, bute1 tells whether or not interrupts
were enabled before the exception occurred.
This allows the exception handler to easily re-
store this part of the CPU state.

e2 When exceptions are enabled, this register is
updated with every address sent to the memory
system. If any memory exception occurs, this
register will contain the memory address that
caused the problem.

e3 This register contains the exception number
and whether the processor was in user or super-
visor mode when the exception occurred. For
exceptions due to memory accesses, the value
of this register also indicates whether the ex-
ception was caused by a read, write, or instruc-
tion fetch.

Disabling interrupts automatically whenever any
exception occurs provides a way to prevent nested
exceptions and an unrecoverable loss of data: if an
interrupt is permitted to occur before the state of the
processor has been preserved, then the state of the
processor when the first exception occurred may be

lost forever. By disabling interrupts until they are
explicitly re-enabled, we can prevent this from hap-
pening.

The benefit of this arrangement is that the only
way to fatally crash the processor is to have a mis-
take which causes an exception to occur in the
exception entry/exit code. The drawback of this
scheme is that the exception handler entry/exit code
(and all the memory addresses referenced by this
code) must generally be located in an unmapped
memory segment, because otherwise a TLB miss
could occur during execution of the exception han-
dler.

5 Future Directions

Although completing the specification of our archi-
tecture was an important step towards our goal of
making Ant-32 a widely valuable educational tool,
we acknowledge that there is much more to do.
From our experiences with Ant-8, we know that ed-
ucators will not use Ant-32 in their curricula unless
the benefits of using Ant-32 are obvious, and the
cost of transition to Ant-32 is very low.

To minimize the transition costs, we have already
implemented a reference assembler, simulator, and
debugger for the Ant-32 architecture, an assembly-
language tutorial and hardware specification. This
software and documentation has already been used,
with positive results, by a compiler course at Boston
College. We are currently working on extending this
material into full suite of educational materials for
the Ant-32 architecture, including extended tutorial
and reference texts, example code, lecture materi-
als, problem sets and exercises with detailed solu-
tions, and pre-compiled distributions for easy instal-
lation on popular platforms, in the same manner as
we have done with our earlier eight-bit architecture.
All of this material will be freely available from our
web site,http://www.ant.harvard.edu/ .

We are also planning a project to build a complete
GNU tool-chain (gcc , gas , gdb , and complete li-
braries) for Ant-32 so that it can be used to write a
complete operating system for Ant-32 with only a
small amount of assembly language programming.
This is a huge undertaking, and we invite anyone
interested in helping to develop this material in any

way to contact the Ant-32 team.

6 Related Work

Many simplified or artificial architectures have been
created for the purposes of pedagogy or separating
conceptual points from the details of implementa-
tion, beginning at the foundation of computer sci-
ence with the the Turing machine [6] and continuing
to the present day. Attempting to survey this field in
the related work section of a five page paper is futile;
in the last ten years SIGCSE has published at least
25 papers directly related to this topic, and we sus-
pect that for every architecture documented in the
literature there are at least a dozen toy architectures
that are never publicized outside of the course they
were created for.

The continued and vigorous activity in the devel-
opment of simplified architectures, simulators for
existing architectures, or extended metaphors for
computation such asKarel the Robot[5] or theLittle
Man [7] computer simulators strengthens our belief
that these are powerful pedagogical tools, and that
they are worth further development.

All of the pedagogical systems of which we are
aware focus on a single conceptual domain, instead
of trying to work well across a spectrum of top-
ics. One standout has been the MIPS architecture,
which has served as a useful tool in the domains
of both operating systems and machine architecture
pedagogy. This is demonstrated by the number of
educational projects based on MIPS, such as SPIM
[3], MPS [2], Nachos [1], and descendants of MIPS
such as DLX [4]. Once again, however, the sheer
number and diversity of tools based on this archi-
tecture seems to imply that the situation could be
improved. With Ant-32, we plan to combine the ed-
ucational features of most of these tools into a sin-
gle, coherent framework that can easily be adapted
to a broad range of educational purposes.

7 Conclusions

We believe that Ant-32 will allow educators to
streamline their courses by using the same archi-
tecture (and tools) in several courses, because Ant-

32 is well-suited to many different different educa-
tional purposes.

We recognize that educators will disagree in
whole or in part with some of our assumptions,
opinions, and conclusions, but when this happens,
we hope that sharing our experiences in designing a
32-bit architecture for pedagogical purposes will be
helpful to them as they develop or refine their own
designs.

References

[1] W. A. Christopher, S. J. Procter, and T. E. An-
derson. The nachos instructional operating sys-
tem. Proceedings of the USENIX Winter 1993
Conference, 1993.

[2] M. Morsiani and R. Davoli. Learning operating
systems structure and implementation through
the mps computer system simulation.Proceed-
ings of SIGCSE 1999, 31(1), 1999.

[3] D. A. Patterson and J. L. Hennessy.Com-
puter Organization & Design: The Hard-
ware/Software Interface. Morgan Kaufmann
Publishers, 1994.

[4] D. A. Patterson and J. L. Hennessy.Computer
Architecture: A Quantitative Approach, 2nd
edition. Morgan Kaufmann Publishers, 1996.

[5] R. Pattis. Karel the Robot. John Wiley and
Sons, Inc, 1981, 1995.

[6] A. M. Turing. On computable numbers, with an
application to the entscheidungsproblem.Pro-
ceedings of the London Mathematical Society,
42(2):230–265, 1936.

[7] W. Yurcik and L. Brumbaugh. A web-based
little man computer simulator.Proceedings of
SIGCSE 2001, 33(1), 2001.

Abstract

Learning is not a spectator sport! Yet, the
majority of classroom time is spent lecturing.
While traditional lecture might be useful for
disseminating information, textbooks and web
pages already do that. Why spend valuable class
time telling students what the book says.
Students need to be more engaged than listening
and note taking allow! In-class questioning can
be very effective at actively engaging students.
This paper provides some background
information about questioning, supplies some
process suggestions for those wishing to enhance
their use of questions, and provides some
Computer Architecture specific examples of
questions.

1. Introduction

For several years we have realized that
traditional lecture is too passive and probably is
not the best use of in-class time. Studies have
shown that after 10-15 minutes of lecturing
students essentially stop learning, but their
attention-span clock is reset by interjecting
activities to break up the lecture. (Stuart &
Rutherford 1978) Additionally, Students retain
only a small fraction of the material covered,
attendance only has a marginal effect on
performance, and learning via lecture is
independent of the lecturer's quality. (Stuart &
Rutherford 1978) The bottom line is that lecture
is not very effective!

We accept as fundamental that it is desirable to
have "engaged" students who "actively" process
the content we attempt to teach them. Active
learning (rather than passive memorization of
content) should be the goal of instruction.
Achieving active learning is, however, not
necessarily easy. Our goal became to better
understand the art and science of asking
questions in class so that our students would
learn more or better by being actively engaged in
the content of our courses. At WCAE 2000,
Fienup (2000) explored the use of active and
group learning in Computer Architecture. This
paper is an extension of that work by providing
some background information about questioning,
supplying some process suggestions for those
wishing to enhance their use of questions, and
providing some Computer Architecture specific
examples of questions.

We discovered that there are a variety of goals
that one might have when asking questions. The
next part of the paper will discuss various goals
for questions and other insights we gained from
the literature and our conversations. The bulk of
the paper will include exemplar questions and
attendant goals. We hope they will be useful to
readers who wish to include more questioning in
their Computer Architecture teaching (and allow
some to skip the step where you say "duh" and
hit yourself on the forehead for not realizing that
there is more to questioning for active learning
than just blithely asking questions).

Improving Computer Architecture Education
Through the Use of Questioning

Mark Fienup and J. Philip East
Computer Science Department
University of Northern Iowa
Cedar Falls, IA 50614-0507

fienup@cs.uni.edu
east@cs.uni.edu

2. Background RE Questioning

We used several techniques for gathering
information about questioning. We examined
readily available literature, reflected on our prior
experiences with questioning, and talked about
our experiences. From these activities, we
identified several goals of questioning in the
Computer Science classroom:
§ to have students practice a skill
§ to grade student performance
§ to provide students with practice on

applying knowledge
§ to motivate a topic
§ to motivate students
§ to gauge student understanding
§ to engage students in active learning
§ to develop students' meta-knowledge
§ to regain/reset student attention spans
In examining the literature (e.g., Dantonio &
Beisenherz, 2001, Chuska, 1995, Wasserman,
1992; Wilen, 1991), we encountered similar lists.
For example, Wilen (1991) indicates that

Although the two major enduring purposes of
teacher questions are to determine student
understanding of basic facts associated with
specific content and to have students apply
facts using critical thinking skills, educators
have suggested other related purposes:
§ to stimulate student participation
§ to conduct a review of materials

previously read or studied
§ to stimulate discussion of a topic, issue,

or problem
§ to involve students in creative thinking
§ to diagnose students abilities
§ to assess student progress
§ to determine the extent to which

student objectives have been achieved
§ to arouse student interest
§ to control student behavior
§ to personalize subject matter to support

student contributions in class (p. 8-9)

Both these lists can probably be condensed.
They do, however, suggest rather strongly that a
variety of goals may be achieved via questioning

and that the questioning activity is not simple.
Additionally, we also note that the results of
questioning activity can probably be classified as
recall of knowledge and application of
knowledge (understanding).

From our perspective, recall of knowledge is
important but probably does not constitute active
learning (which is our goal). We might, however,
legitimately use a recall question to achieve a
goal such as assessing student knowledge and
understanding, or as a motivational lead-in to
stimulate student interest in or attention to
upcoming topics.

The goal in which we are most interested is that
of engaging students' minds on the current
lecture topic in a relatively restricted way. We
see the role of in class questions to be one of
initiating intellectual activity in student minds. In
general, such activity might involve:
§ practice of some specific intellectual

activity, e.g., designing, testing, debugging,
interpreting specifications, etc.

§ applying specific knowledge
§ having students examine their own

knowledge and understanding
While we have approached this goal from the
point of view of questioning, we assume we are
not restricted to oral questions or even to
questions. Asking students to engage in an
intellectual activity can be construed as asking a
question.

3. Process Suggestions

Obviously, we suggest that questioning (and
other activity) be used to engage students more
actively in the content of Computer Architecture.
But that is not as simple as asking questions. It
must be planned. The planning may need to
involve a variety of issues and occur at various
times and levels in a course.

Before the course begins, we recommend
familiarizing yourself with the various goals and
types of questions that can be asked and

considering the impact on course planning. For
example, we believe that there are benefits to
having small (4-5 students) groups working
together on questions. Group formation can be
left to students or dictated by the instructor. We
prefer the latter. If the "better" students are
spread throughout the groups, there is potentially
a teacher per group. Weaker students are more
likely to ask questions of their peers. Because
students' mental contexts have more in common
with students than the professor, the student
"teacher" in the group may be in a better position
to communicate effectively. We believe that the
better students also benefit by trying to explain
concepts to weaker students. Think about how
much you learned about the material of a course
the first time that you taught it.

You should also consider addressing your goals
for the in-class questioning activity in your
syllabus and, occasionally, in class. If students
understand why you are asking so many
questions and not just 'telling" them what they
are supposed to know, they may well participate
more fully and learn more. You may also wish to
incorporate some aspect of grading (e.g., class
participation) to reflect your opinion of the
importance of active learning. We would
suggest about 10% of the course grade be based
on in-class participation of the questions. We
base this portion of their grade on student
evaluations from peers within their in-class
groups.

Before each class or unit, plan your questions.
Questions should be used to enhance the learning
of the most important topics of each class.
Identify the most important content goals or
ideas in the lesson. Then proceed to planning
your lesson (and the questioning you will use in
it). It is as important to consider what you are
going to ask as it is to consider what you are
going to tell. Do not treat your questions lightly.
Consider the goal(s) you wish to achieve with
each question. Think carefully about how
students will respond to the question.
§ Are they likely to just turn off and wait until

the "real" classwork starts back up? If so,

can you ask the question differently or do
something in class that short-circuits that
reaction?

§ How much time is necessary for them to
formulate a reasonable response?

§ Is the question clear and unambiguous?
§ Is the question too easy or difficult?
§ Will students be adequately prepared when

the question is asked?

Additionally, consider using non-oral questions.
Placing questions on a transparency or handout
will demonstrate that you consider them
important. Doing so may also communicate to
students that you expect them to spend some
time on the question while at the same time
encouraging you to wait until students have had
time to process it. Many students have
commented that revisiting questions asked in
class an effective way to prepare for
examinations since they focus on the important
skills and concepts of the course.

What you do during class can affect the success
of your plans. When you ask questions, allow
students a chance to respond. If students don't
respond, wait. If students still don't respond,
wait! Eventually, they will respond (if not in
today's class, then in tomorrow's). Also, after a
student response, wait and think. We find that
our first impulse is often less useful than we
would have liked. Consider what the student
might have been thinking and whether and how
you might follow up on the response to enhance
the learning of both that individual and other
students. If nothing else, when you pause, the
students will think you are taking the response
seriously.

Be careful how you respond to student answers.
You want to foster an atmosphere where
students do not feel threatened by answering the
questions. Even comments like "that's not quite
on the mark, Bob" can be enough to make
students hesitant to respond to questions. Since
we tend to have groups answering a question,
we might simply ask what another group thought.

However, it is important that the correct answer
is identified as such.

Finally, it is important to spend time after class
reflecting on what happened. (Schon, 1983) We
often find this hard to do. But, it is necessary, we
believe, in order to achieve success at changing
our teaching behavior. The up-front planning is
quite important, but will be mostly wasted if we
do not take time to analyze how well the plans
worked. In essence, the reflection assesses how
well reality matched the plans and, if so, whether
the desired outcomes were achieved. Did we
actually follow our plans? If not, is that good or
bad? Did the students behave or respond as
anticipated? Does the planned questioning
appear to achieve the desired results? If not,
what other questioning or activity might be
better? The goal of the reflection is to make us
aware of what we do. We suggest a brief
reflection time, perhaps keeping a journal or
annotating the lesson plan. Of course this data
will need to be fed back into the planning process
of the next iteration of the course and indirectly
for future lessons in the current and other
courses.

4. Sample Computer Architecture

Questions

In the discussion below, we provide some
examples of questions or class activities. Along
with the examples we provide some discussion
of our intended goals and of the processes we
experienced or expected with the questions. We
do not limit ourselves to positive examples. It
seems useful to supply some examples of not so
good questions so that others might learn from
our mistakes.

4.1 Knowledge Recall Questions

Knowledge recall questions are relatively easy to
ask. Often, however, they do little to enhance
instruction. The following questions are probably
not particularly helpful, even though they exactly
address what we want to know.

§ What did you learn in this chapter?
§ What are the main points in the reading?
§ Do you have questions over the

chapter/section?
A small set of quick-check kinds of questions,
however, might be useful. They could provide
examples of some types of test questions as well
as a review of important points in the content.
For example:
§ What is a cache?
§ What is the purpose of the (shift left logical)

"SHL" assembly language instruction?
§ What is an operating system?
§ How is bus skew handled in the PCI

protocol?
Even though these questions do have some
utility, we are inclined to believe they should
probably be subsumed into the next category of
question in which skills are practiced.

4.2 Skill Demonstration Questions

Many relatively simple skills such as converting
from a decimal number to binary, or using a
newly introduced assembly language instruction
are often just demonstrated by professors with
the assumption that students have mastered the
skill since they did not ask any questions about it.
Worse yet, students might fool themselves into
thinking they have mastered the skill too. Life
would be much easier if we could learn to swim
by watching someone swim. Demonstrations of
even the simplest skills by the professor should
be followed up by practice questions for the
students. The development of skill requires
practice, and feedback as to the correctness of
practice. Some examples here are:
§ Converting between base 10, 2, and 16.
§ Addition of two binary numbers
§ Trace the assembly language program

containing the newly introduced (shift left
logical) "SHL" to showing the resulting
register values.

§ Use the newly introduced (shift left logical)
"SHL" assemble language instruction to
calculate....

§ Draw the timing diagram for the code
segment on the given pipelined processor.

§ If the given cache is direct-mapped, what
would be the format (tag bits, cache line
bits, block offset bits) of the address?

§ What does the given assembly language
code "do"? Similar in nature to tracing, this
question requires students to abstract from
code to a general statement of code
purpose. Tracing is necessary for
understanding a program and, we believe,
skill at abstraction is necessary for coding
skill to progress to design skill.

§ Using the given hit ratio and access times
for the cache and memory, calculate the
effective memory access time.

Other courses have similar examples of
relatively low-level skills necessary for
competence in the subject—various proof
techniques in discrete structures, using syntax
diagrams to see if a block of code is syntactically
correct, and counting statements in algorithms.

4.3 Questions Drawing on Personal

Experience

Questions asking students to draw on their past
experiences can often be used instead of asking
a more direct, but too complex or abstract,
question. For example in Computer Architecture,
when discussing immediate-addressing modes
with respect to instruction-set-design issues, you
might be tempted to ask the question: "How
many bits should be used for an immediate
operand?" It is more constructive to make the
question more concrete by asking students to
draw on past experiences by asking questions
like the following:
§ From your programming experience, what

range of integer values would cover 90% of
the constant integer values used in all the
programs you have ever written?

§ How many binary bits would you need to
represent this range of values?

The sequence of questions focuses the
discussion on the sought after answer.

Questions requiring students to examine their
own knowledge and understanding can often be

used to motivate a deeper understanding of a
topic, but the instructor must be careful that the
intended point is made by the activity. To
motivate hardware support for operating systems
in a Computer Architecture course, I often ask
the following sequence of questions:
§ What is an operating system

(hardware/software, goals, functionality)?
§ How does OS/hardware protect against a

user program that is stuck in an infinite
loop?

The first question motivates the students to think
about operating systems and their role. They
usually decide that an operating system is
software used to provide services such as
security, file access, printer access, etc. On the
second question, students typically answer that
the system allows users to break/interrupt a
program after a while. Having good oral
questions to follow up on student answers is
important. Asking about "what happens in a
batch system?" steers the discussion back
toward the desired answer of a "CPU timer".
Other times students respond to the second
question with answers like "the operating system
will be watching for infinite loops." The instructor
might follow up with a question like, "In a single
CPU system, how many programs can be
executing at once?" If the students answers
"one", then you might ask, "If the user program
with the infinite loop is running, then how can the
operating system (which we decided was a
program) be running too?" This gets the
discussion back to the need for the CPU-timer
hardware support.

4.4 Questions to Create Cognitive

Dissonance

An Earth Science colleague once told me that
students in his crystallography course did not
have preconceptions about the content in his
course. He was wrong. Students may come to
us with little knowledge and incorrect
assumptions about word usage and meaning, but
they will always have some preconceptions
about our content. Often the preconceptions will
be inaccurate and hard to replace. Identifying

and attempting to fix them and to short-circuit
the establishment of new misconceptions are
critical aspects of teaching. The strongest
learning occurs when we are able to produce
cognitive dissonance in student minds. We need
this kind of learning to alter misconceptions—
weaker techniques will not work. Additionally, it
would be nice if we were able to generate such
a mindset at will. Probably we cannot, but we
can try.

The last example from the previous subsection is
a good example of creating cognitive dissonance
is student minds. By asking the question "If the
user program with the infinite loop is running,
then how can the operating system (which we
decided was a program) be running too?"

Along the same lines, other questions that can
create cognitive dissonance when teaching about
hardware support for operating systems would
be:
§ Since a user's program needs to be allowed

to perform disk I/O, how does the
OS/hardware prevent a user program from
accessing files of other user?

§ Since a user program needs to be able to
perform memory accesses, how does the
OS/hardware prevent a user program from
accessing (RAM) memory of other user
programs or the OS?

4.5 Questions to Motivate a Topic

Before discussing a new topic it is often useful to
ask a question related to the topic to get students
curious. Alternatively, it is sometime useful to
ask a question about a topic's prerequisite
knowledge. This kind of question is an advance
organizer and should serve to establish cognitive
hooks into students' past experience. For
example, before taking about parameter passing
in assembly-language ask questions about how
students view the run-time stack it their most
familiar high-level language.

Clearly, our lists of questions are incomplete.
Space concerns make that necessary. So too

does our level of progress. Frankly, we have only
begun the work necessary to become better
questioners (and, thus, better teachers). Many
more examples of Computer Architecture
questions can be found on-line at Fienup (2001).

5. Conclusions

Our most significant insight is that asking good
questions takes work. We had to (and may still
need to) read about questioning and apply what
we read to teaching Computer Architecture.
Additionally, relatively significant planning is
necessary. In essence, we need to plan for
questions, much as we plan for lecture.

We are still convinced that doing the extra work
pays off. We think student learning has
improved, i.e., more students are learning more
of the material at a level we think is good.
Additionally, we believe the "extra" work in
planning will lessen, and perhaps disappear. As
we learn more and practice questioning (and
planning for it), the time requirements will be
less. Also, as questioning becomes a bigger part
of our teaching, the planning of telling is replaced
by planning for questioning.

Should you decide to include more questioning in
your teaching, we have some advice beyond that
of reading and planning. Reflect on your
questioning behavior. Explicate your goals and
plans before teaching. After teaching, reflect on
how well you implemented your plans and on
how well the questioning worked. Then introduce
those conclusions into your future planning. (This
may require some record keeping.) Finally, do
not expect perfection. Like all other human
endeavors, you will get better with practice,
particularly with good (reflective) practice.

6. References

Chuska, K. R. (1995) Improving classroom

questions. Bloomington, IN: Phi Delta
Kappa.

Dantonio, M & Beisenherz, P.C. (2001)
Learning to question, Questioning to learn.
Boston: Allyn and Bacon.

East, J. P. (2001) Experience with In-person
Grading. Proceedings of the 34nd Midwest
Instruction and Computing Symposium, April
5-7, 2001. Cedar Falls, IA.

Felder, R. & Brent, R. (1996). Navigating the
bumpy road to student-centered instruction.
College Teaching, 44, 43-47.

Fienup, M. (2000) Active and group learning in
the Computer Architecture classroom,
Proceedings of the Workshop on Computer
Architecture Education, June 2000,
Vancouver, B.C., Canada.

Fienup, M. (2001) Fall 2001 Computer
Architecture course home page.
http://www.cs.uni.edu/~fienup/cs142f01/in-
class-materials.

Frederick, P. (1986). The lively lecture - 8
variations. College Teaching, 34, 43-50.

McConnell, J. (1996). Active learning and its use
in Computer Science. SIGCSE Bulletin, 28,
52-54.

Schon, D. A. (1983). The reflective practitioner:
How professional think in action. New York:
Basic Books.

Silberman, M. (1996). Active learning: 101
strategies to teach any subject. Boston: Allyn
& Bacon.

Stuart, J. & Rutherford, R. J. (1978, September
2). Medical student concentration during
lectures. The Lancet, 514-516.

Wasserman, S. (1993) Asking the right question:
The essence of Teaching. Bloomington, IN:
Phi Delta Kappa.

Wilen, W. W. (1991) Questioning Skills, for
Teachers. Washington, D.C.: National
Education Association.

An Active Learning Environment for

Intermediate Computer Architecture Courses

Jayantha Herath, Sarnath Ramnath, Ajantha Herath*, Susantha Herath

St. Cloud State University, St. Cloud, MN 56301

*Marycrest International University, Davenport, IA 52807

herath@stcloudstate.edu http://web.stcloudstate.edu/jherath/CompArch-2

Abstract

Most computer science, information systems and

engineering programs have two or more computer

architecture courses but lack suitable active learning

and design experience in the classroom. Computer

architecture at the intermediate level should focus on

the implementation of basic programming constructs in

different instruction set architectures. To accommodate

such features we developed an undergraduate computer

architecture course with hands-on classroom activities,

laboratories and web based assignments. To assess the

course we distributed the course modules among 200

computer architecture instructors. This paper describes

our experience in developing active learning course

modules.

1. Introduction

During last fifteen years, we have been experimenting

with methods to improve the quality and efficiency of

teaching computer architecture courses for

undergraduate computer science and engineering

students. Our goal has been and continues to be to help

them become good computer scientists in a relatively

short period of time with both theoretical understanding

and practical skills so that they can enter and make an

effective contribution to the profession. Traditionally,

computer architecture subject matter has been presented

to a less than enthusiastic student body in a relatively

passive classroom environment. In general, this chalk-

talk instructional process consists of multiple copying

stages: the instructor first copies notes from a textbook

to his note book, then the instructor copies those notes

onto the blackboard, thereafter the students copy notes

into their note books. Moreover, each instructor

allocates considerable chunk of his/her time to prepare

or update the same course material in each offering. In

addition, there is both local and national need for high-

quality trained labor with the ability to stay current with

the technological advances in the computer architecture

field .

Growth of any undergraduate computer science or

engineering program will largely depend on the strength

of the computer architecture curriculum. To address the

deficiencies in traditional curriculum [4-10] and to

satisfy the current needs, we redesigned our computer

architecture course sequence with fundamentals to

incorporate rapidly changing computer related

technologies so that our graduates will be current with

the technologies before they graduate. It is hypothesized

that the learning rate can be increased if both the

instructor and the student are active at the same time.

Thus the performance of the students can be improved

dramatically by converting the traditional passive

classroom into an active hands-on learning

environment. Designing a course with learning-by-

doing modules and making it available for all the

instructors on-line [1] reduces the course preparation

time for instructors, reduces multiple copying steps in

the learning process, strengthen the abilities and

increase the enthusiasm of both traditional

undergraduate students as well as the adult learners.

Goals and Objectives

The main objective of this project was to develop

computer architecture course modules for intermediate

level undergraduate students and the faculty. These

active learning modules are central to achieve the

following goals:

• To provide the students an efficient,

rigorous and engaging learning

environment with necessary tools and

training to become proficient in the

computer architecture subject matter in a

relatively short period of time.

• To provide architectural details necessary

to implement basic programming

constructs learned in CS-1 and CS-2 with

hands-on skills, integration, team-work

and hence to enhance the quality of the

graduates.

• To use performance focused learning at all

levels of curriculum to illustrate the

principles of computer architecture.

• To provide the faculty and students

modifiable on-line courseware with state-

of-the-art hardware and software practice.

Following sections outline the details of course plan,

goals achieved, difficulties encountered, assessment

plan future work and summary.

2. Detailed Course Plan

The course, outlined below, will address the ways of

reducing the deficiencies in the existing curriculum [4-

10]. When developing and delivering the computer

architecture subject matter for computer science majors,

we believe that the prime factor to be focused on in any

step is processor performance in implementing

programming language constructs. Our curriculum

consists of three semester courses to help master the

computer architecture subject matter in a technology

integrated classroom laboratory. First course of this

sequence will cover fundamentals of architectural

design [11-13]. The laboratories for this course consist

of hardware and software simulations of combinational

and sequential digital circuits. This foundation will

help to develop the skills from gate level to register

transfer level component integration in design. The

intermediate level course that we designed introduce

both complex instruction set and reduced instruction set

processor architectures, instruction set manipulations

with I/O, memory, registers, control and procedures [1-

2][14-16] to the students. The laboratories for this

course consist of hardware and software simulations of

programming constructs in CISC and RISC

architectures. After completion of intermediate course

the students will be able to learn architectural details of

any other processor. The third course is focusing on the

advanced concepts in architecture involving

parallel/distributed computations and special purpose

architectures to provide both depth and breadth to the

subject matter. Parallel processing and special purpose

processing concepts in the undergraduate curriculum

has been the focus of several curriculum improvement

efforts for some time [3][17-18]. The students should be

able to understand the importance of parallelism in

enhancing performance and its benefits as an

application programmer, a systems programmer, an

algorithm designer, and a computer architect. A course

sequence with the features outlined above could help

our students develop design skills in several different

architectures before their graduation. The undergraduate

curriculum, graduate programs and industry will

definitely appreciate the graduates with such design

skills.

Topics for Computer Architecture II

At the intermediate level we introduced processor

design and focused on the implementation techniques

of basic programming constructs such as I/O, arithmetic

expressions, memory operations, register operations, if-

else-for-while control and functions in several different

instruction set processor architectures. Two complex

instruction sets and one reduced instruction set

processor architectures were introduced in our course.

Students learned that proper instruction set design,

memory management and I/O management techniques

will also lead to the performance enhancement.

Increasing performance of the processor by reducing the

program execution time is considered at each design

and implementation. Focusing on the importance of

performance when designing the processor helped to

maintain the momentum and enthusiasm in the

classroom. Often the students were excited to observe

the register level manipulations in the processors. They

also enjoyed discovering the processor and controller

designs in an active classroom. Comparing different

architectures including pipeline techniques and

abstracting the essentials of the processor architectures

at this level generated the required enthusiasm to the

learning and teaching. The required textbook for this

course is Paterson and Hennessey [2]. We are looking

for ways to integrate rapid prototyping of the systems to

the course using web based tools.

Hardware/Software Laboratories

To provide architectural concepts with hands-on skills,

integration, team-work and hence to enhance the quality

of the graduates, we added pre-lab, in-lab and post-lab

assignments to complement the classroom activities.

Table 2 summarizes the educational experience gained

from these laboratories.

Table 2. Educational experience

Experience Level Application

Prelab Analysis,
synthesis

Design circuits
and programs to
perform a specific
simple task

Closed
Labs

Application,
analysis,
synthesis,
evaluation

Design,
implement and
test circuits and
programs to
perform a specific
task within a
given period of
time

Open
Labs

Application,
Analysis,
synthesis,
evaluation

Design circuits
and programs to
perform a
difficult task

In-class
activities

Application,
Analysis,
synthesis

Cost reduction,
performance
improvement,
integration

Tests Analysis,
synthesis

Architecture
design related
questions

To reflect student-centered design and analysis

processes, classroom activities were modified to

accommodate skills in performance improvement and

cost reduction when designing processors. In general,

pre laboratory assignments helped the students explore

and create on their own. They synthesized the

classroom instructions with other resources to produce

hardware and software and then to test and to debug. In

the classroom, each student provided with a computer

and tool kit to extend the concepts they learned in the

pre lab assignment. Less challenging design problems

that can be solved within a given period of time were

assigned as in-class closed-laboratory assignments. A

post-lab assignment helped the students to analyze the

use of in-class activities. More challenging and time

consuming problems were assigned as post laboratories.

Students were active in both laboratory and in the

classroom while thinking and experimenting on a

machine with the architectural concepts introduced in

the classroom. After completing each project, students

submitted a report discussing their experience. First,

each student worked alone as the sole developer of the

hardware and software. Towards the end of the semester

two to four students were allowed to work in a team to

design, construct and complete the projects. The group

was responsible for developing definitions and

specification of a larger hardware/software product to

solve a problem as their final project. The course helped

students become proficient in the subject matter in a

relatively short period of time.

3. Goals Achieved

We created the active learning course material that will

enhance students' high level skills: teamwork, analysis,

synthesis, performance comparison and active

participation in the classroom. To reflect the inclusion

of several different instruction set architectures we

created hands-on hardware and software laboratory

assignments. Our computer science students received

the instructions based on the course material developed

in Spring 2002 and Fall 2001.

Our active learning course modules enabled students to

learn architectural concepts more effectively and

efficiently thus providing students an opportunity to

function well in an increasingly competitive technical

society. The classroom activities provided the students

with opportunities for analysis, synthesis, and

verification of correctness in building larger systems all

during traditional class time. Such modifications

increased the enthusiasm in the classroom, addressed

the needs of both traditional undergraduates and adult

students, the needs of the industry and provided

necessary tools and training for the student to become

proficient in the computer architecture subject matter in

a relatively short period of time. To our knowledge, no

other computer architecture course used our approach.

Therefore, our course modules and experimental results

will be very useful for the other computer science and

engineering programs nationally. Table 3 depicts the

Indicators/Measurements of goal attainment of all three

courses.

Table 3. Indicators/Measurements of goal
attainment

Entry level Intermediate level Goal Attainment
Gate level
design and
analysis

Design, analysis
and performance
improvement of
architectural
components,
processors,
controllers

Parallel
processing,
system design,
analysis and
performance
improvements

Exams Exams Exams

Architecture Symposium

A computer architecture symposium [21-22][24] was

organized at the end of the Spring'02 semester to

stimulate our undergraduate and graduate students,

computer science and engineering faculty in tri-state

and the local industry. We invited five excellent

speakers from MIT, University of Minnesota, IBM T.J.

Watson center and Oracle to deliver lectures based on

their work. The symposium was well attended by the

students, faculty and industry. Spring'02 semester

started with introduction seven trillion FLOPS machine,

then the students learned about 35 trillion FLOPS

machine. At the end of the semester in the symposium

students learned about the 185 trillion FLOPS machine

under development at IBM. This conference also helped

our efforts to develop a core curriculum for Computer

Science that presents an integrated view of hardware

and software to the undergraduate students.

Difficulties

Incorporating several architectures into one course

seemed overloading the students and faculty at the

beginning. However, making our course modules

available for the students at the beginning of the

semester via web helped to eliminate this difficulty.

Selecting a series of projects that increases enthusiasm

in a diverse body of students was also a difficulty we

encountered. Observing, helping and verifying the

correctness of weekly work focusing on the analysis

and synthesis of components was a time-consuming

task. Trained student assistants helped in scheduling the

laboratories and reduced the burden. However,

attracting suitable student assistants and paying them

sufficiently to keep them was also another difficulty we

faced. Identifying suitable modern educational circuit

boards for our experiments was another difficulty we

faced.

St. Cloud State University, with six colleges, is the

second largest university in Minnesota. The university

enrollment is approximately 15,000 students drawn

from MN, rest of the USA and foreign countries. The

computer science department, among the 10

departments of College of Science and Engineering, is

one of the two CSAB accredited departments in MN.

The department consists of 180 undergraduate major

students, 30 graduate students and 10 full time faculty

members. We have two departmental laboratories with

50 PCs for introductory programming classes,

architecture and operating systems. Most of the

graduates enter industry or graduate school after

graduation. Computer science department offered the

computer architecture I course twice during the

academic year 2002/03 for about ninety students.

Computer architecture II course is offered twice a year

during the academic year 2002/03 for about sixty

students. Computer architecture III course is offered

once during the academic year 2002/03 for about forty

students. We graduated 25 students this year.

4. Course Assessment

The course material developed was evaluated by

soliciting the criticism from the faculty and students.

Student learning was evaluated using many different

ways. The background knowledge and preconception

checks were performed in the form of a simple

questionnaire/worksheet that the students will fill in

prior to working on the lab assignments. The students

were asked to explain the concepts they have learned

so that the instructor can measure student learning.

Faculty and teaching assistants regularly observed the

team work. Recording experiences from laboratory

assignments was an essential part of the student work.

Student groups submitted weekly project reports.

Group-work evaluations were also used to assess the

course. In the larger lab projects, students worked

together in groups. Each member turned in an

evaluation of his/her own learning experiences gained

by being part of a team. To reinforce the learning, a test

was scheduled after the completion of each module.

Excellent students performed well in all levels and had

complete understanding of the subject matter. Very

good students were strong in many areas but weak in

some. Average students showed weaknesses in some

levels. Poor students could not perform well in many

areas. Classroom opinion polls and course-related self

confidence surveys were also performed to receive the

feedback. In the future, comments from the industrial

advisory committee and accreditation board member's

site visit and reviews from other instructors will be

used to evaluate the project performance. Within our

large university system we will have opportunities to

test our designs which could possibly extend to other

faculty and students. We are currently in contact with

many computer architecture instructors to find ways to

improve the courses we teach.

Dissemination of Course Modules Among Instructors

To disseminate the findings of this project, laboratory

manuals, course notes and other related information,

the web is heavily used. Before the start of Spring'02

semester, we contacted approximately 600 computer

science departments using our distribution list and

informed the availability of our course modules for their

classroom use and review with no charge. More than

200 computer architecture instructors requested the

course modules. We distributed our lecture notes among

them via e-mail. A better version of our course material

is now available to others for classroom use [19-20]. It

is important to note that we have successfully

completed the introduction to computer architecture

project earlier and distributed the course material to

more than 200 instructors. We will continue assessing

the course material through faculty and student

feedback for next few semesters. We will continue to

share the experience gained from this experiment with

the rest of the computer architecture community.

Progress of this project will be reported to the MnSCU

Center for Teaching and Learning.

5. Summary and Future Work

Traditionally, computer architecture courses are

presented, with complexity and confusion, to a less than

enthusiastic student body and often delivered in a

relatively passive classroom environment. In general,

learning takes place if both the instructor and the

student are active at the same time. To promote this in

the classroom and to overcome the above mentioned

deficiency, we developed an intermediate computer

architecture course with hands-on classroom activities,

laboratories and web based tools and distributed among

many computer architecture instructors. Other

deficiencies encountered in the traditional learning

environment such as instructor's preparation time and

multiple copying stages involved in the learning process

were also addressed. Availability of properly designed

and developed on-line course materials, with a series of

hands-on laboratories as well as classroom activities

will definitely reduce both instructors' preparation time

and multiple copying stages, and increase student

learning rate. Such on-line courses could help both

traditional students and adult learners to explore the

computer architecture area while developing their

design and analysis skills. Modifiability and flexibility

of course material at the instructor's end will contribute

very much to the faculty development. Often, the

students are confused because of not having a well-

defined focus in the classroom activities. This computer

architecture course is designed to complement the

activities performed in CS-1, CS-2 and computer

architecture-1 courses. The subject matter provides the

gateway for advanced studies in computer architecture

and other areas. The course helped to understand the

implementation details of basic programming constructs

in CISC and RISC architectures. Performance issue is

considered in all alternative designs. This courseware

helped students to be active in the classroom and

increased the enthusiasm in learning computer

architectures. Hardware description programming

experience allows description of the structure,

specification using a familiar programming language

and simulation before being manufactured. As a result,

students as designers can quickly compare alternatives

for high performance and test for correctness. We are

planning to use a industry-standard hardware

description programming language [23] in both first and

second level courses. Developing a clustered computing

environment will be useful for the laboratories in the

third course of the sequence. Educational circuit boards

with several processors that communicate with each

other through dedicated channels will be a good

alternative for the advanced course. Virtual

environments with variety of visualization systems are

matured enough to aid students' understanding of

miniaturized complex processor architecture. Through

such platforms students will learn to appreciate the

instruction set architecture. In the future revisions we

will explore the feasibility of incorporating such virtual

environments in the computer architecture classroom

[7][8] and then improving upon them in successive

iterations.

Acknowledgments

This project has been supported by the MnSCU Center

for Teaching and Learning through the Bush/MnSCU

Learning by Doing Program.

6. References

1. A Web-Based Computer Architecture Course
Database, Edward F. Gehringer
http://www.csc.ncsu.edu/eos/users/e/efg/archdb/FI

E/2000CACDPaper.pdf
2. Computer Organization and Design:

Hardware/Software Interface, Second Edition, John
L. Hennessy and David A. Patterson, 1997
http://www.mkp.com

3. Computer Architecture: A Quantitative approach,
Third Edition, John L. Hennessy and David A.
Patterson, 2002http://www.mkp.com

4. The Undergraduate Curriculum in Computer
Architecture, Alan Clements,
http://www.computer.org/micro/mi2000/m3toc.pdf

5. Teaching Design in a Computer Architecture
Course, Daniel C. Hyde,
http://www.computer.org/micro/mi2000/m3toc.pdf

6. Rapid Prototyping Using Field-Programmable
Logic Devices, James O. Hamblen,
http://www.computer.org/micro/mi2000/m3toc.pdf

7. PUNCH: Web Portal for Running Tools Nirav H.
Kapadia, Renato J. Figueiredo, and José A.B.
Fortes,
http://www.computer.org/micro/mi2000/m3toc.pdf

8. Building Real Computer Systems Augustus K. Uht,
Jien-Chung Lo, Ying Sun, James C. Daly, and
James Kowalski,
http://www.computer.org/micro/mi2000/m3toc.pdf

9. HASE DLX Simulation Model Roland N. Ibbett,
http://www.computer.org/micro/mi2000/m3toc.pdf

10. An Integrated Environment for Teaching
Computer Architecture Jovan Djordjevic,
Aleksandar Milenkovic, and Nenad Grbanovic,
http://www.computer.org/micro/mi2000/m3toc.pdf

11. Digital Design, 3/e2002Morris Mano,
http://prenhall.com

12. Digital Design: Principles and Practices, Updated
Edition, 3/e 2001John Wakerly,
http://prenhall.com

13. Digital Design Essentials and Xilinx 2.1 Package,
1/e 2002Richard Sandige,http://prenhall.com

14. Computer Systems Organization and Architecture
John Carpinelli (2001),http://awl.com

15. COMPUTER ORGANIZATION, Fifth EditionV.
Carl Hamacher, Zvonko Vranesic, Safwat Zakay,
http://mhhe.com

16. Computer Systems Design and Architecture, 1/e
1997Vincent Heuring , Harry Jordan,
http://prenhall.com

17. Parallel Computer Architecture: A
Hardware/Software Approach David Culler and
J.P. Singh with Anoop Gupta, August 1998
http://www.mkp.com

18. Readings in Computer Architecture, Mark D. Hill,
Norman P. Jouppi, and Gurindar S. Sohi,
September 1999,http://www.mkp.com

19. Computer Architecture I Preliminary version
http://web.stcloudstate.edu/jherath/CompArch-1

20. Computer Architecture II Preliminary version
http://web.stcloudstate.edu/jherath/CompArch-2

21. Hardware/Software Interfacing for High
Performance Symposium -02
http://web.stcloudstate.edu/jherath/Conference.htm

22. The RAW Microprocessor, M.B. Taylor etal,
MICRO 2002March
http://dlib2.computer.org/mi/books/mi2002/pdf/m2
025.pdf

23. VHDL Primer, A, 3/e1999Jayaram Bhasker,
http://prenhall.com

24. VLSI Digital Signal Processing Systems: Design
and Implementation, K. K. Parhi, 1999,
http://wiley.com

Abstract

The use of simulation is well established in
academic and industry research as a means of
evaluating architecture trade-offs. The large code
base, complex architectural models, and numer-
ous configurations of these simulators can con-
sternate those just learning computer
architecture. Even those experienced with com-
puter architecture, may have trouble adapting a
simulator to their needs, due to the code complex-
ity and simulation method. In this paper we
present tools we have developed to make simula-
tion more accessible in the classroom by aiding
the process of launching simulations, interpreting
results and developing new architectural models.

1 Introduction
The use of simulation tools in computer engi-

neering is essential due to the time overhead and
cost of manufacturing prototypes. To better pre-
pare the student, we and many others have inte-
grated the use of architectural simulation tools
into our computer organization curriculum. How-
ever, detailed simulators can be very daunting to
the beginner, as they typical possess hundreds of
options and thousands of lines of code. In this
paper we discuss how simulators can be made
more approachable to both students who are
learning the fundamentals of computer architec-
ture and those that are investigating a particular
issue in the field.

In our introductory courses, users who are
learning the fundaments are more concerned with
running simulations, than understanding or modi-
fying its implementation. We have found the best
way to aid novice students, is to provide tools that
have a simple interface and an output that allows
them to clearly see what is going on. We present

two graphical tools (SS-GUI and GPV) and a
backend perl script that decrease the complexity
of using architectural simulators.

In our more advanced courses, we often ask
our students to add performance enhancing fea-
tures to a microarchitectural simulator. We have
found the students are best served by a simulator
that is modular and simple to alter. In addition,
they require a verification method to ensure their
changes do not break the simulator. If bugs are
detected the infrastructure should have methods
to expedite the detection and correction of the
error. We present the features of the Micro Archi-
tectural Simulator Environment (MASE) that
make it ideally suited for class projects.

The rest of the paper is structured as follows.
First we discuss the tools (SS-GUI and perl script
backend) that we have developed that simplify the
running of a simulation. Next we talk about the
graphical pipetrace viewer (GPV) which simpli-
fies the simulation analysis process. We then
focus on MASE, which aids more advanced stu-
dents in developing new architectural models.
Finally, we give some concluding remarks on
these tools and their use in education.

2 Launching Simulations
SS-GUI, shown in Figure 1, is a user-interface

form that contains all of the fields necessary to
launch a simulation. The save and load options
make it possible for an instructor to setup a tem-
plate for the class to use as the basis of their sim-
ulations. Presently the environment is customized
to the SimpleScalar toolset [3], however the only
non-generic field is the simulator options field.
These fields are constructed by parsing a global
configuration file that specifies the options avail-
able for the simulator. Additional features of the

Effective Support of Simulation in Computer Architecture
Instruction

Christopher T. Weaver, Eric Larson, Todd Austin
Advanced Computer Architecture Laboratory, University of Michigan

{chriswea, larsone, austin}@eecs.umich.edu

GUI are enumerated below with corresponding
marks on Figure 1.
1. File options- This menu allows for the load-

ing and saving of the GUI form contents. This
allows the system admin or class instructor to
fill in a base line form that the student can
load and alter.

2. Setting Menu- This menu bring up prompts
for the form comments.

3. Simulation Settings- This section contains all
the paths to the necessary components to run
a simulation. This can be classified as three
different types of data: configuration of the
simulator, run setup, and benchmark specifi-
cation. The configuration of the simulator
requires the user to supply the path to the
actual simulator and any configuration file to
use. The run setup requires the user to supply

the path of the backend run script (talked
about in the next paragraph), where to run the
simulation, where to store the results and how
to tag the results for later inspection. Finally,
the user must supply the benchmark to exe-
cute, the path to the executable and type/path
of the input set to use.

4. Benchmark Selection window- The user has
the option to select the benchmark from a list
or type the benchmark and its options in man-
ually. The pop-up window contains informa-
tion about each of the different benchmarks
that are supported (currently spec2000,
spec95 and a few others). A global bench-
mark configuration file specifies how to run
the experiments.

5. Simulator Option Scroll Window- This win-
dow contains all of the simulator options that

1) 2) 3)
4)

5)

6) 7) 8) 9)
Figure 1: SS-GUI - a frontend for running simulations

are available for the current simulator. If a
configuration file is specified, the options will
display this value. The entries can also be
modified by the user. A color guide is used to
illustrate whether the value is the default,
specified in the config file, entered by the user
or contains multiple entries. The multiple
entry fields are reserved for future usage,
where the GUI can be used to generate test
queues for a variety of simulator options.

6. Update Options Button- This button will run
the simulator without any arguments, so that
the available options are reported. The
reported options are then parsed and reloaded
into the Simulator Option Scroll Window.

7. Run Simulation Button- This button will run
the backend perl script with the options setup
in the GUI form.

8. Launch Visualization Button- The launch
visualization option will run the backend perl
script with a flag that causes the output to be
streamed into GPV (described in the next sec-
tion).

9. Exit- Exit the GUI environment.

The backend perl script contains a variety of
features, however its basic function is to copy all
of the simulation files to a experiment directory,
launch the simulation, and copy back the results.
The script contains all of the arguments need to
launch the supported benchmarks (currently
spec2000, spec95 and a few other benchmarks).
The run script can optionally check that the simu-
lator gave the correct output. The logs generated
by the script expedite the diagnosis of run fail-
ures.

3 Interpreting Results
Figure 2 gives an overview of GPV, our pipe-

line viewer. An architectural simulator is used to
produce a pipetrace stream. This stream contains
a detailed description of the instruction flow
through the machine, documenting the movement
of instructions in the pipeline from “birth” to
“death”. In addition, the pipetrace stream denotes
various other events and stages transitions that
occur during an instruction’s lifetime.

The pipetrace stream from the architectural
simulator can be sent directly into GPV or buff-
ered in a file for later analysis. GPV digests this
information and produces a graphical representa-

tion of the data. The graph generated by GPV
plots instructions in program order, denoting over
the lifetime of an instruction what operation it
was performing or why it was stalled. In addition,
the tool is able to plot any other numeric statistics
on a resource graph.

Multiple traces can be displayed on the screen
at any given time for easy analysis. GPV also
supports both coarse and fine grain analysis
through the use of a zoom function. Color coded
events, which are user definable, makes spotting
potential bottlenecks a simple task. The remain-
der of this section will outline the tool in detail,
including the main view, advanced features, trace
file format, and other infrastructure with which
GPV has been designed to communicate.

3.1 Main Visualization Window
The main GUI window of GPV is illustrated in

Figure 2. The GUI has two main graphical dis-
play windows, the instruction window and the
resource window. The instruction window plots
instructions in program order on a time axis
(measured in cycles). For example, the third
instruction bar in Figure 2, shows the execution
of an ADDQ instruction on a 4-wide Alpha simu-
lator. As shown in the figure, this instruction is
stalled in Fetch (IF) until the stall in the internal
ld/st is resolved, after which it continues to com-
pletion.

This method for graphing instructions as they
flow through a pipeline is a common visual repre-
sentation, used in many textbooks including Hen-
nessy and Patterson [6]. The instruction axis
contains tick marks to indicate the cycle count.
Additionally, the vertical axis will also display
the instruction mnemonic when the window is
zoomed in enough to fit legible text aside each
instruction mark (typically two zooms from when
the pipetrace is first loaded).

The right panel provides a legend of the color-
ing that is used to illustrate the instruction’s flow
through the different stages of the pipeline. Sig-
nificant events, such as branch mispredictions or
cache misses, are displayed in conjunction with
the instruction’s transitions through the pipeline.
The use of color (with a user configurable palette)
provides an effective means for spotting potential
bottlenecks. A highlight option, which can flash
the occurrences of a particular event, can be used
as an alternative method of locating bottlenecks.

The bottom window, the resource view, dis-
plays graphs of any numeric statistic provided in
the pipetrace file. GPV has been designed to plot
both integer and real statistics. Up to four data
sets (our current development extends this to ten)
can be displayed simultaneously with color coded
axes that indicate the range of the variable. Since
there can be a wide variation in the data range of
a statistic, a separate x-axis is provided for each
one of the four resources that can be displayed at
a time. Both the resource and instruction views
are plotted against simulator time on the x-axis.
This permits widely varying statistical data sets to
be plotted within the same window. To avoid clut-
ter, the GUI allows the selective hiding of individ-
ual resource views.

The resource view in Figure 2 is shown plot-
ting the IPC of a simulated program. As shown in
the figure, the IPC of the program starts to drop
during the cache miss. Once the miss has been
handled and instructions start to retire, the IPC
begins to recover. The flexibility of the resource
view allows the user to chose the statistics that are
most valuable for performance analysis and cor-
relate these statistics to instructions flowing
through the pipeline. This simplifies the task of
identifying bottlenecks, as illustrated by the rela-

tionship of the cache miss to the IPC drop in Fig-
ure 2.

The GUI provides several additional features
that assist in diagnosing performance bottlenecks.
The display can be zoomed in and out to trade off
detail for trend analysis. When the display is
zoomed out it is straightforward to determine
areas of low performance by locating pipeline
trace regions with low slope. The slope of the line
is given by 1:

Thus for a perfect single wide pipeline (no
data, control or resource hazards) with no multi-
cycle stages the IPC would be 1 (slope of -1). The
display will show the areas of low performance
with a gradual (more horizontal) slope and areas
of high performance with a steep (more vertical)
slope.

GPV also allows users to select instructions for
more information. Selecting an individual

Figure 2: GPV Display Window. This example shows the execution of instructions on a 4-wide Alpha ISA
model. (Note: Internal micro-code operations, i.e. internal ld/st, are allowed to finish out of program order.)

Instruction Axis

Resource Axis

Instruction Window

Resource Window

Coloring Legend

Selected Instruction Value

Selected Resource Value

1. The negative sign is because instruction progress in the
negative y direction.

slope
∆y
∆x
------ IPC()–= =

instruction displays the cycle time of execution
and the instruction mnemonic. This makes it pos-
sible to get information about single instructions
when the pipeline display is too small to label
each individual instruction. Similarly, the
resource view allows resource graph lines to be
selected, which returns the label, cycle number
and instantaneous value. Since the resource
graphs are displayed as continuous lines from dis-
crete data in the pipetrace file, intermediate points
are calculated by linear interpolation.

4 Developing New Models
MASE (Micro Architectural Simulation Envi-

ronment) is a flexible performance infrastructure
to model modern out-of-order microarchitectures.
It is a novel performance modeling infrastructure
that is built on top of the SimpleScalar toolset [3].
MASE is most appropriate for advanced com-
puter architecture courses where students are add-
ing enhancements to a baseline microarchitecture
and analyzing their results. MASE simplifies this
process by adding a dynamic checker that can
detect implementation errors, modularizing the
code base improving code readability and under-
standing, and adding support for optimizations
that are difficult to implement. Additional infor-
mation on MASE can be found in [7].

4.1 Dynamic checker
The dynamic checker is used to verify that any

changes or enhancements to the simulator code
are indeed correct. Since not all errors directly
cause an error in the output, it provides extra
security that a model enhancement did not violate
any microarchitectural dependencies or program
semantics. In most simulators, it is difficult to
determine precisely where an error occurred
when there is a difference in the output. The
checker will pinpoint the first instruction where a
mismatch occurs, greatly reducing debugging
time.

The checker resides in the commit stage, moni-
toring all instructions that are committed. It com-
pares values produced from the core to the correct
value. The correct value is obtained by the use of
an oracle in the fetch stage. The oracle is an in-
order functional simulator that has its own archi-
tectural state and memory. The oracle data is
passed to the checker using a queue. In addition
to checking the output value, the checker will also

check (if appropriate) the PC, next PC, effective
memory address, and any value written into
memory. If the results match, the result will be
committed to architectural state and the simula-
tion will progress as normal. If the results do not
match, an error message is printed out indicating
the failing instruction along with the computed
and expected values. The simulation may con-
tinue or be aborted depending on a user-con-
trolled flag. If the simulation is allowed to
continue, the oracle result will be committed to
architectural state and a recovery will be initiated.
The instruction with the bad result is allowed to
commit (with its result corrected) in order to
ensure forward progress. The remaining instruc-
tions in the pipeline are flushed and the front-end
is redirected to the next instruction.

Our experience with the checker has been very
positive, starting when we were implementing
MASE itself. The first bug we found involved
failing instructions that referred to Alpha register
$31 (the zero register). Almost immediately, we
were able to determine that the processing of this
special register was incorrect. Once that problem
was flushed out, we noticed that most of the prob-
lems dealt with conditional move instructions and
how the output was incorrectly zero most of the
time. We concentrated our debugging efforts at
the conditional move and quickly identified that
when the conditional move was not executed, it
was not handled properly.

The checker was also useful in implementing a
blind load speculation case study1. As one might
expect, loads were the only instruction that failed
so the error message provided by the checker did
not provide as much insight as in the previous
cases. Instead, we focused on the first error that
was signalled. We used gdb to debug the simula-
tor and set a breakpoint on the failing instruction.
Once we arrived at the failing instruction, we ana-
lyzed the state of the machine at that time and
were able to isolate the problem relatively
quickly.

4.2 Modularized code
The MASE performance model has been

divided into several files, summarized in Table 1.
The rest of the SimpleScalar infrastructure is well

1. Loads are allowed to speculatively execute once their
addresses are known regardless if earlier stores could over-
write the data the load is accessing [9].

modularized with separate files for branch predic-
tors, caches, and memory systems. This organiza-
tion allows users to focus on the part of the
simulator they plan to work on without requiring
intimate knowledge of the other sections. It also
allows different users to work on different files
without having to worry about combining
changes within in a single file later1. It is straight-
forward to add enhancements since most of the
new code can be placed in separate files usually
requiring only slight modifications to the existing
code.

Many of the features in MASE were added to
make the model more realistic and representative
of modern microarchitectures. A side effect of
this is that it makes it easier for new users to
understand how the provided code works. For
example, one of the main obstacles to understand-
ing how sim-outorder works is due to the fact that
the core only simulated timing - there is no exe-
cute stage. The core of MASE executes instruc-
tions, allowing new users to track an instruction
from fetch to commit without wondering where
the execute stage is. To further improve readabil-
ity, the execution and decoding macros have been
placed into separate file, removing machine-
dependent code from the bulk of the core.

4.3 Modernized microarchitectural model
One of the goals of MASE is to modernize the

baseline microarchitectural model, allowing for
the creation for more accurate models. To accom-
plish this, we added support for several different
types of optimizations or analyses that would be
difficult to implement in the previous version of
SimpleScalar. This section outlines some of the
things we added.

A micro-functional core is added that executes
instructions instead of just timing them. This
allows for timing dependent computation which
is necessary for accurate modeling of the mispec-
ulated instruction stream or multiprocesssor race
conditions. Lastly, it is necessary to execute
instructions in the core in order to use the checker
to find implementation errors such as violating
register dependencies.

An oracle sits in the fetch stage of the pipeline
and is a functional emulator containing its own
register file and memory. Oracles are commonly
used to provide “perfect” behavior to do studies
that measure the maximum benefit of an optimi-
zation. A common case of this is perfect branch
prediction where all branch mispredictions are
eliminated. In order to provide this capability, the
oracle resides in the fetch stage so it knows the
correct next PC to fetch.

We added a flexible speculative state manage-
ment facility that permits restarting from any
instruction. The ability to restart from any

Table 1: Description of MASE files

mase-checker.c Oracle and checker.

mase-commit.c Backend of the machine: writeback, commit, and some recovery routines

mase-debug.c MASE-specific support for SimpleScalar’s DLite! debugger

mase-decode.h Macros used for decoding an instruction

mase-exec.c Core of the machine: issue and execute

mase-fe.c Frontend of the machine: fetch and dispatch

mase-macros-exec.h Execution macros for the execute stage

mase-macros-oracle.h Execution macros for the oracle

mase-mem.c Memory interface functions

mase-opts.c File contains all MASE-related options and statistics

mase-structs.h Common MASE data structures

mase.c Initialization routines and main simulator loop

1. sim-outorder.c is 4,692 lines long!

instruction allows optimizations such as load
address speculation and value prediction to be
implemented. In these optimizations, instructions
other than branches could be mispeculated, mak-
ing it necessary to restart at the offending instruc-
tion. This approach also simplifies external
interrupt handling since any instruction could fol-
low an interrupt request, forcing a rollback. The
checker also uses this mechanism to recover from
any errors that are detected since any instruction
could potentially cause an error.

MASE uses a callback interface is used that
allows the memory system (or any resource) to
invoke a callback function once the memory sys-
tem has determined an operation’s true latency.
The callback interface provides for a more flexi-
ble and accurate method for determining the
latency of non-deterministic resources.

5 Related Work
There are a number of performance modeling

infrastructures available to instructors today that
implement various forms of these technologies.
The Pentium Pro simulator [12], Dinero [5], and
Cheetah [15] are examples of simulators that read
external traces of instructions. Turandot [10],
SMTSIM [16] and VMW [4], are simulators, like
SimpleScalar, that generate instructions traces
through the use of emulation. RSIM [11] is an
example of a micro-functional simulator; instruc-
tions are emulated in the execution stage of the
performance model. Unlike MASE, it does not
have a trace-driven component in the front-end.
This prevents oracle studies such as perfect
branch prediction. The idea of dynamic verifica-
tion at retirement was inspired by Breach’s Multi-
scalar processor simulator [2]. Other simulation
environments include SimOS [13] and SimICS
[8] which focus on system-level instruction-set
simulation. MINT [17] and ATOM [14] concen-
trate on fast instruction execution.

There are also numerous visualization infra-
structures available today. The tools range from
pedagogical aids to comprehensive performance
analyzers. DLXview [18] is a tool that depicts the
DLX pipeline that is outlined in Computer Archi-
tecture: A Quantitative Approach by John Hen-
nessy and David Patterson [6]. It was created as
part of the CASLE (Compiler/Architecture Simu-
lation for Learning and Experimenting) project at
Purdue. Another common method for visualizing
the performance of a simulator is to abstract away

the architecture and provide statistics based on
the actual code running. CPROF [20][21] and
VTUNE[19] are two examples of programs that
display information such as cache misses or
branch mispredictions for specific segments of
code. RIVET [22-24] is a powerful display envi-
ronment developed at the Stanford Computer
Graphics Laboratory. The tool provides a very
detailed time line view to identify problem areas.
This view uses multiple levels of selection to
gradually decrease the area of code being viewed,
while simultaneously increasing the detail. Fur-
ther background information on these tools and
how GPV differs can be found in [25]. This paper
also illustrates how visualization can be used for
performance analysis.

6 Conclusion
We have introduced three tools in this paper

that aid students using simulation in the class-
room. The SS-GUI and backend perl script make
it simple to launch simulations, by allowing the
user to graphical select the simulator options and
benchmark to simulate. The graphical pipeline
viewer (GPV) aids the student in analyzing the
simulation results. Finally, MASE’s modularized
code base and built-in checker mechanism make
it ideally suited for efficient architectural model
generation.

SS-GUI and GPV can be downloaded from
http://www.eecs.umich.edu/~chriswea/visual-

ization/vis.tar . The MASE toolset and documen-
tation can be downloaded from http://
www.simplescalar.com/v4test.html.

Acknowledgments

This work was supported under a National Sci-
ence Foundation Graduate Fellowship and by the
NSF CADRE program, grant no. EIA-9975286.
Equipment support was provided by Intel.

References
[1] T. Austin. DIVA: A Dynamic Approach to Micropro-

cessor Verification. Journal of Instruction-Level Par-
allelism Vol. 2, Jun. 2000.

[2] S. Breach. Design and Evaluation of a Multiscalar
Processor. Ph.D. thesis, University of Wisconsin-Mad-
ison, 1999.

[3] D. Burger and T. Austin. The SimpleScalar Tool Set,
Version 2.0. University of Wisconsin Computer Sci-
ences Technical Report #1342, June 1997.

[4] T. Diep. VMW: A Visualization-based Microarchitec-
ture Workbench. Ph.D. thesis, Carnegie Mellon Uni-
versity, June 1995.

[5] J. Edler and M. Hill. Dinero IV Trace-Driven Unipro-

cessor Cache Simulator. http://www.neci.nj.nec.com/
homepages/edler/d4.

[6] J. Hennessy and D. Patterson. Computer Architecture:
A Quantitative Approach, Morgan Kaufmann, San
Francisco, 1996.

[7] E. Larson, S. Chatterjee, T. Austin. MASE: A Novel
Infrastructure for Detailed Microarchitectural Model-
ing. Proceedings of the 2001 International Symposium
on Performance Analysis of Systems and Software,
Nov. 2001.

[8] P. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F.
Larsson, F. Lundholm, A. Moestedt, J. Nilsson, P.
Stenström, and B. Werner. SimICS/sun4m: A Virtual
Workstation. Usenix Annual Technical Conference,
June 1998.

[9] A. Moshovos and G. Sohi. Memory Dependence
Speculation Tradeoffs in Centralized, Continuous-
Window Superscalar Processors. The 6th Annual Int.
Symposium on High Performance Computer Architec-
ture, Jan. 2000.

[10] M. Moudgill, J. Wellman, J. Moreno. Environment for
PowerPC Microarchitecture Exploration. IEEE Micro,
May/June 1999.

[11] V. Pai, P. Ranganathan, and S. Adve. RSIM Reference
Manual. Version 1.0. Technical Report 9705, Depart-
ment of Electrical and Computer Engineering, Rice
University, July 1997.

[12] D. Papworth. Tuning the Pentium Pro Microarchitec-
ture. IEEE Micro, April 1996.

[13] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta.
Complete computer system simulation: the SIMOS
approach. IEEE Parallel & Distributed Technology:
Systems & Applications, Winter 1995.

[14] A. Srivastava and A. Eustace. ATOM: A system for
building customized program analysis tools. Proc. of
the 1994 Symposium on Programming Language
Design and Implementation, June 1994.

[15] R. Sugumar and S. Abraham. cheetah - Single-pass
simulator for direct-mapped, set-associative and fully
associative caches. Unix Manual Page, 1993.

[16] D. Tullsen, S. Eggers, and H. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism.
Proc. of the 22nd Annual Int. Symposium on Com-
puter Architecture, June 1995.

[17] J. Veenstra and R. Fowler. MINT: a front end for effi-
cient simulation of shared-memory multiprocessors.
Proc. of the 2nd Int. Workshop on Modeling, Analysis
and Simulation of Computer and Telecommunications
Systems, Jan. 1994.

[18] Intel. VTune: Visual Tuning Environment, 1997. http:/
/developer.intel.com/design/perftool/vtune/index.htm.

[19] DLXView.[online] Available: <http://yara.ecn.pur-
due.edu/~teamaaa/dlxview/>, cited June 2001.

[20] A.R. Lebeck, “Cache Conscious Programming in
Undergraduate Cmputer Science,” ACEM SIGCSE
Technical Symposium on Computer Science Educa-
tion, SIGCSE ‘99.

[21] A.R. Lebeck and David A. Wood, “Cache Profiling
and the SPEC Benchmarks: A Case Study,” IEEE
COMPUTER, 27(10):15-26, October 1994.

[22] Robert Bosch, Chris Stolte, Gordon Stoll, Mendel
Rosenblum and Pat Hanrahan,”Performance Analysis
and Visualization of Parallel Systems Using SimOS

and Rivet: A Case Study,”Proceedings of the Sixth
International Symposium on High-Performance Com-
puter Architecture, January 2000.

[23] Robert Bosch, Chris Stolte, Diane Tang, John Gerth,
Mendel Rosenblum, and Pat Hanrahan,”Rivet: A Flex-
ible Environment for Computer Systems Visualiza-
tion,” Computer Graphics 34(1), February 2000.

[24] Chris Stolte, Robert Bosch, Pat Hanrahan, and Men-
del Rosenblum,”Visualizing Application Behavior on
Superscalar Processors,”In Proceedings of the Fifth
IEEE Symposium on Information Visualization, Octo-
ber 1999.

[25] Chris Weaver, Kenneth C. Barr, Eric D. Marsman,
Dan Ernst, and Todd Austin, “Performance Analysis
Using Pipeline Visualization,” 2001 IEEE Interna-
tional Symposium on Performance Analysis of Sys-
tems and Software (ISPASS-2001), Nov 2001.

Web-based training on computer architecture: The case for JCachesim

Irina Branovic1, Roberto Giorgi2, and Antonio Prete3

1,2 Dipartimento di Ingegneria dell' Informazione

Facoltà di Ingegneria
University of Siena, Italy

branovic@dii.unisi.it, giorgi@unisi.it

3 Dipartimento di Ingegneria dell'Informazione
Facoltà di Ingegneria

University of Pisa, Italy
prete@iet.unipi.it

Abstract
This paper describes possible advantages of
adding an interactive tool with log capabilities, in
an online learning environment. We describe the
interactive, Java-based tool named JCachesim,
which is used for experimenting cache behavior
with simple assembly programs while varying
cache features. The tool has embedded features
that allow the teacher to monitor the progress of
each individual student.

1. Introduction
Internet offers the technology that supplements
traditional classroom training with Web-based
components and learning environments, where the
educational process is experienced online. The
objective is not to duplicate the characteristics of
an ordinary class, but to use the possibilities of the
computer to actually do better than what normally
occurs in the face to face class.
According to projections, by 2004, 75 percent of
US college students will have taken at least one
online course. The number of colleges and
universities offering e-learning will more than
double, from 1,500 in 1999 to more than 3,300 in
2004. Student enrollment in these courses will
increase 33% annually during this time [1].

Educational advantages that arise when
supplementing a course with Web-based tools
include:

• Enabling student-centered teaching
approaches

• Providing 24/7 accessibility to course
materials

• Providing just in time methods to assess
and evaluate student progress

• Reducing “administrivia” around course
management

There are also other, less obvious, but equally
compelling advantages in favor of online teaching.
Students are judged solely by their submitted work
and their participation in online discussion forums,
not by how they look. This "anonymity filter" has
proven to have a positive effect on shyer students,
who are more likely to respond in class
discussions and debates when they have the time
to think beforehand, and to compose answers they
feel good about.
Navigating through the screens of an interesting,
colorful Web site maintains students' interest and
can keep their brains active. Students can see other
students' work and profit from their inspiration and
understanding. Using conferencing, e-mail and
other Internet features, students can also comment
on each other's creations and discuss variations
and other possibilities.
Structured note taking, using tools such as
interactive study guides, and the use of visuals and
graphics as part of the syllabus and presentation
outlines contribute to student understanding of the
course. Student discussion records, groups and
project work and commentaries can be used to add
to the content of the course.

2. Virtual classroom on computer
architecture
There are a number of possible solutions for
building a Web-based course on computer
architecture. Detailed explanation about creating a
virtual classroom, as well as examples of Web
teaching environments can be found in [2]. For the
purpose of creating our computer architecture
classroom, we used a similar environment.
The consistent interface of distance learning
environments speeds up the process of learning,
and does not intimidate instructors and students
with the ordeal of learning to use a new software

application each time a new tool is incorporated
into the course.
Although our students found reading text in
lectures via computer screen sometimes tedious,
they liked integrated simulators, prerecorded
lectures, and quizzes.
One of the most interesting enhancements that we
added recently is the possibility of using
interactive tools based on Java applets. These tools
allow the students both to exercize and to learn.
We also embedded a facility to automatically log
the student’s use of the tool, and create a
personalized record to make sure that he used the
basic functionalities of the tool. In the following,
we consider such interactive tool for a lesson
regarding cache memories.

3. The JCachesim tool
One of the lessons in our computer architecture
classroom allows students to use an interesting
tool for studying and analyzing a computer with
cache memory, called JCachesim. It is based on
previous experience on non Web-based tools [3].

JCachesim is a simulation environment of a
computer with a cache memory. It allows the
student to observe the CPU and the cache
activities during the execution of a program, and
in particular during read or write memory
operation, to evaluate the system performance, to
analyze the reference locality and the distribution
of memory accesses due to the program execution.
An exercise is organized in three phases:
configuration, simulation, and analysis.
In the first phase, students write a program in an
assembly language, and then configure the system.
For cache memory, the student chooses the cache
capacity, the placement policy (direct, full, or set-
associative mappings), the cache block size, the
number of ways. Main memory size can be
chosen, the main memory update policy and,
finally, the block replacement policy (FIFO,
random, or LRU).
For I/O devices, the student specifies the I/O type
(monitor, keyboard or general purpose), the
synchronization scheme (none or handshake), the
interrupt scheme (none, vectored interrupt or non
vectored interrupt), and the addresses of the
relative device registers (Figure 1).

Figure 1: An example of configuring parameters, by clicking on the selected system component.

In the simulation phase, JCachesim can work in
one of following three modes:
• Single – the student can ask for the execution

of a memory operation by specifying the
memory address and the operation type. In the
single mode, JCachesim executes a single
memory operation and shows, through an
animation, the cache and main memory
events, and the sequence of actions necessary
to perform the required memory operation
(Figure 2).

• Trace – the student can execute a program
step-by-step, and examine cache or memory
contents.

• Exe – the student can ask for the execution of
the whole program (or a portion).

The student can watch the statistics regarding
cache operations at any time (Figures 3, 4).
JCachesim tool is written in the form of interactive
applets that allow us to train students. However,
one of the most useful features of JCachesim is its
ability to create a log of student’s activities. The
log file contains the student name, the time he or
she took the test, the chosen settings and what
kind of experiments were performed. The log file
is automatically stored and available to instructors
(Figure 5).

Figure 2: An example of JCachesim working in single mode.

Figure 3: Pictures showing the locality of accesses in various memory areas.

Figure 4: Global statistics of cache operations.

The generated log file also contains following
information: total time spent for reasoning
between operations, and total idle time. These data
are used solely for tracking time the student spent

using the tool, and not for measuring his
performances.
The JCachesim tool is still in the prototype phase,
but we hope to deliver a final version to the public
as soon as possible.

Figure 5: An example of student log file, to be considered by the teacher.

4. Conclusions
Computer architecture requires understanding a
wide variety of issues and interactions among
them. One important step is that the student makes
use of simulation tools to understand concepts
otherwise difficult to experience.
Our internal research indicates that teaching and
studying at a distance is equally effective, even
better than traditional instruction, provided there is
timely teacher-to-student feedback.
We have described the possible advantages of
integrating an interactive tool with log capabilities
into a virtual classroom environment. Using an
interactive tool like JCachesim allows students to
indicate the settings of a cache memory, to
observe the cache activity needed for a memory
operation, to evaluate the system performance by
varying the parameters, and to analyze the
program behavior by the memory references. One
of the most important features of this tool is the
ability to generate log files, which can be used to
monitor students’ progresses and track their

activities. Future plans for improving the
JCachesim include providing more Java modules
for enabling immediate interaction between
students and instructors.

5. References
[1] International Data Corporation: Distance

Learning in Higher Education: Market
Forecast and Analysis, 1999-2004.

[2] Branovic, I., Milutinovic, V., Tutorial on
Advances in Internet-based Education,
(http://galeb.etf.bg.ac.yu/~vm/tutorials),
School of Electrical Engineering,
University of Belgrade, Serbia,
Yugoslavia, 2001.

[3] Prete, A., “Cachesim: A graphical
software environment to support the
teaching of computer system with cache
memories”, Proceedings of 7-th SEI
Conference on Software Engineering
Education, Springer-Verlag, January 1994.

Digital LC-2
From Bits

�
Gates to a Little Computer

Albert Cohen
A3 group, INRIA Rocquencourt

Olivier Temam
LRI, Université Paris-Sud

May 26, 2002

Abstract

This paper describes DigLC2, a gate-level simulator for
the Little Computer 2 architecture (LC-2) [3] which
serves to strengthen the bottom-up approach to teach
computer architecture. DigLC2 is based on Chipmunk’s
digital circuit simulator [1]; the circuit is freely available
on the web and ready to use.

1 Context and Presentation

The principle of our approach is to combine a bottom-up
presentation of computer architecture (from digital gates
to processor and system) with an intuitive graphical gate-
level design tool. This combination enables students to
truly understand the logic behind processor design and
internal processor workings, and simultaneously to gain
confidence in the acquired knowledge thanks to experi-
mental validation of concepts with a gate-level processor
simulator (DigLC2). Based on this solid knowledge, we
believe students are much more likely to quickly grasp
and master new information about the evolution of pro-
cessor design.

DigLC2 [2] is a gate-level simulator for the Little
Computer 2 (LC-2), as described by Patt and Patel in
their introductory textbook on architecture and program-
ming [3]. Unlike the existing LC-2 functional simulator
[4, 5], it provides a detailed description of all processor
components at the gate-level, so that students can them-
selves build a full processor using only elementary gates
(AND, OR, NOT and Tri-State), thereby demystifying
processor architecture.

The DigLC2 simulator started as a support tool for a
course at École Polytechnique (France) [6]. Designed to
cooperate with the LC-2 functional simulator and assem-
bler environment [4, 5], we wanted it robust and modu-
lar for practical lectures, as intuitive as possible to serve
as a basis for student projects, and versatile enough to
explore fundamental architecture and programming con-
cepts. DigLC2 contributed to our teaching experience in

the following ways:

� to understand the detailed sub-cycle behaviour of a
realistic 16-bit processor;

� to experiment custom processor components in the
context of a whole processor;

� to compare multiple data-flow and control models;

� to execute sample LC-2 programs, displaying pro-
cessing stages from instruction-fetch to write-back;

� to play with basic input/output and interrupt mech-
anisms (they were not supported in the functional
simulator [4]).

� to understand simple operating systems concepts;

� to extend the processor with hardware devices and
off-chip controlers;

� to design and implement architecture enhancements
for performance.

We followed the bottom-up approach advocated by
Patt and Patel: students have been directly involved in
the design of each processor component exploring multi-
ple design issues. They achieved a finer understanding of
the data-path and control structures, with a broader view
of processor and system construction. Based on these
fundamental concepts, the course diverted towards high-
performance designs, program optimization techniques,
and the forseable future of micro-architectures.

The students were already familiar with C, object-
oriented and functional programming (OCaml) on one
side, and analog electrical engineering on the other, but
they had no experience in digital systems. Our intent was
neither to bridge the gap between assembly and high-
level languages nor to describe the mapping of ideal tran-
sistors to silicon wafers — both topics being taught in

the following semesters. We focused instead at the in-
termediate levels of the design, demystifying the build-
ing blocks of a microprocessor: from gates to combi-
natorial and sequential logics to data-paths and micro-
programmed control to the instruction set architecture to
assembler programming [6].

2 Technical Overview

The LC-2 system [3, 5] comprises a simple 16-bit mi-
croprocessor and a basic terminal emulation hardware.
The instruction set is load/store1 with 8 registers and
3 operands; it appears as a tradeoff between control-
friendly and education-friendly features. The data-path
is based on a 16-bit bus to connect almost all compo-
nents and to communicate outside of the chip. Control is
microprogrammed (fifty 39-bits wide microinstructions)
and relies on a dedicated microsequencer for fast in-
struction selection and compaction. The LC-2 instruc-
tion set is very sketchy but supports a universal machine
(e.g., no subtract, no OR operator, no shift...), forgetting
about efficiency considerations. In comparison, system
and device interaction is rather realistic and complete
for such an educational architecture: both polling and
interrupt-driven mechanisms are supported, and system
calls (TRAPs) are clearly distinct from subroutine calls
(yet the system does not address memory protection and
address translation). Thanks to the original and efficient
teaching model proposed by Patt and Patel, more and
more introductory architecture courses are being build on
the LC-2; the clean educational design of this processor
is obviously a major incentive to do so.

The DigLC2 simulator is free software (GPL), avail-
able online at
http://www-rocq.inria.fr/˜acohen/teach/diglc2.html.
It is fully reusable, adaptable, and ready to use. Instal-
lation and usage documentation is available. The user
should be familiar with the LC-2 specification, signal
names and processor structures, as defined in Patt and
Patel’s textbook [3] (along with its appendices). DigLC2
still lacks a technical manual, but the circuit is simple
and most of the design is a straightforward implemen-
tation of the LC-2 specification. It runs over DigLog,
Chipmunk’s digital circuit simulator (GPL) [1]. We im-
plemented the complete LC-2 architecture, including I/O
terminal-emulation devices, interrupt vectors and mem-
ory (with customizable latency). Except for the SRAM
memory chips and terminal device, every component of
the LC-2 is built of elementary gates. The data-path and
microsequencer are identical to the LC-2 specification.

1Plus indirect load and store operations — for programming con-
venience — that we personally would not have provided and that we
intentionally avoided in the course and application exercises.

We rewrote the microprogram from scratch — see the
DigLC2 documentation — and applied large-scale tests
on sample codes and student projects. The “boot-time”
memory structure (vector table, operating system, boot
ROM and memory-mapped I/O) is almost identical to
the functional simulator’s model [5], except that the ini-
tial PC is 0x0000 and that some I/O routines have been
optimized.

Concerning I/O operations, the LC-2 description is
not complete and we had to make a few implementa-
tion choices: the interrupt vectors for keyboard input and
CRT output (0x0010 and 0x0011, respectively) and the
detailed implementation of I/O registers (interrupt con-
trol bits, strobe signals, device operation latency).

Figure 1 shows the control panel of the LC-2 simu-
lator. It displays every addressable and internal regis-
ter, the full microinstruction, and many other signals. It
also provides keyboard and screen emulations (standard
DigLog components) for interactive terminal operations.

As one may expect, performance is much lower than
Postiff’s functional simulator: approximately 20 cycles
per second on a ����� MHz pentium III (interactive run,
maximum details displayed): gate-level simulation of big
programs is not realistic. However, we found these per-
formances quite reasonable for the educational purposes
of the LC-2 architecture:

� target codes implement short-lived classroom algo-
rithms, toy programs and simple I/O operations;

� the most tedious part is linked with string process-
ing and printing, e.g., the full CRT synchronization
protocol proposed by Patt and Patel leads to a very
slow implementation; still, choosing pragmatic pa-
rameters (short strings) and optimizing the code of
display-oriented subroutines is usually satisfactory;

� in many cases, the user may even want to watch the
real-time execution of the program, looking for er-
rors in the assembly code, in a processor compo-
nent, or in some custom additional circuit.

Eventually, we found only two architecture faults dur-
ing circuit implementation: the first one is about choos-
ing latches or flipflops and has been (arguably) cor-
rected in recent online errata, the second one is a tricky
page/PC-incrementation bug in conditional branch in-
structions. Considering the overall design, the detailed
implementation choices and our teaching experience,
we believe that the LC-2 architecture is a significant
progress over previous educational systems; but we also
hope that feed-back from professors and students around
the world will be taken into account in future versions of
the Little Computer and contribute to further improve-
ments.

1 2 3 4 5 6 7 8 9 0 - =
Q W E R T Y U I O P []
A S D F G H J K L ; ’
Z X C V B N M , . /

SR2MX

Gnd
DR_2
DR_1
DR_0

Gnd
SR2_2
SR2_1
SR2_0

Gnd
SR1_2
SR1_1
SR1_0

R3_0R3_1R3_2R3_3R3_7R3_6R3_5R3_4R3_8R3_9R3_10R3_11R3_15R3_14R3_13R3_12R2_0R2_1R2_2R2_3R2_7R2_6R2_5R2_4R2_8R2_9R2_10R2_11R2_15R2_14R2_13R2_12R1_0R1_1R1_2R1_3R1_7R1_6R1_5R1_4R1_8R1_9R1_10R1_11R1_15R1_14R1_13R1_12R0_0R0_1R0_2R0_3R0_7R0_6R0_5R0_4R0_8R0_9R0_10R0_11R0_15R0_14R0_13R0_12

R4_12R4_13R4_14R4_15 R4_11R4_10R4_9R4_8 R4_4R4_5R4_6R4_7 R4_3R4_2R4_1R4_0 R5_12R5_13R5_14R5_15 R5_11R5_10R5_9R5_8 R5_4R5_5R5_6R5_7 R5_3R5_2R5_1R5_0 R6_12R6_13R6_14R6_15 R6_11R6_10R6_9R6_8 R6_4R6_5R6_6R6_7 R6_3R6_2R6_1R6_0 R7_12R7_13R7_14R7_15 R7_11R7_10R7_9R7_8 R7_4R7_5R7_6R7_7 R7_3R7_2R7_1R7_0

INT

RD.KBDR

LD.KBDR

LD.KBSR

KBSR_14

KBSR_15

RD.CRTDR

LD.CRTDR

LD.CRTSR

CRTSR_14

CRTSR_15

Reset
CRT.Strobe

CRTOUT_0CRTOUT_1CRTOUT_2CRTOUT_3CRTOUT_4CRTOUT_5CRTOUT_6CRTOUT_7

KBIN_0KBIN_1KBIN_2KBIN_3KBIN_4KBIN_5KBIN_6KBIN_7

KB.StrobePCMX_1

PCMX_0

DRMX_1

DRMX_0

SR1MX_1

SR1MX_0

MARMX_0

MARMX_1

STACKMX_1

STACKMX_0

CCMX R.W

MIO.EN

ALUK_0

ALUK_1

Run

Step

MCR_15

Clock

ResetBENZ

P

N

R

MLCNT_0MLCNT_1MLCNT_2MLCNT_3MDR_3MDR_2MDR_1MDR_0MDR_4MDR_5MDR_6MDR_7MDR_11MDR_10MDR_9MDR_8MDR_12MDR_13MDR_14MDR_15IR_3IR_2IR_1IR_0IR_4IR_5IR_6IR_7IR_11IR_10IR_9IR_8IR_12IR_13IR_14IR_15

PC_15PC_14PC_13PC_12 PC_8PC_9PC_10PC_11 PC_7PC_6PC_5PC_4 PC_0PC_1PC_2PC_3 MAR_15MAR_14MAR_13MAR_12MAR_8MAR_9MAR_10MAR_11MAR_7MAR_6MAR_5MAR_4MAR_0MAR_1MAR_2MAR_3

LD.PC

LD.REG

LD.CC

LD.BEN

LD.IR

LD.MDR

LD.MAR GatePC

GatePC-1

GateMDR

GateALU

GateMARMX

GateINTV

GateCCCOND_0

COND_1

INT.TEST

IRD

J_0

J_1

J_2

J_3

J_4

J_5MPC_5

MPC_4

MPC_3

MPC_2

MPC_1

MPC_0

I/O signals

Input

Output

Register ports

SR2

SR1

DRR7

R3

R6

R2

R5

R1

R4

R0

Register bank

PC

IR

MAR

MDR

Status registers

address
current

Microinstruction

automatic

step by step

Shift+R: reset

memory latency

branch enable
Clock generation

next address

control signals LD.? Gate? ?MX misc

Figure 1: DigLC2 control panel.

3 Student Projects

Three application projects have been proposed based on
this digital simulator.

� Pipelining the LC-2, with a simple hazard detection
and branch prediction mechanism. One student im-
plemented a prototype version of a pipelined LC-
2 (hardwired control, no indirect memory instruc-
tions). As a side-effect, simulator performance was
significantly improved...

� Implementing a DMA controller for video output
and experimenting a few bus protocols. This kind
of extension is greatly simplified by the modular
structuire of DigLC2. For example, every memory
control signal has a LC-2 side and a SRAM-chip
side, and the LC-2 is designed to cope with an arbi-
trary/unknown memory latency.

� Adding an instruction cache and/or a data cache to

the LC-2; trying various associativity and replace-
ment policies.

We believe that many existing student projects could
benefit from DigLC2, focusing on the most interesting
part of the project without the overhead of building a full
processor or the complexity of a real-world processor. It
can also be used to investigate the detailed implementa-
tion of processor performance enhancements — such as
pipelining, superscalar and out-of-order execution — in
the context of interrupts, and to interact with an existing
assembler and legacy source code.

4 Conclusion and Future Work

DigLC2 is an interesting compromise between high-
level structural modeling of digital circuits and expen-
sive hardware test-beds. It is a useful tool for architecture
courses, practical lectures, student projects and tutorials.

DigLC2 is an intuitive and modular implementation of
the complete LC-2 system; it does not intend to be a fully
realistic view of the actual silicon mapping, but provides
a full gate-level simulation. By combining the bottom-
up approach with DigLC2 within the course and classes,
students were able to progressively build their own full
processor, using components they themselves designed
session after session, and then they were able to visu-
alize the execution of simple assembly programs at the
gate-level.

Still, we would like to emphasize on the preliminary
nature of this work. We believe that the tool might be-
come even more beneficial if provided with multiple al-
ternative implementations of each component, variations
on the instruction-set architecture, and performance en-
hancements. We are not acquainted with processor veri-
fication techniques and did not address the testing and/or
formal validation issues. Thanks to the wide distribu-
tion of Patt and Patel’s textbook, we strongly encourage
a community effort to contribute to the DigLC2 project,
as well to the underlying DigLog simulator [1].

References

[1] The Chipmunk system (specifically DigLog, the
digital part of the Log simulator).
Available online at
http://www.cs.berkeley.edu/ l̃azzaro/chipmunk.

[2] A. Cohen. DigLC2: a gate-level simulator for the
little computer 2.
Available online at
http://www-rocq.inria.fr/˜acohen/teach/diglc2.html.

[3] Y. N. Patt and S. J. Patel. Introduction to computing
systems: from bits & gates to C & beyond.
McGraw-Hill, 2001.
http://www.mhhe.com/engcs/compsci/patt.

[4] M. Postiff. LC-2 simulator (and assembler).
Available online at
http://www.mhhe.com/engcs/compsci/
patt/lc2unix.mhtml.

[5] M. Postiff. LC-2 Programmer’s Reference and User
Guide. University of Michigan (EECS 100), 1999.
http://www.mhhe.com/engcs/compsci/
patt/lc2labstud.mhtml.

[6] O. Temam and A. Cohen. Cours d’architecture.
École Polytechnique 3ème année majeure 1,
2001–2002.
http://www.lri.fr/ t̃emam/X/index.html
(in French).

MipsIt—A Simulation and Development Environment Using
Animation for Computer Architecture Education

Mats Brorsson

Department of Microelectronics and Information Technology,
KTH, Royal Institute of Technology

Electrum 229, SE-164 40 Kista, Sweden
email: Mats.Brorsson@imit.kth.se

Abstract
Computer animation is a tool which nowadays is used in
more and more fields. In this paper we describe the use of
computer animation to support the learning of computer
organization itself. MipsIt is a system consisting of a
software development environment, a system and cache
simulator and a highly flexible microarchitecture simulator
used for pipeline studies. It has been in use for several years
now and constitutes an important tool in the education at
Lund University and KTH, Royal Institute of Technology in
Sweden.

1. Introduction
In order to learn computer architecture and systems you
need to learn how to master abstractions. A computer system
is one layer of abstraction on top of the other. At one end you
have digital electronics, which in itself can be seen as sev-
eral layers, and at the other you have complex applications
using perhaps techniques such as polymorphic inheritance
which needs to be resolved in run-time.

For students studying computer organization and archi-
tecture, these abstractions are often confusing as they are not
always that distinct. Furthermore, given the high level of
integration in modern computers, it is also quite difficult for
students to get a good understanding of what is happening
deep down in the black centipedes on the motherboard.

At Lund University, and now also at KTH, Royal Institute
of Technology, both in Sweden, I have taken part in the
development of a set of courses in computer systems, orga-
nization and architecture in which laboratory exercises and
simulation tool support are used extensively to support
learning. In this paper I describe some of the simulation
tools that were developed during this process.

The MipsIt set of tools is part of a bigger laboratory exer-
cise environment with a hardware platform, software devel-
opment tools and a number of simulators. Many of the
simulators support animation as a support for the students to
understand the works of a relatively complex structure.

I first describe some of the trade-offs between hardware
platforms and simulators that we considered in developing

our exercise material. Next I present an overview of the soft-
ware system of MipsIt followed by a more detailed descrip-
tion of the animated simulators in sections 4 and 5.

2. Hardware vs. Simulation
I think that most instructors would agree with me that exer-
cises where the students get real hands-on experience with
digital electronics, assembly level programming, data repre-
sentation etc. are crucial for the students’ learning. Further-
more, it is my firm belief that students must touch, feel and
smell1 the real hardware in a computer organization course.
Some universities let the students study computers using
only simulated hardware. In my experience, this might lead
to a confusion as to what is really happening. Is there really
another machine inside this PC, workstation or whatever is
used as simulation host?

Therefore, we use real, naked hardware–naked in the
sense that there is no operating system on the hardware–to
aid the students in understanding computer systems. The
current system consists of a development board with a MIPS
processor, some memory and a few simple I/O devices [2].
Unfortunately, this does not entirely solve the problem of
abstraction. When you connect a development board to a
host computer through a terminal program this might be a
problem as well. I have had students that answer the ques-
tion on where the program is executed by pointing to the
window on the host computer screen instead of on the pro-
cessor chip on the board on the desk beside the computer. It
is anyway less abstract than if the program executes on a
simulator and it is possible to remove the cable between the
development board and the host computer and verify that the
program still executes with simple I/O devices on the board.

This works well for students to learn about data represen-
tation, assembly level programming, simple I/O structures
(polling and interrupts) and general low-level computer sys-
tem design. It is, however, not well suited to study cache
memories or processor hardware design as these structures
are buried deep inside the processor.

1. Hopefully they smell burned electronics before it breaks!

We have previously let the students build simple micro-
programmed processors using discrete components during
laboratory exercises. Even though this has been very effec-
tive for the understanding of how simple hardware can be
organized to execute instructions, we have abandoned it for
the first compulsory course.1 The simplifications that we
needed to make in the instruction set that we could imple-
ment were to big in order to relate to modern computer
instruction set architectures and it was not possible to do off-
line development with the hardware used.

So how do we then support the study of hardware struc-
tures such as cache memories and pipeline design when we
cannot build hardware for it. This is where animated simula-
tion fits in. We have also resorted to simulation of the devel-
opment board to let the students work at home preparing for
lab. exercises and to support distance courses.

I have during the course of being a university teacher
found that many students have difficulties of really under-
standing how cache memories work. They can easily under-
stand the concept, but when it comes to how you should
build the hardware to actually implement the concept, it
becomes difficult. The concept of pipelining–which is the
dominant implementation method of processors today–has
similar characteristics. It is easy to understand in principle,
but when it comes to the actual hardware design, it becomes
tricky. This was the motivation to why we developed the ani-
mated simulators described in this paper.

3. The MipsIt system
The MipsIt system consists of a development environment,
a hardware platform and a series of simulators. The topic of
this paper is mainly the animation support in the simulators
for cache memory and pipeline simulation, but for complete-
ness I also describe the other parts. All software developed
for the MipsIt system are targeted for the Windows (95-XP)
platform as host machine.

3.1 Development environment
The MipsIt development environment is used to develop
software for the hardware platform as well as for the various
simulators. It targets the development board shown in sec-
tion 3.2 but the same binary can be used to execute on the
various simulators as well. Figure 1 shows an example of
how the development environment might look for a software
project with mixed C and assembler files.

The compiler, linker and other tools are standard tools in
the gcc tool chain configured for cross-compilation to a
MIPS target platform. What we developed was the graphical
user interface mimicking the MS Visual DevStudio as a

front-end to gcc and which also replaces Makefile by han-
dling projects of source codes and their dependences.

Although not tested, the same front-end should be possi-
ble to use with any gcc cross-compiler. The system is highly
configurable and there is also an option to run an arbitrary
command before or after linking. We use this feature to cre-
ate an S-record file that can be used for downloading to the
development board. We later modified the on-board monitor
to use the ecoff-file produced by the compiler/linker.

3.2 Hardware
Figure 2 shows a photograph of the development board from
IDT that is in use at Lund University [2]. It contains an IDT
36100 micro controller with a MIPS32 ISA processor
core [3]. We deliberately chose the MIPS architecture as our
instruction ISA because of its simplicity.

Another advantage of the MIPS ISA at the time was also
that it is used in the textbooks of Hennessy and Patterson [1,
4]. These textbooks are used at Lund University as well as
in many other universities and it makes it easier for the stu-
dents if they can relate the laboratory exercise material to the
textbook directly. The abstractions needed are difficult
enough anyway.

The evaluation board itself, as shown in figure 2, contains
the processor (chip-select logic, timers and two serial port
UARTs are also integrated on-chip), some SRAM, slots for
DRAM (not used in our configuration) and EEPROM which
contains a simple monitor. The monitor contains some rou-
tines from libc which can be taken advantage of for small
footprint C programs. The routines include partial function-
ality of printf. There are also routines to install normal C
functions as interrupt routines.

All micro controller signals also appear on the edge con-
nectors of the development board. We developed a simple
daughter board containing one eight-bit and one 16-bit par-
allel bi-directional I/O port. It also contains a simple inter-
rupt unit with three interrupt sources (two push-buttons and

1. The course is given in a 4.5 year programme leading to an
M.Sc. in computer science, electrical engineering or informa-
tion technology engineering.

Figure 1. The development environment is
inspired by Visual DevStudio.

one adjustable pulse source) that also could be read as a six-
bit parallel input port. Three of the bits contain the current
status of the three input sources and the other three are
latched versions of the same input. These bits retain their
value until reset by writing (any value) to the port.

3.3 The simulators
The third part of the MipsIt environment is a set of simula-
tors. There is one system simulator which mimics the evalu-
ation board as faithfully as possible. While developing this
simulator it was our goal to be able to execute any binary
code developed for the target hardware platform. We there-
fore have to simulate the on-board monitor and all I/O
devices, including on-chip timers.

The full code compatibility has been achieved in the sys-
tem simulator which is described in section 4. This simulator
also contains an animated cache simulator. We also wanted
to use simulation for microprocessor implementation stud-
ies. This resulted in a general micro architecture simulator
which is controlled by a simple hardware description lan-
guage and animation control so that many different micro-
processor implementations can be illustrated. This simulator
is described in section 5.

4. The system simulator

4.1 Overview
Figure 3 shows the system simulator with a few of its win-
dows open. The top left window shows a simplified view of
the entire system: CPU, instruction and data caches, some

RAM, a console window and some I/O devices. The window
at bottom left shows the register contents of the CPU. The
top right window shows the eight-bit parallel I/O device
which consists of eight LEDs and eight binary switches. Just
as what we have in hardware. The 16-bit parallel I/O-port is
the only one from the hardware that is not implemented in
the simulator. The bottom right window shows the simple
interrupt sources. Two push-buttons and an adjustable pulse
timer.

The main reason for developing this simulator is because
it simplifies for the students to study computer organization
on their own, at home. Most students have access to PCs
with Windows and it is therefore easy for them to download
the simulators and development environment to start work
on their own.

However, as we designed the laboratory exercises, we
found that the simulator could actually be used also in the
class-room. Figure 4 shows the memory view in the simula-
tor. The memory addresses are shown to the left and the con-
tents is shown to the right as hexadecimal numbers and an
interpretation. In the current view the interpretation is the
disassembler view but other possible views are interpreta-
tions as unsigned integers, signed integers, single precision
floating point numbers and ASCII characters.

The dot to the left in the memory view shows a break
point and the line, also to the left, signifies that these instruc-
tions are currently in the instruction cache. The darker line
shows the current instruction being simulated.

With this view, the simulator became a powerful tool to
study instruction execution and the effect each instruction
had on the registers etc. Since the MIPS architecture does
not have vectored interrupts, it became cumbersome to sin-
gle-step interrupt routines on the hardware and we therefore
used the simulator to study interrupt routines in this detail.
The students could also experiment with instruction coding,
making hexadecimal instruction codes by hand, entering
them in the memory and immediately see if they had coded
the instruction correctly. Floating point number coding
could be studied in the same way.

4.2 Cache simulator
Even with all the benefits as described above, these were not
the only purposes for developing the simulator. The major
driving force was to introduce animation to aid the students
to really understand the inner workings of cache memories.
We used the figures of a textbook as an inspiration as how to
present the caches graphically [4].

Figure 5 shows the cache view in the simulator. It shows
the current configuration of the data cache. The data and the
instruction caches can be configured independently. It
shows the entire cache contents with both tag and data store.
It also shows how the address presented by the processor is
divided into different fields for indexing, word select and tag

Figure 2. The IDT development board used in the
exercises.

Figure 3. The system simulator with CPU register and I/O-device windows open.

Figure 4. The memory view in the simulator.

Figure 5. The animated cache view.

check. The students can single-step their programs and fol-
low the cache access for every memory reference and there-
fore gain a deeper understanding of how the cache works.

The simulator also keeps some simple statistics, as shown
at the bottom right in the figure. This can be used to compare
different cache settings for more longer-running programs.

Memory access penalty can also be configured and it is
thereby possible to perform direct comparison with the hard-
ware which contain small instruction and data caches.

5. The pipeline simulator
At Lund University, we had a long experience of using ani-
mation and graphical representation of pipeline
execution [5]. We wanted to make use of this experience, but
retain the compatibility with the hardware that we developed
for the system simulator as described previously. Another
design goal was to make a flexible design that could be run
by students at home on their PCs. The existing software was
for Sun/Solaris and neither very portable nor flexible.

5.1 PipeS and PipeXL
Instead of having a hardwired pipeline design in the simula-
tor software, we developed a flexible simulation shell which
could be loaded with different micro architecture implemen-
tations. The simulator shell can be used to load programs
into memory, to drive the simulated clock signal and to mon-

itor register and memory contents, as in the previously
described simulator. However, when the program starts, it
contains no description of the simulator hardware. This has
to be loaded from a file which describes the micro architec-
ture in a hardware description language (see next section).
Figure 6 shows an example in which a simple five stage
pipeline without forwarding is shown.

The students can load the memory with a program, just as
before, and starts to single step the execution. As the pro-
gram advances, the pipeline graphics is changed. Muxes are
set in the positions needed for execution, data values on
buses and inputs are shown and the instruction currently
executing in each pipeline stage is shown at the top.

Our experience is that this tool has been tremendously
powerful to convey the concept of pipelining to the students.
The way that the pipeline is graphically represented is an
invention of a student at Lund University in the late 80s but
was independently later discovered for use in major text-
books [4, 6].

Figure 7 shows another example of a micro architecture
implementation. This is much more complex and complete.
In addition to what is present in figure 6, it also contains the
control signals, data forwarding and hazard control. We will
now see how we can represent different pipeline structures
to be used in the simulator.

Figure 6. An example of a simple pipeline simulator view. The simulator is only a
shell which can be loaded with arbitrary pipeline structures.

5.2 Some Hardware Description Language
The micro architectural structure of the processor is
described in a simple hardware description language which
is described here shortly. The pictures shown in figures 6
and 7 are not derived from this language but simple bitmap
files that are shown in the window.

The original aim was to use a subset of VHDL as descrip-
tion language to be able to leverage on the body of text writ-
ten about this language. However, it turned to be
cumbersome to parse and instead we developed a simple
object oriented HDL where each component is a class which
can be instantiated to an object and the inputs and outputs of
an object are connected to the inputs and outputs of other
objects. Almost any synchronous hardware structure can be
expressed in this language. There are also hooks to the sim-
ulation framework in the language. Most notably for the
clock signal, memory accesses and to the register and mem-
ory views of the simulator.

5.3 Components
Below is the code for a simple component; the two-input
mux:

class CMux2
{
in In0

in In1
in Control:1
out Out

script
function OnChange()
{

if (Control.Get()==0)
Out.Set(In0.Get());

else
Out.Set(In1.Get());

}

Out.Set(0);
end_script

event ALL OnChange()
}

At first a class description is used to give the component
a name. Next the interface of the component is specified.
The default width of inputs and outputs is 32 bits. In this
case only the control signal deviates in that it is specified as
one bit only.

Then follows a script which describes the behavior of the
component. The function OnChange is executed whenever

Figure 7. A more complex pipeline structured using the same simulator shell.

any of the input signals changes state as described by the last
statement in the component description. Input signal values
are retrieved by accessing a member function Get() and
similarly output signal values are set by the member func-
tion Set(x). The last lines of the script can be used to set
the initial state of the output signals.

A mux is a combinational component and does not con-
tain any state. If any of the input changes, the output is
immediately changed also. In contrast, the program counter
is a simple component which is clocked. As shown by the
example text below, the PC is clocked by a simulated two-
phase clock.

// this is the Program Counter
class CPC {
in Ph0:1
in Ph1:1
in In
out Out

script
var rPC = 0;

function OnPh0() {
rPC = In.Get();

}

function OnPh1() {
Out.Set(rPC);

}
end_script

event Ph0 OnPh0()
event Ph1 OnPh1()

}

The signals Ph0 and Ph1 are driven by a clock object and
are used to derive the two-phase clock. The value of the PC
is stored in an internal variable (rPC) which is read from the
input on one clock phase and output on the second clock
phase.

5.4 Connecting components together
When the entire micro architecture has been suitable broken
down in components, clocked or not, they can be connected
together. The following piece of code shows the connections
for the ID-stage in the simple pipeline of figure 6.

// components:

object CPC PC
object CInstrMem InstrMem
object CMux2 PcMux
object CiAdd4 IfAdd4

object CRegIfId RegIfId

// Net list:
// to PC
connect PcMux.Out PC.In
// to InstrMem
connect PC.Out InstrMem.Address
// To pc+4 thing
connect PC.Out IfAdd4.In
// to the pipeline register
connect InstrMem.ReadData

RegIfId.in_Instruction
connect IfAdd4.Out RegIfId.in_PC
// to the pc mux
// (only connections from this stage
// are done here)
connect IfAdd4.Out PcMux.In0
// connect the clock
connect clk.Ph0 RegIfId.Ph0
connect clk.Ph1 RegIfId.Ph1
connect clk.Ph0 PC.Ph0
connect clk.Ph1 PC.Ph1

// and now some probes:
probe InstrMem.ReadData 173 393 16 8 1
probe PC.Out 70 355 16 8 1
probe IfAdd4.Out 148 171 16 8 1
probe PcMux.Out 14 355 16 8 1
probe InstrMem.ReadData 2 4 16 30 2

Note how the components first are defined and then con-
nected together in simple connect-statements. At the end,
graphical probes are defined. It is these that makes up the
animation in the final simulation picture. After the key word
probe, a signal name is given. This is the signal to monitor.
The next two arguments are the x- and y-coordinates of
where the probe is to be shown in the pipeline picture. The
third argument is the number format for the probe data, the
fourth argument is the number of digits to use, and the final
argument is the direction of the probe: 0 for horizontal and 1
for vertical. The last probe is different. It is used to show the
assembler format of the instruction read from memory. The
mux direction is also a probe, but since the mux in this pipe-
line is controlled in the EX-stage, the probe is also defined
there.

We have not yet let students define their own pipeline
designs. What we have done is to provide them with a skel-
eton and let them work out the instruction deciding, hazard
control, and forwarding unit for themselves. It has been
amazingly simple for them to iron out these details, once
they got the hang of pipelining in the first place.

6. Conclusion
The software described in this paper has been used in com-
puter organization and architecture education at Lund Uni-
versity and at KTH for several years now. It is now mature
enough that we feel it is time to share our experiences which
have been very good. We have received quite encouraging
feedback from students who both find it useful to work with
laboratory exercises at home and who appreciate the graph-
ical animation in the user interface.

Acknowledgements
The work reported here was performed while the author was
affiliated with the department of Information Technology at
Lund University. The laboratory exercises were made
together with Jan Eric Larsson. Coauthors of the software
were: Ola Bergqvist, Georg Fischer, Mats Brorsson, Martin
Andersson, Joakim Lindfors and Tobias Harms.

A binary version of the MipsIt package for Windows 95-
xp with suitable exercises can be retrieved for educational
and personal use from the following web site:
http://www.embe.nu/mipsit.

References
[1] J. L. Hennessy and D. A. Patterson, Computer Architecture —

A Quantitative Approach, 3rd ed., Morgan Kaufmann
Publishers, 2002.

[2] Integrated Device Technology, Inc., 79S361 Evaluation
board: Hardware User’s Manual, ver 2.0, Sept. 1996.

[3] Integrated Device Technology, Inc., IDT79RC36100, Highly
Integrated RISController: Hardware User’s Manual, ver 2.1,
Aug. 1998.

[4] D. A. Patterson and J. L. Hennessy, Computer Organization
and Design: The Hardware/Software Interface, 2nd Ed.,
Morgan Kaufmann Publishers, 1997.

[5] P. Stenstrom, H. Nilsson, and J. Skeppstedt, Using Graphics
and Animation to Visualize Instruction Pipelining and its
Hazards, in Proceedings of the 1993 SCS Western Simulation
Multiconference on Simulation in Engineering Education,
1993, pp. 130-135.

[6] B. Werner, K. Ranerup, B. Breidegard, G. Jennings, and L.
Philipson, Werner Diagrams - Visual Aid for Design of
Synchronous Systems, Technical report, Department of
Computer Engineering, Lund University, November 1992.

CoDeNios: A Function Level Co-Design Tool

Yann Thoma and Eduardo Sanchez
Logic Systems Laboratory

Swiss Federal Institute of Technology
1015 Lausanne, Switzerland

{yann.thoma,eduardo.sanchez}@epfl.ch

Abstract

The need of co-design systems, along with the FPGA
complexity, is increasing dramatically, both in indus-
trial and academic settings. New tools are necessary
to ease the development of such systems. Altera
supplies a development kit with a 200’000 equiv-
alent gates FPGA; combined with its proprietary
Nios configurable processor, it allows co-design and
multi-processor architecture creation. In this paper,
we present a new tool, CoDeNios, which lets a de-
veloper partition a C program at the function level,
and automatically generates the whole system.

1 Introduction

Until recently, co-design[4] was limited to complex
industrial projects. The high cost of such systems
did not allow academic projects to use co-design.
Now, with the development of Field Programable
Gate Arrays (FPGAs), the conception of such sys-
tems is easier. The reprogrammable capability of
FPGAs permits prototyping at a low cost, which is
very important for universities and industries. The
problem now is the lack of tools aiding development
of these systems. With this aim in view, Altera sup-
plies the Nios processor family. This soft IP core is
a configurable RISC processor which can be used in
any design.

In this paper we present CoDeNios (CO-DEsign
with a NIOS), a new tool based on a Nios processor,
which helps a developer make a hardware/software
partition[3] of a C program. This partition is made
at the function call level. For each function declared
like void fname(...), the user can force it to be
calculated either by the main processor, by a slave
processor, or by a hardware module. For the last
case, the developer has to write a VHDL file to define
the function behavior. Apart from this human inter-
vention, the whole interface between hardware and

software is automatically generated (C and VHDL
files).

Contrarily to other systems like COSYMA [2],
which automatically makes a partition, our software
lets the user choose it. This particularity allows the
developer to test any hardware module by automat-
ically interfacing it to a processor. It is also use-
ful for academic courses, where students can do the
partition themselves, and evaluate their work. P.
Chou, R. Ortega and G. Borriello [1] have created
a system to synthesise a hardware/software inter-
face for a micro-controller. Their work is made for
peripherals present outside the chip which contains
the controller. With our tool, the processor and
its user-defined peripherals are implemented in the
same chip. Thus, CoDeNios is better suited for sys-
tem prototyping and hardware module evaluation.

This paper is structured as follows: Section 2 de-
scribes the APEX20KR FPGA family supplied by
AlteraTM and the Nios processor used by CoDe-
Nios. Section 3 focuses on CoDeNios itself, explain-
ing its possibilities, while section 4 explores the per-
formances of a design generated by our application.
Finally section 5 concludes by discussing current and
future work.

2 APEX20K family and Nios

Altera, with the APEX20K family, offers FPGAs
with densities ranging from 30’000 to over 1.5 million
gates. It is built for system-on-a-programmable-chip
(SOPC) designs, with embedded system blocks used
to implement memories as dual-port RAM, ROM,
CAM, etc. For our application, we use a devel-
opment board with an APEX20K200E, from the
APEX20K family (cf. figure 1). This FPGA con-
tains 106’496 configurable memory bits, and 200’000
equivalent gates, which is enough to implement a 3-
processor design.

Along with these new FPGAs which allow SOPC

Figure 1: APEX Device Features

designs, Altera supplies a new processor. The Nios
(cf. table 1) is a configurable RISC processor, work-
ing with 16 or 32 bits (instruction and data). A
wizard helps create a Nios with all the necessary
parameters.The size of instructions, as well as the
number of registers, is decided by the user. A mul-
tiplication unit can be added to speed up multipli-
cations, with a cost in term of gates. The most in-
teresting possibility is the ability to add as many
peripherals as needed. Many of them are already
supplied by the wizard: memory interfaces for ROM
or RAM, UART to manage a serial COM, IDE con-
troller, timer, etc. All these peripherals are mem-
ory mapped for the processor. User-defined periph-
erals can also be added, by specifying the address
range, an optional interrupt number and the number
of clock cycles for write and read operation. When
all the processor parameters are set, a VHDL entity
is generated, which can be included in any design.

As CoDeNios supports a multi-processor architec-
ture, we chose a 16 bit Nios, so as to allow a max-
imum of processors in a design. One single special
peripheral was added, which contains all hardware
and slave processor calculated functions. It has an
address range of 2, used to access a counter (1 ad-
dress for a 32 bit counter accessible in 2 read cycles)
and to define a protocol for calling functions and
pass parameters.

3 CoDeNios

The hardware/software partitioning of a task aims
to accelerate it, by taking advantage of hardware
speed. An important issue is therefore to be able to
find bottlenecks where hardware can speed up a sys-

Table 1: Nios processor characteristics
Feature Description
type RISC
pipeline 4 levels

(5 for load/store)
instructions and 16 or 32 bits
data size
number of registers 128, 256 or 512
frequency < 50 MHz
place approximately 26’000

bits for the 16 bits
version

tem. Then the new solution needs to be evaluated in
order to prove it is better than the original software
execution. Currently there is no theory to calculate
precisely the execution time of a co-design system,
so many experiments and measures have to be run.

A second co-design problem is the interface be-
tween hardware and software. For each new hard-
ware module connected to a processor a protocol has
to be defined. The conception of this part of a sys-
tem can be very time-consuming, so automating this
task would be a great advantage for a developer.

CoDeNios proposes to solve both problems. This
tool, based on the Nios processor described above,
has a graphical user interface which enables a de-
veloper to make a partition of a C program, at the
function level, simply by click, drag and drop oper-
ations. This partition allows a function to be cal-
culated by the main processor, by a slave, or by a
hardware module. Once the choices are validated,
an interface between the different processors and the
hardware modules is generated in the form of VHDL
and C files. The original C code of the main proces-
sor is transformed to call slave modules, while for a
slave Nios, the whole C code is generated. For the
hardware, the whole system is generated, except the
architecture of hardware modules. For them, a tem-
plate is generated, letting the developer describe the
function behavior.

3.1 Function Selection

At the beginning of a project, the developer writes
a C program for a 16 bit Nios. The C file can be
opened with CoDeNios. A graphical user interface
(GUI), as shown in figure 2, lists all functions re-
turning void1 in a rectangle representing the main
processor. It is then possible to drag and drop a

1This limitation will be reduced, by also allowing functions
returning an integer.

Figure 2: CoDeNios graphical user interface

function outside this rectangle to make it a hard-
ware module. By clicking on it, a hardware module
can be turned into a slave processor, and vice versa.
For both entities, all input and output parameters
are listed, connected by an arrow. For a parameter
passed in C by reference (int *a), the direction (in-
put, output, input-output) can be changed by the
user, by clicking on the arrow. The value or the ref-
erence can be sent to the slave module, allows the
use of pointers to access a shared memory.

When the whole system is configured correctly,
buttons on the GUI can launch VHDL and C file
generation, hardware synthesis, placement and rout-
ing, C compilation, and finally start up the execution
of the program on the board, assuming the FPGA
is configured. This command sends all different ex-
ecutable codes for every processor on-chip. Then,
with a terminal, CoDenios installs a communication
between the main processor and the user, who can
view printf() results and type characters which are
sent to the FPGA.

3.2 Automatic Interface Generation

As explained above, CoDeNios generates VHDL files
implementing a protocol between all processors and
hardware modules. For a Nios-to-Nios communica-

tion, no intervention of the user is required, whereas
he has to write VHDL for a Nios-to-hardware com-
munication. In this last case, a template is gener-
ated, declaring the entity and implementing a small
state machine. The state machine corresponds to
the protocol the developer has to respect. First, ev-
ery input and output parameter of the function is
declared as ports. For an output parameter, an ad-
ditional port, called load x (where x is the name of
the parameter), is used to load the result value in
a register outside the entity. An input signal called
start goes to ’1’ for one clock cycle, indicating that
the input parameters are loaded, and that the entity
can start the calculation. An output signal called
done has to be put at ’1’ during one clock cycle to
inform an external controller that all output param-
eters are loaded, and that the calculation is over.

As an example, the Greatest Common Divider
(GCD) function is declared like this: void gcd(int
a,int b,int *c). Figure 3 shows the template
generated, which implements a state machine wait-
ing for the start signal to be ’1’. When this event
occurs, it loads the value 0 in the output register of
c and sets done to ’1’ to signify the treatment is fin-
ished. From this template, the developer only needs
to change the architecture, or to map an existing
VHDL file into the architecture.

library ieee;
use ieee.std_logic_1164.all;

entity gcd is port (
-- input parameter
a_in: in std_logic_vector(15 downto 0);
-- input parameter
b_in: in std_logic_vector(15 downto 0);
-- output parameter
c_out: out std_logic_vector(15 downto 0);
-- put it at ’1’ to load the output
-- parameter
load_c: out std_logic;

clk: in std_logic; -- clock signal
rst: in std_logic; -- reset, ’0’ active
-- ’1’ during one clock cycle to begin
-- the treatment
start: in std_logic;
-- put it at ’1’ during one clock cycle
-- when the treatment is finished
done: out std_logic

); end gcd;

architecture struct of gcd is

type state_type is (s0,s1);
signal state,n_state: state_type;

begin

process(state,start)
begin

-- default output values
done<=’0’;
c_out<=(others=>’0’);
load_c<=’0’;
n_state<=state;

case state is
when s0=> -- wait for start

if start=’1’ then
n_state<=s1;

end if;
when s1=> -- treatment finished

done<=’1’;
load_c<=’1’;
n_state<=s0;

end case;
end process;

process(rst,clk)
begin

if rst=’0’ then
state<=s0;

elsif clk’event and clk=’1’ then
state<=n_state;

end if;
end process;

end struct;

Figure 3: Generated VHDL file for GCD function

3.3 Parallelism

Regarding the C files, each original function which
is chosen to be calculated by a slave (processor or
hardware) is replaced by two new calls, one to start
the function calculation, and one to wait for its
termination. Continuing with the GCD example,
gcd(a,b,&c) will be replaced by:

hcall gcd(a,b,&c);hwait();
hcall gcd() launches the new hardware func-

tion calculation, and hwait() waits for its termi-
nation and retrieves the output parameters. This
call/termination splitting allows us to take advan-
tage of the hardware parallelism. It is possible to
call several independent2 functions and then to wait
until they are all finished. By calling the most time-
consuming functions first, the total execution time
can be dramatically reduced (cf. figure 4).

3.4 Execution Time Evaluation

As presented above, one important aspect of CoDe-
Nios is its capacity to evaluate the execution time of

2Two functions are said to be independent if they are called
consecutively, and no output parameters of the first are input
of the second.

a hardware or software function. With this aim in
view, some counters are automatically placed in the
system. One global 32bit counter is directly accessi-
ble by the main processor. It is set to 0 with a soft
reset of the FPGA, and counts the clock cycles. It
makes it possible to evaluate the total time of dif-
ferent (parallel or not) function calls. A counter is
attached to each co-design module, in order to eval-
uate the real number of clock cycles of a function
execution. It does not take into account the time to
pass parameters and to call the function. Its value is
retrieved by the master after the output parameters.

The global counter value is accessible via a func-
tion void GetTime(time t *t) and the module
counters are accessible by void GetFuncTime(int
FUNCID,time t *t). They are declared in an auto-
matically generated file which contains all the pro-
cedures responsible for the co-design function calls.

3.5 Memories

As multi-processor architectures are possible with
CoDeNios, several memories are used. The main
processor places its executable code in the onboard
SRAM of 1MB. The slaves each use only one on-chip
RAM of 1KB. This limitation is due to the number

f1 f2 f3

f1
ta ttte

f3
ta ttte

f2
ta ttte

f1
ta ttte

f2
ta ttte

f3
ta ttte

Software:

Hardware:

Hardware
with parallelism:

ta

te

tt

= time to call the
 function and to
 pass the
 parameters

= execution time

= time to pass the output
 parameters and to end
 the function

Figure 4: 3 types of executions

of embedded system blocks3 of the APEX20KE200
(52 blocks of 2048 bits). A larger RAM for each
would have prevented having 3 processors on-chip.
A shared memory of 1KB can be added automati-
cally in order to pass arrays to co-design functions
(by passing a pointer). It is shared between the main
processor and all co-design modules. To manage this
RAM, a simple arbitration is implemented, giving a
different priority to each module.

4 Performance

The performance of a design made with CoDeNios
depends on the hardware implementation written by
the user for the hardware functions. The total exe-
cution time depends on the parameter passing time ,
the calling time, and the hardware calculation time.
The parameter passing time is very small; a write in-
struction for an input parameter, and a read one for
an output. On the other hand, to call and then to
wait for a function costs 113 clock cycles. Because of
this, the efficiency of the hardware user-defined mod-
ules is very important. One single addition would be
slower by hardware, the latency of 113 clock cycles
being too long, whereas a mathematical series cal-
culation could be more efficient in hardware. Note
that for an industrial purpose these 113 clock cycles
could be reduced, by changing the generated C code.
Currently, this code is split into different functions
(one to call, and one to wait). As a software function
call costs time, by putting all operations inline we
could gain a lot of time. This has not been done yet,
because of the C code clarity, which is important for
student projects. Another way to save time would be
not to allow exact calculation of hardware function

3The embedded system blocks are used to implement
memories.

execution time. In the current version, this value is
retrieved after the function termination. By delet-
ing it, 4 clock cycles could be spared, but, because
they allow the developer to evaluate the software so-
lution as well as the hardware one, this deletion was
not done.

Finally, the performance of a system depends on
the parallelism imposed by the developer. If more
than one function can be launched at the same time,
the execution time can be dramatically reduced.

5 Conclusion

In this paper we presented a co-design tool called
CoDeNios. This pedagogic tool helps a developer
make a hardware/software partition of a C program,
and generates the interface between the hardware
and the software. A multi-processor architecture is
also possible, sparing the user the task of interfacing
the different processors.

CoDeNios, in its present state, can be used as a
teaching tool. The students can rapidly test hard-
ware modules by integrating them in a co-design sys-
tem, without having to develop a protocol to syn-
chronize the hardware and the software. To evalu-
ate the efficiency of their hardware modules, C func-
tions permit to retrieve counters values. Therefore
it is possible to compare a software solution with a
hardware one.

In the latest version of Nios (v2.0), the developer
can add a user-defined module inside the core pro-
cessor, a feature which overlaps a subset of the Co-
DeNios possibilities. This new development is inter-
esting in that it highlights the importance of the cur-
rent co-design trend that our project follows. Even
though the performances of the Nios add-on are bet-
ter in term of speed, our system allows for a much
richer and wider range of applications. In effect, the
Nios system is limited to the call of one module at
a time and a maximum of two operands per mod-
ule. In contrast, it is possible to implement fully
parallel module calls with CoDeNios, with as many
arguments (input/ouput) as desired, and add extra
features, such as shared memory access from the
hardware module. This higher flexibility and wealth
of potentialities make CoDeNios a perfect tool for
teaching applications.

In addition to the educational function of CoDe-
Nios, an industrial use is possible. Having the possi-
bility to create a complete system mixing hardware
and software implies a small development time. To
make this even easier, a tool to generate VHDL from
C functions is currently being developed in our lab.

It will be able to transform a subset of C (if, for,
while, +, -, *, /) calculating with 16 bit integers into
a hardware pipeline. Integrated with CoDeNios, it
will complete the automation of the system genera-
tion. The development process will also be totally
automated based on the user choices.

Finally, besides the C to VHDL translation, we
will add new possibilities to CoDeNios. First, func-
tions which return an integer will be potential slave
calculated functions. For instance, a developer will
be allowed to use a co-design function in a condi-
tional statement, or in an expression. Second, the
function parameter size is currently fixed to 16 bits.
This limitation will be removed, allowing different
types of data to be sent to a co-design module.

References

[1] P. Chou, R. Ortega, and G. Boriello. Syn-
thesis of the hardware/software interface in
microcontroller-based systems. In Proceedings of
the International Conference on Computer Aided
Design, pages 488–495, Los Alamitos, California,
1992. IEEE Computer Society Press.

[2] J. Henkel, T. Benner, and R. Ernst. Hard-
ware generation and partitioning effects in the
COSYMA system. In Proceedings of the Inter-
national Workshop on Hardware-Software Code-
sign, 1993.

[3] A. Kalavade and E. A. Lee. The extended par-
titioning problem: Hardare/software mapping,
scheduling, and implementation-bin selection. In
G. De Micheli, R. Ernst, and W. Wolf, editors,
Readings in hardware/software co-design, Series
in Systems on Silicon, pages 293–313. Morgan
Kaufmann, June 2001.

[4] G. De Micheli and R. K. Gupta. Hardware-
software co-design. In G. De Micheli, R. Ernst,
and W. Wolf, editors, Readings in hard-
ware/software co-design, Series in Systems on
Silicon, pages 30–44. Morgan Kaufmann, June
2001.

How Computers Really Work: A Children’s Guide

Shirley Crossley and Hugh Osborne
School of Computing & Mathematics

University of Huddersfield
Queensgate

Huddersfield HD1 3DH
U.K.

shirleycrossley@blueyonder.co.uk
h.r.osborne@hud.ac.uk

William Yurcik
Dept. of Applied Computer Science

Illinois State University
Normal
Illinois
USA

wjyurci@ilstu.edu

ABSTRACT���������	��
��������������
���������	�������� ��"!�#$
��%����������!&�'
(�	 ��	�)�*�+
��'��#$,���������
 ��	-"�	 .�	�"���	�	��
�����
��*,/�"�0
��%����������!21���1��� �,435��1�1� ����%��
����"�6,�7+�8 � �,�9�:
; �*��#< 8�=
�
� ���
��8�)�)��,>,�1?�	��
@���A
��%����������!B1���1��� 8,C
����)�D���FE����)�	��G

��� �,H���.35���'IJ�@�	���)1���
��*�KIK����7+,�9@LM�	���)1���
��*�N���������=
��	�*
������	,	:

O$���P,��"�����*�Q���C
�����,R 8���*���F�A��,�
����P 8����74���C,�����
���S� ��T,���1�1?����

���'
��*���8�� �����H
��%����������!U
�����SF��,����C�	�"���	�	1�
�,H���V�*�"�)1���
��*�H���������=G

��*�*
�������
��U
�����,W��!"�C!�������1X:H�K���8,H1F��1?�*�H���*1?����
�,$���B
���������-"�	,YG

���!"��
����"�[Z$E��	-\�	 ���1��)�	��
]����E2�	-��� �����
����"�^���C�<1��� ���
R�	���)1���
��_�
�'���_���=
��	�*
������C��`HG�aNO.bQZ����8�)�	E/��
Hc	dFe"e�#��	���&�" 8E�,	:

1. INTRODUCTION������ fE+���	�^���$
��+E��	#2�����/E��=gh�*���	��
)�������i
�����,��/���Ue	j'd+k�j<#��%�'��,
��!"��:l�K���T���'m5�����=
5#n���@������ 8E����*�o!��"����!p
���������!"�^
����Q�	E����	��G

������q,Y#�,Y
��	�r��
.
����U�)�"�)�*�+
W�����U
����@s���,Y
�!��	���*���'
����"�q���'-+����!
!����%I&�^��1AI&�=
��4�	���)1���
��*��,	:4������ 8E����	�2���	�%EA
��<S?�R1����	1������%E
�����W����
������>�	�)1� ��'#��)�	��
%Z�����Et
��]S?�*�	�"�)���D�� 8 �)�	�@S?�*��,N���u
����
3��5���D�������'
����"�4v����	���*
�#�9�:w�K���_#A���	�	Ew����
)���� =#q
��PS?�/��S� ��R
��
��,��.�>�*�"�)1���
��*�%Z+S���
&�� �,��@
��>����E��*��,Y
����FEU
����WS���,����	,x���y���%I0�=

I�����7+,HLz�": !�:[
��]S?�>��S� ��C
��R�����)�.
����C���'m5���.�*�"�)1?�"���	��
�,$���

����K�������������K����E�
��H����E��*��,Y
����FE����%IA
����*#C�'gh�	�*
{�=
�,y�*|)�	���	���*#�:
} �%IK�	-\�_�%Zh�	�������	��
&
��%���_���8��!]��
$
�����,$ ��	-\�	 �	�"���	�	��
�����
��	,H�"�P��1�G
1� ��8�	��
����"�R,�7��� � �,	:V~X�=
�
� ��"Z��=�����#�Z�
����)�H��,&E��%E����%�'
��%E�
��C�	���)1���
��_�
S���,����	,	:

�K����,x�8,K�>�)��,�,��%E)�"1�1?����
������=
5#�:y���R��,�����-"�*#)���X
��%�������_��,K���X
�����,
��!"�]!�������1qIK�)���"����E<
��F�'
@��j\���D�	 =
C
��F�'
@������ 8E����	�<,����"�� 8EqS?�

�����!��+
WSF��,����U�*�"�)1���
��*���'���_����
��*�*
������	,	:@�"��,Y
���,.������ 8E����	�T���	#
 ��%�'���@�K�������	��!"�C 8����!"�F��!"�K�)��,Y
X�����	��
� =#.�'
y���C�	���� =#���!��w��e*����Z�,��

����*#P���	#B�� 8,��tS?�@�)�",Y
H���	�	�	1�
���-\�>
���
����Q3��D�����	��!"�q 8����!"����!��	9
���@�*�"�)1���
��*��,R��
B�	 ��	�)�*�+
��'��#^,��������� . 8�*-\�	 �:��K���<E���|U�	�� =
����	,

�����
y���FE��*��!�����E��F�'
��	,����
��	�C�*��1?�*�����	���	�����C���FE��*��,Y
�����E�����!&�	���UG
1���
��*�N�'���_���=
��	�*
������*,$�'���.����
HE����$
��)����#R�������*���	��
NE���|U�	�� =
5#]���

����>,���S�m5�	�*
.���'
�
��*�%ZhS���
.�'���@�%����,��%EPS�#/�F�%-+����!)
��p35���� ��%������9
�����	�"�)1� 8�_
��"Z��������%�� ��8,Y
��������FER,����)�*
����)�	,(mY��,Y
&1� 8�����tI��	�=��Et�)��,YG
�*�"���*�	1�
����"��,)���H���%I��P�	�"�)1���
��*�CIK����7+,	:2���������	��
� =#q
����_���R��,
��,�������
���!��U������,��*���� �Z��1�G�
���G�E���
��������D��������
����"�T�D���.�_���� fE+���	�T�8�

����>c%dFe�e>��!"�C!�������1/���n35���'IJ�	�"�)1���
��*��,KI�����7+9�:N�K�������'m5����G
�=
�#U���[S?����7�,�����EU�"��G� ������x���	,��������	�	,������N�	�=
����*���"��
�E���
��	E@���V
����
����G5E��	1�
��t����ER�	���)1� ����%��
��%E]�D���&
����8,N��!"�.!�������1[Z����HS?��
��X:

�[���"E��=
����"���� K
��*�+
�G�SF��,��%E<�	���)1���
��*�>���������=
��	�*
������]
��%���_������!P�%���
S?�)������EP�D���C������ 8E����	�T
��/E��8!��	,Y
%:R�K���U��,��)���x�>�� =
����)�%E��8���%���
���8EC ��%�'��������!�Z\��,(�_���� fE+���	���%���C����
(���� =#W���%��E>���FE. ��8,Y
��*�>S���
�� �,��

Ix�'
��_�/���������'
��8����,x���u�	�"�)1���
��*�x�*�"�)1?�"���	��
�,	Z+
�����,x�	���������	����!

����$ 8�	����������!)1������	�	,�,	:��K���_#R�	���/ ��%�'���B��
&
����*���N�%I&�/1����	�����FE
���B�@���"��G� ������%�'�&����,������"�X:

�5�o
�����,B1F��1?�*�PIK�q���	1?����
T�"���21��� ���
T���+
��_�����*
���-\�w��`HG�aNO.b
�����)�%En�'
R
��	����������!q
����TS���,����	,R�����	���)1���
��_�t�'���_���=
��	�*
������B
��
������ 8E����	�B��!"�%E/c%dFe�e":

2. BACKGROUND
2.1 How Children Learn�"����� } �� �
/�8��3 } �%I������8 8E+���	�J~[�%������96� �'�.Ix����
��*,t
��F�'
/������ =G
E����*�QE�������
W���	�%Et
��]S?�C���"E���Z?
��" 8EB���.,����'I&�PI&�F�'
$
��] ��%�����
��,R
����*#^�����q�� =���%�"E+#0���*
���-\�T ��%�������*��,	:l�����8 8E+���	�0 8�	�����0�����"�
�F���FE�,YG������*��1?�*�����	���	�*,�
��F�'
K���+-\�" �-\�H�� � F
����*����,��	��,��*,	:��{���� =#]�'
�G

��=
��FE��	,.����EQ1?�*���*�	1�
����"��,W���������	���	�U�]�_���8 8Eh� ,. ��%�'��������!�:@�n���	�
������ 8E����	�2�����R 8�	����������!<���_I���������������
������^����EA,�7��� � �,	Z�
����*#w�����
�� �,��PE��	-\�	 ��"1�����!B�'
�
���
���E��	,.
��%Ix�'��E�,� ��%����������!�:/������ 8E����*�q ��%�����
IK�* 8 ?
������"��!���1� 8�	#B� ��Z?e"e_��:��u 8�	#��8,V
����N1�����������#>Ix�	#)
��F�'
K������ =G
E����*�q!\�'
����*�U���FEQ1������	�	,�,>���*I���������������
������XZu ��%�����A���*I�,�7+�� � �,
����E<1������*
����	���" 8Eq�"���	,	:/��
C�8,>�� �,��B���)1?����
�����
C�����>�_���� fE+���	�<
��
S?�W��S� ��H
������*���	�*
x���]I&����
K
����*#)7+���%I0���FE)���%I^
����*#),��" �-\�	ER�
1�����S� ��	�/:.35�H � ������,	Z�����
Xm5��,Y
V�_���� fE+���	�XZ\ 8�	�������)�����&�*gh�	�_
��8-"�	 =#
I&���*��I��W�'���W��
��"���K�)�",Y
@351� f�	#+�D�� �9]�	�%�{I&���*��I��W�'���$���*
���-\�	 =#
1F�'��
����	��1F��
�����!]���P���B�	��m5�'#���S� ����*��1?�*�����	���	�": 9 � �'�{�W���)�*,$���FE
!\���)�x ��87"�N ��%�'��������!.�*��-+�=���"���)�	��
�,(�%���)1����'-+�fE��x�_���� fE+���	�@I&�=
��)�
���F�� � ��	��!"�":x������ 8E����	�PE��	 ��8!���
H���^3����*I6,Y
5#� ��	,&���u ��%�'��������!�9)
��F��

�%���/S?�.E��* 8��-\�_���%ERI&�=
��/���_Io
��*�_�����" ���!"���	,	:

2.2 How Computers Aid Learning��
>�F��,U ��"��!TS?�*�	�w,���!"!��	,Y
��%Eq
��F�'
@
����]�*�"�)1���
��*�CI&�8 � x���F����!"�
���%I������� 8E����*�T ��%�'���X:.���qe%���"�/v+��1�1?�	,@�=e'�%�u1����%E����*
��%E/
��F�'
.E��_G
-\�	 ���1��)�	��
�,.���A�%E����%��
������F�� V
��	�_������ 8��!�#�Zu���FE<�*,�1?�	�	�8�� � =#w�	�"�UG
1���
��*�U��,���!��"ZVI��"�� fEA���F����!"�]
����)�����	�/���$�%E����%�'
����"�X: } �],��	I

����)�*�"�)1���
��*�C��,C�t
����� V
��F�'
C�%���qS?�)��,��%E<����
��*�����_
��8-"�	 =#q���FE
1����*,��	��
�����
��*���8�� �,.���qE��=gh�*���	��
�����EQ����-"�	 (Ix�	#�,	:)�5�we%����e]�y�'G
1?�*��
H�=e'k'�?�� �,��CE���,��	��,�,��	E@
����x1������)��,��N���h�	 8��,�,Y���������	���)1���
��_��,	Z
,���!�!"�	,Y
�����!<
��F�'
)IK�/�%���4�	����sFE��	��
� =#p�� � ��%I������� 8E����*�X� ,��)�8��E�,

��A3YE��	-\�	 ���1t
���������!"�R
����.�*��1� �������
����"�P���u�*�"�)1���
��*�&,����@�� f�'
��%E
� �)���*���%IK���� 8E�,	� 9�:

��+E��%#.
����	,��K-+��,����"��,u�'�����	 ���,��*�u
��N���%�� ���
�#�:u�K����E��	-"�	 ��"1��)�*�+
���
�@�� =
��8�)�	E��8��
��*�_�����" ���!"���	,C��gh�*��,C���*I�IK�	#�,����<I&���8���q ��%�'��������!
�%���T
���7\�@1� f���	�":C��
$�F��,$
����>1?��
��	��
��8�� (
������%E����	�>
����>���	�%EB�D���
,���S+mY�*�*
],�1?�	�	�=sF�t
��	�������*���*��1?�*��
���,��A�=e%�'��:6v��������" �,����*���",�,�
����
IK���� 8En�����B�	�>S������*�8��!<
�����,����_Il
��*�_�����" ���!�#4���FE2 8����7+�8��!q�D���

IK�	#�,x
��>��,��.�=
x
��U�	���F�����	�W ��%�'��������!�:��K
x
����W,����)�$
����)�H������#
����
����	,�������,Y
��=
���
��8����,u�'���K��
�
��*�)1�
�����!&
��H�����F��!"�����>,����� � �S��FE+G
!��*
�,	ZF�����D�*�������&
��	�������" ��"!�#�Z� ����)�=
��%Et���	�	�	,�,H����Et�>
��	����������!>,Y
���g

�����
WE����	,H����
$�F�%-\����1�G�
���G�E��'
��W
�������������!����P�	�"�)1���
��*�H��,���:$�
���*�	�	��
N &¡�¢D£�¢D¤Y¥C¦N§�¨�©�ª�£�¢�«�¬?ª"y®{«�¯>¯@¨+¬�¢�©�ª�£�¢�«�¬�¤Hª�¬F§t°h±�©�¥+¬?«��«�²�³
´ ²�±_¬?©*³@µ�¶K���K��W·����	1?����
�� �%�X���	1?����
��%E)
��F��
&���� =#tk��"�����y������ =G
E+���	���F��E���,��%EU
����N�5��
��*�����*
K�'
x,��������" �Z�����E)�"�� =#)�\�¸���"E)��,��%E
�*������ �:u�K����,(,���!"!"�*,Y
�,(
��F��
y�]3� 8�%IA
��	����9$��`$G�aNO.b¹
�����
y�	���CS?�
��,��%E���,�&,Y
����FE.�� 8�����V1����"!������o�"�C�K ��%IA,�1?�	�	�=sF�	��
����"�C�������������
��,C�)�����) ���7\�	 =#T
��/S?��,����	�	�*,�,Y�D�� {
��F���A�435����!"�q
��	����9/1����+E����*

���	º+���=���8��!t���+
��_�����*
����	�	�	,�,	:]���Q����E��*�.
��t�"E�E+���	,�,.
����U1����"S� 8�*�
���y
��%�������_��,	�� 8����7]���y�����)�� 8�8�'����
�#RI&�=
��t
����.,���S+mY�	�_
H���'
�
��*�%Z�����#
,����_��
��%���_���8��!@���'
��*���8�� h�@��,Y
&�� �,��US?�H,��	 =�y�*��1� 8������
�����#�Z��� � ��'IxG
����!<������ 8E����	�w
��Q��,��t�=
UI&�=
�������
U���	º+���=���8��!Q
����T�@���_�A
��%���_���*�
�_��1?�_��
��8,���:

2.3 Other Products�N =
����"��!"�A
����]������7"�*
@��,@�����+E��%EAI&�=
��2�	E����	��
����"���� x,����f
5IK�����

����*���C�8,$-\�*��#/ ��=
�
� ��U�%-����� 8��S� ��U���B
�����,$�����%�)�D���W
�����,W��!"�>!����"��1X:
���A�"���@,�����-\�*#<�B
�#�1����%�� V�	�"�)�)�*�+
.IK��,Q3*���	�*�C��
��*���)�����" ���!�#
� ��,Y�y�����)�%Et�'
H�� 8E��*�N,Y
��FE��	��
�,�9�:

2.3.1 Textbook Related Products.�=e%c'�H�8,��PS?���"7p���FEp��`�1F���_7���!��R
�����
)�%���2S?�R��,��%Ew���Jµ�1����*G
·5������-\�*��,��=
�#Q�	E����	��
����"�[:]�K���US?����7Q��,��*��1?�*��
� =#T�8 � ���,Y
����'
��%EQ�����
-+��,��F�� ��8»	��
����"�R���X�	�"�)1���
��*�{1������*�	,�,��	,&��
KE��=gh�*���	��
V 8�%#\�*��,����(��S�G
,Y
������*
����"�[:U�K���U���+
��_�����*
���-\�U��`�1����'-+�8E��	,.�)
��"���W
���������!��T
����
����
��*�������H���FEt�*�+
��*�������H���u�@�	���)1���
��*�KI&�=
��B����������
��%E]�*��1� 8������G

�������,	Zy-+�8E��	�t�8��
��*��-+���*I&,	Zu���FET�	�"�)1���
�����!]
��81�,	: } �%IK�	-"�*�%Z
����
��`�E����	,&����
x�����	 ���E��.�� 8 [���
����$�����D�������'
����"�t�*�"��
��������	ER���R
����
S?����7<���FE<��,����<�����*
C���/ �����!"�_�@S?�	����!/,��" 8EqS����FE� 8�	EPI&�=
��<
����
S?����7?:H�=e%c'��� �,��)E����*,N����
x,Y#���
����*,��8»*�$
����W������#),��	1F�'����
��.�	���UG
1?�����	��
�,C�=
)E��*,��*����S?�	,	Z{�8��,Y
��%�"EA ��%�%-+����!T��,@�P�C#�,Y
��*��#<���%I��� �

����.1F�'��
�,x���{�@�	���)1���
��*�KIK����7]
���!"�*
����*�N���/�����8,����X:

2.3.2 Stand Alone Products.��I���1����+E����*
�,{�����&���U
����)35��	�������.¼$���	,Y
�9W������!"�&1����+E����*�%E@S�#
�{��!� ��	�)�",�,&�u��S� 8���%�'
����"��,K~[
�E[:�½V¤*©*¨"¾�¿*¨�±_¤�£h��,���!"���)�&
��F�'
��	�'-�G
�_��,�S���������#>�	�+E��"Z\�	�"�)1���
��*�{�)�	�)����#�Z�1����"!������),V���FEU��1?�*����
�����!
,Y#�,Y
��	�),	À?Á*¨\²>¿*¨F±_¤�£h��E�E+���	,�,��	,{�8��
��	!�����
��%EU�*�����*���=
�,	Z+�%�� ��	�� 8��
�����,	Z
�*�"�)1���
��*�� ��"!��8��ZN
����P�K�uÂr����E4�H��:V¶���
��n�'���P�����)�%E2��
]S?�*G
!��������_��,	ZXS���
$�F�%-\�C-"�'���8����,W,�������
��	���)����!",	½R3Y�K���@!"���)�@����,$
��
S?�C1� 8�	#��%EB,����	�	�	,�,Y���� � =#B���8!���
W
���������!"�P���P����E��*�$
��]1�����!����	,�,	: 9�À
35�N�f
��*�x
������	�H�����	�������	�*
&�'
�
��	�)1�
�,�#\�"�]�����$
������%I&�R����
%: 9�À{3Y�K���
 ��	-"�	 +�8,X
����$ ��%I.: 9>� ��Z�����:u�w,��8�)�� 8���(1����"!���������,W3�Ã.�*#�¶V#+
��	,y�u ���,
�����&�n���FE��%I&,�9�:V�K����,x��,N�>���	�'-+�� =#)
��*�+
K���	 ��8����
&1�����!������r� k%��:V��

��,&
����*���_�D�����.1����"S���S� =#]����,����=
���S� ��W�D���&
����W
�����!"�_
$��!"�.������!"�":

2.3.3 Internet Based Products.�K���&¶V���=
���,��)¶V���\��E��%��,Y
�����!C������1?������
����"�)!���-\�	,u�$S����8�_�?�'-\�*��-+���*I
���FE^�*��1� f���F�'
��8���n���C�%���_�n1�����
]���>�q�	���)1���
��_�Q�=e_��ZHS���
�
�����,
��,C
���
��� � =#<
��_��
>SF��,��%EA����Eq��!"�����w����,����=
��%EQ
��B
�������!"��������!"�":
�N����
����*�W
��_��
�G�S���,��%EP,��"�����	�)���.µD
��	�������*��,���1�1?����
_·N����
��*���8�� u��,

����C���"�)1���
��*�Nbt��,��	���r�=e	����:

� ; �5��,��8!���
��=e%j'�+�F��,(�&E��%I&�� ��"�"E���S� ���1����"!������J�_��1� 8����������!&�	���UG
1���
��*�H�'���_����
��*�*
������":K�K����1�����!������l�*�"��,���,Y
�,H���u-\�*��#tE��*��,��.���UG
��!"�	,H���y-�����������,N1F����
�,&���y
����W�	���)1���
��*�xI&�=
��/����
�,�1?��
�,	:{�n���	�

����$��,��*�&�	 ����_7+,K���/������
�,�1?��
N��
��_��
KS?�'�)I&�=
��]-\�*��#�E��	��,��N
��*�+

��1�1?�%�'��,&!"��-+�8��!����R�*��1� 8������
����"�/���(
����$�	�������	,�1?���FE��8��!)�	�"�)1?��G
���	��
%:B�K���8,�
��*�+
�I&���FE��%I��� �,��P�	�'-\�*��,�
����)������!���,��/
��F��
�
����

��,��_�H�	��������
&-+���*IoS?��
��t��
N�"���	�":V�K����,&��,H�>-\�*��#��	���)1� ��*�]1�����G
!�������
��F��
&������ 8E����*�RIK���� 8Et,Y
�����!"!" ��.
��U��,������FE]����E��*��,Y
����FE[:

�{��,Y#��K�{Â���,B���n�5��
��*�����_
�G5���	�	�	,�,���S� 8��ZW,����)1� ��=sF�%E0�K�uÂ�,����@��G
 8��
����P���C
����<����
��	 WÄW���p1������	�	,�,����B�����)�� =#oE��*,��8!����%En�D���B1����_G
������-\�*��,��=
5#.�	E����	��
����"�R��e	����:{�{��,Y#��K�{Â2��,��	,�	�" ��"���u�_������!"�	,u���FE
����������
����"��,V
����� 8 ���,Y
�����
��WE���
��.1F�'
��)�"1?�*���'
����"��,KE���������!�
����&�*�+G
�	�	��
����"�)���h�	�����U����,Y
������_
��8���X:uaN�	,��� =
�,y�������¹��-"�*��k�j"j�j.,Y
��FE��*�+
�,
�)�%��,���������!t
����)�*gh�	�*
���-\�*���	,�,����N�{��,Y#��K�uÂ����FE����%�'
��%E<
��F�'
>���
����
��*�����*
���-\�$����E]����������
��	E�,�����
�Ix�����W
����� ?�	���������	�	,KS?��
��]�)��
��=G
-���
����"�B���FERE��	S���!"!�����!U,�7+�� � 8,C�=e%�'��:

3. THE DESIGN�K���@,�����
�Ix�'���]��,CE��*,��8!����%EP�D���>������ 8E����*�q��!��%EAc	dFe"e�Z(I&���R�F�%-\�
S?�	�	�n�* f��,�,��=sF�%E0��,]���'-+���	�P��,��*��,	:J�n�=
��^
�����,R���n�)���FEp���+
��_��G
���_
��8���JS?�*
�IK�	�*�0
����<������ 8E6���FE^
����Q�	�"�)1���
��*�R��,B ��8�)�=
��%E^
��
�)�"��,��t�	 �����7�,]���FEp���� � 8�'-\�_��,	:n�5��
��*�����*
����"�4S?�_
5IK�*�	�2
����/�	�"�UG
1���
��*�C����EP
����U������ 8EQ��,.
������"��!"�<���������'
��8���XZX,��"���FE<���FEP
��*�+
%:
; ��,����� [���8E�,	Z�,����_�R��,&����������
����"�[Z������W��,��%E�
��>����!"�� ��8!���
&����E�
��
E���,Y
�����!�����,��<S?�_
5IK�*�	�<E��=gh�*���	��
����_
��8����,����FET�����%��,C���K�������������'G

����"�[:��o,��_���	����
����W 8�	#�����
N���(
����.1F��!"�	,&��,&,����%I&�/���BÅ(��!"�����Ue":

Æ �%-+��!\�'
��8���w�F��,CS?�	�	�<7\�	1�
C,����)1� ��"Zu�*�"��,���,Y
��	��
@����Eq�8��
�����
���-\��:
�K
{�� � �
����)�	,(
����K��,��_�V�	���U�%��,��� �#UE��	�*�fE��KI&���*���K
����*#>�����"Z�I&���*���

����_#.�%����!��W����E.���%Iq
����_#W�%���>!��*
(
����_���": Æ �'-+��!\�'
����"�C�8���	����1?��G
����
��*,�
����&IK�	 � [E����*���)�	��
��%Eq3�
������	�*G�,Y
��	1)���� 8�*9�Z+I&���*���&
����N��,��_�
�"�� =#<���	�%E�,.
��@m5���)1P
������	�) ��	-"�	 �,C
��/!��*
�
��B����#T1?�"����
C���<
����
��`$G�aNO.bQ:���U���	 �1]I&�=
��]
�����,x�	-\�*��#�1���!��W�	�"��
����8��,N�>,�������
��	��

SF���_7)
��@
����/3�I��	 ��	�"�)��1���!"�*9�:

¶��	�	����,��R���N
����]��!��t���N
����R����
��	��E��%EA���FE����	���	�"Z{S���
�
��"��,@���FE
���	�"��,R�����	 ��FE��B,�������E4��,�IK�* 8 $��,)
��*�+
%:6�H,)
����t1����+E����*
�Ix��,
�����)�%E.,�1?�	�*��s��%�� � =#>��
y������ 8E����*�@�� 8 �-"�"���	�	�'-\�*��,(���FE�,��"���FE.�*gh�	�_
�,
IK�_���x1����'-+�fE��%E>S�#C������ 8E����	�C�����"��
�����
�����!��*
V��!��N!����"��1X:u�p�������
#��%�'���" 8EQ!��=�� {���	�*����E��	ET
����@,��"����E�,.�����)����!�
����US���
�
�����,	:@�H�
�	 ��	-\�*��G�#��%�'��G��� 8E�S?�%#U���	�"E)
����N-\�"���	�	�'-\�_��,��D���x
����N�8��
����+E����*
�����#

��*�+
R�8�0�%���_�o,��	�*
������X:��K���*���T�8,/�A�D���	�� ��=
5#n�����/
���!"!" �����!p
����
-\���8�*�	�'-\�*��,	:

4. THE MAIN AREAS
4.1 The Welcome Page.�¹�	 8��,�,Y�����"�r�)�_
���1������.����,WS?�*�	�Q������,��	�P�D���.
����@�����8�o3�I��	 =G
�	���)�C1���!��	9Pµ�,��	�CÅ(�8!������@k"·_:&aH��
����*�H
������/���%-�����!���,Y
����FE�����E

��*�+
H�)�	�+�XZ��8����!"�	,N���V�)�	���)1���
��_�$���FEt�=
�,H�������/�	���)1?�"���*�+
�,
�����B1� 8���	�%Ep���2
����t�	 8��,�,Y�����"�/:o¶{#w�	 ��8��7+����!q���^����#p���H
����	,��
������!��	,W
����U��,��*�.I&�� � VS?�C
���7\�	�T
��R
����@1F��!"�	,��*��1� f����������!]
��F��

�	���)1?�"���*�+
%:V�JS?����7+,����	 =�u�	���+
�����������!)S?����7�,N �����7+,x
��@
�����º�����»
1F��!"�	,	Z�)IK���� 8ET����1B
��]
����@���+
��_�����*
$,��	�*
����"�[Z(���FE/
����>S� 8����7�G
S?�\�'��ER
��@
����W����,Y
�����#R1F��!"�	,	:

������ 8E����*�^�����t!"���8E��%Ew
������"��!"������
)S�#�3Y������1�9�ZK
����t�����8���'
��%E
�F��1�1�#pE���,�7A
��F�'
��%���4S?�/,��	�	�^���%���)
����/S?��
�
����i����!"��
��F���FE
�	�������*�����xÅ(��!"������k+:>�H�T�	 ��	�)�	��
$���������T��,��"E�E��%EPS+#/����7+����!
������1<
�����7+ 8��,��QLÇ�=�K
����)�)����,��U1?�����+
��_�.
��"�������*,@������1q���@I&�� �
 8����!"�/���N
��* 8 h
����.��,��*�&
��@,Y
���1t
����_7+ �����!U���8�/È

4.2 Peripherals�{�����A���&
����)�����8�A1?�_���81����*���� �,�LÉ7"�*#�S?�\����EhZy�)�"��,��"Zy1����8��
��*�
����E<�)�"���=
������F��,>�=
�,��%I&�A�����	�/�8�Q
����]��`$G�aNO.bQ:[�5�q�	�����q���

����*,��R�'���%��,�
����)��1?�*����
������p���x
����)1?�*����1����*���� KE��*-����	��Zu����E<�=
�,
���" ��R�8�A
����R��1?�*����
����"�p���&
����R�	���)1���
��*�@,Y#�,Y
��	�Ê��,U�*��1� 8���8���%E
��,�����!B�t�	���@S�������
����"�Q���K
��*�+
%ZX������!"�*,C,�������E<����E<����������
����"�[:

�q�	 ��	���)�

ËKÌ�Í?ÎfÏ�ÐhÌ�ÍFÑ[Ò"Ó Ô�Õ?ÐhÌ�ÍqÖ.Í?Ì�Ñ[Ó

Ã.�*#�S?�\�'��E bt����,�� �y���8��
��*� bt�"����
���� ���"�)1���
��*� ����
��*�����*
 } ��,Y
�����# ¼$���8»

×.Ñ[Í?Ø�Ù&Ñ[Í?Ì ÚFÛ[Ü\Õ�Ù&Ñ[Í?Ì

�K�{Â`W��
��bt�	�)����#`W��,�7+, O$1?�*����
�����!
v+#�,Y
��	� v�����
�Ix�����

����,Y
������*
����"��,
��Ý��.�*#��	 ��

S��=
�,NÞ�S�#�
��*,

S���,��	,
aH�Wb
aNO.b

�F��1�1�#

�F�'��EtE���,�7
��` ß&à�á?âXã�äAåFæ.çVè+é?ê?âë>êFìHë	íä<î>ï]ð�ñ)ò)ó

ß&à�á?âXã�äQô[æ.õ>íäPó6èFàDö4÷Jä�ø�ù"êhúQäPûNè�áFä

�K���.1�������
��*�H�����%�+Z������N�*�����)1� 8��Z��*�"��
�������,N �����7+,K
��@
5I��)����������G

�������,C�8 � ���,Y
����'
�����!/
����)��1?�*����
������A���x 8��,��_�U���FE<����7%m5�*
C1�������
��*��,
µ�,��*�/Å(��!"�����t�+ZVI&���8���w,����%I&,)�BS���S�S� 8�����$����7Q�D�����)����!T���p���
����7'm5�*
N1�������
��*�_·_:

4.3 The Computer.�K����,N��,K
����W 8����!"�*,Y
H,��*�*
����"�t���(
����W��`$G�aNO.bQ:��K���W�������/�����	��,
���*���������W
������K�uÂ>Z�
����W`.�'
��U�����%�@���FE/bt�	�)����#�:

õCíäpîCû.üTý �K���8,.,��*�*
����"�<��,.S���,��%ET�"�P
����U~[�=
�
� 8�)b/���<���"�UG
1���
��*�tE��*-\�	 ��"1?�%EnS?�Qv+
�������
/b/�"E������_7^��
Pbt�5������e%���"�p���FE
E��	,��*����S?�%EB���B�": !�:y� c%��Z[���FE/�=
�,N�*�+
��	��,����"�[ZF
����C�(��,Y
������"�þ���"�UG
1���
��*�U��e	��Z(����:)�5�P
�����,W1�������E���!"���p35�	���)1���
��_��9R�	����,���,Y
�,����K�
IK�� � ��%E^������ =�����"�/Z.e	j"j<������ 8S?�%���	,��+���>S?�*���%Eq�������ÿj�jQ
��A���
µD
����U�)�	�)����#F·_ZX�]�%�� ��	�� f�'
����RµD
����)�&���=
����)�*
����U~[�"!��8�)ÂH���=
_·_Z�
�*�"����
��*��µD
����u ����%��
������>�	������
��*�_·[���FEW����1���
����E.�"��
�1���
[SF��,�7\�*
�,	:
�K���&�����8���'
����"�@s���,Y
V,����%I&,u
����)3Y~[��
�
� ��Hb/����9W�*��1� 8���8������!$I&����

�	�����B���(
����.�	�"�)1?�����	��
�,&E����*,	: } �H
����	�/�_��1� 8������,x
��F�'
N���W����,
�),�������
W ���,Y
W����S���,����C�8��,Y
������*
�������,H
�����
H���C�%���P�*���	�*��
��":H�����8 =G
E+���	�T�%���P
����	�T�������",��>�����"��
�����,W ���,Y
C���FEB
����>����������
����"�PI&�� 8
�_��1� 8�����B
��������	 ��	-"����
$S?�	���%-��������%:W���������	��
� =#/
����_���C��,W���)�����*�8 =G
�=
�#>�����{�	�"�)1?��,�����!W#������u�%I&�U1�����!������),uI&�=
����8�>
�����,{���������'
��8���XZ
S���
yI��N���"1?��
��$�8��
��	!�����
��x
�����,yI&�=
��)�$,����)1� ��=sF�	E>-\�*��,������)���F
����
�(��,Y
������"�þ���"�)1���
��*�x���FE��*��!�����E��F�'
��W
��%����������!)���8E[:

ß&à�á?âã'ä��[æ��]ö��_ö��	�	ä+ë)ûWã�àDöhë	ä+ã

ïRè�ë	èXý �K���CE���
��)�����	���� � ���,Y
����'
��	,H
����]µ��$v������Y·��	���	�+E�����!����{�
7\�*#�1����	,�,H���P�US�#+
��"Z?���FE/,����'I&,H���%Io
�����S�#�
��.��,H�	�"�)1?��,��%E/���
S��=
�,	:/�K���U���" ��	,>���x
�����E���
��+Zy�	���+
����� K���FEq��E�E����*,�,>S���,��	,C�����
�*��1� 8���8���%E[:

óJä�úQêFã'éFý �K���&E��=gh�*���	���*�xS?�*
5I��	�	�@aH�Wb����FE>aNO.b���,u,����%I&�
�)�*
���1����������%�� � =#HLr
����yIK����E.aNO.b���,,����'I&�.�*��!����%-\�	EW�8�.,Y
������"Z
I&���� ��)aH�Wb ��,.S?�	����!]I&��1?�%E<��gp�]S� 8����7+S?�\�'��E[:)�{�����<,���S�,��	�_G

����"�A�� �,��/�	�"��
����8��,C�t�)�����U�_��
��*��,���-\�UE��	,��*����1�
������q���K
����U��,��*,
���u�	�����R
5#�1?�W���u�)�	�)����#�:

4.4 Other AreasõCíä
�*öhë	ä+ã�öXä�ë�ý �4�)�*
���1������{���[1?�",Y
�����!>�W ��*
�
��_�K�	���+
�����������!��
���%º����*,Y
(�D���u�N,�1?�*�	�=sF��I��	S>1���!��VIx��,y��,��%E����_���{
��N�*��1� 8������I&�F�'

35����1�1?�	��,�9CI&���	�R��I��	St1���!��$��,K���%º����	,Y
��	E[Z�����E�
����$1����"S� ��	�),

��F�'
&���	#t�'����,��C,����_�t��,x
����)�W�"��
Cµ�E����H
��U�	�"��!"�	,Y
������/���H�	�"�UG
1���
��*�x������ 8�����'·&���FE����	,Y
������*
��%E/���	�	�	,�,	:

� à�	ë*êFã'éFý �K���/����,Y
�����#p��,)1����*,��	��
��%E2��,��Q,����)1� ��t
����)�R 8�����":
������ 8E����*�p�	���w�	�=
����*�U1����"!����	,�,@
������"��!��q
�����
����)�	 ��8���R,��	º+���	��G

��8�� � =#B���$1�����7B����E/�_�����",��>
����)�.,� ����	�	,	:$Ã.�*#/�	-"�	��
�,H���B
����CE��_G
-\�	 ���1��)�	��
X����
����{�	�"�)1���
��*������V1����	,��	��
��%EW�����(
����{
����)�u,� ��8�*�\µ�,�·
,��	 ��	�*
��	E[:

ß&à�á?âã'ä��æ�õCíä��Uâ(à��

õCíä��Uâ(à���ý �K���<º�����»Q�*�"��,���,Y
�,B���U�w,��	 ��	�*
����"�o���@�@�� �
���1� 8�
���������	�/º����*,Y
��8����,C�	�'-\�*������!P���'
��*���8�� ��f���"�i�� � K,��	�*
����"��,U���&
����
��`HG�aNO.bQ:{3Yv��� � �#�9�����,YIK�_��,H�'���.�����	 ��FE��%Et��,N�>�D���t�	 ��	�)�	��
KL
,��*�UÅ(��!"�����@��:WÂ$,��*�.���+-\�� 8-"�	�)�	��
N�8,W�� �,��t�����_���%��,��%EPS�#P�"E�E�����!
3��	�"��!����'
��� 8��
����"��9]���FE235�	���)�)�8,��_����
����"��9U,��"���FE�,	:

5. EVALUATION`$��������!�1����+E����*
������Q�� �1��F���@�� =
��8�)�	E��8�>
��	,Y
�����!)L
��	,Y
�����!)
����
�������*
����"�F�� ���
�#�Z����
��*�����*
����"�A���FEP�F�%-+�8!"��
����"�PLÇIK��,.1?�*���������)�%E
S�#p�P,����� � &!�������1p���W������ 8E����*�2I&���P���	-+���*IK�	E4����Ep�*-"�� 8����
��%E

����B1����+E����*
%:�O$���	�/
����B1��� ���
/��`$G�aNO.bÿIx��,]���%�"E+#2�����]���*G
 ��%��,��W�.!�������1����X1?��
��*�+
��8�� F��,��*��,uL �_���� fE+���	�)���)
����x
�����!��*
&��!��
!����"��1^����Ew
����	�=�U
��%���_���*��,@L IK�*���/��,��%EA�D���R���2��1�1?����
�������,YG

����U
��	,Y
%:U`.��
��]�	�" � ��	�*
����"�A�)�_
����+E�,HIK�*���)S�#P�"S�,��*��-���
����"�<���FE
,��*�)��G�,Y
������*
������%EU����
��*��-+���*I&����!����[
����N1F�'��
����	��1F����
�,{I&���� ��HS?�	����!
���*�	����E��%Et�"�t-��8E��	��:

�K���)�_���� fE+���	�QI��*������,�7"�%ET
��]IK����7P
���������!��Q
����@1F����7���!"�U���FE
!���-\�@�D�*�%E�S�����7h:>¶��_�D�����),Y
��'��
�����!R
����>1�����7"��!"�@
����*���>IK��,.,����)�
E���,��	��,�,����"�PI&�=
��T
����>������ 8E����*�P��S?�"��
W
����*���$�	�������*�+
H7+���%I& ��%E�!��
���&35���'I2�	���)1���
��_��,(IK����7+9�:{�K���x���%mY�����=
�#U����
����x������ 8E����	�U,����8E

�����
W
����*#P7+���*I����%I¹�R�*�"�)1���
��*�$I�����7\�	E[Z[S���
W�D����
����*��º����	,YG

�����������!C���	-\�%�� 8�	E]
��F�'
K
�����,K�)�	����
�
�����
K
����*#�7+���*In���%I^
��@��,��

����	��L �": !�:����%In
��U ��"!U���t
��>
����W�5��
��*�����*
�L ����
N
�����
x
����*#
���FE��*��,Y
����+E@�	���)1���
��_�{���������=
��	�*
������x�	�"���	�	1�
�,	:y�N��
��_�V��,�����!$
����
1�����7"��!"�x
������_���8 8E+���	�@IK�_���H��,�7\�%E>�����u
����*���{�'-\�*���� � ����)1����	,�,�������,
���FERI&���*
����_�x
����*#]�	��mY�%#��%E�
�����,&�)�*
����+E]���y ��%�'��������!�:

�K���xº�����»K���FEC�����8���'
��%E���,�1?�	�_
�,{����
�����1����+E����*
XIK�*���V
������)��,Y

1?��1��� f�'�uI&��
��>
����K������ 8E����	�[: } �� =�?���?
����K�_���� fE+���	�@I��	��
u,Y
�������!"��

��R
����Uº����8»U���FEP
����	�P���%�� 8��,��%ET
��F��
.
����*#P�F��ET
��t���*
����� � =#<!��

������"��!"�P
����@1�����7"��!"�>S?�*�D�����US?�	����!R��S� 8�>
��t����,YIK�_�.
����Uº����	,YG

�������,	:��K���B�	�" �������,	Z&�D���+
�,��*
���:�IK�_���T������,��	�4I&�=
��^�%��,��T���FE
,�1?�*�%EQ�������%��E�����!/���T�)���FE[:@�K���>�_���� fE+���	�q�� � V�	��mY�%#��%EB
����>����G

��_�������*�.����E� ���7\�%EU
����H�	 8��,�,Y�����"���)�*
���1������%:u�K���NS?�" 8E��	�" �������,
���FE/ 8����!��*�W���"��
�,HI��*���>1?��1��� f�'�.���FE/����
W�	����,��8E��_���%EB1F��
���������,YG
����!�:{�K���N
��%�������_��,��D�����FE)�=
KS�����!"��
x���FE)�_���	�*������ �Z�����E)���	 =
K
��F�'

����U����������
����"��,HLz�	,�1?�	�*�f�� � �#<�����81BL IK���� 8EP�%��
����T
����>������ =G
E+���	�X� ,R��
�
��	��
����"�[:��N 8 N���.
����B�_���� fE+���	�^,����fE4
�����
]
����*#wI��*���
����1�1+#4IK����7+����!pI&�=
��J�p�	�"�)1���
��*�t1����"!������M���@
����8,t�F��
������":
bt��,Y
W���y
����	�����	 =
$
��F�'
N��
NIx��,HS?�_
�
��*�H
������t
�����E��=
����"���� (��%�'����G
����!t�)�*
����+E�,	Z?
�������!��Q,����)�>�D�* �
.
�����
.�=
�,����"�� 8EP�"�� �#PS?�>��,��%E

��U�	���)1� ��	�)�	��
K
�����E��=
����"���� �* f��,�,Y�����"�l ��%�������8��!�:

�$�	���*���� � =#�
����{1����+E����*
(IK��,I��	 � +���*�	�	��-\�%E�S�#.S?��
��.
����V�_���� fE+���	�
����ER
����W
��	�������*��,	:&�K�����)�",Y
N,����	�*�	,�,Y�D�� (1F�'��
�,H���y
����.1����+E����*

IK�_���]�* 8�	���� =#<
��������������'
��%E<�	���)1?�"���*�+
�,	:R�K���*�����8,�,����)�)�	-�G
�8E��	���	�>
�����
H
����*#P���8E��%EP����E��*��,Y
����FE�����!R���FEB��gh�_���%EQ���	 ��%�'���*�
�*��1� 8���F��
������q
��F���A��,>�%-"���8 8��S� ��R���A1F��1?�*��G�SF��,��	Eq����
��*���8�� �,	Zu���
�	-\�*�R���_�����	-"��S� ��NS+#U�W
��%�������*�K�8�]�W
����"E��=
��8���F�� ?�	 8��,�,Y�����"��,��=
���G
��
������X:u�K���x�_���8 8E+���	�>���"E�
����K�)��,Y
uE��=|)�	�� =
5#����@���FE��_��,Y
����FE�����!

����P35~X�=
�
� ��)b/���Q�����)1���
��_��9),��	�*
����"�P���u
����C1�����7"��!"�"Z?
����"��!"�
,��"�)�R���N
����	� E��8EA,����	�*�	,�,Y�D�� 8 =#w���	�)�	�>S?�*�Rµ�1F����
@����·>
����R����G
,Y
������_
��8���<,��*
%:Uv����)�>����
����	�þ,Y
��'
��%ET
�����
W
����*#/IK���� 8EQ1����*�D�_�
�=
)�=�$
����*#A�	���� 8Ep����
��*�����*
)I&�=
��p
����43Y~[�=
�
� 8�Bb/���4���"�)1���
��*��9
LÇ��: �":�*���%�'
���~X�=
�
� ��]b/���w�����)1���
��_��1����"!������),	:]�K���8,.I��"�� 8E
�� ��)��,Y
)�	�*��
����8�� =#w���	 �1A
��P�8���*���%��,��t
����	�=�@���FE��*��,Y
�����E�����!�:w�H,
�)�	��
����"���%Et��S?��-"�"Z�I��.����1?�W
��U���+
��*!�����
��.
������(�",Y
������"�������UG
1���
��*�xI&�=
��t
����.��`$G�aNO.b�
��U��gh�*�um5��,Y
&
�����,&�%��1���S��8 ��=
5#�:

6. CONCLUSIONS�q�x���%-\�x1��� ���
��%E)�H1�����
���
5#�1?�x���[�$
��	����������!����fE)�����)�%E@�'
xc	dFe"e
#��%�'�W�� fE�,$I&�������T�� � ��'I&,W
����	��
��]�_��1� �������
����C-"�'���8����,H�	�"�)1?��G
���*�+
�,@�����T�	�"�)1���
��*�%:2�K���B��`$G�aNO.b ��,���,��*�)�������	��
��%E4���FE
SF��,��%EB�"�BI&�F�'
W������ 8E����	�P ���7\�>���FEtIK����
%:W����
��*�����*
���-+�=
5#t�8,H1�����G
-+�8E��%E)
���������!"�]����������
����"�[Z+
��*�+
&����E�,�1?�*�	�_�[:{��
K��,&E��	,���!"���	E�
��
1����'-+�8E����/!"���)�) ���7\���	�+-��=�������)�	��
����FEQ
��B�*���	��
����"1�1?����
������=G

����	,H�����H�_���� fE+���	�/
��)S?������-"�" �-\�%Et���/
����. 8�	����������!]1������	�	,�,	Z[���FE

��P�� � ��%I�
����	�r
��tIK����7Q
�������!",C�"��
������@
����	�),��	 �-\�	,	:t��
C��,	Zu���
�	������,��"Z��8��
��	��E��%E�
��US?�.�	��mY�%#+��S� ������FE]
��@���	 8��
��.
��@
����W
�����!"�_

��!���!����"��1X:

O$���u,�����-\�*#C����
��%�������*��,u,���!"!"�*,Y
�,V,Y
�������!" =#C
��F�'
y
����*���x��,{�$������G
7\�*
H�D���.
�����,$
5#�1?�C����1����+E����*
%ZX����EB
����>���	,��� =
�,W���V
��	,Y
�,W���V
����
1��� ���
@-\�*��,����"�p�'���R-\�_��#q�	���	�"������!"����!�:q������ 8E����	�p����E<
��%�������_��,
IK�_���@�	��
��+��,��8��,Y
����>��S?����
$
����CE��	,���!"�T���FEB�	�"��
��	��
H���{
�����,����f
�G
Ix�'���":

�K������!��]�����{���%��,��	�������R����,�S?�*�	�)���%�%-+�� =#)�����)�%E)�'
�
����H¶{����
���,��
������7"�*
I���S?�	 ����	-\��
�����
(
����V ��	,�,�����,yIK�V�F�%-\�V 8�	�������	E>�'���x��1�1� ��=G
�%��S� ��H
��>�C�>�����UI&�8E��*�x���'��7\�*
%:X�q�$���%I^����1?�H
��>E��	-"�	 ��"1)
����
��`$G�aNO.bi�D����
����*�%Zu�*�+
��	��E�����!/S?��
��q
�����S����	�"E�
��nµD
����)
�����!"�_

��!���!����"��1?·K���FER
����.E��	1�
��X:

7. REFERENCES�=e_�C¶K¶x���':�����,��8E��H#��"���&�	�"�)1���
��*�%:��	�	�����	����� �"!���#"$&%
'"(#��")+*&,"!+-&%")/.&�10�,12 ' %43&#�5/*&,63 '/(,")	7/��,18�%9,+-�:	, (�'<; �=:10�*>3?5�:

� k%�C¶K���K��A@�:�aH�	-+���*I.½{Ã.�*#�¶V#+
��	,K�����N�n���FE��%I&,	Z[e%���"��:
�	�	�B��� ' �+*�)��C!/.	D���#/$�%9,1-9E9!/.13?)/*�,"!+-&%�� (9F .&!43G:/% ;1H	H	I %
;1J	K"H �L09*13?5�:

� �'�C¶K���K�� @ :�aH�	-+���*I.½V��	�������)¼$���	,Y
H���"�)1���
��*�Hv+1?�	�	�8�� ?L
`W��,�7Pe�Zhv+�	��»�¼$���	,Y
%Zhe%���"��:<�	�	�B��� ' �+*�)��C!/.	D���#/$�%
,1-9E�!/.>3?)/*&,"!1-&%9� (�F .�!43G:/% ;>H	H	I % ;>M9K"H �L09*13G5�:

� ���C¶K���K�� @ :�aH�	-+���*I.½V��	�������)¼$���	,Y
H���"�)1���
��*�Hv+1?�	�	�8�� ?L
`W��,�7tk�Z?¶���!�¼$���*,Y
%Z[e	�"����:?�	�"�B��� ' �1*�)�� !/."D���#"$�%
,1-9E�!/.>3?)/*&,"!1-&%9� (�F .�!43G:/% ;>H	H	I % ;>M	N	O �L09*13G5�:

� �%�C¶K���K��A@�:Fv�����-"�*#����u�������������'
��8���B����ER�	���)�@�������%��
�������,

��	�_������ 8��!�#R���/,��_�����" �,�e%�"����Z?k�j"j�j�:?�"�	�B��� ' �+*�)�� !+.	D���#"$&%
- ' ��:"%>$ '"P ,	�1* (!9�	:/% O<;>O	O :1#9.	2 '/P ��09*+3?5+:

� ¶{����
���,��P¶V���"�"E��%��,Y
�����!R������1?������
������
@*¶{����
���,�� �{E����%��
������F�� ����"�)�>�����8�	��
����"��,r����EÇ��	�������" ��"!�#
�H!��	���_#

� �'�.`@:����F���FE� 8�_�%:RQF«�¨+¬�²TS(±�ª�¡�¬h±_¡�¤�ª�¬F§�£�¥�±�UP¢�©*¡Y«"V�©�«�¯XWF¨+£�±_¡�:
O$1?�	�RÂ$����-\�_��,���
�#R�u���	,�,	ZXe%������:

� c%�.����-]�u��!� f���FE��*�%:K°X¥�± ´ ¡�©�¥�¢D£�±�©*£�¨�¡�±)« YU®{«�¯XWF¨+£�±_¡
Z ª�¡�§/[Vª�¡�±@ª�¬F§]\�³�¤�£�±_¯@¤^\F« Y_£_[Vª�¡�±_:?�"�����t�n�� ��*#tÞ¹v�����,	Z
Æ �_Ia`V����7?Z�k�j�j"j+:[v��	�*�"�FE]�%E��=
����"�[:

� �'����: } �" =
%: Z «+[J®¥+¢��§�¡�±_¬bS(±�ª�¡�¬�:?�(�*��!"�����B¶����"7+,	ZXe%�"�+e":
k���ER�%E��=
��8���X:

� �'� } ��!"�/O$,�S?��������:F�K�����{��,Y
������"�����"�)1���
��*�%½{��	����������!
����
����+E����_
�����#]����E��*��!����"E�����
��.�	���)1���
��*�&���������=
��	�_
������":��5�
c ¡�«%©�±�±�§�¢D¬+²�¤>« YW£�¥�±ed"d"¡�§ ´ ®�U °h±�©�¥+¬�¢�©�ª"f\�³�¯XW�«�¤�¢D¨+¯�«�¬
®{«�¯�WF¨+£�±_¡g\F©*¢�±_¬?©�±H¦N§�¨�©�ª�£�¢�«�¬ihL\&j+k$®l\+¦nm&o	o1m>p%Zhk�j�j\k�:

�=e	j����5���D��������
���-\���H����1������	,$������1[:F�V�^�5��,��8!���
H`$�	�)��:
�	�	���L$<, (: (!43?)9,>-B�=�"!43<% (!+�	-�%+q��"%+q<�",1-�:	,/D"0	*"q ; ��09*>3G5�:

�=e�e*� ; :�~X�*�":V®¥�¢��§�¡�±_¬sr ¤tS(±�ª�¡�¬�¢D¬�²�¢D¬u\F©�¥�«%«" :hO$1?�*�
Â$����-\�*��,��=
5#�Zhe%���"j+:

�=e%k'�>vh:��y��1?�_��
%:sUP¢�¬?§�¤�£�«�¡�¯@¤6v>®¥+¢��§�¡�±_¬<w&®{«�¯�WF¨+£�±_¡_¤Cª�¬?§
c «/[�±_¡Y_¨�Gj*§�±�ª�¤�: } ����-\�	,Y
��_�N�^���%�'
�,����%�'�5Ze	�"�+e":

�=e	����1+mYSB�N,�,����	�8��
��	,	:[bt�� =
��8�)�	E��8�>���/�%E����%�'
����"�X½V�K���

�������,��=
��8���/��������1�����������#],��������" h
��U,��	�*�"�FE�����#R,��_�����" hL
�u�����"1?�	���B�{���� ��8���)�	��
$v��&ON�¸e	�"�\c�Zhk�j"j�e�:
�	�	����q&x+�B� �"!���#"$&%43	3 '"(#�����09*>3[:

�=e*����`.�%-+�8E/v�����!" ��*
��"�[: ´ ²�±Xyª\©*£�«�¡C¢�¬u\h±�©�«�¬?§TSª�¬+²�¨�ª%²�±
´ ©�¿*¨+¢D¤�¢D£�¢�«�¬sv ´ ®y¡�¢D£�¢�©�ª"<S«%«1zRª�£�£�¥�±)®y¡_¢D£�¢�©�ª� c ±_¡_¢�«%§
Z ³{W�«�£�¥�±_¤�¢�¤�:hbt�� =
��� 8����!"�F�� yb/�'
�
��*��,	Ze	�"�"�+:

�=e%�'�C�(:?v+��1�1?�	,	:��K���.��,��*,N���y�	���)1���
��_��,x�8�t�%E����%��
����"�[:
\?©*¢�±_¬�£�¢ |V© ´ ¯�±_¡�¢�©�ª�¬�Zhk+e%�+ZXe%�"����:

�=e	���C�K���C�����)1���
��*�Hbt��,��	���/:��VE����%�'
��8���F�� (���_
��8-+�=
����	,
1F���_7"�*
%:��"�	�B�}*&�{3~� !/.	D9%+09*13?5"%/. ' :"!1#9.&� ' :/% '"(�F q�)9�>$ ' *�%
' q�,>-9*	.�!��L09*13?5�:

�=e%c'��aN�"�R�^���=
��"Z��K�8�)��
���#R`$�'I&��,	ZF���FEtv+
��	1����	�t�$E����),	:
Z «/[�®{«�¯�WF¨+£�±_¡_¤u�t«�¡=z�:?¼$���.�{��S� ���,�������!�Ze	�"�"�+:

�=e	���>�H:<`V�	���	»	7\�	 �Z+��:�`V�����	��7?Z����FE/bQ:F�(�%�'��,��"�[:?��%���_������!
�	���)1���
��_�N���������=
��	�*
������WI&��
��t�@�	���)1���
��_��G5���8E��%E] 8�	����������!
�	�+-+�=���"���)�*�+
%½uv+
���
��_G�����G�
����_G5�'��
&,����@�� 8�'
�����,	:��5�
c ¡�«%©�±�±�§�¢D¬+²�¤>« Y�j�¬�£�±_¡�¬?ª�£�¢�«�¬?ª��®{«�¬>Y	±_¡�±_¬?©�±@«�¬�\�¢D¯@¨��ª�£�¢�«�¬
ª�¬F§�UP¨� £�¢D¯)±�§�¢�ªU¢D¬R¦K¬+²�¢D¬?±�±_¡�¢D¬�²U¦N§�¨�©�ª�£�¢�«�¬�h_j�®l\�¦V¦lp%:
v����*�8�_
5#]�D���$�����)1���
��_�Hv����@�� f�'
����"�/�y���	,�,	Z?k�j"j+e":

�=e	���.�n�� � ��f����`������	��7R���FE } ��!��BO$,�S?�������":��6�*���%INEt���{~X�=
�
� ��
b/���B���"�)1���
��*��,	½ ; ��,����� [�	�"�)1���
��*�&,����@�� 8��
����&
��%���_������!

����" �,	:��5� c ¡�«%©�±�±�§�¢D¬�²�¤@«CY^m�o	o	���]¢D¬�£�±_¡A\�¢D¯>¨��ª�£�¢�«�¬
®{«�¬4Y%±_¡�±_¬F©_±_Z Æ �*I�`V����7?Z�k�j�j�e":?�H�xbQ:

Update Plans: Pointers in Teaching Computer Architecture

Hugh Osborne and Jiřı́ Mencák
School of Computing & Mathematics

University of Huddersfield
Huddersfield HD1 3DH, U.K.� h.r.osborne,j.mencak � @hud.ac.uk

ABSTRACT�������
	���������������	������������	����������� �	��!#"$�%���%���%��&(')���+*-,.�%/�0-�21�������. $	��!3"$�%���%���%�4���%�!���5	��6 .���7�8	��9�;:5��������<��=/��%���=��0>*��������	+��	�������1?��=0��!���!���@.���.A6�B������	��!��9���.0C���B�!+�2	������.�9���C�B������	��!��%D	�*
 ��9�����B�%0����.A6�!���������EF�!=�21G�H	� I0��!�
	��%J$��K
��/�/��91L����M�����7�2��;�N	���2�.�2	�*.�!;&
OP*����>�I�2�B�!�0��%�������@B�!�RQSTFU�VXW�Y9Z�U�[�\+D3�^]X .�.��EF�������/�_`�B������	��!���B�!�%�8,I�;��	�������/��2�.A� .��A���D����I0a�8	��b�����./����;�2	������#	��7	��;���+*.����Ac�����ad�� �	��!Ne=��+*.�8	��%��	� ���%�%&f�����������H	��%��	a .���C��1=g3�h0.�2	��C�G/����.�N���N��� ��.��/��!���%��	i	��5	�+��0$��	������I��/
����	+�2	������.�j�;�2�6A2��;�2	�/8kl�%��*I�����%�)�H	� �d0$�%��	��%JI�2@.��/��8	mk>	��a���.��/8k>��K
��/�/��=/��;�2����;0����n�������� �	��!=e5���*��8	��%�!d	� $����%�� $����%�6	��>��	�*.��6�B�����
	���a�2�.�./����;��	������.�%D)�2�I0o	�*����c���c��/������/�/� .�H	�+��	��;0p&

1. INTRODUCTION�������
	�����6��������.�I��	��a	����%�����. �	���7���%���%�.�!�����oA��%���!+��/qDG�2�I0o	���������. $	��!be=��+*.�8	��%�!	� $��%�G���N�I�2�	����% �/��2;&b"
	� .0��%��	���:5��/�/I@B�9�%����d1L�����	��;04:5�8	�*l�B������	��!��r�%E��%�l�2	����l���
	���
0$.�!	��2�k7/��%EF�%/.st��/8	�*.�� .A�*�B��������@./8k7�����./����%�8	�/8kIuB���l0������% ����������.���21$��& A�&�v ���I0$����!�!	�w
��0�0$��%��������A���
0$�%�%D��2�I06��AF�2���#�2	b�<������5��0�E������%�;06/��%E��%/
xy��& A�&.v EF�%�!	��2��;0$w����	��!�� ���	��%&3"
	� .0��%��	��5��1L	��%�n�!z$�B�!����%�.�!�60$�8{��% ./8	Xk�������%�%��A��.���Hd����A<	�*.�b�������P�%���.�%�!��	���:5*.�!�6	�*.��kl�%�.�%�� .��	��!j	�*��%�6���6��	�*.��)�2�d�%���G��1i�������. �	���)"$�%���%���%��|r��& A�&����a0.�2	+�=�H	�� .�!	� $��%�)���.0c���a�%���ad����/���5�%�����H	�� .�!	������C	��N�.�����b}m .�H	9	X:P��&)')���+*�,.�%/�0��21��%�����. �	������!���!�.�%�4���!�%����	��N*.�;EF�3�8	��9�;:5�C�.��	+��	������.�5�2�I0#�%���
EF�!�
	������.��1?��0$�%���!���@.����A��B������	��!=�H	�� .�!	� $��%�Px~��& A�&.�3�!A����H	��!<Oi+�����H1��!<�r�2��dA� I�2A��������%�����. $	��!#�2��+*.�8	��%��	� ���%�%D9���$1�����#�2/<0$����A�+�2���a:5*.�%�0$�%���!���@.����Aa0.��	+�6�H	�� ��!	� ���%�%D$�����% I0$��d��%�
0��3:5��	�*��!z$�./����%�8	9�B������	�d����9�����%��������/���9�%�����H	�� .�!	������i&G�(*.��/��<	�*������#�;k��2�A� .��@�/�kC*.��E��	�*��N��0�E�����	+��A��N�21��$��2E
��0�����A�����	+�2	������.�4�.�2�	����% ./����/�kn�� ��8	��;0n	���%���+*#���.��/����%�2	������pD��8	�0����%�)�����B�;0��5�7�!���������EF�!P�21h�H	� I0$�%��	��%JF .�$d0$�!��H	+���.0����.A7�21p�B������	��!P�2�.��/����;��	������.�P���I06���B�!+��	������.��1L������������ �@$}m�%�!	b	��6�2�.�2	�*.�!Gx��8	P���P�� ���	��5�%���������c1���P�H	� I0��!�
	��j	��l .�$d0$�!��H	+���.0n	�*��N�2@.�H	�+�2�!	7�.�2	���������1P�B�����
	�����4���f0��2	+�#�H	�� .�!	� $��%�@� �	=	���*.�;EF�c0��8{��% �/�	Xk����n�����./��%���%��	����.Aa	�*��%�M�����#*.��A�*$d�/��!EF�%//��2�.A� .��A���D�/��!	c�2/����.�N��!/L��	����.A>�� ���*o���������./��%���%��	+��	�������	��>��0$d0
��%�����%�=���.0C���.0��8��%�!	����������>/��;:�/��%E��%/h�%�
0���&j��*I�2	5���9���%�;0��%0C����-]m .����EF�!�����/�_��B�����
	���l�.��	+��	������f	�*.�2	l�;�2�f�� .���./��%���%��	;Dp�819�.�2	��!�./����%��Dj	�*.�a�$���1� �����������15�!���
EF�%��	��������7�% ����%��	�/8ko���o .����Dj���I0:5*�����*��%����*I�2�������!�G	�*���]m/��;:9d�/��!EF�%/�_6�.�2	� $��9��1h�����H)�B������	��!)����d��+�2	��������C:5*���/����H	���/�/4�2/�/��;:5���.A`�f*���A�*�/��%E��%/3�21l��@��H	�+���!	������(���	�*��%�830��%���!����$	������i&
OP*����>�I�2�B�!�0��%�������@B�!�RQSTFU�VXW�Y9Z�U�[�\+D3�^]X .�.��EF�������/�_`�B������	��!���B�!�%�8,I�;��	�������/����.A� I�2A���D
�8	��b���.��/����%�2	������a	��<	��%���+*.���.Ac�������. �	���e5���*��8	��%�!	� ���!�%D9���.0��8	��a2���/��>���`1q�2�%��/���	+��	����.A��!��������2E��!#��1<�H	� �d0$�%��	��%JG��K
��/�/��%&-OP*.��g<�h0.��	����G/����`1�����#�2/������y�;����@B�> ����;0`	��

���B�%�%�81Lk��n:5��0���+����A����217�B������	��!#�2�.��/����;��	������.�%&(e3@.�H	�+�2�!	���������%�+*I�2�.�������):5�8	�*�����	�*��3/�����A� .��A��<��/�/��;:(�*.�3���.�$����$��L��	��3/��%E��%/��1h���$1�����#��	������a*��L0$���.A�D�@. $	G���N�%�����H	�+���H	G	��4����1?����#��/��.�2	+�2	��������	�*.�<*.��0.0$�%�����$1�����#��	������>�%���>@B�31� ./�/8k#��%�%��EF�!��%0C1?�����	�*.�<g<��d0.��	��l�)/��2�����B�%�%�8,I�%�2	������p&
OP*.�C��%�#�����.0��!N��1=	�*.���a�I�2�B�!a���a�2�AF�2�.�����;0��2�N1���/�/��;:5�%&�"$�%��d	������f�#�!����	+�����.�4�C@$�����1�����	���
0� ��!	�������	���g3�h0.��	��N�G/����.�%&cOP*�����I�2�B�!n���%Dc*.�;:P�%E��!;Dc�.��	n����	��%�.0��;0R�����-	� $	��������/c����g<�h0��2	���G/L�2�.�%D����.07	�*��)��%��0���j���r��!1������;0l	��cv ��D��$D���w�1?��G���2��b����1?����#��d	������p&P"
�%�!	��������=�a���.0��a�%���.�%�!�
	�+��	��7���C	�*.�4���%�+*I�2�.���%�9�21Gg<��d0.��	��#�)/��2��0��%��������$	������.�l����0$�%���!���@.����A����.0�	��;�2��*�����A��%���.�!��!	�����.0(��@��H	�+���!	��#�2��*����.�n�2��+*.�8	��%��	� ���%�%&�"$�%��	�����������/�/� .�H	�+��	��%�*.�;:�	�*������2���C1?����#�2/��������%���`@B�> ����;0�	��o0$�%���!���@B�>�B�����
	��������C��@.�H	�+�2�!	90��2	+�4	mk$�B�%�G	�*
 .�)�%�.�!�� �+�2A����.Ac�H	� I0$�%��	��)	��l��0��!�
	��81Lk	�*.�=��%/��2	���������*.���>@B��	m:P�!�%��*���A�*C/��!EF�%/p���.0C/��;:�/��%EF�%/B���B�!+�2	�����������
EF��/�E
���.An�B������	��!��%&�OP*��%����	�*$��%�C���%�!	����������2��>��AF�2���-����	a���$d	��%�.0��;0#���P	� $	��������/��9���#	�*.�<�.�2�	����% �/L��9�B������	��!9���B�!+�2	������.�%D�@. �	���=��/�/� ��H	�+�2	��������3�21j	�*.�70$��0.����	����c�2�.�./����;��	���������1Gg3�h0.��	��7�)/��2�.�%&OP*.�4��������1i	�*.���9�I�2�B�!5���P	��N��*.�;:�	�*I��	9g<�h0��2	��<�)/�����0��%���!����$d	��������G�2��9��	G/��%���H	;DF�81B����	j���2����� ���	+�2@./���	�*.���6	�+��0��8	������.��/
���!	�*�d�
0��)�2���3	�����/�1?��G	��;���+*.����A4�B������	��!��%&G�. $�	�*.�!����2���	�*.��k6�%���a@B� .���%0N���#�3:5��0��9+����A��5��1p����;���):5*.��/��=�!���.*I�2����������Al�7�������� �	��!e=��+*.�8	��%��	� ���7�B�!����B�%��	���E���&5OP*.�l��EF�!+�2/�/j��������F�2��*�	��a	��%���+*.���.A�B������	��!��c�.�%�%0f�.�2	6�+*I�2�.A���x�����*.����A�����19	�����/qD)+��	�*.�!l	�*.����N�+*I�2�.A��l�21G���!	�*.�
0#���3@B�%����Aa������B�����;0�*��!���&�"$�%��	������n�N�� .�ad�#�2������%�7	�*��� .������15g3�h0.��	����)/��2�.�6���c�����%0� .�%�2	������.��/b	�����/�����#����kl,I�!/L0$�G��1i�������� �	��!b"
�%���%�.�!��D
���.0N0$�����! .�����%�b�B��������@./��91� $�d	�*.��=0��%EF�!/����.���%��	��%&

2. UPDATE PLANSOP*.�bg<�h0��2	��P�G/�������1�����#�2/�������:9���j�2���A����I�2/�/8k6���
	���
0$.�%�%0Cv �2w��2��7� 	+���A��!)/�����A� I�2A���J����6	�*.�)1?+�2���!:P�2�Kc�21I	�*.�P0��%����A��6��1h�5	�+�����Hd/��2	��2lA��%���!+�2	��2;&l�X	4*.���4�������%�N@B�%�!����z$	��!�I0��%0�1?��4	�*��6A��%�.��+��/0��!���!�����	���������1<�#���+*.���.�%�N���.0��2/�A�����8	�*����%D9���.0-�2����	�����/91��2�%�����./��!	������C��1p1��2��#��/B������21��9�21������A�+�2�������./��%���%��	+��	������.�3v �$D��wt&N�X	7*.���7�2/����>@B�%�%�� .���;0o���l�C0���0.�2�!	����N	�����/b�2	lE��2����� ��4 .���8dEF�!����8	����%�%&
OP*.�3@I�2�����<�%�����%�%��	� .�.0��!�/8k$���.A7	�*.�3g<�h0.��	��<�G/����#1��2��#��/����������	�*I��	<�21b������S$TFU�VXW3�21����#�2��*������7�%���$,IA� �+�2	������iDh�;�2��*��B��������@�/�� .�h0��2	��4@B�!����Aa���B�%�%�8,.�;0>@�k����o��S$TFU2VXWc ��$Z�W�&
e3�7 ��h0.��	��)��/����l���j�9���!	��21p��S$TFU2VXW9\�¡+¢.W�£�W�\+D��;�2��*l��1$:5*.���+*l�#�;k�%���
	+�2���� .�.���B�!�%�8,I�;0>E���/� ��%�%&5e� ��h0.�2	��7���+*.�!���7�%����	+����������A#�.� .�����B�%�%�8,I�%0�E���/� .�%�5���5�;��/�/��;0��2�o��S$TFU�VXWc +�$Z�W�&)g<�h0.��	��4���+*.�%���%�k$���%/�0� ��h0.�2	��C� ./��%��@�k����.�H	+�2��	��L��	������i&�e¤���+*.�!�����%���.�����H	��#��1�n/���1?	�d�*I�2�I0�����0����2�I0��n���A�*
	�d�*.���I0�����0$��D�@B�2	�*-@B�!����Ao����	��a��1

Z�¥;¡�U�V�¥2 aW�¦�S. �W�\�\�§t¥�[.\�&
e`/����;�2	��2G�!z$����%���������N���j�9	������/���D�:9��8	�	��%�c¨Pv ©�w�ª)D�:5*��!���¨>���.0lª����5��0�0$��%�����%�G�23Z�¥;¡�U�V�¥2 �\r���6�����9��1h�<����	G��1B�H	��2��%�b���N���N ��I0$�!�d/8k$���.A#�#���+*.�����c���
0$�%/q&4')���+*n�H	�����c���7��/������;�2<�%�� ��
	+�2@./8k�����,�d���8	��9���;�� .�%���%�9��1B���!�����kl�%�%/�/��=sq��& A�&F@�k
	��%�G��)�#�2��*�������:P�2+0��+u�&OP*��c��@B��EF�7/����;�2	��24�!z$�$��%�����������!z$����!�����%�=	�*��41q�2�!	3	�*.�2	=¨`«-ª�2�I0a	�*I��	�	�*��3�%�!/�/��9@B�!	X:P�%�!�#	�*��<��0.0
��%�����%�P¨f���I0aªn�%����	+�����ost��.�2�	����% �/L��N��%�$��%���%��	+�2	���������1+u7	�*.�#E��2/� .����15©$&nOP*.�#����	+�2	�������21P�#/����;�2	��2l�!z$����%���������o���4�+*.�����%�n�� .�+*n	�*.�2	<��	</�����K
�7/���K��c	�*�������!	� ��� ¬ ® &
e=�� .�h0��2	��#���+*.�%�����H	+��	��%�6	�*.�2	c�813�8	6���N�2�.�./����;�2@./��osq�q& ��&j�813��/�//����;��	�����!z$����%���������.�������8	���/��!1?	�d�*.���I0�����0�����������2	����H,I�%0Iu�DP	�*�����!�����k��#�%k�@B�3���������#��/�/8k# .�h0.��	��;0��� .�+*C	�*.�2	9	�*��!��;�21L	��!=��/�//����;��	���l�!z$�$��%���������.�3�����8	��=���A�*�	�dX*.���.0>����0��6�2��N����	����H,I�;0h&4OP*��/��!1L	7�2�I0>���A�*�	�d�*I�2�I0>����0��c��1b�2�� .�h0.��	��7����*��%���c�2��l���%�.�2+�2	��%0@�k6���a�2���;:�s�¯p°�u�:5*�����*a����	������.��/�/8kN�%�2�����%�P�4±��.U2 �T7s�¯Gv�²#w °�u:5*�����*����=������0.0$�8	������I�2/������./����;��@���/��8	Xk>�%���I0$��	������i&
����b�����H	+�����%��D�	�*��P	m:���d�����*��%���9 .�h0��2	��P��/����a��������A� $��7³5������/��!d���!�
	��c'G .�%/���0pJ �N��/�A��2���	�*��´1?��N�%������ �	����.A>	�*��#A���;��	��%�H	a�%���ad������0$��E$�����2#��1<	�*����
 .�6@B�!N������	����2/�/8k-@B�!	m:��%�%��µ����.0`¶����I0	�*.�2	�������	����2/�/8k�@B�!	X:P�%�%�`¶`�2�I0`·�&¸�P�����8	+��/������;0-:P�2+0��#0$�%�.�2	���!���.�H	+�2��	��%|nµ.Db¶����I0-·��2��>,�z$�;0-/����;��	���������I0�¹����.0-º����� ��.���B�%�!��,.�;0�E��2/� .�%�%&3�m��1q�2�!	;Dh�81P��	7�2�
k��H	+��A��6��1)	�*.�l�%�����. �	+��d	������`	�*��#�#���+*.���.���%����,.A� �+��	������`�%����	+�2�����Nµ)»�¼�½�¶f���I0f¶)»X¾�½�·�Dsq���./8k.u5	�*��c���!�%���.0n ��h0.��	��c���+*.�!���c�%����@B�c�����H	+����	����2	��;0�	��C����2�.��/����;�2@./��� .�h0��2	��C� ./���DP:5*��!��% .�B����	�*���¼o������%��/L�2�%�;0�@
k��¿ &7e3�n ��.���B�%�%�8,.�;0�E��2/� .�c����	�*.�c/��!1?	7*.���.0n����0$�6�21P�2�� ��h0.��	�����+*.�!���<�;�2��@B�3�%�������L0$�!��;0��6E��2�����@�/��=:5*.���+*>��@$	+�����.����	��9E���/� ��@�kC���;�2�.�9��1G�����H	+����	����2	������p&
"
�����./��4�.�2	+�2	������.��/p�%���
EF�!�
	������.�5���+K
�.�;:5/��;0�A��4	�*.�4��z����H	��%���%�4�21��SI H¥�±� �U�£6£#W�¡�¥��
[.VXW� n��	���sq*.��0�0��%�Iu7,�z��%0f/����;�2	��2nsq@
ko�%����dE��%��	�������À�·�u�D��2�I0���/�/��;:¸	�*��N���������������o��1������!/��!E��2�
	c��0.0
��%�����%��2�I0f	�*��C�!���N@����I�2	���������13��0�}����!�%��	N/����;��	�����!z$�$��%���������.�%&oOP*�� ��h0.��	�������*��%���%�l����,IA� $��C��1��2N�!z��2���./���D�:5*����+*����B�%�!��1Lkf	�*��S.�$\H¢7���.0�UFTFT5���.�H	�� .��	������.�)�����������=Á!�!��l��0�0$��%���)�#���+*.���.�5������z.�2���./��%�4�21P�2�.��/����;��	������.�7�21�	�*��%���N�%���
EF�%��	������.�%&7OP*.�N/����;��	���Â À#���5	�*.�<�H	+���+K��B������	��!;&
OP*����!z$����%������EF�6�B�;:P�!c��1Pg<�h0.��	��a�G/����.�l���7A���%�2	�/8kf�����!��;�����%0@�k#	�*.�7 ����7��1G�a�#�2�!���d�/���KF�4���%�+*I�2�.������K
�.�;:5���2�cU� �¡+¢.W�VqÃ+S�W�\�&g3�����.A#	�*.�6�2��+*.�!	Xk��B�l���%�+*I�2�.�����¤�%������/����;��	��;0��B������	��!4�H	�� ��!d	� $��%�%Dj1q�2����/����%�6��1=�� .�+*��H	�� .��	� ���%�%DG�2�I0��%E��%������,.�.�8	��#�%/��������%��213�2�@.�8	�+�����/8k�/����A��C�H	�� .�!	� $��%�l�#�;ko@B����%�./��2�%�;0�@�k���������A�/�������*��!	mk$�B�4�%��/�/qD�	�*
 .���#��K
���.Ac��	5�B��������@./��7	��N�!z$����!���9�#����k� .�$d0��2	��7���+*.�%���!�5���5������&
e5���*��!	mk$�B�%�6�2������.���.�8��;0�@�k��#�2�!������%�+*I�2�.�������%&�OP*��%�8a�.�2d+�2���!	��!p��%����/� $	������l�Hk��H	��!�R���i�. ���!/�k>]m�#�2�!���_9���4ÄB�;EF�� �;D;	�*��� .A�*	�*��%�8G�!z$�I�2�.�������c�#�%k7@B���%����	��!z
	G0$���EF�%�pD2�t& ��&�0$�%�B�%�I0$�%��	����c	�*���!����,.A� $+�2	�����������:5*�����*>	�*��4�#������a���=��z��.���.0��;0h&
e=���2��+*.�!	Xk��B��0���,I�.�8	�������0$�!,I���%�a��/��!1?	����I0����A�*�	�*.���.0����L0$����>	�*��l�2��+*.�!	Xk$�B�#Å+¥;T2Ã�&b�(*.�%�>���������*��!	mk$�B�7�;�2/�/r���3��z��.���.0��;0	�*��4/��!1?	3�2�I0C���A�*
	5*.���.0�����0��%�9�21j�8	��5@B�
0$k��2��4�����%/� I0��%0�����	�*��/��!1L	7�2�I0>���A�*�	3*I���.0>����0��%�=��%���B�%�!	���EF�!/�k>��1G	�*.�l ��h0.�2	��l���+*.�%������n:5*.���+*�	�*��N�;�2/�/)�2�.�B�;����%&NOP*��!��N���l�#�I��+�����!	��!<��%����/� �	���������!��*.���.������	����%���� ���n�%���.�����H	��%��	���!�./����%�!���%��	��21c�2��+*.�!	Xk$�B��.�2+�2���!	��!��%&

e3�N�!z������./��9�21r�2�#�2��+*.�!	Xk$�B�50��!,.�.�8	������iD����I06��1i�4�B��������@./��3���$d�./����;��	������o���4A���EF�%�n���o����A� ���6�$&7OP*��N�����*��!	mk$�B�60��!,.�.�8	������`sH³�u0���,I�.�!�r�PÆ$Ç2Æ3:5����*l�B�����i	�*��)E���/� ��b¹51?����R	�*��b�H	+�2��K6st��0.0
��%�����;0	�*���� .A�*�	�*��N�H	+���+K��B������	��! Â À$u�&c�m�`s���u3	�*����4�2��+*.�!	Xk��B�c���l���$d�./����;0����n���n .�h0��2	��l���+*.�%���c0���,I�.����A#���nµ�ÈFÈ����.�H	�� .��	�������	�*I�2	:5��/�/��B���f��E���/� .�61?����É	�*��a�H	+���+K����.0f��0�0o�8	7	��>	�*��aE��2/� .�a���	�*.�a���%�% ��N �/L��	���#sqµ�·�·�u�&������.��/�/8k-st��u<��*.�;:5�7	�*.�a���2���a .�h0��2	�����+*.�%����Dh@� �	=:5�8	�*�	�*��cÆ$Ç�Æ��2��+*.��	mk$�B�c��!�./����%�%0�@�k��8	��4�!z$�.����d�������p&jÊ<�2	��b	�*I��	�	�*.�b����1��2��#�2	������c*.��0�0��%�c@�k4	�*.�GÆ$Ç2Æl�����*��!	mk$�B�*I�2�5�.�;:R@B�%�%�����<�!z$�./����%�8	;&
�r���A��!��!z�������/��!�b�21ig3�h0.��	��3�G/����#���B�%�%�8,.�;�2	����������;�2�#@B�51?�� ��I0���iD���& A�&�D�v ��DB�$DI��wt&

3. CONCRETE ARCHITECTURES����������0��!+��	������6�21$�B������	��!��i���i .�I�;EF����0.��@�/��G:5*��%�4	��;�2��*�����A=�����ad�. $	��!�e5���*��8	��%�!	� ���!�%&�'GEF�%��	�*.���������./��%�H	���0.0
��%�������.A����
0��xË0��8��%�!	c��0.0
��%�������.ACxÌ���
EF��/�EF�!�7���B������	��!;&6OP*���¥FÅ�Í�W�¡!Vj��%�$d��%���%��	��;0(@�k���0$�8��%�!	���0.0
��%�����;0(���B�!+�2�I0����>	�*��-U�TFT� �W�\�\C��	:5*.���+*f	�*.��Î2U�Z �IW4�219	�*I�2	l���B�!+���.0f�;�2��@B�a1��� .�I0h&��.��c�!z����ad�./���D5���(����Ï´�������!�N@./��!#Ð$Ñ�ÒFÓÕÔ�Ö ¿�×jØ�Ù ¾FÚ�Û`���%���.��]X�%����k�	�*.�E���/� .�C�2	N��0�0$��%��� Ù ¾FÚFÛ�	�����0�0$��%���CÔ�Ö ¿�× _�xÜÔ�Ö ¿�× ���.0 Ù ¾FÚFÛ�2����B������	��!���	��3	�*��P0.��	+�$&jÝ>����9�%�����./��!zl��0.0$��!��������A4���
0��!�ix��& A�&2��%A����H	�������I0$�8��%�!	�xy�;���6���
EF��/�EF�P�N �/8	�����/������I0$����!�!	������.�)�2�I0�%EF�!�o����0��N�!Þh�%�!	��<xË��& A�&p����%0��%�!��!���%��	l��0�0$��%�������.A����
0���&Ne�B���� ./��2l����	+��	������o1?��l�!z$�./��2�������.A�	�*��%���N���.0��8��%�!	��������l���.0�����0���!Þh�%��	��<���4�=�%A����H	��!lOp+���.�H1?�!l�i���.A� I�2A���&4e3���!z�������/��c���4A���EF�%���������A� $��c�>st��0.�2��	��;0#1?����´v8³�w�u�&��(*���/��4	�*����=�.�2	+�2	������>���9��;��d�����.��@�/�ko	�+�������I�2��!�
	;D)�2�I0����l��%/��2	���EF�%/8k��� ��%�%���.�!	c1��2��������.A�/�����B�!�
0��3���I0a���B�!+���.0a�%���6@.���I��	������iDF��	����
	����������A�/��%�G	�*.�5�!Þh�%��	����1=	�*.�C���B�!�
0����2�I0�	�*.����0�0$��%�������.A����
0��!�%Db��;�� ��������Ao�n���%�$d�2+��	��n0��%��������$	������-1?��#�;�2��*-�B��������@./������B�%�
0����2�I0-��0.0
��%�������.A���
0���D�/��;��0����.A6	��a�6�!���N@����I�2	��2�����/p�!z$�./�������������1G0$�!,I���8	������.�5�2�	�*.�<�$ ��N@B�!b��1������H	�� .�!	������.�5���.0>��0.0$��!��������AN���
0$�%�9���.�!��;�2���%�%&
OP*.�6g<�h0��2	��6�)/����n1��2��#��/������É���%�.�2+�2	��!�<	�*.�60��!,.�.�8	���������1)	�*.����B�!�
0��71?�����	�*.�l0���,I�.�8	��������5��1)��0�0$��%��������Aa���
0��%�%D��#��K
���.A6�8	�;�2�������	��4	��;�2��*N	�*��%���=���)���%�I��+�2	��=�%�����%�%�$	��%&G�.��b�!z�������/��9�I�2�	��1�	�*.��0$�!,I����	������o�215���o���B�!+�2�I0o���o���������2�����%�N@�/�kn/��2�.A� .��A������A�*�	9@B�l�2�=��*��;:5�>��������A� $��c�
&ßOP*����=0$�!,I���%�P	�*.�7�����*��!	mk$�B�Ç2Æ�à�á�âC:5�8	�*>	X:P���.�2+������	��!��%&9OP*��l,���H	=�I�2+�2���!	��!;DIã�ä$DI���5	�*.�W�å3W�¡!Vq§?Î�W�UFTFT2 �W�\�\<�21�	�*��N���B��+���I0hær	�*��N���%�%���I0hDrç����4	�*��NE���/� .���1j	�*��7���B�!+�2�I0h&P�p������sq��u90���,I�.�!�3�c��%A����H	��!3���I0��8��%��	4��0.0$��!���Hd���.Ao���
0���D):5�8	�*�à��2�a	�*.�C��%A����H	��!C��0��%��	��8,I���sq��& A�&Gè
¾�u�&�OP*.�/����;�2	��2��!z$����!���������(à)»Xã�ä2½��H	+�2	��!��	�*I��	#	�*.�n�!Þh�%�!	���EF����0.0$��!����;�2��@B��1?�� .�.0�����	�*.���c��!A����H	��!;D):5*.��/��C	�*��C/����;��	������z��$��%���������ã�äj»tçF½f0$�%���!���@B�%�l	�*.�����I0$�8��%�!	������`�.�!�;0��;0�	��>,I�.0o	�*.��E���/� .��ç�2	��!Þh�%�!	���EF�3��0�0$��%���Pã�ä$&)�i�����6s���u)�����E
��0��%�����C��/8	��!��.�2	���EF�<0��!1Ld���.�8	��������21G�������B�!+�2�I0hD$	�*����5	������3��������;0$�%�!��%���!�
	9��0.0
��%�������.A���
0���&Ge3A������>à6���P	�*��=��!A����H	��!=��0��%��	��8,I�!;&je3�%�%�!���P	��c	�*��<�!Þh�%��d	���EF�5��0�0$��%�������.0NE��2/� .�9���b��������/��2b	��4	�*.�9����!E$���� .�G�;������D
�!z$�%�%��		�*I��	�	�*��<E���/� .�=���#	�*��=��!A����H	��!5�N ��H	�@B�<0��%����;�����;0nsq����EF�;0a/��!1L	����������b	�*��5E��2/� ��5ç
uj	��7A���EF�9	�*.�9�!Þh�%��	���E��3��0.0
��%���%&)OP*.�5/����;�2	��2�!z$����!���������fà)»�ã�ä�½�	���	�*��6���A�*�	l�21�	�*.�6A� .�2+0-s�¯p°�u3�!z$����%�����!�	�*.�6 .�h0��2	��c��1�	�*��6�!����	��%��	��4��1)	�*.�c��%A����H	��!;&6OP*��%���N	m:���/����.�!�:P�� ./�0�@B���I���	N�21=��/����.A��!N�2��+*.�!	Xk��B�#0$�!,I���8	������`0��!,.�.���.A���/�/�B��������@�/��3��0�0$��%��������Ac���
0$�%�)���6	��!����b�21B	�*.�%�8b�!Þh�%�!	���EF�=��0.0$��!������.0�E���/� .��&
é �.�!�6	�*.�N��0�0$��%�������.A>���
0��%�4*.�;EF�N@B�%�!�f0$�!,I���;0�	�*.�!kn�;�2�f@B� .���%0<	��30$�!,I����	�*.�)�!Þh�%�!	i��1$���B�%�
0��%�%&j�.��i�!z�������/���D;	�*.�Gµ�ÈFÈ3���$d�%�
0$�7���30���,I�.�%0���������A� $��l�$&�OP*.���<0$�!,I���8	��������!z$�./����%�8	�/8k>��*��;:5�	�*.�)�!Þh�%��	j��1����.�H	�� .��	������6��z��!�% �	������l���c	�*��b�$���A�+�2�����b�!�� .��	��!

ê5ë?ìIírî�ïoðIñ4ò<í�óFô?ë�õbö�÷cø�ô?ì.ùIî2ë?ú;ûjü�ýXùIî6ú;ûrï�þCî�ï
ÿ.ú%ï$÷%ú��cùhü�üoù����>ë��ië�÷%ùIî	�jëLú;÷�
!ü�jô?ï�üoï��hú%ÿ.ú%ë?ù��`ë������)õrÿ�ú%ï��7ô?ÿ���÷���ÿ���õ�ÿ��

���÷%ú%ÿ��pú;ëLÿ.ú;ë?ù���ù.ý3ÿ������)õrÿ�ú%ï��ió�ûiï.ü�ï

� û�ë�ôLïos�� �¯�!�u �ëLýCs���"#!�u$!N¯%!'&(�ræï$ô�÷%ï)�C¯���&!hæ
�î�ï$ú%írî*���iæ

µIv ¹�w�¶C¶Iv º�w?·Ü¯jv2¹)"�º4w ° ¶Bv º+&f¹�w?·�,µIv ¹�w�¶C¶Iv º�w?·Ü¯jv2¹)-�º4w ° µIv ¹+&fº�w�¶�, µIv ¼�w�¶#¶Bv ¾�wL·Ü¯p° µ.v ¿ w�¶�,

ê5ë?ìBírî�ï.pñ7À�/ Â*0 ÿ��rõ�µ�ÈFÈ1
���÷%ú%î2í�ó�ú%ë?ù���÷2�3�Gï$óFë54jï$õ�ë��%�6�)õrÿ.ú%ï(�7ô?ÿ���÷À�/ Â*0 ¹ Â ÀBv 7�w ¯i° Â ÀIv Æ�wrÆBv ¹�w87�,µ�ÈFÈ Â ÀIv 7�wPv ¹�º�w87 ¯i° Â ÀIv Æ�wrÆBv ¹:9`º�w87�,
ê5ë?ìBíiî2ï;pñ<��ï	4=��ë?ú%ë?ù��>�)ø)�?�jô�ë?ó�ÿ.ú;ëLù��(ÿ���õ�òA@B�rÿ���÷;ë?ù���ùIý=ÿ�Æ$Ç�Æ�øCî2ó2ûrï
ú�C3�Gïs�D4�!,.�.�8	������Iu Æ$Ç�ÆBsq¹
u)¯ Â ÀBv E�wFE$v ¹�w8G ¯p° Â ÀBv G�wH, s�Ô;uste3���./����;�2	������Bu µ�È�È�Æ$Ç2ÆBsq¹
uPµ�·�·.v º�w ¯p° µF·F·.v ¹<9�º�wH, s�Ö�ust'jz��.�����������Bu µ�È�È Â ÀBv E�wFE$v ¹�w8G�µ�·�·.v º�w ¯p° Â ÀBv G�w�µ�·�·.v ¹<9�º�wH,ys ¿ u

ê5ë?ìBíiî2ï1Irñ<JLK�MN��ï	4=�rë?ú;ë?ù��r÷#ý�ùIî6KLC3�jë�ó�ÿ.ôPO�Q�RS
���÷%ú%î2í�ó�ú%ë?ù���÷Ð$Ñ�ÒFÓ ÈUT Ø ÈWV »tÈ�V�½WX¸»tÈUT�½Ð$Ñ�ÒFÓ À Ø ÈUT »tÈUT2½WX¸»tÐ=Y�À�Z;½Ð$Ñ�ÒFÓ ÈUT Ø\[»tÐ=Y [Z%½WX�»qÈUT2½Ó]_^ ÈUT Ø ÈWV »a`�ãcb$ÆF½WX�»qÈUT2½ Ø »tÈ�T2½WX¸»tÈ�V�½ Ø »qÈ�V�½WX¸»a`�ãcb
Æ�½Â*d µ�À ÈUT »tÈUTBYfe?g�Ô Ù Z;½	X�»tÈ�TBY!Ô;¾hg ¿ Ô�Z;½ Ø »tÈUTBY�Ô;¾hg ¿ ÔiZ;½WX¸»tÈUTBYfe?g�Ô Ù Z;½
j ÓFµ À Ø µ�T »�µ�T2½WX�À

ê5ë?ìBírî�ïkpñ'�CïW4h��ë?ú;ë?ù���ùIý=ÿ��mln�Gï
î2ÿ���õ�ë��%�6�)õrÿ.ú%ï(�7ô?ÿ���÷Ç2ÆFà�á�âIstã�äWo�ç�u~¯ ,p,p,¯ èFÓW^Wq [ÈCà�àIv ã�ä2wjãFä�v ç�wc¯p°r, s × u¯ ÀFèFÓFÈ�Ó
·�à�àIv sFw�ãFä�v ç�wts�¯p° àIv ã�ä2wH,�s Ù u&&&
ê=ëLìBírî�ï(Opñ'��ï	4=�rë?ú;ë?ù��-ùIý3ÿ�K � ùoø�õ�õiî2ï$÷;÷Nµ�ÈFÈ(
u��÷%ú!î�író�ú;ë?ù��À
·.v ÆUv;wrÆUv$v µ�È�È�Ç2ÆIstã�ä*wxo�¹
u5Ç2ÆBstãFä*yxo�º
uXw87�v�¯i°�À
·.v 7�v;wjã�ä*w2v ¹:9`º�wH,

ê5ë?ìIírî�ïzhñcø�ôLú%ï
îi�iÿ.ú;ë��Bï(�CïW4h��ë?ú;ë?ù���ùIý=ÿ K � ùoø�õrõrî�ï�÷;÷6µ�ÈFÈ(
u�r÷%ú%î2í�ó�ú;ë?ù��µ�ÈFÈ�Ç2ÆIstã�ä w o�¹
u5Ç2ÆBstã�ä y oHº
u~¯i° ã�ä w v ¹:9`º�wa,
s�À�·�u�&2OP*.�b�.��	+��	������I�2/
�%���
EF�%��	������������%��	��������;04���a"
�%�!	������6�5��/�����2/�/��;:ß�2����/8	��!��.�2	���EF�l1��2�� �2�<��*���:5�����>,.A� $��n{N���>:5*�����*�	�*���!���.*I�2�����=���5����	�*.�<1? .�.��	������I�2/��8	Xk>�21�	�*.�7���.�H	�� ��!	������p&
|)kn���%�I��+�2	����.AC	�*.�60��!,.�.�8	������.�<��1)	�*.�c���B�%�
0$�%�41?���� 	�*.�N0��!,�d���8	������.�4�21�	�*��N��0.0$��!��������A>���
0$�%�<����	7���./8k�*I�2�<	�*.�c���B�%�%�8,.�;�2d	���������1�	�*��7�����H	�� .�!	����������!	=@B�%�%�����7�N .�+*C������7�%�����I����	=���I0�#�2�I�2A��;�2@./���st�`�������./���	X:P����0�0$��%���>�#���+*.���.��:5�8	�*����./8k^³%����B�%�
0��!�<�2�I0>�6��0�0$��%�������.A����
0$�%�P:5*.���+*�:��� ./�0���%�
 ��8��N³�D }F���sH³%�>~3�>~3�Fur�)O9�C0��!,.�.�8	������.��1?��b�=1? ./�/$���B�%�%�8,I�;��	������a���./8kc�.�%�;0$�����sH³%�h9��FuG/������%�����C����g3�h0.�2	��=�G/����#���B�%�%�8,I�%�2	������Iub@. $	P�2/����c�8	@B�!�%�����%�7�6 .�+*��;�������!l	��#	��;���+*o	�*��%���6	X:P���%�����%�%��	��7���.0��%�B�%�$d0$�%��	�/8kN�2�I0N�����2�a���.�!��!���%��	+��/�1q�2��*.�����p&bÊ3��	���	�*.�2	G	�*.�9�2+0��!)�21�$��%���%��	+�2	������f��1b	�*.�%���6�%/��%���%��	��4�21�	�*.�6���.�H	�� .��	������f���!	<:P�� �/�0	Xk$�.���;��/�/8kl@B�G��%EF�!����;04:5*��%�l����%���%��	����.A5	�*.�!�R	��5�H	� I0$�%��	��%&jOP*�����B�%�
0��!���;�2�a@B�5����	���
0$.�%�;06 .�����.Al�<��;0$.�%�%0N���!	b��1p��0�0$��%��������A���
0$�%�Nsq��& A$&h����/�k�0��8��%�!	l��0.0
��%���+u3�2�4��*.�;:5����������A� $��a�
Dp���I0���./8k�:5*��%���H	� I0$�%��	��3*.��E��7�#���H	��!��;0>	�*����3��;0$.�%�;0������H	�� .�!	����������	�:5��/�/I	�*.�91� �/�/B����	P��1i��0.0$��!��������Al���
0��%�b@B�=����	���
0� ��%�;0h&GOP*.���

������������+*o�;�2�n@B�6��%����1?����%�%0�@�k>	�*��6 ����N�21P�#�� .�8	+��@�/��a�������!�ad@./��!��%�N �/L��	���;D2�� .�+*c���r	�*��������H	�������ß�������. $	��!�v �
D�³p}2wtD�:5*����+*�� .���B���	��N	�*����N���.�!��!���%��	+��/9�2�.��������+*i&`OP*��������H	�������������ad�. $	��!6���6����%���!�
	��%0f	����H	� .0��%��	��c .�����.A�	�*��Cg3�h0.��	����G/�����1��2�d�#��/������¸	��7��%���$1�����!�4����1��2��#��/h0$�%���!�����	��������P��1p	�*.�=�#���+*.������&j�X	��/����6 .���%�)	�*.�=g<�h0.��	��=�)/����#1��2��#��/������¸	��c0��!���!���@B�<�8	�������	��!��I�2/�H	+�2	��3:5*.�%�C�H	� I0$�%��	���	�+���%�3�!z$�%�% $	��������21G�����H	�������M�������� �	��!�����A�+�2�����%�%&j'jz$�B�!����%�.�%�)*I�2����*.�;:5�l	�*I��	��H	� I0$�%��	��r�������6�#�2�Hd	��!c�2��sq����1?����#��/Lu4 .�.0��!��H	+�2�I0$����A��21P	�*.�N���;��������A��219g<�h0��2	���G/L�2���.�2	+�2	������p&

4. ABSTRACT ARCHITECTURES��������	��!���������2/����� .�.�;EF����0.�2@./��#:5*.�%��	��;�2��*�����Af�2@.�H	�+�2�!	��#�2d�+*.���.�9�����*��8	��%�!	� ���!�%D�:5*��!	�*.�!j	�*����#�2��*�����������1��2b�3������!�;0� $+��/qD1� ��.�!	������I��/qD�/���A����;�2/r�29��@
}H�%��	3�2����%��	��;0C/��2�.A� .��A���&POP*����9���%�!	����������!���%��	��b�2���!z�������/��b1?������2�a�����./��%���%��	+�2	������N��1p�<1? .���!	������I�2//�����A� I�2A���&�eß1� .���!	������.��/)/L�2�.A� I��A��#������/��%���%��	+�2	�������*I�2�l@B�%�%��+*.�����!��@B�%�;�2 .����	�*���0.��	+�o�H	�� .��	� ���%������������/��!���%��	+�2	��������a��11� ��.�!	������I��/./L�2�.A� I��A��%�5�2��5	mk$�����%��/�/8ka���#��/�/qD$���.0aEF�!�kN/������8	��;0a���

ê5ë?ìBírî�ïQpñ+�CïW4h��ë?ú;ë?ù���ùIý3ÿ �iëqü(�jô?ï(K � ù�øCõ�õrî�ï$÷;÷Nµ�È�È1
u��÷%ú!î�író�ú;ë?ù��µ�ÈFÈCã�ä w ã�ä y ã�ä w v ¹�wrã�ä y v º�w�¯i° ã�ä w v ¹�9`º�wa,
�
 ��N@B�!;&�OP*.�5���!	�*.�
0$�G��/�/� .�H	�+��	��;0�*.�!��=�%�� ./�0���/����c@B�3�2�.��/����;0	��N������4�%�����./��!z���@��H	�+���!	=�#�2��*������%�%&
����k$	����������.�%�cv {�wj0$�%���!���@B�%�51� ��.�!	������>�%E��2/� I�2	�������@�k�A2+����*>��!d0$.�!	������> .������AN�B������	��!P��!EF�!�����/p@�k#�6�!���N@����I�2	������>��1r����1��2��#��/0$����A�+�2���#���.0��n+�2	�*��!��%/� .���Hkf�.�2	+�2	�������1���C0$�%���!���@.����A�	�*���B�����
	���)��!EF�!�����/��8	����%/81mDF:5*����+*a ����%�j	�*.�9�����./����%�8	G1� .���!	������C� �p�!1?	;J:5*�����*�*��L0$�%�c�����%�����!�
	����2/P���I0��8��%��	������iD���%�
 ��8��%�6�������B�%�!	��������21	�*��N�%�2���%���B���.0����.A>0�����A2+��� 	��C��*.�;:Õ	�*.�2	<	�*��N���B�!+�2	������o�;������./8k�@B�=�����./����;0a�81h	�*.�91��2�:9�2+0#�B������	��!9� ��J��B������	��b	��l�2�oU+SFSBZ §��¡�U�Vq§q¥�[`[B¥;T�W�D)�2�I0o���%�;0$�6�2���!z$�./����%�8	c�H	+�2	��%���!�
	l�21P	�*.�������6 ./8d	+�2�.�%�8	Xk>�21j	�*.�7�%�����B���.�!�
	��5�21j	�*.�4�B������	��!=��%EF�������/r���B�!+�2	������sq���!������A� ������xË��0����$	��;0n1L�����v {;w�u�&ÌÊ<�2	7����/8kn�;���o�B������	��!��!EF�!�����/�@B�P�!z$����!�����;0N�N ���*c��������� .�%�%�����!	�/8k6���ag3�h0.��	��9�)/��2�.�sq���!�P����A� $��=³p}Fu�D=@. $	j��/�/��21$	�*��b*���0.0��!�7���$1��2��#�2	������c���6����A� ���>����=�.�;:R�!z$�./����%�8	�/8k��$��%���%��	=����	�*.�l0$�%���!�����	������i&
Ê3��	����2/����>	�*I��	4	�*.�6������/��%���%��	+�2	������.��/j�H	�� ��!	� ���6��19�2���2�.�./��8d�%�2	����������
0��9���b�6 .�+*6�!/��%�2��!����6	�*.�Pg3�h0.�2	��5�G/��������B�%�!��,.�;�2	������xÌ�2�����.��/����%�2	������o�.�
0��c@B�%���.AC�#�H	�� .�!	� $��6�!����	+�����.����A>���%����d�H	+�2��	�sqµ�ÀFÀ
ul��0��!�
	��81Lk�����A��8	a���a�2�`�����./����;�2	��������.�
0$��D)���.0f	m:���B�����
	�����4s\vc�2�I0�â6���C	�*��3/��!1L	9*I�2�I0�����0���DWsN���.0#â6���#	�*.�5���A�*�	*.���.0�����0���u�&
�=�%/��2	���EF�!/�k��������./���g<�h0��2	��n�G/L�2�(���B�%�%�8,I�%�2	����������21c	�*�����	�*��!���B�!+�2	������.�����
EF��/�EF�;0����`A�+�2�.*���;0$.�!	������`�;�2�`@B��A���E��%�iD)�� .�$d��/��%���%��	����.A��2�^����1?����#��/60����2A�+�����#��	����;��/c�!z$�./����.�2	������pD6���I0�2/�/��;:5���.Ao�H	� I0$�%��	��c	��n�!z$�B�!������%��	l:5�8	�*`	�*��#������/��%���%��	+�2	������p&e^�$���	��2	mk$�B�7�����./��%���%��	+�2	���������1=st�a�� .@����!	3��1+u9g<�h0��2	��c�)/��2�.����l�% $���%��	�/�k�@B�%����A� .���;0�����������0�E������%�;0n/��!EF�%/)�%�� $����C���o	�*��������/��!���%��	+�2	������o��191� ��.�!	������I��/)/�����A� I�2A��%�%&n"
	� I0$�%��	��4�;�2�iD�1?����z.�2���./���D5@B�nA���EF�!��g<�h0��2	��n�G/L�2�(�����./��%���%��	+�2	������.�#��1l�H	+�2��d0��2+0�A�+����*���%0� .��	����������B�!+�2	��������#���.0-@B���2��KF�;0�	���0$�%EF�%/�����(��d��;�2/��! ./� .�N	��nA2+���.*`�!z$�$��%���������`�%��������/���;Db�2N	�*��!k��;�2�`@B��2��KF�;0o	��>0��%E��%/��������%��������/��!71L������f�!z$����!���������.�7	��>g3�h0.��	���G/��������B�%�!��,.�;�2	������.�=��1j�� ��B�!��%���6@.���I��	�����%&
��	7��*.�� ./�0n��A������f@B�6�%���.*.���������;0�	�*I��	7g<�h0��2	��6�)/��������B�%�%�8,.�;�2d	������.�l�2�������	7�$����B�����;0f�2�6�n �WXSBZ�U�¡�W�£�W�[.VG1��2c���$1��2��#��/G�.�2	+�2d	������.�%DG@. $	6���6�o\��2S�SBZ�W�£#W�[�Vq&nOP*.�C��0$E��2��	+��A��!�N����#	�*$��%�!1?��/�0p&g3�h0.��	��n�)/������>*.��E��n�f1�����#�2/4���%�#�2�
	����%�%D5�#�2K
����A����B�%�%�8,.�;�2d	������.������!�%������&-OP*.�>��z����H	��%���%���214�2�-�����./��%���!�
	+��	�������st��/�@B�%�8	�! ����%��	�/8k�/������8	��;0Iu4�#��K��%�l��	6�B��������@�/��#1��2a�H	� .0��%��	��7	��n�!z$�B�!�d�����%��	c:5�8	�*`	�*����!���.�H	�� ��!	������`��1=A2+���.*`�#�2�.���. �/L��	������`��������8d	���EF�!�%&n�m����0.0��8	������pDj	�*.���H	� .0��%��	��71���/�/��;:5���.A�	�*.���6�!�� �����#*.��E���!�.�%�� .��	��!��;0ng<�h0��2	��6�)/������7�;�2�/����!l���n	�*.�%�87�H	� .0����%�4������������d	���
0$.�!	��2�k��%�� �����>���-�������� �	��!ae=��+*.�8	��%�!	� $��%�%D)�#��K
���.A�	�*�������������EF�!3��1j��K
��/�/��3�;�2�����!;&

5. ABSTRACT DATA TYPESD4�2	+�3�H	�� ��!	� ���!�j�2��9�2�.�2	�*.�!)����;�3�21h�������� �	��!G"$�%���%���%�b:5*��!���B�����
	�������2��j��81��Gx @B�2	�*7�!z$�./����%�8	�/�k<���7��& A�&�/����H	��%D��H	+�2��K
�%D2�� .�! .�%�%D	���!�%�7�!	���&�Dr���I0n�����./����%�8	�/8kn���o�2�+�%k$�%Dp��%�%��+0$�%D��H	�� ��!	� ���%�%Dp��@�d}m�%�!	��%D.�!	���&)OP*.���5���9��/�/� ��H	�+�2	��;0>*��!��4@�k# .������ANg<�h0��2	��7�G/������5	��0$�%���!���@B�a@����.�2�k�	���%�!�l���I0n���B��+�2	��������7���n	�*.�%��&cOP*����7��z.�2�ad��/��6��*���:5�3*.�;:�	�*���\+§?[
±�Z�W6 �¥2V�U�VXWaZ�W���Vr���B�!+�2	������o���ne��<�f	���%�%��%����@B�N0$�!,I���;0� .�����.A�sq����/�k.u5g<�h0.��	��N�G/������%&cOP*.�N�����H	4�%���ad�����C:P�%k>�21j�!z$�./�����������AN�� ���*��H	�� .�!	� $��%�5���.0����B��+�2	��������=���5@�k�n�%���N@.���.�2	���������13����1��2��#��/=0����2A�+�������I0(sq�����% I0$��u6�%�
0$��D����

��*.�;:5�����n����A� $��C³�³�st��0.�2��	��;0�1L����´v �2w?u�&=�m�>	�*��#\�§�[�±�Z�Wc �¥2V�U�VXWZ�W���V����B�!+��	������#���� ��
@I��/��2�.�%�;06�.�
0��5*.��E
���.A<�.�7�+*.��/�0$��%�a���a	�*.�/��!1?	;Di@. $	7@B��	�*o�#��*���/�0����.0o�CA�+���.0��+*.��/�0����o	�*��c���A�*�	l���7@I�2/8d�����%�;0n@�k����������	����.A#	�*.�l���A�*�	4*.���.0n�+*.��/�0�	��C	�*��c����2	7�.�
0$��D:5�8	�*�	�*.�=�����A����I�2/B�����	9���
0��3���b	�*��3���!:�����2	9�.�
0$��J ��/��!1L	9*I�2�I0�+*.��/�0p&
�m��g<�h0��2	��>�)/�������	�*.��0��2	+���H	�� .�!	� $����;���-@B��0$�!,I���;0-�2�C����2��+*.��	mk$�B��&)����A� $��6³��l�%����	+�2�����5���C�!z�������/��<0��!,.�.���.Ac�c@.���I���k	���%��&jOP*.�P,.��H)�����*��!	mk$�B�4st��uj0��!,.�.�%��	�*��7UFÅ!\�Vq �UF¡!VI�H	�� .�!	� $��P��1�<@����.�2�kl	���%��&�OP*.���)�2��+*.�!	Xk$�B�P�;���6@B�P��;��06���%|<]He�@����.�2�k7	���%����P�%�8	�*.���	�*.�5�%���$	mkc	���%��D
�29�7�.�
0$�3�%����	+�����.���.A6�7KF�!ka���I0N	X:P��� .@$	���%�%��_$&le=��+*.�!	Xk$�B�%�6sa{�u3�2�I0�st�Fu9	�*.�%��0���,I�.�7	�*��>¡�¥�[I¡! �W�VXW�H	�� .��	� ���l��1G@����.�2�k�	���%�%�%Dh0$�!,I������AN	�*.�l�%���$	mk#	���%�7	���@B�7	�*.�
[/ j�j �B������	��!;D$�2�I0��7�.�
0$�9	��7@B�<�4�B������	��!b	��c�70.�2	+�7�H	�� ��!	� ����%���
	+�2���.���.An��KF��k�Dj���.0o	m:����B������	��!��7	���	�*.�����
0���J �c�� .@�	���!�%�%&e¤0��!,.�.�8	���������14	�*��>�����.A�/������	+�2	��>/���1?	C���B�!+��	�����������A���E��%���������A� $��c³%�$&ÕÊ3��	��9	�*I��	�	�*.���b0��!,.�.�8	������#�;�2�C@B�9��;��0#���b	�*��9	��!z
d	� I�2/p��!����%���%��	+��	������>�21j	�*.�<	���%�40�����A2+���M��*.�;:5�>��������A� ���a³�³�&�m����	�*.���:���+0��%D5	�*�����0���,I�.�8	���������17	�*.�����B�!+�2	������ß§?£<SBZ §t¡!§?VtZ Ã�%���
	+�2���.�4	�*.�6�B������	��!��%&a�X�o�!����	�+���H	7	��#	�*.�a ��� I�2/j�H	mk$/��a��1��!z
d�./��2�I�2	���������19	�*.�����B�!+�2	������-�2�6��*��;:5����������A� ����³�³C	�*��!������%D*.�;:��%EF�!;D.�.���.�!�;0�	��a�+*I�2�.A��7	�*��4��%����%���!�
	+��	�������	����#��K��<	�*.��B������	��!��)�!z$�./����%�8	bx���������/��9��z��.��������������1h	�*.�9á$Ç2â�ã6�����*��!	mk$�B�%��� �{a�%�%�%D����j��*.�;:5�c���a����A� $��3³%�$&j�X	���*.�� �/�0c@B�b�%���.*.���������;07	�*I�2		�*.���7���4	�*.�C\�U�£#W< ��h0.�2	��6����*��%���a�2�7��������A� $��>³;�
Dr���./8ko�21?	����2��+*.��	mk$�B����z��.�����������i&`OP*��>�2@.�H	�+�2�!	#0.��	+���H	�� ��!	� ���C��������A2d ����³%�#*.���=@B�%�%�>	�+�2�.�H1?������;0�����	��#���%�����!��!	��7��%����!���%��	+�2	������ .������Aa�B������	��!��9:5*.��/��l�H	+�;k$���.AN���C	�*.�4���2���7�I��+��0���A���&

6. CONCLUSIONSOP*.�>����%E
���� ��N	�*���%�>���%�!	���������*I�;EF��0$�%�������H	�+�2	��;0�	�*.�>�����./��8d�;��	������>�21�g<�h0��2	��3�)/��2�.�9	��c	��%���+*.���.AN�������� �	��!5e5���*��8	��%�!	� ����&
|bkf .�����.A��� .����,.�;0��.�2	+�2	�������	�*.�2	6���6�.�2	N���./8k`�����./����;��@�/��C	��	��;�2��*�����A��������. �	���le=��+*.�8	��%�!	� $��%�%Di@. �	<	�*I�2	4���c�2/����>�� .�8	+��@�/��1��2#0��!���!���@.���.A��B������	��!#�2�.�./����;��	������.�����`��	�*��!�����;�����217�����ad�. $	��!)"
�%���%�.�%���!���������EF�!G�21B�H	� I0$�%��	��%J���K
��/�/��)���.0c ��I0�����H	+���I0$���.A	�*���� .A�*.�� $	<	�*��c�! ������% ./� �� ���4A2��;�2	�/8k�1����%��/��8	+�2	��;0h&ce3/�����Dh�H	� $d0��!�
	��G�21?	��%�a,.�I0N�8	b0��8{��% �/8	b	��<��!/L��	��=	�*��9*.��A�*N/��!EF�%/.�!���.�!�%��	b��1S$¥�§�[�VXW� �\b	��N	�*.�</��;:R/��%EF�%/p�%���.�%�%�$	=��15UFT�T� �W�\�\!W�\�&P|bkC .������AN	�*.��������#1��2��#��/������y	��o0��%���!���@B��@B��	�*�	�*.�C��%/��2	���������*.���-���a�#��0���!z$�./����%�8	;Dj�H	���%��A�	�*��%�.���.A��H	� .0��%��	��%Ji .�.0��!��H	+�2�I0�����A>��15�B�����
	�����1?����¤���������� �	��!="�k$�H	��%���5e=��+*.�8	��%�!	� $��4�B�!����B�%��	���E���&
g<�h0��2	����G/L�2�.���;�����.��	��%�����./��!	��%/8k���!�./����%�n	�*.�n�2	�*.�!����!	�*�d�
0��50$�����% .�����;0C*.�!���D.�%���B�!�%����/�/8k>����1?����#�2/pA2+����*�0����2A�+������x ��.���!	� $��#���%Db��1?	��!a��/�/qD):����	�*��>	�*.�� .���2�I0f:P�2+0��%D)��6�%EF�!��g<��d0.��	��n�)/��2�.�ax @� �	a	�*���1�����#�2/������ ��*��� �/L0-@B�� .���;0�	����%���ad�./��%���!�
	6�2�I0� .����1Lk��!z$��/L�2�I��	������.�6��15	�*.�#2���/��%�6��13�B������	��!��N����������� �	��!3"
�%���%�.�!�l���I0C	��a�%���.*.���������4	�*.�7/��;:�/��!EF�%/p�I�2	� $��7��1�����H	5�B�����
	���3���B�!+�2	������.�%&
OP*.�<g<�h0.��	��<�G/����C1�����#�2/�������*I���9@B�!�%�� ����;0#�� .�%�%�!���H1� ./�/8k����5�0��!���!�����	���EF��	�����/9����	��;�2��*�����A����
	���
0$.�!	��2�k`�������. �	���Ne5���*��8d	��%�!	� $��%�%&�e3��������/��!���%��	+�2	��������213���� .@.����	N�213g3�h0.��	����G/���������=��/����#�;E��2��/��2@./���DB�2�I0�	�*����9���=@B�%���.A6 .���;0C	��a�����E
��0��4���2��7��0
dE����.�!�;0��H	� I0��!�
	��b:5��	�*C*I�2�I0$�HdX������z��B������!�.�%�5x 0$�%����A�������Aa�2�I0�����./��%���%��	����.A#	�*.�!��c�;:5�����.�H	�� ��!	�����������	��%DG���.0o@. ���/L0$���.A��2�I0 .������A������2@.�H	�+�2�!	=����	��!����%0����2	��4�!�
0��7�#���+*.������&

ê5ë?ìBíiî2ï�pñ<�3ùBë��hú%ï
î6J�ï��Bï
î2÷%ÿIôbë���ÿ���
%ü��ô?ï�üoï��pú%ÿ�ú;ë?ù��-ùIý3ÿfê�í?��ó�ú;ë?ù��rÿ.ôPMbÿ��rìBírÿ�ìIï

� ¯ �p�!1?	�st�Gu�p�!1?	�st�Gu~¯ |
| ¯ �

� �

�
�����6 ./8	+�����%�� ���/�k

|

�

@

�

0

�

�

� �

�

¯i°

|

�

@

�

0

��

�

�

�

ê5ë?ìBírî�ï�ðW�iñ<���)õrÿ.ú!ÿ��7ô?ÿ��%�3�Gï�ó�ë54Gó�ÿ�ú;ë?ù��(ùIý��3ùBë��pú%ï
î6J�ïW�Bï$î2÷%ÿ.ô
� v ��wp¶Bv sFw?�Iv µ�À�À�v6â�w�¯p° � v v�wr¶Iv ��w?�Iv µ�ÀFÀ)s�â�wa,

ê5ë?ìBíiî2ï�ðIð.ñ��ië��rìIô?ï�J�ùIú!ÿ.ú%ï(Mbï
ý�úaë���ÿ���ø��2MNKPî�ï
ïz
k� ���

�
���
� ���
�
��� � � �U�

�
��� �

� � �
�� �

��
¡ ¡ ¢

¯i° k
z � ���

�
��� �

� ���
�
�H� � ���

�
��� �

�� �
� � ���

¡ ¡ ¢ µ�Ò j [Ç�âFã�Ç_£�â�è$Ç�ÇiGm¤¥G�¦�T_EB§µ�Ò j [Ç�âFã�á
ãi¨Fè$Ç�ÇiGm¤©Ymµ�Ò j [Ç�âFãUZ`à�T*ª�¦_Gh§Ç�£�â�è$ÇFÇ*G=«Xà�T*ªi¦	GN¤-á
ãi¨Fè
ÇFÇiG=«f£�ã��_Gh§á�ãi¨Fè$ÇFÇ*G=«f£�ã���G¬¤�Ç_£�â�è
ÇFÇiGh§àFã�G��à�á(á�ãi¨Fè$ÇFÇ*Gh§

ê5ë?ìBíiî2ï�ð�.hñ+��ï	4=��ë��rì�ÿ ®6ë��rÿ�î*C¥KPî�ï
ï�ë����6�bõiÿ.ú%ï(�7ô?ÿ���÷
GFà�ãFã.s�u~¯ ãcb$Æ	GFº.s�u�,¯ á$Ç�â�ã.s�¯
ã�º�o°GFà�ãFã�s�u�o±GFà�ãFã.s�u�u�,´st¾�uãcb$Æ	GFº.s�u ¯ [/ j_j , stÚ�uá
Ç�â�ã.s�¯$ã�º�o�£�ã��_GUo�à�T*ª�¦	G�u ¯ ä�ä�v ¯$ã�º�£�ã��_G#à�Txª�¦	G�wH, stÛ�u

ê=ëLìBírî�ï�ð�;pñ+Kcûrï�ië��iìBô?ïJ#ù.ú%ÿ.ú%ï(M)ï$ý�ú)ln�Gï
î�ÿ.ú;ë?ù���ù���øA��M�ú%î�ï$ï$÷è$Ñ j Ç�£�âFà
ÇFÇ*GIsq¹�o°GFà�ãFã�s�u³²pomá
ãi¨�à
Ç�ÇiGIsqº�o°GFà�ã�ã.s�uµ´µ¶po³G�à�ãFã.s�uµ´H·�u�u¯i°�á
ãi¨�à�ÇFÇiGIsqº�o!Ç_£2âFà
ÇFÇiG.sq¹�o°GFà�ãFã.s�u ² o³G�à�ãFã.s�u ´ ¶�u�u�,
ê5ë?ìBíiî2ï�ð	Iiñ'K6ûrï����)õrÿ.ú!ï �pó�ûrï�üoï�ý�î�ùhü ê5ë?ìBíiî2ï�ð�;nÿ.ý�ú%ï
îCò�@3��ÿ���÷;ëLù���ùIý5ú;ûrï�á$Ç�âFã�øCî2ó2ûrï
ú�C3�Gï$÷è
Ñ j Ç_£�âFà
Ç�ÇiG�Ç_£�âFà
Ç�ÇiGIv ¹)GFà�ãFã.s�u ² á
ãi¨Fà
ÇFÇiG�wrá
ãi¨�à
Ç�ÇiGIv º�G�à�ãFã.s�u ´ ¶¸GFà�ãFã.s�u ´ ·�w¯i° á�ãi¨�à
ÇFÇ*G#á�ãi¨�à
ÇFÇ*GIv º�Ç_£2âFà
ÇFÇiG)GFàFãFã.s�uµ´H·+wrÇ_£2âFà
ÇFÇiG.v ¹6GFà�ã�ã.s�u³²uo±GFà�ãFã.s�uµ´µ¶XwH,

7. REFERENCESv�³�wle3/��2�n��/��%���%��	��%&F¹i¢.W<YP �§?[B¡!§ SBZ�W�\7¥f��º)¥�£<SI�
VXW�
»7U� �Ti¼bU� �W�& é z
1��2+0�g<����EF�!����8	mk��j��%���%Dh�*}�}�}
&

v �;w<½< �A�* é ��@B����.��&IOP*��7���%�#����	����%�=���.0��Hk$��	+�2zC��1j ��h0.��	�����+*.�%���%�%&��m�#º)¥;T�W)¾5W�[hW� �U2Vq§t¥�[¿Àº)¥2[B¡+WXSIVq\±ÁL¹B¥;¥�Z \°Á
¹hW�¡+¢
[�§HÂ!�.W�\+D.�����K
��*����.�9���n�������. $	�����A�&."$�$����.A���
�)�!�/���A�Di³c�i�F�
&

v ��w<½< �A�* é ��@B����.��&.g3�h0.�2	��4�)/������%&I�X��YP �¥;¡+W�W�T2§�[
±�\6¥f�4V?¢.W
ÃWÄ V?¢�»lU*¼�U2§�§?Å+[.VXW� +[BU�Vq§t¥2[BU�ZFº)¥�[c�;W� �W�[B¡+WN¥�[1Æ�Ã�\�VXW�£
ÆB¡!§tW�[B¡+W�\�&I�H')')'(�������� �	��!="
���%���!	mk>�j��%���%Dr³p���F��&

v �2w<½< �A�* é ��@B����.��&3QSTFU�VXW4Y9Z�U�[�\'¿ÈÇÉ»4§�±�¢6Ê�W�Î�W!Z�Êr¥i¼
Ê�W�Î�W!Z3Æ�S�W�¡!§ Ë�¡�U�Vq§q¥�[�ÊiU�[
±���U;±�W�&h�G*�D�	�*.�%�����%DIg3�.��EF�!����8	Xk��1GÊ3� }H���%A��%�iD�Or���!���������EF�%/�0f³�D.Ê3� }m���%A��!�iD.OP*.�Ê<��	�*.�!�/����.0��%Dp³c�i����&

v �;w<½< �A�* é ��@B����.��&.g3�h0.�2	��4�)/������=1?��=�I��+��/�/��%/�2��+*.�8	��%��	� ���%�%&.�m��Ýo&�Ïl�2+�
D��$& �l&�D4��E�k�DWDN&�Ì<���
0��!EF��D���.02��&.Ê4�2��*iD��;0��8	�����%D�Ç<Å!\�Vq �UF¡!V$Í�UF¡+¢
§�[BWLÍo¥;T�W!Z \h�%¥� Y5U� �U�Z?Z�W!ZrU�[IT�Î4§�\�Vq �§qÅ!�$VXW�Tº)¥2£<SI�
Vq§�[�±�D.�.��A��!�L{*�xÏW�i}$De3���H	���+0.����DB³p�����$&B� é "C�j��%���%&

v ��w+½< .A�* é ��@B�2��.��&.OP*.�l�G���H	������� �������. $	��!;|)Or�;�2��*�����A����	���
0$.�!	��2�k� ��I0$�!�A�+��0� I��	��4�%�����. �	���=�2��+*.�8	��%�!	� $���&.�X�Y9 H¥;¡�W�W�T�§�[�±�\6¥f�4V?¢.W'Ð_Ð� �TÑÇ'º�ÍÒ¹hW�¡+¢
[�§t¡�U�ZBÆ�Ã�£3S$¥�\�§��
£ ¥�[
º)¥�£<SI�
VXW� +ÆB¡!§tW�[B¡+W:Ó5T���¡�U�Vq§t¥�[#ÔHÆ�Å*¾LºhÆ	Ó Ã�Õ_Õ*ÃcÖ DB�i}�}��
&

v {;w6"$�������>���!k
	����������.�!�%&¸¹i¢.W:Å+£<SBZ�W�£�W�[.V�U�Vq§t¥2[f¥µ�
×p�
[B¡!Vq§t¥�[IU�ZBYP �¥�±� HU�£N£6§�[
±nÊrU�[
±���U;±�W�\�&h�j��%��	����%�<½4�2/�/tD³c����{
&

v ��w+½4�����=Ý>�%� }H�!;&hY9 H¥�±� �U�£6£�U� pØ�ÇÙ¹. �U2[.\+Z�U�V�¥�)¾=W�[BW� �U�V�¥� +&�)*UD�	�*.�%�����%D.g<�.��EF�������	Xk#��1GÊ3� }m���%A��!�iD�Or���!���������EF�%/�0f³�DÊ<� }H���%A��%�iD.OP*.�<Ê<�!	�*��!�/����I0$�%Di³p�����$&
v ��wl�3 ������%/p�����.0��!=�2�I02Ì3+��*I�2�M�3��@B�!�	��%&ÚÎcW�Î�W!Z�¥�SI§�[�±6Û
U�Î2U
ÆB¥f��V�¼bU� �W�&�����*.�>����/��!k2Üß"$���.�%Dp³c�i���$&

v8³c}�w7�(��/�/������ÞÝb ���%��KC���.0�½3 .A�* é ��@B�������&IeR�!��;:=0>��1)�p�8	�	�/��Ý����n�������. �	�����%|=�<���� I�2/i�%�����. $	��!5�����N ./���	���9	��;�2��*�����A	�����/��%&I�X��YP �¥;¡+W�W�T2§�[
±�\6¥f� Ã�Õ_Õ�ß�à §�[.VXW� <Æ�§�£N�$Z�U�Vq§q¥�[
º)¥�[c�;W� �W�[B¡+W�DIÊ3�!:mÝ��2�KBDI�*}�}
³�&he=�9Ýo&

CASTLE:
COMPUTER ARCHITECTURE SELF-TESTING AND LEARNING SYSTEM

Aleksandar Milenkovica, Bosko Nikoli cb, Jovan Djordjevicb

a Electrical and Computer Engineering Dept., University of Alabama in Huntsvill e
b Computer Engineering Dept., School of Electrical Engineering, University of Belgrade
E-mail: { milenka@ece.uah.edu, nbosko@etf.bg.ac.yu, jdjordjevic@kiklop.etf.bg.ac.yu}

Abstract. The paper introduces the CASTLE, a

Web-based system for Computer Architecture Self-
Testing and LEarning. The CASTLE offers self-testing
and learning facilities meant to be used by students at
home and/or in lab in the process of studying and
exam preparation. It also offers a rich set of facilities
to help the system administration and to provide
feedback to instructors. The core of the CASTLE tool
is developed using zero-cost environment, in such a
way that it could be easily modified and used for
teaching other courses.

I INTRODUCTION
The Internet has dramaticall y changed the way

instructors teach Computer architecture and
organization, and the way students learn. Modern
software tools enable the development of Web-based
graphical animations to ill ustrate complex topics [1],
advanced computer architecture CAD tools have
become available via Web browsers [2], and collections
of course material including tests and exams can be
shared between instructors [3].

Web-based testing plays an important role in
distance learning. For example, the IEEE Computer
Society has recently started to offer to its members
various courses as a part of the Distance Learning
Campus [4]. We feel that “classic” classroom- and lab-
based courses could also benefit from the opportunity
of online testing and self-assessment and that is why
we are building the CASTLE, a Web based software
system for Computer Architecture Self-Testing and
Learning.

Previously we made some efforts in the similar
direction by developing the CALKAS [5]. However, it
uses rather expensive commercial environment, and it
is primaril y targeted to the assessment of the student
knowledge during labs.

The CASTLE offers the students an opportunity for
online testing on various topics in computer
architecture and organization, anytime, anywhere.
Using this tool, students can continuously reinforce
their classroom learning, and can get valuable feedback

about their course advancement. The CASTLE allows
students to choose the level of testing. At the beginning
they can start with elementary questions, and as they
progress through the course they choose more complex
tests at the medium and advanced levels. Each question
is tagged with an explanation field, which includes a
full explanation or a link to the corresponding textbook
or material on the Web.

The CASTLE allows instructors a Web-based
administration by using simple forms to insert, edit, or
delete information about students and questions. In
addition to that, the CASTLE can generate various
statistics from the database providing the instructors
with valuable feedback about students’ advancement.
Using these statistics, instructors can identify what is
diff icult for students to grasp. Often instructors have
groups of students with different background and
inhomogeneous knowledge. In such cases the CASTLE
should help those with insuff icient prerequisites to
catch up. Thanks to explanations it provides, the
CASTLE as a “virtual instructor” could improve the
overall qualit y of teaching since it gives the instructor
more time to spend on diff icult topics.

The CASTLE is developed using Java Servlet/Java
Server pages technologies and MySQL as a database.
We have developed and tested the core of the CASTLE
and now we are building the database with questions.
The rest of the paper is organized as follows. In
Section 2 we describe the faciliti es offered by the
CASTLE. Section 3 gives a short overview of the
CASTLE internals. Section 4 concludes.

II USING CASTLE
The CASTLE offers two levels of functionalit y:

• At the user level, it provides self-testing
faciliti es to students, and

• At the administrator level, it provides
administration faciliti es to instructors.

The user level
The first step in working with CASTLE is to login:

a user enters her/his username and password, and

activates Login button (Figure 1). The system checks
whether a user with that username exists in the
database of users and whether the password is correct.
If the login is successful, the system allows access to
self-testing mode, and the Welcome screen appears
(Figure 3). New users are asked to register first (Figure
2).

Figure 1. Login screen.

Figure 2. Register screen.

The Welcome screen offers the user possibility to
select the type of testing; the current version of the
CASTLE supports the following types:
Comprehensive, Processor Architecture, Memory
Hierarchy, and Multiprocessors. The user also defines
test duration (test time per question), the number of
questions in the test, and the level of testing. The
CASTLE currently supports three levels of testing:
Elementary, Medium, and Advanced.

The test is then activated using the Start test
button. The CASTLE generates randomly requested
number of questions with offered answers from the
database; all questions generated have the same

difficulty tag (Elementary, Medium, or Advanced). The
questions appear one by one. For each question the
remaining time is counted-down in real time and
displayed on the screen (Figure 4). Questions may
include graphical content. The user answers the
questions by activating the appropriate check box in
front of the answer deemed to be correct.

Figure 3. Welcome screen.

Figure 4. Test screen.

When the user has completed a question, even if the
time predetermined for giving an answer has not yet
expired, she/he can submit the test by activating the
Submit test button. If the test has not been submitted
within the predetermined period of time, the CASTLE
stops the testing when the time expires and the user is
asked to submit the answer. The CASTLE checks
correctness of the given answer and generates a result
screen including the question, given and the correct
answer, and explanation for the correct answer (Figure
5). By activating the Next Question button the test
continues.

The information concerning the completed test,
such as the user’s identification number, the date, the
time, the generated questions, and the given answers,
are saved in the appropriate database tables. Hence,
any relevant information concerning all tests taken by
any user can be obtained at any time.

Figure 5. Result screen.

When the user has completed the test she/he can
get the final test report. This report contains the score
and a table with all questions from the test, the answers
given and the correct ones. At the end of the test, the
user can start new test session by activating New test
button.

The administrator level
At the administrator level instructors use the

CASTLE to maintain the database including
information regarding users, questions and offered
answers, and test sessions. The CASTLE provides
simple forms that can be used to enter new questions
and update the li st with answers, modify the li st of
offered answers, add, edit, and remove users. In
addition to that, the CASTLE allows instructors to
generate and print the itemized reports including
statistics - number of tests taken, percentage of correct
answers, etc., for each topic (e.g., Memory hierarchy),
and for each question. Finall y, the CASTLE allows
instructors to backup the whole database.

The first step for an instructor is to login by
entering administrator username and password;
Administrators use the same Login screen as ordinary
users (Figure 1). After a successful login the Welcome
administrator screen appears (Figure 6). From this
screen the administrator can select any of the available
functions: Insert User to add a new user, Edit User to
edit information about a user, Delete User to remove a
user from the database of users, Insert Question to add
a new question in the database, Edit Question to edit

relevant fields of a question, Delete Question to
remove a question from the database, Define Queries
& Printing Reports to create and print various
reports, and Backup to backup the database.

Figure 6. Administrator Welcome screen.

Insert Question and Insert User buttons bring
screens containing all relevant fields to be defined for a
new question and a new user, respectively. Figure 7
shows the form for entering a new question. The
instructor enters relevant fields such as the text of the
question, offered answers (up to four possible answers),
Id for the correct answer, Id for the area, the level of
diff iculty, and the explanation. All fields are checked
for consistency before the database is updated by
activating Submit button.

Figure 7. Insert Question screen.

Edit Question and Edit User forms require the
questionID and username to be entered by the
instructor, respectively. Complete record appears on
the screen, and all fields can be changed. Changes
become visible by activating the Submit button.
Similarly, the instructor can remove a user or a

question using Delete User and Delete Question
forms.

By activating Define Queries & Printing Reports
button instructor opens a new form where she/he
selects a query, such as global statistics, and statistics
per area, per question and per user. The result screen
will contain required information, including statistic
charts (Figure 8). The instructor prints the report by
activating the Print button.

Figure 8. Statistics screen.

III INTERNALS OF THE CASTLE
Primary requests for the development environment

were to support all facilities of the CASTLE as well as
to minimize the cost. We use a zero cost environment
based on Java Servlet and JavaServer Pages (JSP)
technologies [6]. As a Web server we use Tomcat [7], a
free open-source implementation of Java Servlet and
JavaServer Pages technologies developed under the
Jakarta project at the Apache Software Foundation. We
use MySQL [8], a free, open source database available
for many computing platforms. It represents the most
affordable solution for relational database services
available today. For communication between Java
servlets and the database we use, a free JDBC driver
mm.mysql-2.0.4-bin.jar [9].

Figure 9 shows the development environment and
illustrates the data flow. We decided to implement a
rather simple graphical interface, so the CASTLE can
be accessed without any delay even over 56K modem
connections.

Web Browser

mySQL
Database

Tomcat
Web Server

Java Classes
(incl. Servlets)

JDBC
Driver

HTML/XML J S P

Figure 9. Development Environment.

IV CONCLUSION
This paper introduces the CASTLE, a Web-based

system for testing in computer architecture and
organization. It allows students to test their knowledge
continuously throughout the course giving them full
control over the number of questions they want to take,
test diff iculty, and course topics. In addition to that the
CASTLE facilit ates the system administration and
provide valuable feedback about course advancement to
instructors during the course. The development
environment guarantees simple user interface,
flexibilit y, and security of data, availabilit y,
maintainabilit y and upgradeabilit y.

The primary short-term goal is to expand the
current number of questions and to support different
question forms in addition to multiple choice. The next
step will be to open the gates of the CASTLE to
broader community, to all i nterested to improve their
knowledge in computer architecture.

ACKNOWLEDGEMENTS
This work is partiall y supported by the UAH

Provost’s off ice through an Instructional Grant.

REFERENCES
[1] J. Djordjevic, A. Milenkovic, N. Grbanovic,

“An Integrated Environment for Teaching
Computer Architecture,” IEEE Micro, Vol. 20,
No.3, pp. 38-47, May/June 2000.

[2] N. Kapadia, R. Figueiredo, J. Fortes, “PUNCH:
Web Portal For Running Tools,” IEEE Micro,
Vol. 20, No. 3, pp. 38-47, May/June 2000.

[3] E. Gehringer, T. Louca, “Using the Computer
Architecture Course Database,” IEEE TCCA
Newsletter, pp. 85-89, September 2000.

[4] http://www.computer.org/DistanceLearning
[5] J. Djordjevic, A. Milenkovic, I. Todorovic, and

D. Marinov, “CALKAS: A Computer
Architecture Learning and Knowledge
Assessment System,” IEEE TCCA Newsletter,
pp. 26-29, June 2000.

[6] http://java.sun.com/j2se/
[7] http://jakarta.apache.org/site/binindex.html
[8] http://www.mysql.com/
[9] http://mmmysql.sourceforge.net/

Development of a digital instrument as a motivational component in teaching
embedded computers

Gracián Triviño1, Felipe Fernández2

1Universidad Politécnica, Madrid, Spain, gtrivino@fi.upm.es
2Universidad Politécnica, Madrid, Spain, felipe.fernandez@es.bosch.com

Abstract
Nowadays it is frequent that, at the first levels of Co m-
puter Engineering studies, the students have acquired
some practical experience developing software projects.
However, they have little or none experience facing up
the project of designing and developing a simple com-
puter electronic module.
On the other hand, due to the strong development of the
area and its continuous presence in the media, students
are especially motivated towards robotics and, in gen-
eral, towards systems that can interact with the physical
environment.
According to these circumstances, this paper describes
the strategy followed to introduce a new subject de-
nominated “Digital Instrumentation and Data acquis i-
tion”. This subject is an optional part of the curriculum
area dedicated to Computers Architecture in the Faculty
of Computer Engineering at the Polytechnic University
of Madrid (Spain).

1. Introduction
Two years ago, we faced up the challenge of designing
the layout of a new subject in the area of Computers
Architecture. In teaching embedded computers, it is
especially clear that the goals of teaching are not only a
set of theoretical concepts. Together with them, you
need to teach practical procedures, and to teach attitudes
encouraging the students to develop a personal interest
in studying the topics related with the subject.
Considering the characteristics of the current curricu-
lum, the students acquire during the first courses some
capabilities to develop software projects while they
have little or none experience designing and developing
computer electronic circuits. One elemental rule in
teaching consists of using the available knowledge in
the students’ minds as the basis to build the new knowl-
edge structures. Therefore, a first idea was to find a way
of using this capability for software development as one
of the basis of the new subject structure.
On the other hand, the new subject was going to be one
more in the set of optional subjects that are available for
the students choice. Then it was necessary to think
about special motivations, the marketing strategy that

would encourage the student to introduce our subject in
his/her course configuration.
During last years, an increasing interest among students
on topics related with robotics has been detected. More
specifically, students are interested in computers that
are able to interact with the physical environment.
Therefore, a second idea was to use this interest as a
motivation to convince the students to enrol in our sub-
ject.
We decided to name this undergraduate course “Digital
Instrumentation and Data acquisition”. Under this de-
nomination, our intention was to cover a space detected
in our curriculum of the Computers Architecture area. A
classification of the didactical contents of the new sub-
ject is the following:
Theoretical contents
- Different types of sensors making emphasis in the
applied physical principles.
- Differential amplifiers, instrumentation amplifiers,
A-D converters.
- Instruments, instrumentation systems, standard in-
strumentation platforms (GPIB, VXI, PXI)
- Instrumentation languages, instrumentation software
environment.
Practical contents
- Design and building of an electronic circuit for data
acquisition based in microcontrollers.
- Design and building of electronics circuits to handle
the signal provided by different sensors.
- Design and building of software programs handling
this hardware to create digital instruments.
The complete subject program can be found in the sub-
ject Internet web page [1]. The remainder of this paper
is aimed to describe different aspects of the resources
developed to support the teaching of the practical con-
tents.

2. Practical Project
As a part of their learning activities, the students of
“Digital Instrumentation and Data Acquisition” must
develop a practical project that consists of building a
digital instrument.
Through the analysis, design and building of a digital
instrument the student learns practical knowledge that

complements the corresponding theoretical concepts
and procedures.
When we faced up the development of some resources
to support the students during the practical project
development, we considered some special requirements
having in account not only a teaching strategy but also
an adequate marketing strategy:
- The student must have the possibility of using his/her
own personal computer (PC) as an important comp o-
nent of the practical project.
The idea is to use the fact of that most of the activity of
students developing software is currently performed
using their personal computer.
- The whole hardware of the practical project must be
compact and small enough to be portable.
This is not only, because that could make more com-
fortable the project development, but also, because the
students’ interest in this type of practical projects allows
using the project itself as a marketing reclaim. The
student will carry the circuit board with him/her having
the possibility of talking about it and showing it to fe l-
lows.
 - After the practical project is finished, the system
must be able to be used for new projects. Consequently,
all the resources used must remain available to the stu-
dent. If the practical project hardware is of student’s
property, it will remain available not only for other
projects at the university but also to develop his/her
own home projects. To make this possible, it is desir-
able to maintain the whole project as low cost as possi-
ble.

3. Hardware resources
The main support of the practical project is a printed
circuit board that we have called iFOTON. This circuit
contains a microcontroller with few additional elec-
tronic devices and a free mounting area where it is pos-
sible to solder additional components. Figure 1 shows a
iFOTON block diagram.
This circuit includes all that is necessary to make easy
the development of an electronic digital instrument.
Figure 2 shows a photo of the PCB with all the elec-
tronic components mounted. A brief description of
iFOTON main features is the following:

Microcontroller
The PIC16F873/76 microcontroller from Microchip [2]
has been chosen. This family of devices has an excellent
cost-benefit rate and its use in the market has been
growing up during the last years. This microcontroller
has a set of interesting characteristics that we are only to
enumerate: It has a RISC architecture, 4K of flash pro-
gram memory, 193 bytes of RAM, 128 bytes of
EEPROM. Moreover, the encapsulated peripheral de-
vices are: A/D converter of 10 bits, 3 timers, PWM
modules, communications modules (USART, I2C) and
3 parallel digital input output ports.
Serial port
It is the main mechanism of communication between
iFOTON and the PC. The USART provided by the
microcontroller has been used. A Maxim MAX232
serial signal adapter has been used in order to convert
the TTL signal provided by this peripheral to the RS232
protocol logical level [3].
Programming port
An important advantage of the selected microcontroller
is the so-called “In Circuit Programming” characteristic
[4]. This allows, using only a 5 volts power supply and
handling a limited set of connections (4), to read and
write the microcontroller program memory without
extracting it from the circuit socket.
The PC standard parallel port is used to handle these
connections. This port fulfils the IEEE 1284 (SPP, EPP,
ECP) standard signalling method for a bi-directional
parallel peripheral interface for personal computers [5].
To make the connection the student must build the ade-
quate cable following the instructions provided with the
iFOTON documentation.
Input output port
The microcontroller provides three configurable input-
output ports that have been situated near the free
mounting area:
- All of them can be configured as digital inputs.

They have associated internal programmable pull-
ups and the possibility of associating encapsulated
devices to interrupt processing and to perform pulse
wide measurement.

- All of them can be selected as digital outputs. They
have 25 mA sink/source current capability.

- Five pins of them can be configured as analogical

Figure 1. iFOTON Block diagram

Microcontroller
Power supply

Serial port

Programming port

Input
Output
port

Free mounting
area

iFOTON

Environment
PC

RS232

Paralell port

inputs: These inputs share the multiplexed A/D
converter.

Power supply
IFOTON uses the DC power supply that is generally
provided with the PC loudspeakers. This device has a
jack connector that provides 9 volts where the central
connection is connected to ground. Then a simple 7805
voltage regulator and two capacitors are enough to
complete the circuit power supply.

4. Software resources
A set of software tools has been developed to support
the design and building of practical projects with iFO-
TON: a Programmer, a Project configuration control,
and an Interpreter of commands. The first two of them
are executed in the student PC and the third one in the
iFOTON microcontroller.
Code Programmer
This is a software tool that converts iFOTON in a mi-
crocontroller programmer [6]. This program uses the
connection between the PC and the iFOTON Progra m-
ming Port to allow the user reading and writing the
microcontroller program memory. The object file to be
programmed must be HEX formatted [7]. This format is
generated for most of the assemblers and compilers
available in the market.

Project Configuration Control
Together with the Code Programmer, a simple Project
Configuration Controller is provided. This program
allows creating a files structure for every Practical
Project. It creates in the PC disk a directory with the
project name containing a set of mandatory files: Re-
quirements, Design, Diagrams and Software source.
The Project Configuration Controller asks the user to
associate these files with the corresponding software
tool used to generate them.

Using iFOTON a fairly amount of different practical
projects could be developed. The idea of this tool is to
get a standardised set of documents for all these proj-
ects. On the one hand, this will make them easier to be
analysed and evaluated by the teacher, and on the other
hand, this will help to build a projects database easier to
reuse.
Interpreter of commands
Taking into account the availability of the microcon-
troller programmer, a first approach in order to build a
digital instrument could be to develop software to be
loaded in the microcontroller memory. This allows
building a stand-alone instrument. However, as men-
tioned above, the possibility of allowing the student to
develop software to be executed in his/her personal
computer is desirable. This avoids the need of knowing
details about the microcontroller programming features.
In order to make this possible, an Interpreter of Co m-
mands, that has been called iF, has been designed and
implemented. This software, loaded in the microcon-
troller memory, allows managing the iFOTON input-
output ports using commands, which are sent and re-
ceived via the serial port.

Header “$”
Command code Access to ports is performed using

two characters:
First: “L” means Read, “E”
means Write
Second: “D” means Digital,
“A” means Analogical

There are other special commands:
“S” means Scanner
“M” means Stepper Motor
control
Etc.

iFOTON address This allows connecting several
iFOTON systems to the same
serial bus

Port address Meaning the specific pin con-
cerned

Data Used with writing commands
Final code “;”

 Table 1. Commands format

To simplify the design of the Interpreter, a set of re-
strictions have been introduced assigning specific func-
tions to every iFOTON Input-Output Port. The port A,
pines 1 to 5 in the iFOTON Input-Output Port, is used
as analogical input. The port B, pines 6 to 13, is used as
digital input. And, port C, pines 14 to 22, is used a
digital output.
Therefore, by executing the iF interpreter in iFOTON
and running a terminal emulator as the Microsoft
HyperTerminal in the PC, we can use the keyboard to
send commands and the screen to read the answers.

Input-Output Port

Serial Port

Power supply Programming Port

Figure 2. iFOTON PCB

A command is a string of ASCII characters with the
format described in table 1.
The following are some examples of using the iF com-
mands:
“$LA00;” reads the analogical value of voltage in pin 0
of port A. The answer could be $0127; a value in the
range 0 -1025 meaning a value in the range 0 - 5000
mV.
“$LD02;” reads the digital value in pin 2 of port B.
The answer could be $0; meaning a low digital TTL
level input.
“$ED050;” writes the digital value 0 in the pin 5 of port
C.
As far as commands that are more specific are consid-
ered useful, they are implemented expanding in this
way the iF interpreter possibilities.

5. Documentation
Most of the documentation that is required to undertake
the practical projects is provided to the students using
the iFOTON web page in Internet [8].
The aim is to provide not only the necessary informa-
tion to allow the students to solve their projects but also
to help the advanced students to get detailed informa-
tion and to explore new possibilities of use.
This set of documents includes iFOTON description,
iFOTON building manual, iF commands description
and some examples of practical projects. The hyper-
textual documentation includes links to the main com-
pany providers of the electronic components used.
Logically this information must be in continuous evolu-
tion.

6. Examples of practical projects
6.1. Environment data acquisition
This Practical Project consists of representing in the
PC screen the data obtained from the following sensors:
a push button, the position of a potentiometer, the room
temperature, the light intensity in the room, and the
atmospheric pressure.

All the necessary electronic components can be allo-
cated in the free soldering area. The chosen temperature
sensor was the LM35 from National that can be con-
nected directly to an analogical port. A LDR sensor was
used to measure the light intensity. Figure 3 shows the
simple circuits that must be mounted in the free solder-
ing area to handle these sensors.
The MPX2200A sensor from Motorola was chosen for
absolute pressure sensing. The provided signal by this
sensor needs to be amplified. The students must analyse
different instrumentation amplifier circuits [9] and build
one of them to handle this sensor signal.
Once the hardware components have been mounted, all
the measures can be obtained directly using iF com-
mands.
The software part of this Practical Project is aimed at
learning how to program with a specific software tool
for the development of the so-called virtual instruments.
The students must learn to design and build one of these
instruments using the visual language LabView from
National Instruments [10]. They can use an available
free cost Student Version of this program [11].
Figure 4 shows an example of this Practical Project
user interface that has been developed using LabView.

6.2. Design and building of a simple Digital Analyser
The project consists of building a simple Digital Ana-
lyser with only one input and limited buffer of memory
and resolution. The design of this second example of
practical project is based on using the special iF com-
mand “$S”. The Digital Analyser probe is connected to
pins C1 and C0 that must be tied together. The “$S”
command uses the microcontroller capabilities for pulse
wide measurement. It obtains in microseconds the time
the digital signal remains high and the time the signal
remains low. Using these values, the answer of this
command is a text string that contains 40 values of time
intervals starting with the first change of level. For
example “$U:64554C: 473U:50244C: 101...” where U:
means up level, 64554 are the microseconds that the
signal remains high, C: means down level, and so on.

Figure 4. Instrument user interface

+5

B0

A0
A1

A2

1K

1K

LDR

+5

LM35

+5

Figure 3. Sensor connections

+5

Students will use these data as input to the PC software
module.
For this practical project, students are required to de-
velop the software using a generic programming tool as
the C++ programming language. Using, for example, a
tool as Microsoft Visual C++ software development
environment, the design of a graphical user interface is
not very difficult.
To test the Digital Analyser the student is asked to con-
nect to the probe the signal provided by an Infrared
Sensor (TFM5360 from TEMIC). When this sensor
captures the signal emitted by a TV infrared remote
control, it provides a TTL signal formed by a sequence
of pulses.
Figure 5 shows an example of a Digital Analyser user
interface. The screen shows the response obtained after
receiving a signal from a TV PHILLIPS infrared remote
control.

7. Conclusions
The following conclusions have been obtained after
have experimented the new subject pedagogical struc-
ture for two courses.
“Digital Instrumentation and Data acquisition” is a
subject especially orientated to students interested in
having a double skill in hardware and software.
An important number of students of software would like
to study and build hardware as well. They appreciate the
possibility of building a physical system as opposite to
developing systems exclusively made with software
components. In fact, we think that the Practical Project
is one of the causes for that, in this period of two years,
the number of students that has chosen our subject has
been duplicated.
iFOTON has demonstrated to be useful to support the
students Practical Projects and also as a basis to de-

velop some others prototypes of data acquisition and
control systems. It is meaningful that we have received
from Internet some demands for purchasing iFOTON.
The developed set of resources provides a powerful tool
for teaching digital instrumentation. However, we can
make an additional effort improving the Project Con-
figuration Manager. If we make an additional develop-
ment, it will be possible to create a library of hardware-
software reusable modules. This library will be avail-
able in Internet.

References
[1] http://www.dtf.fi.upm.es/~gtrivino/iad.html
[2] PIC16F87X. 28/40-pin 8-Bit CMOS FLASH Micro-
controllers. Document DS30292B Microchip (1999).
[3] http://www.dtf.fi.upm.es/~gtrivino/IFOTON
/1798.pdf
[4] EEPROM Memory Programming Specification.
Document DS39025E Microchip (2000).
[5] IEEE Standard Signalling Method for a Bi-
directional Parallel Peripheral Interface for Personal
Computers. IEEE 1284-2000.
[6] Spur, R. A PC-Based Development Programmer for
the PIC16C84. Application Note AN589, Microchip,
1999
[7] Richey, R. (1998): Downloading HEX files to
PIC16F87X PIC Microcontrollers. TB025. Microchip.
[8] http://www.dtf.fi.upm.es/~gtrivino/IFOTON
[9] Paton B.E. Sensors, Transducers, and LabVIEW.
Prentice Hall, 1999
[10] Bishop R.H. Learning with LabView. Addison-
Wesley, 1998
[11] Jamal R., Pichlick H. LabVIEW applications and
solutions. Prentice Hall, 1999

Figure 5. Digital Analyser user interface

ILP in the Undergraduate Curriculum

Daniel Tabak
ECE Dept., George Mason University,

Fairfax, VA 22030-4444
Tel. (703) 993-1598, FAX (703) 993-1601

e-mail: dtabak@osf1.gmu.edu

ABSTRACT

The paper discusses the teaching of instruc-
tion level parallelism (ILP) in undergraduate
electrical engineering (EE) and computer en-
gineering (CpE) curricula. An argument is
made for justifying the teaching of this topic,
usually taught in graduate courses, at the un-
dergraduate level. A detailed account of the
way this topic is actually taught at the
author’s University is given. The paper dis-
cusses the specific ILP subjects, presented to
the students, along with the technical litera-
ture sources used.

1. Introduction.

The study of instruction level parallelism
(ILP) has been relegated primarily to text-
books intended for graduate studies [1]. It is
also the practice in many Universities to teach
this topic at the graduate level in most cases.
At the same time, it should be realized that
practically all modern computers, be they
RISC or CISC, are implementing ILP on a
constantly growing scale. Some of the latest
products, worth mentioning, are Intel Pentium
4, Intel and Hewlett-Packard (HP) IA-64 ar-
chitecture Itanium, AMD Hammer (64-bit
Intel x86, or IA-32, architecture), Sun Mi-
crosystems UltraSPARC, Silicon Graphics
Inc.(SGI) MIPS R10000, and others.

The author’s department of Electrical and
Computer Engineering (ECE) at the George
Mason University (GMU) has two engineer-
ing curricula: electrical engineering (EE) and
computer engineering (CpE), leading to all
three degrees (BS, MS, Ph.D.). The author has
been teaching for many years a senior course
on computer design. This course is required

for the BS degree in CpE, and it is a technical
elective for the BS in EE.

It has been realized by the author, who devel-
oped this course from scratch, that students
graduating with the BS degree and going into
industry (in most cases) or to graduate studies,
should be knowledgeable not only of the basic
engineering principles of computer organiza-
tion and architecture, but of the most recent
design techniques and practices, implemented
in modern processors. For this reason, the
course content has been constantly changed
and revised from year to year (sometime,
from semester to semester), to reflect the per-
petual innovations in computer design.

As ILP began to be one of the main topics of
research and practice of microarchitecture, it
was introduced, in a timely manner, into the
senior course on computer design. Recently,
the subject of ILP also started to appear in
textbooks intended primarily for undergradu-
ate curricula, such as [2], chapter 8 and [3],
chapter 5. The details of the ILP topics, cov-
ered in this course, are described in this paper.
The course program and its literary sources
are presented in the next section. Section 3
lists the examples of actual ILP processors,
presented to the students. Section 4 includes
concluding comments.

2. ILP in the Computer Design Course.

Prior to going into ILP, the students are ex-
posed to a very detailed study of scalar pipe-
lining. The primary textbook of the course is
[1]. It was used in this course since its first
edition in 1989. Chapter 3 in [1] has a very
exhaustive coverage of pipelining. A good
coverage of pipelining can also be found in
[2], chapter 8, and [3], chapters 4 and 5.

After going over the basic principles of pipe-
lining, using the examples in [1], chapter 3,
the students are exposed to what can go
wrong in pipelines; namely, to the possible
pipeline hazards:

• Structural hazards
• Data hazards
• Control hazards

The above hazards, and some of their possible
remedies, are discussed in detail. It is later
pointed out that these hazards are only more
serious in case of ILP.

Subsequently to pipelining, the discussion of
ILP is initiated, using chapter 4 of [1] and
other sources [4-6]. Sources [4,5] were cho-
sen because they constitute extensive surveys
on the subject with relatively large references
lists. Report [6] was included because it con-
tains very useful material on branch predic-
tion, not available in such concentrated form
elsewhere. In addition, material was taken
from [7-9]. These are some of the earliest ILP
publications, containing basic material. Su-
perscalar, superpipelined, and very large in-
struction word (VLIW) operations are de-
fined. However, the course concentrates pri-
marily on superscalar operation, because of its
prevalent implementation in industry. With
the advent of the Intel-HP IA-64 architecture,
more weight to VLIW may be given in the
future.

Initially, problems involved with data de-
pendence in ILP operations are discussed in
detail. The concepts of name dependence, an-
tidependence, output dependence, and control
dependence, are defined, and some examples
are given. The examples are taken both from
[1] and some are supplied by the instructor. In
addition, the following terms, associated with
this topic, are defined and pointed out in the
examples:

• Rear After Write – RAW
• Write After Read – WAR
• Write After Write – WAW

Subsequently, the following methods, ap-
proaches, and special data structures, having
to do with data dependence, are studied in
detail:

• Register renaming
• Speculative execution
• Out-of-order execution
• Scoreboarding
• Reorder buffer (ROB)
• Reservation stations (RS)
• Trace caching

All of the above topics are well covered and
exemplified in chapter 4 of [1]. Other sources,
such as [4,5,7] are also used. It is pointed out
to the students that instead of using an RS in
front of each functional unit (FU), one can use
one central window with more entries, to for-
ward operands to all FUs [7]. Some proces-
sors are indeed implementing this option.

Some topics in chapter 4 of [1], having a
strong software “flavor”, such as loop unroll-
ing, are skipped. It has been the experience of
the author, that engineering majors do not
willingly accept topics involving program-
ming. Had the course been given to computer
science majors, the above topics would also
be included.

Problems due to branches in ILP, particularly
those dealing with the conditional ones, are
handled next. The topics of speculative and
out-of-order execution are raised again. In
addition, the following topics and data struc-
tures are studied:

• Branch prediction (local, global, bi-
modal)

• Branch target buffer (BTB)
• History table (HT)
• Counter structure (Counts)

This material is also covered in chapter 4 of
[1]. In addition, references [4-7] are used. Of
particular importance on this topic is the re-
port [6].

The topic of data prediction is not covered in
the undergraduate curriculum, since it belongs
in the realm of basic research, as opposed to
current industrial practice. It is relegated to a
subsequent graduate course in computer ar-
chitecture, along with other more advanced
topics (such as explicitly parallel instruction
computing - EPIC, for instance).

3. Examples of ILP Systems

Examples of actual processors, both of the
RISC and CISC type, implementing ILP, are
presented to the students. Special data struc-
tures and methods, discussed in the previous
section, are pointed out to the students, as
they are encountered in the processor exam-
ples. Some of the examples are brought up
during the discussion of various topics in sec-
tion 2. Reference [1] contains a number of
examples. Reference [4] contains examples of
SGI MIPS R10000, Compaq (Digital) Alpha
21164 (actually used in the primary comput-
ing system on GMU campus), and AMD K5.
A number of ILP examples (including the
R10000 and Alpha 21164) can be found in
[10]. Another source to which students are
directed is the Internet (websites such as
www.intel.com, developer.intel.com,
www.extremetech.com and others).

The main ILP implementation example, illus-
trated in detail in this course, is the Intel-HP
IA-64 architecture with its first product, the
Itanium. Most of this material comes from the
Intel and HP websites on the Internet.

In conjunction with the study of the IA-64
architecture, the students are familiarized with
the concept of predication, along with illus-
trative examples of its implementation. The
concepts of EPIC [11,12] are briefly covered.
The details of EPIC are relegated to a subse-
quent graduate course on computer architec-
ture. In the Itanium example, ILP features,
discussed in general earlier, such as register
renaming, scoreboarding, branch prediction,
and multiple FUs, are pointed out to the stu-
dents.

The Intel IA-32 architecture products are also
included in the examples, particularly the lat-
est Pentium 4. Also here as for the Itanium,
the ILP features such as out-of-order execu-
tion, trace caching, branch prediction, and
multiple FUs, are stressed. The multiple reg-
ister files (128 registers) in both Itanium and
the Pentium 4 are pointed out to the students.
In the Pentium 4, those are of course rename
registers along with the old x86 architecture 8
“general purpose” registers (not quite “gen-
eral”, because of their special tasks).

Other examples, such as the Alpha architec-
ture processors (actually used on the GMU
campus), the Sun UltraSPARC, and the SGI
MIPS R10000, are also covered.

4. Concluding comments

Because of the prevalence of ILP implemen-
tation in industrial products, it is obvious that
the topic should be included in undergraduate
curricula, preparing engineers and computer
specialist for the information technology in-
dustry. A sample of a possible undergraduate
coverage of ILP, as practiced in a senior EE
and CpE course at GMU, has been presented.
This program has been constantly revised and
modified in the past few years, to follow up
the developments of the state of the art and
engineering practice. This development and
constant revision of the course is intended to
continue.

REFERENCES

1. J.L.Hennessy, D.A.Patterson, Com-
puter Architecture: A Quantitative
Approach, 2nd ed., M.Kaufmann, San
Francisco, CA, 1996.

2. C.Hamacher, Z.Vranesic, S.Zaky,
Computer Organization, 5th ed.,
McGraw Hill, NY, 2002.

3. J.P.Hayes, Computer Architecture
and Organization, 3rd ed., McGraw
Hill, NY, 1998.

4. J.E.Smith, G.S.Sohi, The Microar-
chitecture of Superscalar Processors,
Proc.IEEE, vol.83, no.12, pp.1609-
1624, Dec.1995.

5. A.Moshovos, G.S.Sohi, Microarchi-
tecture Innovations, Proc.IEEE,
vol.89, no.11, pp.1560-1575,
Nov.2001.

6. S.McFarling, Combining Branch Pre-
dictors, WRL Technical Note, TN-36,
June 1993.

7. M.Johnson, Superscalar Design,
Prentice Hall, Englewood Cliffs, NJ,
1990.

8. N.P.Jouppi, D.W.Wall, Available In-
struction-Level Parallelism for Super-
scalar and Superpipelined Machines,
In Proc. ASPLOS III, pp.272-282,
Boston, MA, April 1989.

9. N.P.Jouppi, The Nonuniform Distri-
bution of Instruction-Level and Ma-
chine Parallelism and its Effect on
Performance, IEEE Trans. on Com-
puters, vol.38, no.12, pp.1645-1658,
Dec.1989.

10. D.Tabak, RISC Systems and Applica-
tions, RSP, UK and Wiley, NY, 1996.

11. M.S.Schlansker, B.R.Rau, EPIC: Ex-
plicitly Parallel Instruction Comput-
ing, IEEE Spectrum, vol.33, no.2,
pp.37-45, Feb.2000.

12. M.S.Schlansker, B.R.Rau, EPIC: An
Architecture for Instruction-Level
Parallel Processors, HP Laboratories
Report, HPL-1999-111, Feb.2000.

���������	��
�
: Promoting Education in Computer

Technology using an Open-ended Pedagogically
Adaptable Hierarchy

Hugh Osborne, Shirley Crossley and Jiřı́ Mencák
School of Computing & Mathematics

University of Huddersfield
Huddersfield HD1 3DH, U.K.� h.r.osborne,j.mencak � @hud.ac.uk

shirleycrossley@blueyonder.co.uk

William Yurcik
Dept. of Applied Computer Science

Illinois State University
Normal
Illinois
USA

wjyurci@ilstu.edu

1. TEACHING COMPUTER ARCHITECTURE
1.1 Computer SystemsAr chitecture�����������������! "���$#%��&('*),+-'".0/��������2143$������.0�5�6��798$#%����7����$���6:;+(1$�=<#%�2�>�?�?�>�4��#@ "AB��'C *�D�����$�������! *����#@�$&E'*)F+-'G.0/$�$�����H1B7>#%�>��7��GIKJL8$�����#%�68�'NM-�>OP���� Q�������$����7�34R� S�� "A%A5A%�>OP��A@�>R$#%�T���N *798$#%��&VUW�$)X'*��.Y *��#%'G� *���Q+-'G.0.Q����#%7N S��#%'G���ZJ5�>7!8���'"A%'G&"3[:\U�+LJ6<]��'=����&GA%�>7��H+(1��^R*_�������> "7!8�#%��&CU�+LJ`M6#a��8�'"�$�b���N "7!8�#%�$&�+(1$�c#%�bA%#@dG�6���> "7!8�#%��&Ce����?�?#@ "�M6#a��8$'G�$�6���N *798$#%��&V��8��C+H3���#%A%A%#%7Q *A%/�8� *_,���(fg�������$�>�4���(.Y >3Y_,��h7�'G.0�0���N "�?'"�� *_�Aa3ji����>�4�^#%�j��8��Y */�/�A%#%7N S��#@'"�`'")E "_$���?�! "7��Q8�#%&G8A%�>OG�>A��?dB#%A%A@��:\�GI &$IG��8���3^dB��'NMk��8� *�2��8$�(eE�$�?�?#l *�D)X'*�-���>���! *�$�! *�B�b#%�
m?n9o�p;q"m?r"s <9RK_����CA@ "7!dt��8��D_� "�?#%7V�?dB#%A%A@���$�>�N�$�>�t��'T.Y "#%�4�! "#%�u "����9v��������C��8�'G�?�H�?dB#@A%A%�6:\�GI &$IS��8��93�7N "�$��'"�Z#l���>�4��#a)w3^x^yYzQ{T|[xQ}�~ *��_,�>#%��&Y��8����W���> "A%�Te����?�?#@ *��)w'"�����>���! *�$�! *�B�9<9I�JL8������D *������M-'.Y N��'*�2���N "�?'"���K)X'*�b��8$�-�$�>&GA%�>7��b'*)F+(1$�`#%�Q���N *798$#@�$&=U�+LJ=IPJL8$�����#%�6 �.0#%�?7>'G�$7>�>/$��#%'"�T'*)]��8$�=�����>79�('")F���>7!8���'"A%'G&G#%7N *A]7!8� *��&"�GR$ "�����8$�����C#%�� Q���>�����>��7930��'V���?�C#%�� */�/���'G/$��#@ S�����$#@�� *7���#%7���'4'GA%�>I

1.2 The Rôleof TechnologicalChange�N�T� pw�D�"�jpWn?�!�Bs,qG�%q��"�0�4n9�"n��%q9� � s4�Do�q^m?r9� � �$� �*� � o � pKm�n?rG�w� �Q�Hq"m!pw�p\m!� � sB��p;qtpWn?rP�!��o9q"�0n9pw� � s4��pw�$r"p�� � �w�H�!n�q*��p�q��Y�Pr"pWn[� � pw� � s�r�"n9m!�Co��$q"m!pZp � �0nB�"� �E�Z�! "/$#@�Q *�Z��8��L���>OP�>A%'"/�.0�>�4���Z8� SOG�H_,�>���D#a�#%�-��8$�E8$#%&G8YA%�>OP�>A, */�/$A@#%7N S��#%'G���('*)5U�Jk��8� *�L8� NOP�6798� "��&"�N�Df pw��n��r"o � �2��m � s,� � ���@n9o(q��=�K B¡¢r"m�nEn9o�o>n9s$p � rG�X� �Cpw�$n(o9r"�0nEr"oHpw��n9�C�-n9m�n£P¤ �Pn?r"m!o6rN�Pq4¥K¦ �> *����#%�$&���8$�>�?�-_� "�?#%7-/���#@�$7>#%/�A%�>�2 *A@A%'NM6�2���������>�4�����'C_$��#%A@�D��8��>#a�b�����$�������! *����#@�$&�'")F8$#@&"80A%�>OP�>A$U�Jk "/�/$A%#@7> *��#%'G�$�-'G���8$�>#a�(dB��'NM6A%�N�$&"��'")F��8��E_� *�?#@7E/$��#%��7�#@/$A%�>�('")5�$#%&G#a�! *AF7�'G.0/����������>R7�'G�$§��$�>�4�Z��8� *�Z��8$�>�?�-/���#%��7>#%/�A%�>�2 S���L���$A%#@dG�>Aa3C��'E7!8� *��&G�L¨B�$#%79dBAa3 *���0��8� S�L��8���3DM6#@A%AF_,�= *_�A%�=��'Q "/$/�Aa30��8��E�� ".0���������������! "���$#%��&��'�)w�$�?��8$���b�$�>OG�>A%'G/�.0���B���2 *���Q��8B�$�K.Y "#%�4�! "#%�V ����! S���('"),��8��6 S�?�dB�$'SM6A%�N��&G�GI

1.3 Using the Right Tools+(1��©#%�]�?�! G��#a��#@'"�� *A@Aa3C7�'G���?#@�������N����'(8� NOP�2 (8�#%&"8CA@�> *����#%�$&6��8����>�?8$h'"A@�FI�JL8$#@�=#@���$������'0��8��Q�$#aª07>�$Aa��3t'*)H���N *798$#%��&[#%�=#%�j *��#%�$7�����h.0���B�! *A r*s,� 8� *������hW'"�D)\ *�?8�#%'G�FIb«�'"�-+(1��c8� *���$��h;'"�V��v�/,����#%�>��7���?8$'G�$Al�C_,�b/$��'SOB#@�$�N��_43=M(��#a��#%��&�A%'NM�A%�>OP�>A4/���'G&"�! *.0.0�>�>RS_����5A%'NMA%�>OG�>A�/$��'G&*�! ".0.0#%��&D "Aa���N "��3Y���N¨4��#a���>�6 ^�?'GA%#@��&"��'"������#%��&D#%�� "��h/,��7����-'*)K+(1��^RP�"I &�IB#%�B���9���� "A��� *�! ����>/����>�?�>�4�! *��#%'"�]R4��8���.0�>.0'*�?3
8$#%���! *��7!8434R�#%�4�����! "79��#@'"��M6#a��8¬/,����#%/�8$���! "A]�$��O�#%7>���>R�����7"I
JL8$#%�[/,�9��7>�>#%OP�N���$#aª07>�$A%�W3`#%�T *&P *#@� u.0#%�?7>'G�$7>�>/���#@'"�]R6��������'��8$�T�$�?�T'*)�#@�� "/$/$��'G/���#@ *���T��'4'"A%�>I��®7>'G.0.0'"�� "/$/$��'G "7!8k#%�D��'�$�?�D��8��D#@�B_$��#%Aa�� "�?�?�>.Q_�Aa3�A@ "��&"�� *&G�0'")L�?'G.0�D���N *A2.Y "7!8�#%���D��'/���'SO�#@���08� "���$��h;'G�u��v�/,����#%�>��7��GI[JL8��>�?�0A@ *��&G�� "&"�>�V S���0��'"�^����h

�?#%&G�$�N�� "�Q�$#@�� *7���#%70��'4'GA%�>R2_����D *�Q/���'G&*�! ".0.0#%��&[��'4'GA%�Q)w'"�Q��vBh/,����#%�>�$7>�N�V���?�9���HM68�'� *Aa���N G�B3V8� NOP�� =��8$'"��'G�$&G80�$���$�9�����! "����#%��&'")Q+(1��^R-.Y "dB#%��&j�?�$798cAl *��&"�� "&"�>��8� *�!����'��$�����������! "���FR6 *���.Y "dB#%��&[#a��8� S�!��)X'*�^�������$���B���E��'��?�>/� *�! *���V��8$��:\.Y *����)\ *7����$������?/,�>7>#a§�7S<�#%�$7>#@�$�>�4�! "Ab)w��'".¯��8$��:\�?�$_����>7��^M6#@�$�S<C�>�?�?�>�4��#@ "A\I�JL8��)w���>¨B�$�>�4��Aa3�7��?3�/$��#%7H�$'47>�$.0�>�4�! *��#%'G�C'"��Aa3C��v$ *7>����_� S���>�5��8$�b/���'G_�hA%�>.0�6���������>�4����8� NOP�GIb°=�?#%��&0�?�$798¬ Q��'4'GA5��'DA@�> *����+(1$�¢#@�E "dB#%���'©�?�?3�#%��&j��'�A%�N S���±eE�$�?�?#l *�±���?#%��&�'"��Aa3± ©e����?�?#@ *�,²"³2��&"A%#@�?8�h³2��&GA%#%�?8,²SeE�$�?�?#@ "�`�$#%7���#%'"�� *�?3´fµ TOP���?3´���?�9)X��Ab��'4'GAb#%�©�?dB#@A%A%�N�8� *�����>R�_$�$�6#%�� */�/$��'"/$��#@ *���� *�� D_,�>&G#%�$�����N¶ �6&G�$#l���GI
JL8�#%�� *_����?�! "79���$�>�?79��#@_,������8$���>�^��'4'GA%����8� S����'G&"����8�����/���'SO�#@���D /$��'"&"���>�?�?#%OP�[8�#%���! S��79843j'")6���N "7!8�#%�$&u *#@�$�Q��84�! ¬7N *��_,�Y���?�N�� S�.Y "�43kA%�>OP�>A%�Y'")C���> "7!8�#%��&�R6/$��'SOB#l��#%��&©�������$�>�4���0M6#a��8± j�?�N *.VhA%�>�?�=#%�$7����>.0�>�4�! "AF��'4'GA%_,'Nv���8� *�E7N "�t_,�����?�>����8$��'G�$&G8$'G�$����8���#%��N����7N S��#@'"�]I
JL8�������.Y "#%��������'")Z��8$#@�� *_����?�! "79�=#%��'"��&P *��#%�?�N�t *�6)w'GA%A%'NM6�>·�1��>79h��#%'G�¹¸u�$�>�?7���#%_,�>�0��8$�����N "7!8�#%�$&�/�8�#%A%'G�?'"/�843k_,�>8�#%���k��8��T��'4'GAah_,'Nv�ºK#%��1���7���#%'G��»T��8$�D��8$�����V7>'G.0/,'"���>�4���C'*)L��8��D��'4'"A%_,'Svj *����$���?7���#%_,�N�Fº�1��>79��#@'"�c¼���#%�?7>���?�?�>�0��8$�¬���?�t'*)���8��>�?�T��'4'GA%�>ºC *����?�>7���#%'"��½Q#%�E Q�?��.0.Y *�?3V'")K��8���#%�6#%�4���>&*�! *��#%'G�t#%����8$�=��'4'GA%_,'Nv�I

2. INCREMENT AL TEACHINGJL8��- "#%.¾'*)� *�B3�&"'4'B�Q7>'"�$���?�H.D�����5_,�b��'�#%�4�?��'B�$��7��-���������>�4���]��'���9M¿7>'G�$7>�>/����C#@�u "��#%��7�����.0�>�4�! "AZ)\ *�?8�#%'G�FIVJL8$�D�?�$_����>7���.Y *�?h�����0.Q�����Q_,�� *�� *A%3��?�N�k "���� ´/�A@ *�k'*)C���>A%#@OG���?3`�$��OP�>A%'G/,�N���?'��8� S�Q��8$� �@n?r"m!s � sB��pw�Bm?n9o��$qG�%� #%�0 S�V *A%AL��#@.0���D *�DA%'NMÀ "�Q/,'G�?�?#ah_�A%�GI ¦ �> *����#%�$&['*)b7>'G�$7>�>/$���E#%�����?��'G�$&GAa3¬���>#%�$)w'"��7>�>�´_43c��8� *������h'G�$�´��v�/,����#%�>��7>�"R- *���©��8�#%�Q�?8�'G�$A@�©_,�T#%�4�?��'B�$�$7>�N�� "�D�N *��Aa3` *�/,'G�?�?#%_$A@�CfÁ *�43�7>'"�$���?�^#%��M68�#%7!8t.Y "�43YML�>�>dB��'")2_� "7!d�&*��'G�$���#%�4�?��'B�$��79��#@'"�¬ S�������N¨4��#a���N�T_,�9)X'"���C�������$�>�4���(7N *�¬�����$���?�! *dP�E���9h "A%#%����#%76��v�����7>#%�?�>�2#%�KA@#%dP��A%3^��'=_,�-/,����7>�>#%OP�N�Q "�C���$#aª07>�$A%���='"���W��'4'��8���'"������#%7N *A@��I
¦ 'NM¢A%�N *���$#@�$&D��8$�����?8�'GA@����_43[��'D.0�N "�$�(��v�7>A%���$�C8$#%&G8¬A%�N S����#%��&��v�/,�>7��! S��#%'G���>I2U;�b#@�b�>�?�?�>�4��#@ "A$��8� *�2��8$�L���N "7!8����H8� *�H8$#%&G8V��v�/,�>79h�! *��#%'"���V'*)E��8$�T�������$�>�4���>¶KA%�N S����#%��&�RL *����7>'G.0.Q���$#@7> *���>����8��>�?���'0��8��^���������>�4���>I�14�������>�4���E/,���?)w'"��.Â��'[�9v$/,��7��! *��#%'G�$�>R��?'T8$#%&G8��v�/,�>7��! S��#%'G���6_���#@�$&V'G���6��8���_,�>����#%�¬ *798$#%�>OP�>.0�>�4�NI
JL8����?�T��M-'� "#%.0�V S���T���?��'"��&GAa3©����Al S���N����'´��8$�T�$�>�N�j��'´���?����79h���$����7>'"�$���?�>�E�?'["�E��'0���� "_$A%�^�������$�>�4����'")2��8���M6#@���>����/,'"�?�?#@_$A%��! "�$&G�T'")E "_$#@A%#a��#%�>�V��'´/$��'*§��^��'´��8$�Y.Y *v�#%.D��.Ã'*)E��8$�>#a�D7> "/� Sh_�#%A%#a��#%�>��)l��'G.Ä��8$��.Y *������#@ *A]'"��'"���9�NI-�¹ML�>A%AF���?����7��������N�T7�'G�$���?�

M6#%A%A(/$��'SOB#@�$�0�������$�>�4����M6#%��8�dB�$'SM6A%�N��&G�["���©�?dB#@A%A%�V S�DO" *��#%'"���A%�>OG�>A%�>IbJL8��67>'G�����?�6�?8�'G�$A@�D7>'G�4�! *#@�D�>��'"��&G8Y "�$O" "�$7>�N�Q.Y S������#@ "A��'�798� "A%A%�>��&"�Y��8$�0.0'"���0 *_�A%�Y���������>�4�NRZ *A@A%'NM6#%��&t��8���.Å��8��V'"/$h/,'*�?�����$#%�W3Y��'0�$�>OG�>A%'G/t *���T/���'SOP�=��8���#%�E *_�#%A%#%�W34R$M68$#%A@���>�$�?�$��#%��&��8� *�Q��8��[_� "�?#%7>�Y S���T7�'*OG�����N��#%���?��ª07>#%�>�4�0�����! "#%AL)X'*�V��8��[A%�>�?� *_�A%����'0/$��'SOB#l���C��8��>.®M6#a��8t��8���_� *�?#@7^dB��'NM6A%�N�$&"����v�/,�>7����N�¬'*)��8$�>.¬I
UW��7�����.0�>�4�! "A����N *798$#@�$&Q#%�6 *A@�?'Q��8��=#@���N "A�'G�T QA%'"��&G�9�(��#@.0���?7N "A%�GI14�������>�4���].Y *d�#%�$&-��8��2�?�! "�$�?#%��#%'"��)l��'G.¬RN)w'"�K��v$ *.0/�A%�GRS�?�>7>'"���$ *�?3��'T�����?��#@ *�?3��N�$�$7N *��#%'"�j'")l���>�©��v�/,����#%�>�$7>�0 k�W)\ *��Aa�^A%#@�$�>��M68$�������8$�����^#@�= 0.0#@�?.Y S��798�_,����M-�>�>�¬��8���#%�=/$��#%'"�=dB��'NM6A%�N�$&"�D *���t��vBh/,�9��#@����7>�Y *������8$�D/��������N¨4��#%�?#a���>�^ "�?�?�$.0�N��_43t��8$�>#a������MÆ#%������#ah������#%'G�]I´Ç±8$#%A@�[�?��7!8�/$��'"_�A%�>.0�Q *���Y��'´�?'G.0�Y��vB���>�4�D�$�� NOP'"#l�Bh *_�A%�GR*��8��b�$��OP�>A%'G/$.0�>�4�]'*)��� *��#%'G�� "A47>���?��#%7>��A@ 6 "���C��8$�2/$��'SOB#@�?#%'"�'*)L#%�4���>&"�! S���N�¬��'4'GA%�� "���t.0����8�'B��'GA%'G&"#@���C7N "�´8���A@/´��'["A%A%�>OB#@ *�����8$�>.¬I

3. APPROPRIATE TOOLS FOR CSA EDU-
CATION

3.1 Primary andSecondaryEducation— “Ho w
ComputersReally Work”JL8$������#%�j k�?8�'*�?�! "&G�`'*)["/�/���'G/���#l S����.Y *������#@ *A^)w'"�´���N "7!8�#%�$&A@ S���(�>A%�>.0�>�4�! *�?3Q "���^�?��7>'G���� *�?3Q�?7!8�'4'GA�/��$/�#%A%�Z��8��L���?�?�>�4��#l *A%�H'*)+-'".0/��������D1B3������>.0������7!8�#a���>79���$���GI���ÈE'SMÄ+-'G.0/$�$��������e��N "A%Aa3Çj'"��dB�[#@�� [/$#@A%'*�C#%�B���9�! "7���#%OP�V+-É=h;e�ÊCËÌ)X'*�����N *798$#@�$&¬+L�=1t��'/���#%.Y *�?3� "���T�?�>'G���� *�?3T�?7!8�'4'GA5798$#@A@�B���>�]IL1B�����$�>�4���6 *����&"��#@�$�N���8���'G�$&G8�'"�$��_43c��+-8�#%/���R� "�´ *��#%.Y *���>�Ti�'"/�/43T�$#%�?d,I(JL8��9���Q S��� S���N "�D'G�©��8��T+-ÉÀ7>'SOP����#%�$&�/,�9��#@/$8����! *A%�>RH7�'G.0/��������^8� S�!��M(S��� *����?'*)w��ML *���GR=��8��´#%�B���9�������� "���c��8��´8�#%����'"�?3c'")^7>'".0/��$��#%�$&$IJL8$�����V#%�C *A@�?'� �¨4��#%Í^7>'G�$�?#%����#@�$&�'*)L.D�$Aa��#@/$A%�Q7!8�'"#@7��0¨4���>����#%'G�$�7�'*OG����#%��&�.Y *���9��#l *A=)w��'".� "A%A�'"��8$���T�?�>7���#%'G�$��'")C��8$��+-ÉDI6JL8$�A@ S��&G�>���� *���N V'*)K��8��^+-ÉÎ#%�=+-'".0/��������E����7!8�#a���>7��������C *���N Y���N "Aah#%�$&=M6#a��8Q��8��(+LÏb°^RG.0�>.0'*�?3� "���D�$ *�! �IKJL8��(���>�?7���#%/$��#%'G�D'")���8$�+LÏ2°¾#%�6_� *�?�N��'G�T��8��CÏZ'"���?��'4'G.Ð+-'G.0/$�$������:\�?�>�C�?��7���#%'G�´»�I ¸"<9I

3.2 Intr oductoryUndergraduateLevel— “The
PostroomComputer”JL8$�E/���'G_$A@��.Æ'*)����N "7!8�#%��&�A%'NMA%�>OP��A�/$��'"&"�! ".0.0#%�$&C *�L "�0#%�4�?��'"h����7���'*�?3Y�����$����&*�! G�$�� *���EA@��OP�>A,M(*�6 G���B���>�?�?�N�T "�(�N S��A%3T *��ÑNÒGÓG½_43¬1B���� *�?�=Ë¬ G����#%79d� "���¬ÔG'G8$�tÉ�'G�$'SOG *�©:\�?�>���GI &$IKÕ »SÖX<9ILU�����8$�

× � p\pØ�@n´Ùur"sÆ�bq"�E���BpWn9m :?Ú$ÛDÜ5<Y��8$��3/���'*OB#@�$�>�Ý *�¹��vB�?���>.0�>Aa3�?#%.0/$A@#a§��N�c.0'B�$��A='")^A%'NMÞA%�>OG�>A=/���'G&"�! *.0.0#%��&� *���7>'".0/��$���9� S��798$#a���>7����$���"IjJL8$�uÚ$ÛDÜ.0'B���>A-8� "�^/$��'SOP�>�©��'t_,�Y'*)=A@ "����#%�$&/,'"/��$Al S��#a��34R- "�V��8��[�B��.Q_,���D'*)VÚ$ÛVÜ±�>.D�$A@ *��#%'G�`/$��'"&"�! *.0.0�>�7��$�?���>�4��Aa3�#@�u��v�#%�����>��7>�"R2»P½[3P�N *���^ *)l�����^#a�^ML "��'"��#%&"#@�� "A%Aa3©/���'"h
/,'"�?�N�FR��?8�'NM6��:\�?�>�GR��GI &$I%RZÕaÑGÑ9ÖZ'*�QÕaÑ>ß*Ö5)w'"�E D�?����OP��3�<9I
JL8$�0à q"o�p\m?qNq"�á�bq*�=���BpWn9m :?âFÜ5<QÕ ã�R]ÒSÖ2#@�� *�´��vB���>�����N�t�>.D�$Al Sh��#%'"��'*)E��8$��Ú$ÛDÜ±.0'B���>A\RH#%��M68�#%7!8k��8$�Y�>.0/�8� "�?#%�D#%�V'"�`i���vBh#%_$#@A%#a��3c "���k&"�>���9�! "A%#a��34I±U;�Y#@�Y���>�?#%&G�$�N����'j#%�4�?��'B�$�$7>�t *�?/,�>7����'*)6+(1��ä *���´A@'NM(h;A%�>OP�>Ab/$��'"&"�! *.0.0#@�$&Y#@�j "��#%��7����>.0���B�! *AZM(>34IJL8$�L��vB���>�$�?#@'"���K S���(�$���?#@&"���N����'E/���'SO�#@���L ��! *��&"�L'")�7>'G.0/$�$��#%��&.0'B���>A%�QM6#a��8�#%����8��´Ú$ÛVÜ]²�âFÜ±/� *�! "�$#%&G.¬Iu���Q��8��93� *���[#%�4�?��'"h����7>�>�u��8���3u7N *�©_,�0���>A@ *���N�©_,'*��8j��'¬��8��tÚ$ÛVÜ]²�âFÜc/� S�! G��#@&". *���©��'¹�W���N *A%�u.Y *798$#@�$�>�>IuJL8���âFÜ/$��'SOB#l���>�Q ´/,'NM-���?)X�$A6 "���i���v�#%_�A%�E��'4'"A�)w'"�(���N *798$#%��&D+(1$�^I�åb3[G����#%��&�'"�?��8$'G&G'"�� *A]��vB���>��h�?#%'"���(��'0Ë¬ "�$��#%7!dY "���[É�'"��'SO" "�]¶ �(_� "�?#%7VÚ$ÛVÜ´ "�?/,�>7����6'*)2+(1$�7> "�©_,�V#%�4�?��'B�$�$7>�N�´#%�© ������>/4M6#%�?�V)\ *�?8�#%'G�FRZ�$�>OP����'SOP���?M68$�>A%.Vh#%�$&©���������>�4���VM6#%��8�$���! *#@A%�>R634���YA%�N "�$#%��&j�>OP�>�4���� *A%A%3`��'� �)X��A%A�$�����������! "���$#%��&Q'")K��8��=/$��#%��7>#%/$A@����'*)H+(1$��I
JL8$��âFÜ` "A%�?'�#%�4�?��'B�$�$7>�>���������$�>�4������'� Y.0'"����)X'*��.Y "A2�$���?7���#%/$h��#%'"�¿:Pæ ���Pr*pWn à �%r*s�o R=�?�����?��7���#%'G�¹»�I »G<['")^7>'".0/��������Y��3������>.0�

 *��7!8�#a���>79���$���>�>I

3.3 AdvancedUndergraduate/Postgraduate—
“Update Plans"°=/��$ *���=ÏbA@ "�$�C:?ç-â�<b#@�6 C)X'*��.Y "A%#%�?.Ä)X'*�(��8������>�?7���#%/$��#%'"��'")Z "_�h���?�! "79�=.Y *798$#@�$�>�6 "���� *A@&"'"��#a��8�.0�>IEç-ât#%�6/� S�?��#%7>��A@ *��Aa3��?��#a�! "_$A@� "�2 6�?/,�>7>#a§�7N *��#%'G�QA@ "��&"�� *&G�-)w'"�K��8��H�$���?7���#%/$��#%'G�Q'")�A@ S��&G�L7>A@ *�?�?�>�'")27�'G.0/��������(��3������>.0�6 S��798$#%����7����$���>�>I

ç-âc8� "�[��#l�$ "7���#%7¬�$�?�>�Y#%�c.Y "�43k S���N "�Y'")�+-'G.0/��������[1B7>#%�>��7>�'"��8$���D��8� "�k+(1��Äf)X'"�V��v$ ".0/�A%�[�� S�! t���?����7��������>�V *����7>'G.Vh/�#%A%���07�'G�����?���$7���#%'G�FI�JL8��[7>'".0.0'G�`�$����'G.0#%�� *��'"�Q#%�k "A%AL��8��>�?� "/$/�A%#%7N *��#%'"���0#%�D��8� S�V'*)C ��q � s�pWn9m IkÏZ'G#%�4�������0 S����#%�4�?��#%���?#%7T��'+-'G.0/$�$�����V1�7�#@����7>�GIu³b "7!8�§��>A@�©'")=+-'".0/��$���9�01B7>#%�>��7>�[�?�>�>.0���'¬�$�?�0#%���^'NM6�©.0'"���0'*�^A@���?�D "�j8�'47Y��'*�! *��#%'G�u)X'"�D�$���?7���#%_�#%��&/,'G#%�4�������5 "����'"/,���! *��#%'"���Z'"�^/,'"#%�B���9���>R*��8B�$�]#%.0/,�N��#@�$&(7���'G�?�?'SOP�9�'")L�������$���B���>¶��?dB#%A%A%��)l��'G.Å'"���0 S���N T��'� "��'*��8����NI�ç-â©#%�� k�����$#ahOP������ *A%�Q/,'"#@�4�����-�?/,�>7>#a§�7> *��#%'G�[A@ "��&"�� *&G�GI-+-'G�$�?#%�����>�4�(���?��'")Hç-â "�L ^�?�$/�/�A%�>.0���B�b��'���8��6�?�! G�$#a��#%'G�� "A���'*�! *��#%'G�$�L7N *�T&*���N *��Aa3Y�>��h8� *��7>�6�������$�>�4���>¶G "_�#%A%#a��3V��'� */�/$A%3Q�?dB#%A@A%�HA@�> *�����>�V#@�0'"�����$'".Y "#%���'V'*��8�����/,'G#%�4������ */�/�A%#%7N S��#@'"���>I

4. USING THE TOOLS
4.1 How ComputersReally Work�è/$#@A%'*�EOG�����?#%'G�¬'*)K��8���#%�4�����! "79��#@OG�^+-É=h;e�ÊCËÅML "�(���>�����N�T'G�t &"��'"��/`'")�7!8�#%A@�����>�` *���©��8���#%�^���N *798$�����>I©JL8$�Y798$#@A@�B���>�k "A%AL�>��h��'N34�>����8$�T/� "7!dG *&G�T "���`A%#%dP�N�©��8$�T7>A@ *�?����'4'G.á.0���! */�8�'*�D�$�?�N�#%�k��8$�t+-É=h;e�ÊCËuI2JL8$�����N *798$�����D)X'"�����k#a�0_���#@&"84�Y "���k7!8��>�9�?h)X�$A\R, "���T)X��A%����8� S�6��8��� "�$#%.Y *��#%'G�$�6M-'G�$Al�¬7> *��7!8���8��C7!8�#%A@�����>�F¶ � *�?�����B��#%'"�]ITJL8��Y7!8�#%A@�����>�j�$#@�j8� NOP�D�?'G.0�Y�$#aª07���Aa��3�#%�©�����$���?h���! "���$#%��&Y��8��QÏZ'G���?��'4'".Ì+-'G.0/$�$�����E�?�>7���#%'"�]ICÈE'SM-�>OP���NRF#%�t��8��/�#%A%'"�YOG�����?#%'G�]RH��8������TM("�0�$'�)X "7>#%A%#a��3k)X'*�Y8� "���$��h;'G�k/$��'"&"�! *.Vh.0#%��&T'")(��8��YÏZ'"���?��'4'G.�+-'G.0/$�$�����NIT«��$A@Aa3�#%�4���>&"�! S��#@�$&´ ����?�9�)w��#%�>���$Aa3Dé=°=U���'E��8$�(ÏZ'G���?��'4'".Æ+-'G.0/��������ZM-'G��A@�^������'G�$_$���N��A%3&"���> *��Aa3�����8� *��7>����8$�����?�9)X��A%�$�>�?�E'*)Z��8�#%�(��'4'GA\I

4.2 The PostroomComputerJL8���âFÜ`#%�C�?��/$/,'"�?���N�´_43t_,'"��8�'G�$A%#@�$�V��'47>��.0�>�4�! S��#@'"�5ÕaÑ�ÖH *��� C)X��A%Aa30#%�4���>&"�! S���N�Y��3$������.ä'*)57>'"�$���?�E.Y *������#@ "A%��Õ ¸NÖ;R�#%��7�A@���$#%��&^ �! "�$&G�^'")b��v�����7>#%�?�>�= "A%A%'NM6#@�$&��������$�>�4���6'")H "A%AKA%�>OP��A@�6��'[G��OG *��7>���8���#%��dB��'NM6A%�N��&G�� "���T�?dB#%A%A@�>I
³Kv$/,�9��#@����7>�Y8� *�D�?8$'SM6�©��8� *�D *)l�����V'"���Y�?�>.0�>�������T:�ÑS¸�M-�>�>dB�!<9RM6#a��8´'G���Q8�'"�$�E'")HA@��7����$���>�� "���¬'"���^8�'"�$��'*)-�?�$/,����OB#%�?�N�t/$�! "79h
��#%7N "A]��v�����7>#%�?�>�6/,���6ML���>d,R$§$������3P�N *�(§$�����E�?��.0�>�������6�����$����&*�! G�Bh�� S���>��M6#%��8��$'t/$��#%'"�QdB��'NM6A%�N�$&"�T'*)(��8��Y�?��_B����7��V���>.0'G�$���?�! *��� ´&G'4'B�c�$���$�9�����! "����#%��&´'")E��8��[�?��_B���>7��Y.Y S�?�����0 *���`7N "�k�?��79h7>�>�?��)w��A%Aa3��$�������?�! "dP�= Q�! "�$&G�C'*)2 ".Q_�#a��#%'G���(A%'NMÝA%�>OP�>A�/$��'"&"�! *.Vh.0#%��&0��v�����7�#@�?����'")- 0A@��OP�>AZ�$'"��.Y "A%Aa3¬7�'G���?#@�������N�t��'[_,�C��'4'T G�BhO" "��7��N�=)X'*�Z#%�4�?��'B�$��79��'"�?3�+(1$�©7>'"�$���?�>�>I2JL8$�2�������$���B������3�/$#@7> "A%Aa3 "7!8�#%�>OG�V T8$#%&G8��9��A@��OP�>AK'")-�����$�������! *���$#%�$&T'*)-��8��Q/$��#%��7�#@/$A%�>�C'")+(1$�¹��8� *�¬���?�� "A] *�(��8�#%�6A%�>OP�>AF'")2#%�$���?����7���#%'G�FI

4.3 UpdatePlansç-â�ML "�D�$'"�^'"��#%&"#@�� "A%Aa3k�$�>OG�>A%'G/,�N�© *�V ����N *798$#%��&´ "#@��R2_��$�Q *� t��8��>'*������#%7N "A(��'4'GA\I�U;�V8� "�V_,�>���`��8$�[�! S��&G���V'")= "7N "�$�>.0#%7T���9h�?�N S��798�Õ ¼$R�½BR�ÓBRFêSÖØR�M68$#@7!8t8� *�E�?8$'NM6�¬��8� *�6��8$��)w'"��.Y *A@#%�?.Â#%�= O" "A%�� *_�A%�= *#@�0)w'"�H��8����$�>�?79��#@/���#%'G�["���0 "�� *Aa3$�?#%�L'*)] CM6#@�����! *��&G�'")L7>'G.0/$�$�����C��3������>.0�� *��7!8�#a���>7��������>�>Itç-âj8� "�^ *A@�?'�_,�>�>�j�$�?�N� "�= V���N "7!8�#%��&[*#l�´ S��O" *��#%'G�$�=���$#%OP�����?#a��#%�>�>RF "���¬8� "�E�?8�'NM6�´#a���ML'*�?��8c#%�c8$�>A%/�#%��&j�������$���B���Q��'j�����$�������! *���`8�'NMÀ��8��T7>'G.0/,'*h�����B����'*)(7>'G.0/$�$�������>R5_,'"��8©8� *�!�BM(*���[*���u�?'*)w�WM(*���"RH#%�4�����! *7��NI�E�Y#%.0/�A%�>.0���B�! S��#%'G�0'")5 ��?��_��?�9�L'")]°=/��$ *���EÏbA@ *���L#%�L7>���?���>�4��Aa3

_,��#@�$&0���?�N�t *�= D���> "7!8�#%��&Y *#l��)w'"�� "�t "�$O" "��7��N��7>'"�$���?��'G�¬��8$�#%.0/$A@��.0�>�4�! *��#%'G�T'")Z)w����79��#@'"�� *A5A@ "�$&G�� *&G�>�>I

5. THE TOOLBOX³b "7!8D'*)���8��b��8$���>�-7>'G.0/,'"���>�4���K���>�?7���#%_,�N��#@�b ����?��)w��A4��'4'GA�#%�Q#a���'NM6�j��#%&"8B�NIVJ5'G&"����8��9�^��8$��3´/$��'SOB#@�$�0 [A%'G��&T������.Å#%��7�����.0�>�4�! "A��'4'"A])w'"�����N "7!8�#%��&0+(1$�^I
ëTì$íïî^ì,ðuñKò5ó>ôBõ*ö`÷0ô�ø�ùXùwúÄûèì�õ*ü /$��'SOB#@�$�>�[j_� "�?#%7t#%�4�?��'"h����7���#%'"�V��'�+(1$��RP#%��7>A%���$#%��&� =§$�����H7�'G�4�! "7��bM6#a��8V��8��6ÏZ'"���?��'4'G.+-'".0/��������6.0'B�$�>A\I
ý^þ ôkÿEì�ö>ó>õSìFì,ð î�ì�ðuñKò5ó�ô�õ 7N *�©_,�V���?�>�© "�^ "�j#@�$7����>.0�>��h�! *A=8� "������h;'G�c���N *798$#%��&` "#@�c)w'"�T#@�4�?��'B����7���'*�?3c�$���$�9��&"�! G���� S���+(1��^I � 'u/$��#%'"�Y��v�/,'"�?�$���t'")=��8����������$�>�4���V��'���8��tÏZ'"���?��'4'G.+-'".0/��������L#%�-���N¨4�$#%���>�Y)w'"�(�?�$7>7>�>�?��)w��AF�$�>/$A%'S3�.0�>�4�H'")]��8�#%�H��'4'"AØR��8$'G�$&G8j#a��M-'G�$Al��'")(7�'G�$���?�D_,�0 "�u G��OG *�B�! *&G�GIV�E�=M-�>A%A- *�C#%�$h�?��'B����7>#%�$&¬���������>�4������'���8��0#%.0/,'"�?�! *�4��7>'G�$7>�>/$����'*)�+(1$��R]��8$�ÏZ'"���?��'4'G.Å+-'G.0/���������.0'B�$�>AFM6#%A@A2 *A%�?'[/���'G_� "_�Aa3�_,����8$�>#a�E§$�����#%�4�?��'B�$�$7���#%'G�Y��'D/����>7>#%�?�C "���V)X'"��.Y *AF�$�>�?7���#%/���#@'"���('*)Z7>'".0/��$���9���3������>.0�(���?���$7����$�����>R��$�?#@�$&V°=/��$ *���CÏ2A@ "�$�>I
�[ñ��5ø�ó>ô¹ÿCùlø��Zö /���'SO�#@���� t��'4'GAL)w'"�V)w�$�?��8��9�0�$��OP�>A%'G/$.0�>�4�D'*)�������$�>�4�N¶ �C�����$�������! *����#@�$&T'*)6+(1��^R] "A%A%'NM6#@�$&¬��8��>.Â��'¬���>OP�>A%'G/ *�������>���K��8��>#a�2'NM6�D.0'B���>A%�K'")� "�$O" "�$7>�N��7>'G.0/$�$�����K��3������>.0�Z *�?h7!8�#a���>79���$���>�>I2°E/��� *���LÏbA@ "�$�L S���E *A%�?'Q */�/$A@#%7N *_�A%�(��'C.Y "�43^'"��8$��� S���N "�H'")F7>'".0/��$���9�H�?7�#@����7>��:\�GI &$I4�� *�! ����?���$7����$�����- *���V7>'".0/�#%A%���7�'G�����?���$7���#%'G��<9RK��8��$�C)\ "7�#@A%#a�! *��#%�$&j7���'"�?�?'*OG���V'*)6�������$���B���>¶5�?dB#@A%A%� *���������$�������! *����#@�$&$Ij«��$�?��8$���D "/�/$A%#@7> *��#%'G�$�V'")E°=/��$ *���[ÏbA@ *���7> "�`_,�[�$�>OP��A@'"/,�N�u��'´�>�$7>'G���! "&G�Y��8�#%�^7���'G�?�?'SOP�9�NR- *���j��'t/���'"hOB#@�$�� *��'"/,�>�$h;�>���$�N�Y��'4'GA5#%�[���N "7!8�#%��&D7>'G.0/$�$�����6�?7>#%�>�$7>�GI

6. REFERENCESÕ%Ñ9Ö��
	�	�������
�������������
�����
������� �
�!	"�#�#"�"�������$�"%"����&"�'�
%$�'($���
) �
�!	�%"����� &
���$����	
(�%"��I

Õ ¸NÖ��
	�	���
���
�������������
�����
������� �
�!	"�#�#"���������$�"%
����&
��
%"�($����&�*
+-,!.�.��$I

Õ »SÖCUW��O[³2��&"Al *�������NI �]��nE¡�m?�!� � pWn?��p\��m?n0q��V�bq"�=���BpWn9m/ r"m?�"�Hr"m?nDr"s��Y $�"o�pWn9�DoC �q��9p\�Hr"m?n I,ÔG'"8���Ç±#%A%��310Î1�'"���>R
� �9M32H'"��d,R�¸"ß"ßGßBIF1��>7�'G���[�N�$#a��#%'G�FI

Õ ¼*ÖCÈ=�$&G8¬Ê=�?_,'"�����"I�JL8$�C�?�>.Y "�4��#%7>�� "���T��3��4�! *v['")K�$/��� S����?7!8��>.0�>�>I$U�� �bqN�4n546n9s�n9m?r*p � q"s76	�bq*s,�!nW��p\o����,qNq"� o!���n?�!�Bs �98 ��n9o R�Ç©'"��dB�?8$'G/��(#%�´+-'".0/�����#@�$&$I�1�/���#%��&G�9�: ����A@ "&$R]ÑNÒ"ÒP¸BI
Õ ½NÖCÈ=�$&G8¬Ê=�?_,'"�����"I�°E/��� *����ÏbA@ "�$�>I�UW�tà m?qN�!n�n�� � sB�"oQq���pw��n

;B£ pw� / r*�-r �X� �!s�pWn9m!s,r"p � q*s,rG�b�bq"sN�Nn9m?n9s,�!nDq"s´ $�"o�pWn9� ,� � n9s,�!n9o I�U�³b³b³±+-'G.0/$�$������1B'47>#%����3�ÏK���>�?�>R5Ñ>ÒGÒP¸4I
Õ ÓSÖCÈ=�$&G8¬Ê=�?_,'"�����"IEæ ���Pr"pWn à �%r"s$o<6�¡ / � �S� × n9�"n�� × q"�× n9�"n��F G�$n?� � = ��r"p � q"s × r"sB�"�$rN�4n I�Ï28�É¢��8��>�?#%�>R�°E��#%OP�����?#a�W3'") � # ��.0�>&"�>�]R�ÑNÒ"Ò"¼�I��
	�	��������
������������������
�>�9��� �
�'	
�#�#"�

�����?�$�
%"���) �'�"(�%"���) ��@"�'���
���9�
	!��A�I
Õ êNÖCÈ=�$&G8¬Ê=�?_,'"�����"I�°E/��� *����ÏbA@ "�$��)w'"��/� S�! "A%A%�>A
 *��7!8�#a���>79���$���>�>I�U��tËuI B� *�! BR�Ô�I e�I�É� SO434RBÉDI�é='4'B�$��OP�GR "����Ô$I � *�?8]R$�N�$#a��'"���>R ¡=��o�p\m?rP��p-Ù�rP�!� � s,n�ÙuqN�4n�� oK�>q"mà r"m?rG�w�@n��5r"s��DC � o�p\m � ����pWn?�u�bq*�=���Bp � s4� I�U�ÊC1TÏK���>�?�>R5Ñ>ÒGÒGÓBI

Õ ãSÖCÈ=�$&G8¬Ê=�?_,'"�����"I�JL8$��Ïb'"���?��'4'G.Ð+-'G.0/$�$�����NI ¡^�5ÙE q"�Bm!s,rG�5q��GF6�"�$��r"p � q"s�rG�IH6n9o9q"�Bm?�!n9o � s��bq"�E���Bp � sB� R,¸�:�ÑS<9RË¬ *��7!8´¸*ßGßP¸4I

Õ ÒSÖ�È=��&"8tÊ=�?_,'*�����GI�JL8���Ï2'G���?��'4'".Þ+-'".0/��������N·bJ5�N *798$#@�$&#@�4�?��'B����7���'*�?3T�$��������&"�! "�$�� S����7>'".0/��$���9�� *��7!8�#a���>7��������GI�UW�à m�qN�9n�n?� � s4�"oQq���pw��n<J�J"m?�0¡^�5Ù ��n?�!�Bs � ��rG�] $�"�E��q"o � �B�Ðq"s�bq"�=���BpWn9m� ,� � n9s,�!nGF6�"�$��r"p � q"sLKØ ��'4��K
F ;�¤P¤';NM R,¸"ßGßG¸BI
ÕaÑNßSÖQéE���>&G'*�?3t1,I4Ç©'GAa)w�GR�Ç±#%A%A%#@ ".O2H�$��7>#%d,RBÈ=�$&G8�Ê=�?_,'"�����"R� *���Ë¬ *��d[È='GA%A%#@�� >34I�J5�N "7!8�#%�$&V7>'G.0/$�$�����'"��&P *��#%ÍN S��#@'"�,²* *��7!8�#a���>7��������^M6#a��8¬A%#%.0#a���N�[���>�?'"�$��7>���E�$�?#@�$&�?#@.Q��A@ *��'*���>I�UW�tà m?qN�!n�n?� � sB�"oQq���pw��n<J�JGm?�D¡^�5Ù ��n?�!�Bs � �!r"� ��*�=��q"o � �B�Ðq"s`�bq"�=����pWn9mC �� � n9s,�!n�F6�"�$��r"p � q"sPKØ ��'4=�K "F;�¤P¤';NM R,¸"ßGßG¸BI
ÕaÑGÑ9ÖCÇ±#%A@A%#@ ".Q2H�$��7>#%d["���TÈE��&G8¬Ê=�?_,'"���$�GI��Ý7���'NM���'") ¦ #a�?��A@�Ë¬ "�´+-'".0/��$���9���>· : #%�?�� *A]7>'".0/��������6�?#%.D��A@ S��'"�(���N *798$#@�$&��'4'GA%�>I�UW�tà m?qN�!n�n�� � sB�"oQq�� ;�¤P¤�R �[� s�pWn9mC � �D���%r"p � q"s�bq"sN�Nn9m?n9s,�!n R � ��MS2-'*��d,R�¸*ßGßBÑGI���+(ËuI

Read,Use,Simulate,Experiment and Build : An Integrated
Approachfor TeachingComputer Ar chitecture

Ioannis Papaefstathiou and Christos P. Sotiriou

Department of Computer Science,
University of Crete,

P.O. Box 1385, Heraklion, Crete, GR 711 10, Greece.�
ygp,sotiriou � @ics.forth.gr

Abstract

In this paper we present an integrated approach for teach-
ing undergraduates Computer Architecture. Our ap-
proach consists of five steps: “read”, which corresponds
to studying the textbook theory, “use”, which corre-
sponds to using a simulator with appropriate graphical
features to visualise the application of the theory, “sim-
ulate”, which corresponds to developing an architectural
simulation, “experiment”, which corresponds to modify-
ing the architectural simulation and observing the impact
that changes make to performance, and finally “build”,
which corresponds to developing a low-level hardware
model in a standard Hardware Description Language. In
our experience, going down to the gate-level is of great
importance, as students often find difficult to visualise
how different architectural approaches affect the actual
hardware (both datapath and control). By following this
five-step approach in our teaching we observed a signifi-
cant increase in both student performance and interest in
Computer Architecture and hardware design.

1 Intr oduction

The subject of Computer Architecture is widely recog-
nised as a significant and essential part of the undergrad-
uate syllabus of university degrees related to computer or
hardware design. One of the main problems with teach-
ing Computer Architecture, is that students should not
only understand the textbook theory, but more impor-
tantly its application in real systems and the impact that
different architectural approaches have on the complex-
ity and the performance of a system.

Thus, to make the teaching process more effective we
have chosen to use an educational approach which we
based on five steps: Read, Use, Simulate, Experiment
and Build. In this paper we describe these five teach-

ing steps and focus on the ones we believe are yet un-
common, however have been very effective in our expe-
rience.

2 “Read”: TextbookTheory

Our Computer Architecture teaching is based on the
Hennessy and Patterson Computer Architecture text-
book, “Computer Architecture: A Quantitative Ap-
proach” [1], currently recognised as the most extensive
and complete reference on the subject. Our course is
tought in the last year of the Computer Science under-
graduate degree, i.e. year 4, and runs for a duration of 14
weeks. As our teaching philosophy relies on combining
theory with practice, we prefer to give students practi-
cal experience than a vast amount of theory. Thus, in 14
weeks we cover the first five chapters of the book, both
in terms of theory and practice.

3 “Use”: HASE Simulator

After the “Read” stage, students are given simple exer-
cises on a graphical simulator. Our simulator of choice
is the HASE [2] environment. HASE (Hierarchical com-
puter Architecture design and Simulation Environment)
is a graphical design, simulation and visualisation envi-
ronment that can be used for both teaching and research.
We use the DLX HASE model developed at the Univer-
sity of Edinburgh. HASE allows students to visualise
both the overall structure of the DLX architecture and
the execution of instructions by observing the step-by-
step progress of individual events. HASE also allows for
students to explore the impact of architectural parame-
ters to the performace of the architecture, as students can
change these using only the GUI environment (Graphical
User Interface) and then re-run the simulation.

Figure 1: The HASE DLX Model

The DLX HASE exercises require students to write
DLX assembly code and execute it on the HASE envi-
ronment. With the help of the simulation environment
students can measure the execution time, study the exe-
cution of each instruction in detail (passing through each
pipeline stage) and the impact of architectural parame-
ters. Students are asked to reason about the execution
time of their program and to optimise their code based on
their reasoning. They can experiment with different code
schedules and diffrerent parameters and evaluate the ex-
ecution time with the aim of finding the best possible
cases.

Since using HASE as part of our teaching, rather than
the standard pen-and-paper ones, we observed a signif-
icant increase in the students understanding and perfor-
mance in the written examinations. This is probably due
to the fact that by getting hands-on experience of the the-
ory covered, students gain deeper and more thorough un-
derstanding.

4 “Simulate and Experiment”: De-
velopa Simulator

The next stage of the course requires for the students
to implement their own architectural simulation using
a standard Hardware Description language (HDL), i.e.
Verilog in our case. In this stage the implementation of

the architecture is to be at the behavioural level. The stu-
dents are asked to implement a RISC CPU called ARCP.
The reason we chose an alternative to the DLX archi-
tecture was to give students something more challeng-
ing than simply re-implementing the DLX, which they
already are familiar with at this stage from the HASE
simulations.

4.1 ARCP - A 2-wayIssueAr chitecture for
Teaching

The ARCP architecture is based on the DLX, and has a
very similar instruction set, however it is slightly more
complicated, being 2-way superscalar. ARCP fetches
two instructions at the same time from its instruction
memory, which should be aligned and independent of
each other for reasons of simplicity (students are given
only 6 weeks of term for completing the whole project).

The main characteristics of the ARC architecture are :� 64 General Purpose Registers.� 32-bit address and word lengths.� byte addressable, big-endian architecture.� support for two data types: words (32-bits) and bytes (8-bits).� 2-way fetch and execution of independent instructions; the
independence of instructions must be ensured by the com-
piler/assembly programmer.� only one control instruction (branch or call instruction) is al-
lowed in an instruction pair and it must be placed in the first
of the two instructions.� only one memory reference instruction is allows in an instruction
pair and it must be placed in the second of the two instructions.� any number of arithmetic/logical operations are allowed.� same memory used for instructions and data and self-modifying
code is not allowed.� memory can only be accessed using load or store instructions.� branches are not delayed.� register 0 is hardwired to 0.� there as no condition codes; comparison instructions write a 1
(for true) or a 0 (for false) at a desstination register.� conditional branches are PC-relative while unconditionals (call
instructions) may be PC-relative or register-indirect; uncondi-
tionals store their current address in their destination register.

4.1.1 ARCP Instruction formats

The three different instruction formats and the format of
an instruction pair are shown in Figure 2.

4.1.2 ARCP Instructions

All supported instructions along with their opcodes and
formats are shown in Figure 3.

Most of these instructions are straightforward and
found in the majority of RISC style architectures. The

4 MS bits 3 LS opcodebits

opcode 000 001 010 011 100 101 110 111

0000 add addi sub subii mul muli cmgti
R I R I R I I

0001 cmeq cmeqi cmne cmnei cmge cmgei cmlt cmlti
R I R I R I R I

0010 and andi or ori xor xori gcp cmlei
R I R I R I R I

0011 shru shrui shrs shrsi shl shli sethi
R I R I R I L

0100 ldbu ldbs ldw stb stw
I I I I I

0101 breq brne brge brlt callr call
L L L L R L

Figure 3: ARCP Instructions and Opcodes

7

32 32

Arithmetic/Logic or Control Transfer Arithmetic/Logic or Load/Store

Instruction Pair Format:

Single Instruction Formats:

13

19

7

7

7

666

6 6

6

Opcode

Opcode

Opcode

R R R

R R

R

Imm

Imma

b

c

13

19

a

a b

L:

I:

R:

Figure 2: ARCP Instruction Formats

only unusual ones are the sybii and gcp instructions.
The sybii instruction corresponds to a subtract imme-
diate inverse operation, i.e. subtracts the register operand
from the immediate, thus inverting the order of the sub-
traction. The gcp instruction corresponds to a guarded
copy operation. A guarded copy operates using three
registers and copies the source register into the destina-
tion if the third register, the guard, is not equal to zero.
Guarded copy instructions can be used for implementing
if-then-else blocks without branches and therefore can
improve the efficiency and performance of the pipelin-
ing.

4.2 ARCP Simulation and Evaluation

In the “Simulate and Experiment” phase of the project
the students are asked to build a behavioral simulation
of this CPU and collect a set of measurements based on
a number of small benchmark programs. Some of these
benchmarks are provided by the lecturers, whereas the
rest are to be developed by the students and are to be
representative of typical applications. In our view, let-
ting the student deal with the problem of finding the best
benchmarks for evaluating the performance of the pro-
cessor is really important, as it makes them really think
hard of all the underlying issues involved. To help stu-
dents achieve this, our research group has developed sim-

ple compilers and assemblers which students can use to
produce their benchmarks.

The measurements that we are asking the students to
provide (and we believe they are the most important for
such a simulation) are the following:

� number of useful instructions executed (non
NOOP).

� number of instruction pairs executed.

� average number of useful instructions.

� average number of memory reads per pair.

� average number of memory writes per pair; the last
two are important for understanding the use of the
memory hierarchy and the impact of having differ-
ent data and instruction memories.

� number of taken and not-taken branches.

� percentage of useful instructions for each of the fol-
lowing groups: add/sub/mul, compare, and/or/xor,
shift, gcp, load/store, branch, subroutine-call and
jump.

Towards the end of the course students are asked to
write a report which describes possible optimisations on
the above architecture based on their simulation results.
They are also asked to run new experiments on their
architecture so as to support their claims for the possi-
ble optimisations. We believe that this idea of students
proposing possible optimisations given an initial archi-
tecture is a crucial skill that a Computer Architecture stu-
dent should acquire.

5 “Build”: Implementing the
ARCP CPU in an HDL

The last stage of the course involves the development
of the ARCP CPU, using synthesisable and structural
HDL code based on a set of pre-implemented “library”
components which we have developed for this exercise.
The ARCP instruction set has been designed with em-
phasis on straightforward mapping to a gate-level cir-
cuit description. The students are asked to implement
the ARCP CPU using a five stage pipeline, similar to the
DLX pipeline of the textbook. This is shown in Figure 4.

Reg. Write
Memory

Data
ALU

PC+Imm

Instr. Decode

Register Read

Fetch

Figure 4: ARCP CPU Pipeline

We provide students with the following pre-
implemented library of components to use in their
ARCP CPU:

� a 6-port Register File.

� separate Data and Instruction Memories with a
bandwidth of 64 bits/clock cycle.

� two 32-bits ALUs.

� any number of multiplexers, flip-flops and de-
coders.

The ARCP CPU control logic is to be implemented
in synthesisable or at least “almost” synthesizable HDL;
for this purpose students are provided with guidelines on
producing synthesizable Verilog Code. We ask students
to identify all possible data and control hazards and to
try and reduce them using data forwarding. Whenever
forwarding cannot eliminate a hazard, their control logic
should insert wait states, i.e. “bubbles” in the pipeline.
As students have only 3 weeks to implement this stage
of the course, to save time they are provided with a
schematic of a reference datapath. Figures 5, 7, 6 show
the schematics for stages 1, 2 and stages 3,4 and 5 of the
ARCP pipeline respectively.

The ARCP datapath schematics shown include some
of the required control signals to give students a hint
of how to implement the control logic for the pipeline
stages and for forwarding data. During the past few years
of running this course we have experimented with these
schematics, in some years showing some of the control
signals in these schematics, whereas in other years we
did not. We found that students took about 50% more
time to complete the implementation when they were not
given any of the control signals in these schematics.

xfer

wait

+

STAGE-1

pc1

nxtpc1

nxtpc1

wait

irValid2

pc1

pc1

xfer

dstPC

+8

Cache

Instruction

imemA

imemB 32

32

64

64

pc2nxtpc2

irA1

irB1 irB2

irA2

pc1plus8

Figure 5: Stage 1 of the pipeline

After completing their implementation students must
verify the correctness of their low-level implementation
by using their architectural simulator developed in the
“Simulate and Experiment” stages as a “Golden Model”
and comparing the operation of the two on the same pro-
gram code. In this way, students acquire another neces-
sary skill for hardware design, verification against high-
level models.

To make good use of their implementation and to
make them realize that detailed hardware models can be
used whenever detailed results are required, we ask them
to calculate the speedup of this architecture compared to
a reference non-pipelined architecture we provide them.

Finally, the students are to provide a report on how dif-
ferent architectural approaches affect the hardware im-
plementation. To help them realise the complexity of the
task we suggest that they alter their implemented dat-
apath so as to implement their proposed optimisations,
which they already implemented in their architectural
simulation. By doing this, it is easily made obvious
how complex it can be to implement a new optimisation
which might take almost no time to incorporated in the
architectural simulation.

STAGE-5STAGE-4STAGE-3

A

ALU

B

ALU

byte
copy

sign-extend
align

1+6

1+6

mdforw3

dstEnabB3, dstRegB3 dstEnabB4, dstRegB4

dstRegB5
dstEnabB5

dstRegA5
dstEnabA5

dstEnabA4, dstRegA4dstEnabA3, dstRegA3

aluBmode3

aluAmode3

mDin4b

aluB4

aluA3

resultA4aluA4

resultA5

resultB5
aluB3

2 LS bits

mDout4b

resultB4

aluAinA3

aluAinB3

mDin3a

aluBinB3

aluBinA3

mDout4aData

Cache
Dout

Din

R W B

Addr

mDin4amDin3b

msigned3
mbyte3
mwrite3
mread3 mread4

mwrite4
mbyte4
msigned4

aluB3
resultB4
resultB5
resultA5
resultA4
aluA3

Figure 6: Stages 3, 4 and 5 of the pipeline

6 Conclusion

In this paper an integrated approach for teaching Com-
puter Architecture was presented, which is currently
used at our University, and has been found to be very
effective. Its main advantages are the following:

1. It increases the interest of the students in Computer
Architecture and hardware in general. There was a
significant increase in the number of students con-
centrating on Hardware after we have adopted this
approach either by taken their undergraduate thesis
on a hardware subject or enroll on a hardware or
semi-hardware oriented postgraduate program.

2. It gives the student a thoroughly comprehension of
the main subjects of Computer Architecture

3. It enhances their performance in the exams which is
probably due to the fact that they get a lot of hands-
on experience on every aspect of Computer Archi-
tecture.

4. It provides them with skills that are very useful
when designing hardware and not only when inves-
tigating the architecture of a system.

aluAinA3

guardA
guardB

guardA

xferMode

guardB

selBinB

test

rAc

rBc

needrBa, needrBb
needrAa, needrAb

selrBa, selrBb
selrAa, selrAb

STAGE-2

mread2
mwrite2
mbyte2

msigned2

dstEnabA2
dstEnabB2

dstEnabA3, dstRegA3
dstEnabA4, dstRegA4
dstEnabB3, dstRegB3
dstEnabB4, dstRegB4

rBb
rBa

rAb
rAa

aluAmode3

selAinB

selAdst

selBdst

rBb

rBa

rAa

rAb

pc1
immA19shifted13
immA13

dstRegA2
dstRegB2

dstEnabB5, dstRegB5
dstEnabA5, dstRegA5

rAa

rAb

rBa

rBb

sign-ext.

align &

align &

sign-ext.

aluAinB2
regAb

aluAinB3

regAa aluAinA2

xferxfer

rfAb

rfAa

pc1

Register

File

pc2

dstPC
regAb

selPCdst

immA19shifted3

dstRegB3

dstRegA3

irB2

irA2

dstEnabA3
dstEnabB3

mread3
mwrite3
mbyte3
msigned3

mdforw3

aluBmode3

Control

PLA

Bypass Logic

& Comparators

wait wait

aluBmode2

aluAmode2

mwrite2
mread3

mdforw2

selBinB, selAinB, xferMode

+

immB13

immB19shifted13
immB13shifted2

aluA3
resultA4
resultA5
resultB5
resultB4
aluB3

mDin3amDin2

aluBinB3

aluBinA3

rfBb

rfBa

aluBinA2

aluBinB2

regBb

regBa

test

selPCdst

opcodeA

opcodeB

irValid2

wait

Figure 7: Stage 2 of the pipeline

This approach is, we believe, ideal for a course that is
taken by students that might want to focus on hardware,
or have already made such a decision and they would like
to get a first idea of how a system is initially designed,
then simulated and finally built and tested. Its main dis-
advantage is, we believe, that it relatively increases the
work needed for the course and might not be that appro-
priate for cases where just an introduction to Computer
Architecture is needed (maybe because there are a great
number of more specialized hardware design courses in
the syllabus).

References

[1] J. L. Hennessy and D. A. Patterson, Computer Ar-
chitecture: A Quantitative Approach. Morgan Kauf-
mann, 1990.

[2] P. S. Coe, F. W. Howell, R. N. Ibbett, and L. M.
Williams, “A Hierarchical Computer Architecture
Design and Simulation Environment,” ACM Trans-
actions on Modelling and Computer Simulation,
vol. 8, Oct. 1998.

An Integrated Laboratory
for Computer Architecture and Networking

Takamichi Tateoka, Mitsugu Suzuki, Kenji Kono, Youichi Maeda, and Kˆoki Abe

Department of Computer Science
The University of Electro-Communications

Tokyo, 182-8585 Japan
Email: cnp@cacao.cs.uec.ac.jp

Abstract

Processors, compilers, and networks – important mate-
rials covered by computer science curricula – are of-
ten treated independently in laboratories associated with
corresponding lecture courses. An integrated laboratory
called CNP for juniors majoring in computer science at
the University of Electro-Communications has been de-
veloped and is now under way, where a networking pro-
tocol stack implemented by students is translated into ob-
ject codes by a compiler implemented by students, which
in turn are executed on a processor implemented also by
students. The goals of the integrated laboratory are to
deal with modern and attractive materials, to provide stu-
dents with opportunities of collaborating in constructing
a large system, as well as to have students share a feeling
of accomplishments among them. Responses from stu-
dents approved our intention and verified the effective-
ness. In this paper, we describe the design and develop-
ment of baseline components to be integrated, laboratory
organizations and schedules, and results and evaluations
of the laboratory.

1 Introduction

Processors, compilers, and computer networks are im-
portant materials covered by computer science curricula.
They are often treated independently in laboratories as-
sociated with corresponding lecture courses. Many re-
ports on laboratories dealing with microprocessor de-
sign and implementation have been published (eg.[1]).
Exercises on compiler design are too common to men-
tion. Some reports on computer networking laboratory
exist[2], although it has been recognized in the Com-
puting community that academic institutions should treat
computer networking to more fully extents[5].

However, in order for improving cost performance of

a computer system, tradeoffs between hardware and soft-
ware must be well understood and the characteristics of
applications executed on the system need to be carefully
examined. Adjusting interfaces between system compo-
nents is also required. Thus taking a broad view of entire
system is mandatory. For students to acquire the view,
separate components need to be integrated into a com-
plete system in a laboratory.

A design problem across areas can effectively be
solved in a short term by teamworking, where the prob-
lem is divided into parts and works by team members are
shared and combined. Providing students with opportu-
nities to have experiences of such teamworking in univer-
sity laboratories dealing with design and implementation
of both hardware and software for modern and attractive
applications is of key importance.

An integrated laboratory called CNP for juniors ma-
joring in computer science at the University of Electro-
Communications (UEC) has been developed and is now
under way, where a networking protocol stack (called
TinyIP) implemented by students is translated into ob-
ject codes by a compiler (called Tiny C) implemented
by students, which in turn are executed on a proces-
sor (called MinIPS) implemented also by students. The
whole system integrated by students in the laboratory is
called Tiny J.

Students are organized into several teams. Members
of a team cooperatively perform the laboratory experi-
ments. The goals of the CNP laboratory are for each stu-
dent to understand the interfaces between system mod-
ules, to design and implement an assigned one, to in-
tegrate cooperatively the components into a system, as
well as to discuss and adjust their specifications.

In the following, Section 2 describes laboratory de-
sign and developments of baseline components to be im-
plemented and integrated by students. Related courses
offered to students are also stated in this section. Section
3 describes the details of the laboratory including stu-

UDP/IP stack
(TinyIP)

C Compiler
(Tiny C)

32bit Microprocessor
(MinIPS)

executable

E
T

H
E

R
N

E
T

Linux

TinyJ System

Communicate with
UDP/IP Protocol

Figure 1: Illustration of the integrated laboratory.

dent organization and schedule of the laboratory course.
Section 4 gives results and evaluations of the laboratory.
Section 5 closes with a summary and future works.

2 Design and Developments

2.1 Laboratory Design

The laboratory is designed to amalgamate UDP/IP pro-
tocol stack, a C compiler, and a 32bit RISC processor.
Students integrate these materials into a complete sys-
tem (Tiny J) to construct a complete small computer sys-
tem which is capable of communicating with Linux OS
through Internet standard UDP/IP protocol. A simple
protocol stack (TinyIP) coded in a simplified C language
is translated into object codes by a compiler (Tiny C) im-
plemented by students, which in turn are executed on a
processor (MinIPS) implemented also by students. The
overview of the integrated laboratory is illustrated in Fig-
ure 1.

We design the laboratory so that students can design,
implement, and modify all parts of the system compo-
nents. Students, however, are not assigned to design
every submodule because of restricted laboratory hours.
We provide students with information enough for them to
inspect any part. For example HDL descriptions of pe-
ripherals used for console function and source codes of
original compiler which are to be extended by students
are given to them.

We summarize related lectures and laboratories refer-
ring to the Computing Curricula 2001 by IEEE CS[5].
Lectures covering AR1 to AR5 of Architecture and Or-
ganization and PL1 to PL6 of Programming Language
are offered as core, accompanied with corresponding
labs. AR6 (Functional organization) is covered by an
elective sophomore course, where [6] is used as a text-

book. PL8 (Language translation system) is covered by
an elective junior course, where a simplified C compiler
Tiny C[8] is introduced and designed. Fundamentals of
OS are introduced in a requisite course but the topics
are intensively treated in an elective junior course. Top-
ics in Net-Centric Computing are treated in an elective
senior course, where principles of communication net-
works with OSI layered architecture are introduced.

The CNP is offered as a requisite junior laboratory
course. Since we can not expect special knowledges
given by elective lectures or lectures offered in future
courses, when necessary we provide students with practi-
cal lectures required to complete the assignments in lab-
oratory hours.

2.2 MinIPS Computer System

Requirements for the processor to be developed are: 1)To
be simple and modern as an educational processor given
to computer science juniors; 2)To have enough perfor-
mance that allows building a computer system using the
processor as a CPU core in Tiny J System; 3)To conform
to the processor dealt with by [6] used as a textbook in
the corresponding lecture course.

Requirements for the computer system based on the
processor are: 1)To accommodate a communication port
through which the protocol stack transmits and receives
packets; 2)To equip with enough amounts of memory for
programming TinyIP; 3)To have functions for loading
programs and acting as a console.

We utilize a SRAM based FPGA as the implementing
device used by students. It makes students to redesign
the processor any times without care of making errors.
An evaluation board, system-on-a-programmable-chip
(SOPC) Development Board by Altera, equips with an
FPGA which is capable of realizing 400,000 gate logic
circuits using Logic Elements (LEs) and 20 KB memory
using Embedded System Blocks (ESBs). The board also
equips with Synchronous SRAM (SSRAM), RS232C,
and Ethernet transceiver, which enable to organize a sys-
tem meeting the requirements with no other hardware
supplements. For those reasons we have chosen to uti-
lize the SOPC Board for implementing the system.

We do not use any commercially available intellec-
tual properties for FPGA configurations such as Ether-
net controllers because intellectual properties would in-
troduce black boxes. Thus all the prototype modules in-
cluding the peripherals have been designed by ourselves.
Although students are not assigned to design the periph-
erals, our descriptions are given to students so that who-
ever interested is ready for reading.

The organization we have designed is shown in Figure
2.

Instruction Cache

256word(1kByte)

Data Cache

256word(1kByte)

Boot Loader
SSRAM

Controller
Serial

Controller
Ethernet

Controller

SSRAM RS232
XCVR

PHY

BUS

256kword x 2
(2MByte)

MinIPS

(32bit RISC Processor)

Figure 2: MinIPS system organization. (Enclosed with
dashed box is the part implemented on an FPGA.)

The MinIPS processor[3] is a 32 bit RISC which con-
forms with MIPS[6]. The MinIPS instruction set is re-
duced to a minimum. For example, multiplication and
division are not provided as machine instructions but are
compiled to subroutine calls. The block diagram of the
processor is shown in Figure 3. Conforming to the text-
book, the structure is composed of five pipeline stages;
instruction fetch (IF), instruction decode (ID), execution
(EX), memory access (MEM), and write back (WB). A
forwarding unit (FW Unit) is equipped. The load delay
is one, and the branch delay is also one. The MinIPS
processor conforms to the textbook but it is simpler.

Although the MinIPS processor is based on Harvard
Architecture, it does not allow fetching instruction and
data simultaneously because the memory is not physi-
cally divided into instruction and data submemories. As
a solution to the problem we provide instruction and
data caches which we implement using ESB memories
on FPGA. Two SSRAM chips each of 256k words ca-
pacity mounted on the SOPC board are utilized for the
main memory. It has enough capacity for programming
TinyIP.

The specification of the RS232C controller is based
on the simulator SPIM[6], enabling a smooth shift from
simulations to executions on real machine. We use the
RS232C for program loading and console function.

For the communication port, we adopt the commonly
used Ethernet where a link layer address is provided.
As the physical layer a PHY chip on the SOPC is uti-
lized. Descriptions of the link layer for controlling the
PHY has been developed by ourselves[4] and given to
students. The interface is driven by hardware interrupts
since polling is not a practical method for receiving Eth-
ernet packets.

For loading programs and acting as a console, two pro-
grams, boot loader and monitor, are provided. The boot
loader is stored in a ROM area implemented on ESB. It

is initially executed for loading programs upon turning
on the power. The monitor is loaded through the boot
loader. It provides such console functions as display-
ing the memory contents, loading programs and data into
memory, displaying the contents of registers, modifying
the contents of program counter, and handling interrupts
as well as dispatching the corresponding processes.

Using Quartus II ver.1.1, a development software tool
by Altera, we describe and compile the design in Verilog-
HDL, configuring the FPGA on the SOPC board. About
57% of the LE resources have been used for the con-
figuration. The compilation requires about 25 minutes
with a platform of Pentium4 1.7GHz CPU with RDRAM
512MB memory. The MinIPS system is operating at a
clock rate of 16.5MHz.

2.3 Tiny C Compiler

Requirements for the language compiler to be developed
are: 1)To be simple enough to understand; 2)To have
enough ability that allows compiling network protocol
stack and applications for Tiny J System; 3)To conform
to compiler design lectured in the corresponding lecture
course.

Tiny C[8] is a small subset of C language developed by
Prof. Watanabe as an illustrative compiler for his com-
piler course. It almost meets our requirements except
for lacking of support for some operators such as bitwise
operators. We supplemented support for unary address
operator (“&”), bitwise operators (“&”,“ |”), modulo op-
erator(“%”) and shift operators (“<<”, “ >>”) into Tiny C.
The supplemented version is denoted by Tiny C hereafter
unless otherwise noted.

We also introduced minor modifications into SPIM
emulator[6] to use it as a MinIPS emulator. The mod-
ifications include appending a memory image snap-
shot function which is used as a substitution for as-
sembler and linker to obtain MinIPS object codes.
Signed multiplication and division routines were added
into “trap.handler” containing startup codes for
MinIPS, since MinIPS does not support these instruc-
tions.

2.4 TinyIP protocol stack

Requirements for the protocol stack to be developed are:
1)To be simple enough to understand and easy to de-
scribe in Tiny C with simple syntax; 2)To be realistic
and practical so that students feel a sense of accomplish-
ments; 3)To be educational so that students understand
features and benefits of the protocol with layered archi-
tecture; 4)To be extensible so that students can append
their own ideas to the protocol; 5)To be independent of

Add

Add

Add

Add
SL16

shifter

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

rs
rt

rt
rd

immedeate

shamt

31

immediate

Instruction

JumpTarget

immediate

S
ext

B cond
test

FW
unit

next PC
selecter

Inst.
Cache

Data
Cache

WD RD

addr

Register
File

RR1
RR2

RD1

RD2WD
WR

ALU

selOP

ALUSrc

RegDst

MemWrite

MemtoReg

nextPCsel

Jump unit

target

PC

4

8

Control
Unit

Bcond

nextPCtype

ALUctrl

SHctrl

RegWrite

Exception
Control
Unit

EPC

cause

status

0x10003000

M
u
x

Exception

Register

Unit

M
u
x

MemRead

I
D
_
E
X

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r

I
F
_
I
D

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r E
X
_
M
E
M

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r

M
E
M
_
W
B

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r

Z
ext

∗4

Figure 3: Block diagram of MinIPS processor.

hardware so as to allow testing before the processor be-
comes available.

To simplify the protocol stack, we use Internet Proto-
col (IP) as a network layer, and User Datagram Protocol
(UDP) as a transport layer. We do not support packet
fragmentation, Address Resolution Protocol (ARP), nor
Internet Control Message Protocol (ICMP) processing.
In spite of the limited functions, it is still capable of
communicating with standard IP such as the one imple-
mented in the Linux kernel.

We provide students with two versions of the imple-
mentations: one written in standard C language to illus-
trate the design of the protocol stack, the other written in
Tiny C to be integrated into Tiny J System. Both of them
have almost the same structure except that the latter calls
for works on differences between standard C and Tiny C
compilers. We basically describe the former in this sec-
tion.

The stack consists of ten modules whose functions
and calling flows are shown in Figure 4. They are de-
scribed in separate C source files with well-defined in-
terfaces. Receiving functions are driven by interrupts.
The method of using interrupt mechanism is practical
and keeps the control flow simple and conforming to the
OSI seven-layer model. The structure facilitates append-

ing new features to the stack, making the stack extensi-
ble. Hardware dependent routines are collected into one
module (hardware.c), resulting in portability to new
hardware.

The core routine of the stack consists of about 800
lines in C language with additional 400 lines of instruc-
tive comments. Tiny C version consists of about 500
lines since some features such as generic FIFO routines
were omitted.

We also supplied a TinyIP compatible library for stan-
dard UDP/IP stacks on Linux. Students can build and
execute application programs before completion of their
own stacks.

We developed a monitoring tooletherpeep which
allows observing ethernet frames in hexadecimal num-
bers (and ascii characters). It is similar totcpdump
command on Linux with-x option except thatether-
peep displays ethernet headers. It displays whole ether-
net frames in simple format.

3 Integrated Laboratory

The laboratory course offered in second semester of ju-
nior year started from year 2001. Hours assigned to the

application

udp_dequeue()

udp_enqueue()

udp_input()

ip_input()

eth_input()

hardware_input()

udp_output()

ip_output()

eth_output()

hardware_output()

udpapi_send() udpapi_receive()

fifo

udpapi.c

udp_input.c

ip_input.c

eth_input.c

hardware.c

eth_output.c

ip_output.c

udp_output.c

UDP
encapsulation

IP
encapsulation

Ethernet
encapsulation

UDP
decapsulation

IP
decapsulation

Ethernet
decapsulation

Interface for
hardware layer

Interface layer for
this IP protocol suite

buffering of
received messages

fifo.c

utility functions

util.c

Interrupt

Figure 4: Functions and their calling flows of TinyIP modules.

course are divided into two periods each consisting of
12 three-hour classes. The laboratory course completes
within individual periods. In each period 30 students take
the course. Thus 60 students in total participate in the
laboratory during the semester.

In each period students are grouped into five teams
each of six students. A team consists of N (network-
ing), C (compiler), and P (processor) subgroups who are
in charge of working on corresponding sub-laboratories
and cooperatively develop a complete Tiny J system.

In the P sub-laboratory students proceed along the fol-
lowing steps: 1)Learning how to use design tools; 2)De-
signing small submodules; 3)Designing arithmetic logic
unit; 4)Designing pipelined processor; 5)Compiling the
MinIPS system and verifying the function.

For coordinating them with other sub-laboratory as-
signees, we fix a minimum specification given to stu-
dents. After getting familiarized with the development
tools, students first design simple modules such as multi-
plexors and adders, and then gradually shift to designing
more complex modules. When completing all the neces-
sary modules, they start designing the entire processor.

In designing the processor they are not assigned to de-
scribe the whole of the processor. Instead, they are given
a processor description with several parts taken out in
such a way that the behavior of the pipelined processor

can still be understood. They are assigned to supplement
the incomplete design with proper descriptions. For such
modules as the RS232C and Ethernet controllers, de-
scriptions are given to students so as to enable them to
verify that the processor is operating.

For testing and verifying the design several tools are
provided: 1)A graphical simulator embedded in Quar-
tus has been used throughout the experiments; 2)LEDs
equipped on the board are used in the preliminary exper-
iments as well as for monitoring states of programming
execution; 3)The boot loader given to students has been
effective in checking whether the MinIPS system works
as a whole; 4)Test programs such as calculating prime
numbers in Tiny C are given to students for more exten-
sive debugging.

Discussions among team members on the specification
of MinIPS are expected. For example, extra instructions
may be added to MinIPS instruction set if an agreement
is reached between C and P assignees.

Students start the C sub-laboratory by tracing the
parser in the original Tiny C source code to draw a chart
illustrating the syntax of the language processed by the
compiler. Then they are assigned to refine the origi-
nal Tiny C compiler so as to accept additional operators
and literals required to implement TinyIP. The assign-
ments are the necessary supplements described in the

previous section. Discussions among team members on
the specification of their Tiny C is expected also in this
sub-laboratory. Agreements in the team members may
lead to changing the specification of their final version
of Tiny C.

In the N sub-laboratory students proceed along
the following steps: 1)Writing simple applications;
2)Analyzing ethernet frames; 3)Implementing and en-
hancing TinyIP for Linux; 4)Implementing TinyIP in
Tiny C for MinIPS; 5)Combining TinyIP with other sub-
laboratories. The fourth and the last are steps for the
CNP integration requiring collabrations of team mem-
bers. The integration steps are to be led by N assignees.

Students start the N sub-laboratory from learning ba-
sic network architecture and writing some simple appli-
cations. They connect two Linux boxes with an ethernet
cross cable, configuring a LAN isolated from the cam-
pus network. We provide a TinyIP compatible library
for Linux and a sample application with detailed docu-
ments. They utilize the library to write client and server
programs satisfying echo protocol[7]. The programs are
used as applications later in Tiny J.

Next they learn how the frame is encapsulated and de-
capsulated. They capture and analyze ethernet frames
produced by standard UDP/IP stack withetherpeep
command. They also get a good reference of working
UDP/IP frames.

Students then proceed to implementing TinyIP in stan-
dard C. We provide a template of TinyIP implementation
missing core functions such as encapsulation and decap-
sulation of ethernet, IP, and UDP frames. For verifying
the implementation they connect two Linux boxes: one is
configured to use standard UDP/IP stacks while the other
is to use TinyIP. On both boxes they execute their client
and server applications developed at the first step. They
enhance their TinyIP implementation by adding some
features such as ICMP and ARP, and/or by making im-
provements on memory consumption.

After discussions among team members to fix the final
language specification of Tiny C, they implement TinyIP
in Tiny C for MinIPS. They are given a template of
TinyIP implementation in Tiny C and write the miss-
ing code in accordance with Tiny C specifications. They
compile and test their implementations in the following
three environments: 1)gcc for compilation and Linux for
execution; 2)Tiny C for compilation and MinIPS emula-
tor for execution; 3)Tiny C for compilation and MinIPS
real hardware for execution. In the first environment,
they can test TinyIP stack independently of Tiny C and
MinIPS. In the second environment, they can test TinyIP
stack and Tiny C independently of MinIPS real hard-
ware.

Finally in the third environment they integrate results

developed by team members into a complete Tiny J Sys-
tem. The integration follows the steps: 1)N, C, and P
subgroups demonstrate respectively that TinyIP is run-
ning on Linux, that Tiny C generates code executable on
MinIPS emulator, and that the MinIPS processor works
by executing LED blinking program. 2)They synthesize
MinIPS and load the TinyIP compiled by Tiny C. 3)They
execute an echo server on Tiny J System and confirm that
it can communicate with an echo client on the Linux box.

Screens displaying UDP/IP communications between
MinIPS and Linux are shown in Figure 5. A window
of the MinIPS console displays loading and execution
of Tiny J object codes for the echo server. The Linux
screen displays execution of the echo client on a window
while monitoring the communications byetherpeep
on the other window. The echo server in this figure turns
upper/lower cases of received alphabets in transmission
for ease of verification.

4 Results and Discussions

In the P sub-laboratory, according to steps reached by in-
dividual students, we gave hints at early stages to adjust
their paces. In the first and second periods, eight of ten
and ten of ten assignees completed the P sub-laboratory,
respectively. Even students who could not complete the
laboratory expressed in their reports a strong sense of ac-
complishments.

We accepted seventeen reports from the C assignees.
All of them completed all the requisite assignments,
and twelve students tried the optional enhancements.
Examples of the enhancements made by students are:
adding pre-increment/pre-decrement operators; extend-
ing the lexical analyzer so as to accept various sorts of
integer literals.

All of the twenty N assignees succeeded in imple-
menting TinyIP stacks for Linux. They enhanced their
stacks for Linux in various ways. Table 1 shows the en-
hancements and the numbers of students who tried and
finished the enhancements. Some of them made multiple
enhancements.

Tools for checking individual components, for testing
effects caused by interactions between components, and
for verifying Tiny J integration as a system are required.
Although some of them have been provided for students
as mentioned in the previous section, the testing environ-
ment is still poor as a whole. Particularly in verifying the
integration, it is not easy for students to create programs
for checking expected behaviors, because situations cov-
ering exhaustive failures are difficult to produce. If we
provided better test tools, they could verify their imple-
mentations more easily.

Window for
ECHO client

Screen of
MinIPS Console

Screen of
Linux box

Window for
etherpeep

Figure 5: Screens displaying UDP/IP communications between MinIPS and Linux.

Table 1: Enhancements made by students.
Features # of students

who tried (finished)
Optimizing memory usage 8(8)
IP fragment transmission 4(2)
IP fragment reception 3(2)
ARP request 7(6)
ARP reply 5(5)
ICMP echo reply 4(3)
ICMP port unreachable 2(2)

We asked students to fill out a questionary provided
by us to evaluate the laboratory from a student’s point of
view. A summary of the answers collected from P as-
signees after the first period of the laboratory is shown
in Figure 6. The results show that it took long time for
students to complete the laboratory compared to regular
36 hours: for example, 10 to 15 extra hours needed for
60% of the P assignees. However, we can see that 90%
of the students understood the laboratory and 100% of
them enjoyed it. Almost the same responses have been
obtained about levels of understanding and attractiveness
from other sub-laboratory assignees. In spite of the large
and tough laboratory, three teams out of five were suc-
cessful in the integration of C, N, and P components. We
observed many scenes where shouts for joy arose from
around upon succeeding in the CNP integration. This

is considered to be another proof that CNP laboratory is
successful in giving the students a sense of accomplish-
ment.

Some students in the first period, however, complained
that they did not understand well what other subgroups
were doing. This suggests a need of some devices for
students to be more aware of other subgroups.

From the suggestion as well as our experiences on
the first period of the CNP laboratory, we introduced
progress check sheet, a sheet to record the progress of
each member in a team. Three columns of the sheet list
steps of P, C, and N sub-laboratories in time sequence. A
row of the sheet shows the current progress of the mem-
bers in a team. They put the date when they have finished
a step. All the students in the same team share a sheet
and can see what other subgroups are currently working
on. We expected that by sharing the sheet they will feel a
sense of cooperations, stimulating more active commu-
nications. We also intended by the sheet that students
obtain a cross-cutting view of the Tiny J system.

Students in the second period answered that the
progress check sheet helped them be aware of other sub-
groups and understand what they are doing. They also
answered that they were able to collaborate smoothly
with other subgroups thanks to the check sheet. Proba-
bly due to the boosted collaboration, all of the five teams
were successful in the CNP integration in the second
period, which is one of the distinguished improvements

somewhat difficult

difficult

normal

(70%)

(10%)

(20%)

somewhat easy
easy

(0%)

(0%)

Levels of difficulty

10 to 15 hours

over
15 hours

5 to 10 hours

(60%)

(10%)

(30%)

2 to 5 hours

less than 2 hours
 (0%)

(0%)

Extra hours required
for self-studying

well

a little

very well

(40%) (50%)

(10%)
ordinarily

(0%)

(0%)

Levels of understanding

excellent

good

bad

(60%)

(0%)

(40%)

not so good
(0%)

(0%)

Levels of attractiveness

very little

usual

Figure 6: Summary of the questionary.

from the first period.

5 Conclusions

An integrated laboratory dealing with computer net-
works, compiler design, and computer organization has
been developed. In the laboratory, students understood
the assigned components and their interfaces with other
components. After discussing and adjusting their speci-
fications, they designed and implemented these compo-
nents, and integrated them cooperatively into a system.
The goals of the integrated laboratory have been proven
to be fulfilled from the response of students who per-
formed the laboratory, approving our intention of the lab-
oratory and verifying its effectiveness.

Several improvements have been made to encourage
students’ cooperations. But we are aware of a lack of
testing methodology. Two approaches are considered:
1) giving them a set of test suites; 2) teaching the way
of testing. Both approaches are to be brought into the
laboratory, which belong to future works.

Acknowledgements

The authors are grateful to Prof. Tan Watanabe at UEC,
the original TinyC inventor, who has been supporting our
work with many respects. Mr. Masato Naraoka at UEC

contributed to maintaining laboratory equipments. We
also thank to members of Abe lab. for developing many
peripherals for Tiny J. Special thanks are due to students
who challenged the laboratory with great interests and
contributed to many improvements.

References
[1] R. B. Brown, R. J. Lomax, G. Carichner, and A. J. Drake.

Microprocessor design project in an introductory VLSI
course.IEEE Trans. of Education, 43(3):353–361, 2000.

[2] D. Kassabian and A. Albicki. A protocol test system for
the study of sliding window protocols on networked UNIX
computers.IEEE Trans. Education, 38(4):328–334, 1995.

[3] T. Katsu, D. Oosuga, M. Tsuruta, and K. Abe. Design and
implementation of a 32 bit RISC processor MinIPS.Bull.
of the Univ. of Electro-Comm., 10(2):71–78, 1997.

[4] K. Morita and K. Abe. Implementation of UDP/IP protocol
stack on FPGA and its performance evaluation. InProc.
IPSJ General Conf. Special5, pages 157–158.

[5] The Joint Task Force on Computing Curricula IEEE-
CS and ACM. Computing Curricula - Final Draft.
http://www.computer.org/education/cc2001/final/
index.htm, December 2001.

[6] D. A. Patterson and J. L. Hennessy.Computer Organiza-
tion & Design: The Hardware/Software Interface, Second
Edition. Morgan Kaufmann Pub., 1998.

[7] J. Postel. Echo protocol. RFC 862, May 1983.

[8] T. Watanabe.Composing a compiler. Asakura Pub., 1998.

A lab course of Computer Organization

J. Real, J. Sahuquillo, A. Pont, L. Lemus and A. Robles

{jorge, jsahuqui, apont, lemus, arobles}@disca.upv.es

Computer Science School

Department of Computer Engineering

Technical University of Valencia (Spain)

Abstract

Lecture topics in Computer Organization courses
offered by different Universities around the world
do not differ significantly. This is because, in
general, lecturers use the same textbooks and are
inspired by common curriculum sources.
However, lab courses and project assignments
require more and more expensive resources
(computers, assemblers or assembler simulators,
logic circuit simulators, …) This fact, together
with the rapid advance of these tools, causes lab
courses to widely differ among universities.

This paper summarizes the lab course on
Computer Organization offered this year at the
Technical University of Valencia, Spain. The
course is composed by several experiences and
jobs, each one aimed at working on one specific
topic. Our goal is not only to introduce the tackled
topics, but also to discuss some characteristics of
the tools. All the tools used are freely available,
which is a must for the students to be more
motivated and to be able to extend their work
using their own computers at home.

1. Introduction and motivation

The Technical University of Valencia offers a
three-year Bachelor degree course in Computer
Engineering. A modification of the curriculum has
recently been undertaken to adapt it to the new
trends and professional outlines. The
recommendations from the IEEE/ACM
Computing Curriculum 2001, as well as curricula
from some relevant Spanish and foreign
universities have influenced the new design. The
course includes 60 lab hours (25% of the total),
distributed along two core courses in the first and

second year. Each course is attended by more than
800 students, which strongly impacts on the lab
organization and the type of experiments. Up to 40
students attend each lab session, working in
groups of two people. Theoretical lectures are
attended by up to 120 students.

To properly design the lab course it is necessary to
consider the contents of the theoretical courses, the
academic year when they are given and, specially
in our context, the high number of students, which
this is not a trivial task. One of the main problems
is to choose appropriate tools for the lab
experiences. An excessive use of abstract
simulators is a risk because some of them
(specially those very didactic) are quite far from
the real world. On the other hand, the contents of
the Computer Organization subjects are very
difficult to implement in a practical way without
additional technical knowledge. Finally, the tools
and equipment needed for the lab sessions tend to
be expensive.

Some universities propose lab courses based only
on a part of the subject (generally the part whose
contents are easier to practice in the lab) and they
do not cover, in a practical way, the whole
theoretical contents. The main reason is usually
the lack of appropriate tools to do it.

The structure of this paper is the following: section
3 briefly describes the theoretical course of
Computer Organization; section 4 details the lab
course, both describing the experiences and the
needed tools; section 5 presents the time schedule
of the theoretical and lab courses. Finally, section
6 summarizes our conclusions.

2. Computer Organization theoretical
course

The Computer Organization course is a core
subject of the Computer Engineering degree. This
course is given along the first and second year of
the degree, having assigned up to 180 lecture
hours in all (90 lecture hours each year).
Evaluation is performed in an annual basis.

The main goal of this course is to introduce the
students to the organization of computer systems
through the study of each one of the functional
units that compose them. Topics include data
representation, digital logic, assembly language,
simple processors, memory unit, input/output unit,
arithmetic-logic unit, basic pipelining, and
advanced processors.

Tables 1 and 2 show the themes into which each
topic is broken down and the number of hours
assigned to them. This information corresponds to
the syllabus of the first and second year courses,
respectively.

Syllabus (First year)

Topic Themes Hours
Introduction 1. Introduction to computer

systems
2

Data
representati
on

2. Data representation 9

3. Basic concepts of digital
systems

12

4. Combinational systems 10
5. Sequential systems: Flip-
flops

4

Digital logic

6. Sequential systems:
Registers and counters

8

7. Introduction to assembly
language

10

8. Assembly programming 6

Assembly
language

9. Procedures 6
10. Datapath 10
11. Control unit: Hardwired
realization

8

Simple
processors

12. Control unit:
Microprogrammed realization

5

 Total hours 90

Table 1. Syllabus of the first year course on Computer
Organization.

Syllabus (Second year)
Topic Themes Hours

13. Memory system 3
14. Memory system design 10

Memory unit

15. Memory hierarchy 10
16. Input/output devices 9
17. Input/Output management 12

Input/Output
unit 18. Buses 4

19. Integer arithmetic unit:
Adders and subtracters

6

20. Integer arithmetic unit:
Multiplication and division

8

Arithmetic-
Logic unit

21. Floating-point arithmetic
unit

4

22. Introduction to the
pipelining

6
Basic
pipelining

23. Pipelined processor 12
24. Examples of contemporary
processors

4
Advanced
processors

25. Introduction to
multiprocessor systems

2

Total hours 90

Table 2. Syllabus of the second year course on Computer
Organization.

3. The lab course

We propose a selection of experiences on
Computer Organization, aimed at covering the
classical computer functional units: processor,
memory, and input/output system. The lab course
goals complement those of the classroom course.
We have designed and selected some experiences,
trying to balance the course time among the
mentioned functional units according to their
importance. The aim is to acquire an elementary
but complete knowledge about Computer
Organization as well as its basic working
principles and underlying design aspects. We also
discuss the selection of a set of free software tools
that allow those students requiring additional time,
or those who show further interest, to continue
their work at home.

The described experiences are organized in lab
sessions, each taking two hours of work.

3.1 Experiences

Experience 1: Assembler

Three lab sessions are dedicated to implement
simple assembly language programs. The topics
are assembly instructions (bare machine) and
pseudoinstructions, instruction coding, data
representation, and functions in assembly

language, exercising the MIPS register usage
convention.

The first session is an introduction to the PCSpim
interpreter [spim02] that simulates how the
assembler works for the MIPS architecture. The
session lab is addressed to give the students
practice with several features of the tool, and to
strengthen some topics studied at the classroom,
like character, integer and floating-point
representation, as well as memory data alignment.

The second session has three types of exercises.
The first one deals with the instruction coding.
Students must codify some assembly language
instructions and check if their results match to
those given by the tool. The second one is
addressed to check the results of some instructions
that use predefined target registers (e.g., LO and
HI for integer division and multiplication
instructions). The last one is addressed to running
a program that performs the scalar product of two
vectors. Students must run the program and
answer some questions: i) to determine which
function it performs, ii) to identify the
pseudoinstructions of the program, and iii) to
explain why the assembler not always codifies a
given pseudointruction by using the same machine
instructions (e.g., the load address instruction).

In the last session, the students must break down
the scalar product program in two parts: main
program and procedure. The programs must be
implemented by using the callee-saved as the
procedure call convention.

Experience 2: The Processor

Three lab sessions are dedicated to the study of the
central processing unit (CPU). The main goal of
these sessions is to develop a simple CPU (no
pipelining) that executes a reduced instruction set -
a subset of the MIPS archite cture [Patterson97].
The different CPU elements are interconnected by
means of busses. The instructions include several
arithmetic and logic operations, load and store,
and different types of branch instructions,
including unconditional, conditional and jumps to
subprograms. These instructions permit to
implement simple, though fully operating sample
programs that can be traced during their execution,
allowing the student to follow their steps in the
datapath and the activation of the relevant control

signals. We use the Xilinx schematic editor and
functional simulation tools to implement and test
the resulting circuitry [Xilinx01].

The first session is an introduction to the tool
itself, as this is the first time it is used. During this
session, a register file is implemented and tested. It
takes a long time to develop the whole register
file, therefore an almost complete version is
supplied for the students to complete and test it,
according to a set of predefined experiments. The
second session deals with a complete datapath,
including a Program Counter, Arithmetic and
Logic Unit, the memory interface and several
auxiliary registers and very simple operators like
fixed shifters and a sign extender. Most of these
units are supplied in advance and the work to do
consists in interconnecting units and testing the
resulting datapath by executing isolated
instructions. The third session completes the CPU
implementation with a Control Unit (CU). It is
based on a phase counter and the needed
combinational logic to generate the 24 control
signals required by the datapath. The students are
required to complete the design of the CU by
implementing a couple of control signals and then
put it together with the datapath. The memory
circuit contains a simple program with a loop that
has to be tested.

Experience 3: Memory Design

This experience is organized in three sessions. The
common goal of all is them is to understand how
the memory system in a computer is designed,
from the basic cell to the construction of memory
modules based on smaller elements and including
the decoding and selection system. For this
purpose we use the simulation environment
Xillinx as tool.

This first lab session deals with the internal
structure of memory circuits. The students must
design a small memory unit (16x1 bit). We
propose this small size for practical reasons: the
memory structure designed is also valid for larger
memories; the only difference is the number of
elementary cells and the size of the decoding
circuits.

In the second session, we give the students a
predesigned 32Kbytes RAM element, in order to
build a 256 Kbytes memory module. The students

must pay special attention to access different types
of data (bytes or 16 bits words). For checking
purposes we supply a module that acts like a CPU,
generating addresses and byte selection lines.

In this session, we supply a circuit that simulates a
memory system composed by 4 different modules
and a checking element that acts as an address
generator. With all these circuits the students must
implement different memory maps.

Experience 4: Cache Design

The goal of this session lab is to understand why
cache memories are the basic and ineludible
mechanism that computers incorporate to reduce
memory accesses latency.

We give the students a small testing program
written in C language (in similar manner to D.
Patterson [Patterson01]), to experimentally
determine the parameters of the computer’s
caches.

To perform the experiments the program defines
an array of 1 mega integer elements size, and
different scenarios are modeled. Each scenario is
determined both by the amount of elements that
are accessed (1K elements, 2K elements, …) and
by the stride (1, 2, 4, …, 512K). The program has a
main loop that runs repeatedly many times in
which the elements of the scenario are accessed to
measure the data access time. Then, all the
resulting times are averaged. The loop execution
time is relatively long (approximately 1 second) in
order to get precision in the measure process.

From the results, the students must firstly notice
the number of cache levels Then, for each cache
level they must determine: i) the block size, ii) the
set associativity, iii) the cache size, iv)
approximately how fast the cache hit is, and v)
approximately how fast the cache miss is. Some
other parameters about the memory hierarchy like
the page size and the page fault penalty are also
determined.

Experience 5: The input/output system

The main objective of this experience is to practice
the basic methods of synchronization: status
checking (polling) and interrupts. To achieve this,
the students develop simple interactive programs
by using the input/output available facilities.

In the first session, we present a hypothetic case of
communication between a MIPS R2000 processor
and two basic I/O devices: the keyboard and the
printer. A simulator acts like these two devices
mapped in memory positions. Both are character-
oriented devices. The PC keyboard is used as the
input device while data output is displayed in a
window that simulates the printer. The students
must write a small program in MIPS R2000
assembly language to read characters from the
keyboard and print them in the printer. The
program must use polling for synchronization and
program-controlled for data transfer.

In the second part the students have the
opportunity to practice interrupt handling in a real
computer (PC compatible). They also can access
the PC memory and I/O maps. We propose them
two typical problems to solve: first, students must
modify some of the system interrupts (clock and
keyboard are the proposed ones) writing the
appropriate routines to handle them. In a second
step, they must extend the service given by an
existing interrupt handler by linking the system
routine with their own handler.

Experience 6: Circuits to Support Integer
Arithmetic

The main objective of this experience is to design
simple integer arithmetic circuits and to modify
them to achieve better performance by using
pipelining techniques. This experience is
organized in three sessions. In the first one, the
students must implement a 16 bit adder/subtracter
for integer numbers by using 4 bit carry lookahead
adders (CLAs). The basic circuits (half and full
adders) that form the CLA must also be
implemented. Next, they develop a fast multiplier
for two 6 bit unsigned numbers by using a Wallace
tree. For this purpose, they build and interconnect
carry save adders. The last stage of the Wallace
tree is built by using the already implemented
CLAs. To complete the fast multiplier, the
students must build a partial product generation
circuit that takes the two integer operands as
inputs and generates the six partial products to
feed the Wallace tree. Finally, they have to split
this multiplier circuit into pipeline stages. For this
aim, the students must identify the pipeline stages
and establish the suitable clock period to improve
the circuit speedup. The students must simulate

and measure the response time. Moreover, they
must calculate the speedup the pipeline achieves.

Experience 7: Pipelined Processor

The goals pursued in this lab session are to
understand the concept of pipelining, identify
hazards, realize how hazards affect performance,
and to know how the different solutions for
conflict solving are implemented.

A program that simulates the behavior of a
pipelined DLX processor [DLXide] is used. The
DLX processor [DLX02] exhibits a similar
architecture to that of MIPS. In the simulator,
instruction execution can be tracked in a time
diagram, cycle by cycle, therefore it allows to
follow their walk through the different stages. The
simulator permits also to define a particular
technique for hazard solving, including bubble
insertions, forwarding, predict-not-taken branches
and delayed branches. The datapath (shown by the
simulator) appears modified according to the
technique applied. Control signals, memory and
register contents and some statistics are also made
available by the simulator, which permits to
extract some conclusions based on quantitative
data.

A simple but illustrative assembler program is
supplied for the students to trace its execution in
the pipelined datapath. First, they must solve
dependencies by inserting bubbles and then
counting the resulting CPI. Secondly, more
effective techniques such as forwarding and
branch prediction are exercised, allowing to
observe how these techniques work and to
compare results with the previous experiments.

4.2 The tools

For the experiences described in the previous
subsection, we are currently using different tools.
Below, we briefly describe how we use them and
how they allow us to reach the goals of the lab
experiences.

1. Logical board. It is basically a circuit
board with some logic gates and flip-flops
that can be interconnected by means of
wires and connectors. The board also
allows for commercial integrated circuits
to be added, thus increasing the number of
different exercises that can be tackled. By

using real circuits and wires, the student
realizes the difficulties in implementing
real circuits (bad connections, collision of
outputs, etc.) which are more difficult to
detected when logical simulators are used.
The logical board is used for the most
basic circuits, leaving the complex ones to
be simulated.

2. MIPS simulator PCSpim. For assembly
language experiences, we use this free
MIPS simulator to implement and trace
simple programs. The simulator is
complete enough for the intended
purposes and makes it straightforward to
work in assembly language without
having to deal with particularities of the
platform. On the other hand, it represents
an important economical saving, as PC's
are available in all of our labs, differently
to MIPS-based computers.

3. Xilinx schematic editor and simulation
tools . The Xilinx Foundation is an
application framework for programming
logical devices with logical functions of
different levels of complexity, from very
simple combinational functions to
virtually any larger project with both
combinational and sequential components,
allowing for tristate devices as well as
conventional ones. The tool is complex, if
used as a whole, but for the purposes of
the course, we only need to be able to
specify a circuit and to simulate it. The
Xilinx tool offers several ways of
specifying a circuit, namely a Hardware
Description Language, a Finite State
Machine and a Schematic Editor. The last
one is the most appropriate for our
students, since this is the common way of
describing circuits in the classroom as
well. On the other hand, the simulator is a
powerful tool that allows us to track the
behavior of the specified circuit in
connection with the schematic editor.
Despite the complexity of the whole
application, our students quickly learn
where to click to carry on their work,
since the working platform is well
bounded from the very beginning of the
corresponding lab exercises. This tool has

proven to be very suitable for
implementing our simplified RISC
datapath and for the control unit as well. It
is also used in the exercises related with
memory modules.

4. DLXide is a simulation tool of the DLX
computer. This simulation tool has been
developed by lecturers from the Computer
Engineering department of the Technical
University of Valencia with the aim of
providing a suitable environment for
performing pipelining experiences. The
simulator is able to simulate the pipelining
execution unit of the DLX computer in a
cycle-by-cycle basis, also showing how
the instructions progress through the
pipelining stages. For simplicity, it only
supports the integer instructions of the
DLX architecture. The tool permits to edit,
assemble, and execute a DLX assembly
program. There exist separate cache
memories for instructions and data. User
can initialize and modify both machine
registers and data memory contents, which
are displayed in two separate windows.
Moreover, it is possible to display the
instruction memory contents and the
instruction addressed by the program
counter. Through the configuration
window, the user can establish the
mechanism used for hazard solving among
the following techniques: stalls, predict-
not taken, delay-slot 1, and delay-slot 3
for solving control hazards, and stalls and
forwarding for solving data dependencies.
Step-by-step simulation shows how each
mechanism solves the hazards. The
simulator runs on MS Windows and Linux
operating systems.

5. 2. Coordinating theoretical and lab courses

The first and the second year theoretical courses
are 30 weeks long organized in two weekly
sessions 1.5 hours long, where both theory and
problems aspects are lectured. Sessions take place
in classrooms of 160 students capacity.

The lab courses have the same duration as the
theoretical and their timing must be synchronized.

These courses are organized in two types of weeks
(A and B), so that the type of the week
alternatively changes from A to B and vice-versa.
Students must attend to the lab sessions in those
weeks they are registered in. Sessions are two
hours long every two weeks and take place in labs
of 40 students capacity. This has proven to be
more suitable than having weekly sessions of 1
hour.

Table 3 shows the planning of the theoretical and
the lab course of the first year. Numbers on the top
row refers to the week number. Central row shows
the planning (theoretical and problem sessions) of
the themes. The first 15 weeks focus on the study
of both the data representation and the digital logic
topics (T3, T4, T5 and T6) mentioned above.
Next, 7 weeks and a half are dedicated to the study
of both machine and assembly languages. The
remaining weeks are addressed to implement a
simple datapath and its control unit (both
hardwired and microprogrammed). The bottom
row refers to the lab sessions. As it can be seen,
lab sessions begin at the same time as classroom
sessions. Some times; e.g., when studying simple
data paths, the lab session starts a little bit before
the theoretical topic is studied at classroom. This
does not cause any inconvenient, because that time
is devoted to study how the tool (Xilinx in this
case) works.

Table 4 shows the temporal planning for the
second year course detailed above. In this case, no
overlap appears between the theoretical and the
lab course.

WEEK NUMBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 T2 T3 T4 T5 T6

 P 1 P 2 P 3

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T7 T8 T9 T10 T11 T12
 P 4 P 5

Table 3. Planning of classroom and lab sessions of the first
year course. Legend: P refers to practical experience and T to
topic.

WEEK NUMBER
1 2 3 4 5 6 7 8 9 10 111 12 13 14 15 16

1 T2 T3 T4 T5 T6

P1 P2 P3

17 18 19 20 21 22 23 24 25 26 27 28 29 30

T7 T8 T9 T10 T11 T12 13

P3 P4 P5

Table 4. Planning of classroom and lab sessions of the second
year course. Legend: P refers to practical experience and T to
topic.

6. Conclusions

In this paper we have presented a lab course on
computer organization, and we conclude that a
complete course needs the following requirements:

1. A set of tools of a very different nature
(assembler, logical circuit simulator,
pipeline simulator) to cover the whole
theoretical course.

2. It is important that the tools be as close as
possible to a professional tool (e.g. we are
currently using the educational version of
a professional tool.)

3. It is necessary to devote an important
amount of time to learn how the tools
work, therefore it is important to chose
tools also used in other subjects (e. g. the
Xilinx framework is used in Logical
Design courses too.)

7. References

 [Patterson97] D. A. Patterson and J. L.
Hennessy, Computer organization
and design: the hardware/software
Interface, Morgan Kaufmann
publishers, 2nd edition, 1997.

 [Patterson01] D.A. Patterson, Course CS61C1C:
Machine Structures, UC Berkeley,
http://inst.eecs.berkeley.edu/~cs61
c/fa01/calendar/week13/lab10/,
Fall 2001

 [Spim02] J. Larus, SPIM: a MIPS
R2000/R3000 simulator,
http://www.cs.wisc.edu/larus/spim
.html, 2002.

 [Xilinx01] Jan Van der Spiegel. Xilinx Web
page.
http://www.prenhall.com/xilinx/,
2001.

 [DLX02] Computer Systems Laboratory,
FTP Site for Interesting Software,
http://max.stanford.edu/max/pub/h
ennessy-patterson.software/max-
pub-
hennessypatterson.software.html

[DLXide] P. López. DLXide web page.
http://www.gap.upv.es/people/plo
pez/english.html

A Survey of Web Resources for Teaching Computer Architecture

William Yurcik Edward F. Gehringer
Illinois State University North Carolina State University

wjyurci@ilstu.edu efg@ncsu.edu

Abstract

The use of Web resources is becoming a core
part of teaching computer architecture. In this
paper we identify five notable Web sites that
specialize in teaching tools for computer
architecture instructors and discuss the role they
can play in facilitating learning. While these
Web sites contain a wide range of valuable
resources, there remain gaps in what is available
online. Community support appears meager for
making tools and resources available. We
conclude that the computer-architecture
community faces challenges both in the content
of Web-based materials (accurate and
appropriate information) and the process
(making information known and available to
academic community).

1.0 Introduction

Computer architecture is a difficult subject both
to teach and learn for a plethora of reasons
including—

• the dynamic nature of the subject, the
lifecycle of current computer
technology is arguably less than three
years and decreasing rapidly

• the ever-expanding amount of relevant
material, as new techniques are being
developed continuously to build upon
existing techniques

• the need for to understand disparate
subjects, from electronic circuits to
digital logic to assembly-language
programming to system design, as well
as higher level programming and
discrete math and performance analysis
and ...

• its lab component, requiring the design
and execution of both hardware and
software experiments, and

• increasingly higher levels of abstraction
hiding more and more lower-level
details.

Of course, computer architecture is not the only
course facing these challenges, but it may be the
one course that faces all of them simultaneously.
One academic study of this situation found that
even experienced computer architecture
instructors found they are not confident or
current in some topics considered core to the
course [2]. Novice instructors and instructors
teaching outside of their specialty area are in a
worse situation.

Collectively, however, the computer architecture
community possesses an impressive array of
knowledge, experience, and tools for teaching
the subject. In recent years, many of these
resources have been migrating to the Web.

Finding the right resource for teaching a specific
topic is problematic, so this paper seeks to
provide an orientation to the current state-of-the-
art in computer architecture education resources
on the Web. The remainder of this paper is
organized as follows: Section 2 describes in
some depth the five major Web sites containing
computer architecture educational resources.
Sections 3 and 4 focus on the contrasting
resource needs of new and experienced
instructors in computer architecture. Section 5
attempts to identify gaps in what is available on
the Web versus the needs of instructors and
Section 6 seeks to understand why this gap
exists. We close with a summary and
conclusions.

2.0 Computer Architecture
Education Web Sites

Reference 2 highlights the fractured state of
computer architecture education, but there have
been several attempts to address this problem via
community effort. This section describes five
significant computer-architecture education sites
that contain valuable resources for the
community. A survey of these Web sites also
reveals unexpected insights into the current state
of computer architecture education.

2.1 Computer Architecture and Assembly
Language (CAALE)

<http://www.sosresearch.org/caale/>

An NSF-sponsored working group on
“Distributed Expertise for Teaching Computer
Organization” convened at the July 2000
Innovation and Technology in Computer Science
Education (ITiCSE) conference in Helsinki
Finland under the direction of Lillian (Boots)
Cassel of Villanova University and Deepak
Kumar of Bryn Mawr College. The two tangible
products of this working group are the CAALE
Web site and the seminal collaborative paper that
identifies both current problems and potential
future solutions for facilitating better computer-
architecture education [2].

The goal of CAALE is to serve as a repository
for Web-accessible resources identified by the
working group, such as links to courses, people,
textbooks, simulators, papers, organizations,
relevant news items, career information, and
conferences. Currently, CAALE is unevenly
developed with many links containing no
content. Work continues to populate the Web
site.

CAALE makes its primary contribution with its
comprehensive list and categorization of
textbooks and simulators. Response to the
CAALE simulator list especially has been
immediate, continuous, and growing. It has
facilitated data-mining of simulator resources, as
presented in two recent papers [5,6]. Future plans
include enhancing the interactivity of the Web
site using XML integrated with database
processing to enable queries to the Web site for
information.

2.2 WWW Computer Architecture Page
<http://www.cs.wisc.edu/~arch/www/>

A long-time fixture in the computer architecture
community has been the WWW Computer
Architecture Page that is hosted at the University
of Wisconsin-Madison (and mirrored in India
and Japan). Though focused mainly on research,
it contains downloadable versions of many
simulators and compilers that could be used
across a range of educational levels. The
extensive content on the Web site include links
to architecture projects, organizations, and tools
such as simulators, compilers, benchmarks, and
traces. It also has links to commercial

organizations, online publications, books, and
newsgroups.

The WWW Computer Architecture Page makes
its primary contribution with its comprehensive
list of researchers, research groups, and
conferences. This site is a one-stop virtual
location for learning about the state of the art in
computer architecture research, especially that
emanating from educational institutions.

2.3 NETCARE
<http://punch.ecn.purdue.edu/Netcare/>

NETCARE (NETwork-computer for Computer
Architecture Research and Education) is a Web-
accessible distributed infrastructure of software
tools and computing resources developed at
Purdue University. It provides a common
environment for testing, sharing, and evaluating
tools for teaching and research in computer
architecture and programming. It allows users to
actually run tools in conventional Web browsers.

NETCARE was developed to address many of
the hurdles mentioned in the introduction.
Instructors need to obtain access to the hardware
resources that meet their requirements, and then
install it. They also need to support it, by
disseminating documentation and answering
questions, and develop educational content, such
as tutorials and homework assignments.
NETCARE performs all of these functions; small
classes are able to use NETCARE facilities
directly, while instructors of large classes can
load the NETCARE software onto their own
server.

Another important feature of NETCARE is its
user interfaces. Research simulators often come
with text-based interfaces. NETCARE wraps
these in graphical interfaces that are tailored to
the needs of novice users. This has the
advantage of presenting a number of tools with
similar interfaces, thus facilitating the task of
learning to use them.

NETCARE currently provides 16 tools for
computer architecture, including the
uniprocessor simulators Daisy, DLX-View,
Shade, SimpleScalar, MySimpleScalar, XSpim,
and 68HC12 Simulator; the multiprocessor
simulators HPAM Sim, RSIM, WWT2, and
WWT2H, and cache simulators CacheSim5,
CACTI, and DineroIV. Accounts may be

requested by filling out a form at the NETCARE
home page.

2.4 Computer Architecture Course Database
< http://cd.csc.ncsu.edu>

In addition to simulation projects, computer
architecture courses include other homework
problems and, of course, exams. These materials
are also potentially reusable. The Computer
Architecture Course Database currently contains
about 1000 problems suitable for use on
homework or tests, many with solutions. The
goal of the project is to encourage instructors to
share materials. When an instructor grants
permission, material is downloaded from the
Web and semiautomatically loaded into the
database, where it can be located by keyword or
fulltext search. Anyone with an account on the
system is granted the right to reuse the material
in his or her own classes, but not to republish it.

Because it has proved to be much easier to
induce instructors to use the database than to get
them to contribute material, an alternative means
of finding material has been provided in the form
of a search engine that searches computer
architecture sites at educational institutions
around the world. A single request can search
both the database and the Web. While material
retrieved from the Web may not be freely reused,
it is possible to seek permission from the
copyright holder (usually the instructor who
established the site). Accounts may be requested
by e-mail to efg@ncsu.edu.

2.5 SIGMicro
<http://www.acis.ufl.edu/~microWeb/>

ACM SIGMicro, the Special Interest Group on
Microarchitecture, launched a Web site in 2001.
Called the Computer Microarchitecture Center, it
contains an education section with a listing of
microarchitecture courses and course Websites.
It also has links to most of the other resources
mentioned in this paper. An interesting section
is the new Reviews area, which is intended to
contain reviews of educational tools and
documents. This area is awaiting its first entry.
It also contains pointers to the proceedings of
several past WCAEs.

3.0 Resources for New Instructors

New instructors, and experienced instructors
teaching outside of their area of expertise, desire
directed teaching resources focused on getting
started and survival skills in the classroom such
as—

• Web syllabi of similar courses at
different universities

• identification of textbooks bundled with
teaching aides (slides, test banks,
software)

• homework, project, and test problems
with solutions

• visual and intuitive simulations of
computer architecture concepts to
promote active learning

• contact information for other computer
architecture instructors (support group)

Current Web sites can provide many of these
resources efficiently if the new instructor knows
where to look.

New instructors need to learn (1) “best practices”
for teaching computer-architecture topics, and
(2) the resources that are available for them to
use and tailor to their own teaching environment.
The first goal (best practices) could be addressed
by cross-referencing resources so that it is
possible to see which textbooks, simulators, etc.
are used by which types of courses, and which
ways of teaching particular topics have become
the “consensus” approach of the discipline. The
second goal (breadth of resources) can be
addressed by encouraging the worldwide
computer architecture to place innovative
resources on the Web and make them available
to anyone over the Internet.

4.0 Resources for Experienced
Instructors

After teaching a course for a few semesters, an
instructor is likely to have a repertoire of
lectures. The main challenges at this point are
developing new homework assignments, labs,
and exams. For homework assignments and
exam questions, the Computer Architecture
Course Database can be very helpful. It contains
many questions on the Hennessy/Patterson texts,
and microarchitecture in general, with caches

being the most widely covered topic. However,
more contributions are being sought, as detailed
in Section 6.

For lab projects, experienced instructors might
consider the simulators available through
NETCARE and CAALE. WCAE has published
several papers related to simulators. Eight of
these are still available on the Web. Two of
these are targeted at the DLX architecture used
in Hennessy and Patterson’sComputer
Architecture: A Quantitative Approach[7]: Dan
Hyde’s VHDL approach [8] and the DLX-view
[9] simulator. Two of them use the MIPS
architecture, a SimpleScalar enhancement from
Manjikian [10] and MipsIt from Brorsson [11].
One targets Patt & Patel’s LC-2 architecture
[12]. The others are RSIM, a simulator for ILP-
based shared memory multiprocessors and
uniprocessors [13], SATSim, a superscalar
architecture trace simulator using interactive
animation [14], and esim, a design language
simpler than VHDL, implemented in Tcl, in
which students can build and simulate digital
modules [15].

Experienced instructors also face the challenge
of remaining current in the field. While some
teaching resources lend themselves as a base
upon which to build the future, many new tools
will need to be developed from scratch. This
makes tool development environments for
experienced instructors an important area of
investment.

5.0 What is Missing?

While the Web sites we have identified contain
invaluable educational content, there are still
critical voids that need to be addressed. The most
glaring omissions include:

• a teaching computer architecture virtual
support group

• implementation experience with the
new ACM/ABET Computing Criteria
2001 for computer architecture-related
courses

• a pooling of teaching resources, with
Web sites being one forum but not
necessarily the only forum

While progress has been made, it must be
accelerated. Novice educators must be guided to

teaching resources and experienced educators
can become disconnected from current
mainstream teaching resources. In both
instances Websites can provide a glue to
maintain healthy teaching relationships and
professional growth in the field.

6.0 The Tragedy of the Commons

In his classic 1968 paper, “Tragedy of the
Commons” [4], Garrett Hardin illustrates that an
open resource owned collectively and shared by
all (a "commons") will be exploited by free-
riders until depletion. Without the property
rights of ownership, there is little or no incentive
to contribute to care of the commons.

We apply this metaphor to Web site content for
teaching computer architecture - there are few
incentives beyond altruism to share teaching
resources. Most instructors do not contribute
and yet gain from the hard work of a select few.
There is a need to either increase incentives to
share resources or make it easier to do so.

In our work on the Computer Architecture
Course Database, we found that only 29 of 73
instructors contacted agreed to contribute their
materials in electronic format to our database [3].
Those who declined to contribute were asked
why. We heard from about a dozen of them.
Their concerns were divided about equally into
two categories.

1) Copyright concerns.Some instructors
could not contribute because their
materials had borrowed heavily from
copyrighted works, such as textbooks,
making their course materials
“derivative works.” Others were
writing textbooks and wanted to include
their course materials, but feared that
making their material available in
advance would compromise the market
for their books.

2) Diffidence. Many other instructors
were concerned that their materials
were not polished enough, either
because they were teaching a course for
the first time, or because they had not
been able to devote enough attention to
it. This concern has also been noted by
Cassel [1]. Her advice is, “Get over it!”
Only by access to shared materials can

we eliminate this perception of
inadequacy.

To give instructors an incentive to contribute, a
feature is currently being added to the Computer
Architecture Course Database to track how often
specific items have been downloaded. A high
reuse count will indicate a problem or lecture
that other instructors find quite useful. This
would be one of the few quantitative measures of
teaching contributions (beyond student course
evaluations), and could help buttress cases for
tenure and promotion.

7.0 Summary

This paper reviews several computer-architecture
education Web sites found valuable to both
novice and experienced instructors. The goal is
to provide instructors both a general educational
introduction to the broad field of computer
architecture as well as detailed resources for
more in-depth inquiry. While valuable resources
do exist, making them known and available to
educators has been problematic. In addition, the
field is a moving target such that new ideas and
technology are being continually introduced
making collective sharing of appropriate
resource materials a difficult task. There is
hope, however, in that the five developing Web
sites noted in this paper represent a diversity of
accessible teaching resources in both depth and
breadth and may be complemented by additional
Web sites in the future.

8.0 Acknowledgments

The CAALE Web site is supported in part by the
following grant from the National Science
Foundation (NSF) USA: #99-51352 from NSF-
DUE-CCLI/EMD. The Computer Architecture
Course Database is supported by the NSF
Course, Curriculum, and Laboratory
Improvement program under grant DUE #99-
50318.

9.0 References

[1] Cassel, L., SIGCSE award luncheon address,
32nd SIGCSE Technical Conference on
Computer Science Education, February 24,
2001.
<http://lcassel.csc.villanova.edu/sigcse.ppt>

[2] Cassel, L., Kumar, D. et. al. "Distributed
Expertise for Teaching Computer Organization
and Architecture,"ACM SIGCSE Bulletin, Vol.
33 No. 2, June 2001, pp. 111-126.

[3] Gehringer, E., and Louca, T., "Building a
Database and Search Engine For Reuse of Course
Materials,"Proceedings of Frontiers in
Education2001 (ASEE/IEEE), Session F3C.

[4] Hardin, G. "The Tragedy of the Commons,"
Science, Vol. 162, 1968, pp. 1243-1248.

[5] Wolffe, G. S., Yurcik, W., Osborne, H., and M.A.
Holliday. "Teaching Computer
Organization/Architecture With Limited
Resources Using Simulators," SIGCSE 2002,
33rd Technical Symposium on Computer Science
Education,SIGCSE Bulletin, Vol. 34, No. 1,
March 2002, pp. 176–180.

[6] Yurcik, W., Wolffe, G.S., and M.A. Holliday. "A
Survey of Simulators Used in Computer
Organization/Architecture Courses,"Summer
Computer Simulation Conference (SCSC),
Society for Computer Simulation, 2001.

[7] Hennessy, John L., and Patterson, David A.,
Computer Architecture: A Quantitative
Approach, Morgan Kaufman, 1997.

[8] Hyde, Daniel C., “Using Verilog HDL to teach
computer architecture concepts,”Proc. WCAE
98, Workshop on Computer Architecture
Education, June 27, 1998, Barcelona, Spain.
Tools available at
http://www.eg.bucknell.edu/~cs320/Fall2001/veri
log.html

[9] Zhang, Yiong, and Adams, George B., “An
Interactive, Visual Simulator for the DLX
Pipeline,”Proceedings WCAE-3, 3rd Workshop
on Computer Architecture Education, San
Antonio, TX, Feb. 2, 1997. Published inIEEE
Computer Architecture Technical Committee
Newsletter, September 1997, pp. 25–31. Tool
available at
http://yara.ecn.purdue.edu/~teamaaa/dlxview

[10] Manjikian, Nairag, “Enhancements and
applications of the SimpleScalar simulator for
undergraduate and graduate computer
architecture education,”Proceedings WCAE
2000, Workshop on Computer Architecture
Education, Vancouver, BC, June 10, 2000.
Published inIEEE Computer Architecture
Technical Committee Newsletter, September
2000, pp. 34–41. Tool available at
http://www.cs.wisc.edu/~mscalar/simplescalar.ht
ml

[11] Brorsson, Mats, “MipsIt: A simulation and
development environment using animation for

computer architecture education,Proceedings
WCAE 2002, Workshop on Computer
Architecture Education, Anchorage, AK, May
26, 2002, pp. 65–72. Tool available at
http://www.embe.nu/mipsit

[12] Cohen, Albert, “Digital LC-2: From bits and
bytes to a Little Computer,”Proceedings WCAE
2002, Workshop on Computer Architecture
Education, Anchorage, AK, May 26, 2002, pp.
61–64. Tool available at http://www-
rocq.inria.fr/~acohen/teach/diglc2.html

[13] Pai, V. S., Ranganathan, P., and Adve, S. V.,
“RSIM: An execution-driven simulator for ILP-
based shared-memory multiprocessors and
uniprocessors,”Proceedings WCAE-3, 3rd
Workshop on Computer Architecture Education,
San Antonio, TX, Feb. 2, 1997. Published in
IEEE Computer Architecture Technical
Committee Newsletter, September 1997, pp. 32–
38. Tool available at http://www-
ece.rice.edu/~rsim/dist.html

[14] Wolff, Mark, and Wills, Linda, “SATSim: A
superscalar architecture trace simulator using
interactive animation,”Proceedings WCAE 2000,
Workshop on Computer Architecture Education,
Vancouver, BC, June 10, 2000. Published in
IEEE Computer Architecture Technical
Committee Newsletter, September 2000, pp. 27–
33. Tool available at
http://www.ece.gatech.edu/research/pica/SATSi
m/satsim.html

[15] Miller, Ethan and Squire, Jon, “esim: A structural
design language and simulator for computer
architecture education,”Proceedings WCAE
2000, Workshop on Computer Architecture
Education, Vancouver, BC, June 10, 2000.
Published inIEEE Computer Architecture
Technical Committee Newsletter, September
2000, pp. 42–48. Tool available at
http://www.cs.umbc.edu/~squire/esim.shtml

