
An Integrated Laboratory
for Computer Architecture and Networking

Takamichi Tateoka, Mitsugu Suzuki, Kenji Kono, Youichi Maeda, and Kˆoki Abe

Department of Computer Science
The University of Electro-Communications

Tokyo, 182-8585 Japan
Email: cnp@cacao.cs.uec.ac.jp

Abstract

Processors, compilers, and networks – important mate-
rials covered by computer science curricula – are of-
ten treated independently in laboratories associated with
corresponding lecture courses. An integrated laboratory
called CNP for juniors majoring in computer science at
the University of Electro-Communications has been de-
veloped and is now under way, where a networking pro-
tocol stack implemented by students is translated into ob-
ject codes by a compiler implemented by students, which
in turn are executed on a processor implemented also by
students. The goals of the integrated laboratory are to
deal with modern and attractive materials, to provide stu-
dents with opportunities of collaborating in constructing
a large system, as well as to have students share a feeling
of accomplishments among them. Responses from stu-
dents approved our intention and verified the effective-
ness. In this paper, we describe the design and develop-
ment of baseline components to be integrated, laboratory
organizations and schedules, and results and evaluations
of the laboratory.

1 Introduction

Processors, compilers, and computer networks are im-
portant materials covered by computer science curricula.
They are often treated independently in laboratories as-
sociated with corresponding lecture courses. Many re-
ports on laboratories dealing with microprocessor de-
sign and implementation have been published (eg.[1]).
Exercises on compiler design are too common to men-
tion. Some reports on computer networking laboratory
exist[2], although it has been recognized in the Com-
puting community that academic institutions should treat
computer networking to more fully extents[5].

However, in order for improving cost performance of

a computer system, tradeoffs between hardware and soft-
ware must be well understood and the characteristics of
applications executed on the system need to be carefully
examined. Adjusting interfaces between system compo-
nents is also required. Thus taking a broad view of entire
system is mandatory. For students to acquire the view,
separate components need to be integrated into a com-
plete system in a laboratory.

A design problem across areas can effectively be
solved in a short term by teamworking, where the prob-
lem is divided into parts and works by team members are
shared and combined. Providing students with opportu-
nities to have experiences of such teamworking in univer-
sity laboratories dealing with design and implementation
of both hardware and software for modern and attractive
applications is of key importance.

An integrated laboratory called CNP for juniors ma-
joring in computer science at the University of Electro-
Communications (UEC) has been developed and is now
under way, where a networking protocol stack (called
TinyIP) implemented by students is translated into ob-
ject codes by a compiler (called Tiny C) implemented
by students, which in turn are executed on a proces-
sor (called MinIPS) implemented also by students. The
whole system integrated by students in the laboratory is
called Tiny J.

Students are organized into several teams. Members
of a team cooperatively perform the laboratory experi-
ments. The goals of the CNP laboratory are for each stu-
dent to understand the interfaces between system mod-
ules, to design and implement an assigned one, to in-
tegrate cooperatively the components into a system, as
well as to discuss and adjust their specifications.

In the following, Section 2 describes laboratory de-
sign and developments of baseline components to be im-
plemented and integrated by students. Related courses
offered to students are also stated in this section. Section
3 describes the details of the laboratory including stu-

UDP/IP stack
(TinyIP)

C Compiler
(Tiny C)

32bit Microprocessor
(MinIPS)

executable

E
T

H
E

R
N

E
T

Linux

TinyJ System

Communicate with
UDP/IP Protocol

Figure 1: Illustration of the integrated laboratory.

dent organization and schedule of the laboratory course.
Section 4 gives results and evaluations of the laboratory.
Section 5 closes with a summary and future works.

2 Design and Developments

2.1 Laboratory Design

The laboratory is designed to amalgamate UDP/IP pro-
tocol stack, a C compiler, and a 32bit RISC processor.
Students integrate these materials into a complete sys-
tem (Tiny J) to construct a complete small computer sys-
tem which is capable of communicating with Linux OS
through Internet standard UDP/IP protocol. A simple
protocol stack (TinyIP) coded in a simplified C language
is translated into object codes by a compiler (Tiny C) im-
plemented by students, which in turn are executed on a
processor (MinIPS) implemented also by students. The
overview of the integrated laboratory is illustrated in Fig-
ure 1.

We design the laboratory so that students can design,
implement, and modify all parts of the system compo-
nents. Students, however, are not assigned to design
every submodule because of restricted laboratory hours.
We provide students with information enough for them to
inspect any part. For example HDL descriptions of pe-
ripherals used for console function and source codes of
original compiler which are to be extended by students
are given to them.

We summarize related lectures and laboratories refer-
ring to the Computing Curricula 2001 by IEEE CS[5].
Lectures covering AR1 to AR5 of Architecture and Or-
ganization and PL1 to PL6 of Programming Language
are offered as core, accompanied with corresponding
labs. AR6 (Functional organization) is covered by an
elective sophomore course, where [6] is used as a text-

book. PL8 (Language translation system) is covered by
an elective junior course, where a simplified C compiler
Tiny C[8] is introduced and designed. Fundamentals of
OS are introduced in a requisite course but the topics
are intensively treated in an elective junior course. Top-
ics in Net-Centric Computing are treated in an elective
senior course, where principles of communication net-
works with OSI layered architecture are introduced.

The CNP is offered as a requisite junior laboratory
course. Since we can not expect special knowledges
given by elective lectures or lectures offered in future
courses, when necessary we provide students with practi-
cal lectures required to complete the assignments in lab-
oratory hours.

2.2 MinIPS Computer System

Requirements for the processor to be developed are: 1)To
be simple and modern as an educational processor given
to computer science juniors; 2)To have enough perfor-
mance that allows building a computer system using the
processor as a CPU core in Tiny J System; 3)To conform
to the processor dealt with by [6] used as a textbook in
the corresponding lecture course.

Requirements for the computer system based on the
processor are: 1)To accommodate a communication port
through which the protocol stack transmits and receives
packets; 2)To equip with enough amounts of memory for
programming TinyIP; 3)To have functions for loading
programs and acting as a console.

We utilize a SRAM based FPGA as the implementing
device used by students. It makes students to redesign
the processor any times without care of making errors.
An evaluation board, system-on-a-programmable-chip
(SOPC) Development Board by Altera, equips with an
FPGA which is capable of realizing 400,000 gate logic
circuits using Logic Elements (LEs) and 20 KB memory
using Embedded System Blocks (ESBs). The board also
equips with Synchronous SRAM (SSRAM), RS232C,
and Ethernet transceiver, which enable to organize a sys-
tem meeting the requirements with no other hardware
supplements. For those reasons we have chosen to uti-
lize the SOPC Board for implementing the system.

We do not use any commercially available intellec-
tual properties for FPGA configurations such as Ether-
net controllers because intellectual properties would in-
troduce black boxes. Thus all the prototype modules in-
cluding the peripherals have been designed by ourselves.
Although students are not assigned to design the periph-
erals, our descriptions are given to students so that who-
ever interested is ready for reading.

The organization we have designed is shown in Figure
2.

Instruction Cache

256word(1kByte)

Data Cache

256word(1kByte)

Boot Loader
SSRAM

Controller
Serial

Controller
Ethernet

Controller

SSRAM RS232
XCVR

PHY

BUS

256kword x 2
(2MByte)

MinIPS

(32bit RISC Processor)

Figure 2: MinIPS system organization. (Enclosed with
dashed box is the part implemented on an FPGA.)

The MinIPS processor[3] is a 32 bit RISC which con-
forms with MIPS[6]. The MinIPS instruction set is re-
duced to a minimum. For example, multiplication and
division are not provided as machine instructions but are
compiled to subroutine calls. The block diagram of the
processor is shown in Figure 3. Conforming to the text-
book, the structure is composed of five pipeline stages;
instruction fetch (IF), instruction decode (ID), execution
(EX), memory access (MEM), and write back (WB). A
forwarding unit (FW Unit) is equipped. The load delay
is one, and the branch delay is also one. The MinIPS
processor conforms to the textbook but it is simpler.

Although the MinIPS processor is based on Harvard
Architecture, it does not allow fetching instruction and
data simultaneously because the memory is not physi-
cally divided into instruction and data submemories. As
a solution to the problem we provide instruction and
data caches which we implement using ESB memories
on FPGA. Two SSRAM chips each of 256k words ca-
pacity mounted on the SOPC board are utilized for the
main memory. It has enough capacity for programming
TinyIP.

The specification of the RS232C controller is based
on the simulator SPIM[6], enabling a smooth shift from
simulations to executions on real machine. We use the
RS232C for program loading and console function.

For the communication port, we adopt the commonly
used Ethernet where a link layer address is provided.
As the physical layer a PHY chip on the SOPC is uti-
lized. Descriptions of the link layer for controlling the
PHY has been developed by ourselves[4] and given to
students. The interface is driven by hardware interrupts
since polling is not a practical method for receiving Eth-
ernet packets.

For loading programs and acting as a console, two pro-
grams, boot loader and monitor, are provided. The boot
loader is stored in a ROM area implemented on ESB. It

is initially executed for loading programs upon turning
on the power. The monitor is loaded through the boot
loader. It provides such console functions as display-
ing the memory contents, loading programs and data into
memory, displaying the contents of registers, modifying
the contents of program counter, and handling interrupts
as well as dispatching the corresponding processes.

Using Quartus II ver.1.1, a development software tool
by Altera, we describe and compile the design in Verilog-
HDL, configuring the FPGA on the SOPC board. About
57% of the LE resources have been used for the con-
figuration. The compilation requires about 25 minutes
with a platform of Pentium4 1.7GHz CPU with RDRAM
512MB memory. The MinIPS system is operating at a
clock rate of 16.5MHz.

2.3 Tiny C Compiler

Requirements for the language compiler to be developed
are: 1)To be simple enough to understand; 2)To have
enough ability that allows compiling network protocol
stack and applications for Tiny J System; 3)To conform
to compiler design lectured in the corresponding lecture
course.

Tiny C[8] is a small subset of C language developed by
Prof. Watanabe as an illustrative compiler for his com-
piler course. It almost meets our requirements except
for lacking of support for some operators such as bitwise
operators. We supplemented support for unary address
operator (“&”), bitwise operators (“&”,“ |”), modulo op-
erator(“%”) and shift operators (“<<”, “ >>”) into Tiny C.
The supplemented version is denoted by Tiny C hereafter
unless otherwise noted.

We also introduced minor modifications into SPIM
emulator[6] to use it as a MinIPS emulator. The mod-
ifications include appending a memory image snap-
shot function which is used as a substitution for as-
sembler and linker to obtain MinIPS object codes.
Signed multiplication and division routines were added
into “trap.handler” containing startup codes for
MinIPS, since MinIPS does not support these instruc-
tions.

2.4 TinyIP protocol stack

Requirements for the protocol stack to be developed are:
1)To be simple enough to understand and easy to de-
scribe in Tiny C with simple syntax; 2)To be realistic
and practical so that students feel a sense of accomplish-
ments; 3)To be educational so that students understand
features and benefits of the protocol with layered archi-
tecture; 4)To be extensible so that students can append
their own ideas to the protocol; 5)To be independent of

Add

Add

Add

Add
SL16

shifter

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

rs
rt

rt
rd

immedeate

shamt

31

immediate

Instruction

JumpTarget

immediate

S
ext

B cond
test

FW
unit

next PC
selecter

Inst.
Cache

Data
Cache

WD RD

addr

Register
File

RR1
RR2

RD1

RD2WD
WR

ALU

selOP

ALUSrc

RegDst

MemWrite

MemtoReg

nextPCsel

Jump unit

target

PC

4

8

Control
Unit

Bcond

nextPCtype

ALUctrl

SHctrl

RegWrite

Exception
Control
Unit

EPC

cause

status

0x10003000

M
u
x

Exception

Register

Unit

M
u
x

MemRead

I
D
_
E
X

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r

I
F
_
I
D

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r E
X
_
M
E
M

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r

M
E
M
_
W
B

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r

Z
ext

∗4

Figure 3: Block diagram of MinIPS processor.

hardware so as to allow testing before the processor be-
comes available.

To simplify the protocol stack, we use Internet Proto-
col (IP) as a network layer, and User Datagram Protocol
(UDP) as a transport layer. We do not support packet
fragmentation, Address Resolution Protocol (ARP), nor
Internet Control Message Protocol (ICMP) processing.
In spite of the limited functions, it is still capable of
communicating with standard IP such as the one imple-
mented in the Linux kernel.

We provide students with two versions of the imple-
mentations: one written in standard C language to illus-
trate the design of the protocol stack, the other written in
Tiny C to be integrated into Tiny J System. Both of them
have almost the same structure except that the latter calls
for works on differences between standard C and Tiny C
compilers. We basically describe the former in this sec-
tion.

The stack consists of ten modules whose functions
and calling flows are shown in Figure 4. They are de-
scribed in separate C source files with well-defined in-
terfaces. Receiving functions are driven by interrupts.
The method of using interrupt mechanism is practical
and keeps the control flow simple and conforming to the
OSI seven-layer model. The structure facilitates append-

ing new features to the stack, making the stack extensi-
ble. Hardware dependent routines are collected into one
module (hardware.c), resulting in portability to new
hardware.

The core routine of the stack consists of about 800
lines in C language with additional 400 lines of instruc-
tive comments. Tiny C version consists of about 500
lines since some features such as generic FIFO routines
were omitted.

We also supplied a TinyIP compatible library for stan-
dard UDP/IP stacks on Linux. Students can build and
execute application programs before completion of their
own stacks.

We developed a monitoring tooletherpeep which
allows observing ethernet frames in hexadecimal num-
bers (and ascii characters). It is similar totcpdump
command on Linux with-x option except thatether-
peep displays ethernet headers. It displays whole ether-
net frames in simple format.

3 Integrated Laboratory

The laboratory course offered in second semester of ju-
nior year started from year 2001. Hours assigned to the

application

udp_dequeue()

udp_enqueue()

udp_input()

ip_input()

eth_input()

hardware_input()

udp_output()

ip_output()

eth_output()

hardware_output()

udpapi_send() udpapi_receive()

fifo

udpapi.c

udp_input.c

ip_input.c

eth_input.c

hardware.c

eth_output.c

ip_output.c

udp_output.c

UDP
encapsulation

IP
encapsulation

Ethernet
encapsulation

UDP
decapsulation

IP
decapsulation

Ethernet
decapsulation

Interface for
hardware layer

Interface layer for
this IP protocol suite

buffering of
received messages

fifo.c

utility functions

util.c

Interrupt

Figure 4: Functions and their calling flows of TinyIP modules.

course are divided into two periods each consisting of
12 three-hour classes. The laboratory course completes
within individual periods. In each period 30 students take
the course. Thus 60 students in total participate in the
laboratory during the semester.

In each period students are grouped into five teams
each of six students. A team consists of N (network-
ing), C (compiler), and P (processor) subgroups who are
in charge of working on corresponding sub-laboratories
and cooperatively develop a complete Tiny J system.

In the P sub-laboratory students proceed along the fol-
lowing steps: 1)Learning how to use design tools; 2)De-
signing small submodules; 3)Designing arithmetic logic
unit; 4)Designing pipelined processor; 5)Compiling the
MinIPS system and verifying the function.

For coordinating them with other sub-laboratory as-
signees, we fix a minimum specification given to stu-
dents. After getting familiarized with the development
tools, students first design simple modules such as multi-
plexors and adders, and then gradually shift to designing
more complex modules. When completing all the neces-
sary modules, they start designing the entire processor.

In designing the processor they are not assigned to de-
scribe the whole of the processor. Instead, they are given
a processor description with several parts taken out in
such a way that the behavior of the pipelined processor

can still be understood. They are assigned to supplement
the incomplete design with proper descriptions. For such
modules as the RS232C and Ethernet controllers, de-
scriptions are given to students so as to enable them to
verify that the processor is operating.

For testing and verifying the design several tools are
provided: 1)A graphical simulator embedded in Quar-
tus has been used throughout the experiments; 2)LEDs
equipped on the board are used in the preliminary exper-
iments as well as for monitoring states of programming
execution; 3)The boot loader given to students has been
effective in checking whether the MinIPS system works
as a whole; 4)Test programs such as calculating prime
numbers in Tiny C are given to students for more exten-
sive debugging.

Discussions among team members on the specification
of MinIPS are expected. For example, extra instructions
may be added to MinIPS instruction set if an agreement
is reached between C and P assignees.

Students start the C sub-laboratory by tracing the
parser in the original Tiny C source code to draw a chart
illustrating the syntax of the language processed by the
compiler. Then they are assigned to refine the origi-
nal Tiny C compiler so as to accept additional operators
and literals required to implement TinyIP. The assign-
ments are the necessary supplements described in the

previous section. Discussions among team members on
the specification of their Tiny C is expected also in this
sub-laboratory. Agreements in the team members may
lead to changing the specification of their final version
of Tiny C.

In the N sub-laboratory students proceed along
the following steps: 1)Writing simple applications;
2)Analyzing ethernet frames; 3)Implementing and en-
hancing TinyIP for Linux; 4)Implementing TinyIP in
Tiny C for MinIPS; 5)Combining TinyIP with other sub-
laboratories. The fourth and the last are steps for the
CNP integration requiring collabrations of team mem-
bers. The integration steps are to be led by N assignees.

Students start the N sub-laboratory from learning ba-
sic network architecture and writing some simple appli-
cations. They connect two Linux boxes with an ethernet
cross cable, configuring a LAN isolated from the cam-
pus network. We provide a TinyIP compatible library
for Linux and a sample application with detailed docu-
ments. They utilize the library to write client and server
programs satisfying echo protocol[7]. The programs are
used as applications later in Tiny J.

Next they learn how the frame is encapsulated and de-
capsulated. They capture and analyze ethernet frames
produced by standard UDP/IP stack withetherpeep
command. They also get a good reference of working
UDP/IP frames.

Students then proceed to implementing TinyIP in stan-
dard C. We provide a template of TinyIP implementation
missing core functions such as encapsulation and decap-
sulation of ethernet, IP, and UDP frames. For verifying
the implementation they connect two Linux boxes: one is
configured to use standard UDP/IP stacks while the other
is to use TinyIP. On both boxes they execute their client
and server applications developed at the first step. They
enhance their TinyIP implementation by adding some
features such as ICMP and ARP, and/or by making im-
provements on memory consumption.

After discussions among team members to fix the final
language specification of Tiny C, they implement TinyIP
in Tiny C for MinIPS. They are given a template of
TinyIP implementation in Tiny C and write the miss-
ing code in accordance with Tiny C specifications. They
compile and test their implementations in the following
three environments: 1)gcc for compilation and Linux for
execution; 2)Tiny C for compilation and MinIPS emula-
tor for execution; 3)Tiny C for compilation and MinIPS
real hardware for execution. In the first environment,
they can test TinyIP stack independently of Tiny C and
MinIPS. In the second environment, they can test TinyIP
stack and Tiny C independently of MinIPS real hard-
ware.

Finally in the third environment they integrate results

developed by team members into a complete Tiny J Sys-
tem. The integration follows the steps: 1)N, C, and P
subgroups demonstrate respectively that TinyIP is run-
ning on Linux, that Tiny C generates code executable on
MinIPS emulator, and that the MinIPS processor works
by executing LED blinking program. 2)They synthesize
MinIPS and load the TinyIP compiled by Tiny C. 3)They
execute an echo server on Tiny J System and confirm that
it can communicate with an echo client on the Linux box.

Screens displaying UDP/IP communications between
MinIPS and Linux are shown in Figure 5. A window
of the MinIPS console displays loading and execution
of Tiny J object codes for the echo server. The Linux
screen displays execution of the echo client on a window
while monitoring the communications byetherpeep
on the other window. The echo server in this figure turns
upper/lower cases of received alphabets in transmission
for ease of verification.

4 Results and Discussions

In the P sub-laboratory, according to steps reached by in-
dividual students, we gave hints at early stages to adjust
their paces. In the first and second periods, eight of ten
and ten of ten assignees completed the P sub-laboratory,
respectively. Even students who could not complete the
laboratory expressed in their reports a strong sense of ac-
complishments.

We accepted seventeen reports from the C assignees.
All of them completed all the requisite assignments,
and twelve students tried the optional enhancements.
Examples of the enhancements made by students are:
adding pre-increment/pre-decrement operators; extend-
ing the lexical analyzer so as to accept various sorts of
integer literals.

All of the twenty N assignees succeeded in imple-
menting TinyIP stacks for Linux. They enhanced their
stacks for Linux in various ways. Table 1 shows the en-
hancements and the numbers of students who tried and
finished the enhancements. Some of them made multiple
enhancements.

Tools for checking individual components, for testing
effects caused by interactions between components, and
for verifying Tiny J integration as a system are required.
Although some of them have been provided for students
as mentioned in the previous section, the testing environ-
ment is still poor as a whole. Particularly in verifying the
integration, it is not easy for students to create programs
for checking expected behaviors, because situations cov-
ering exhaustive failures are difficult to produce. If we
provided better test tools, they could verify their imple-
mentations more easily.

Window for
ECHO client

Screen of
MinIPS Console

Screen of
Linux box

Window for
etherpeep

Figure 5: Screens displaying UDP/IP communications between MinIPS and Linux.

Table 1: Enhancements made by students.
Features # of students

who tried (finished)
Optimizing memory usage 8(8)
IP fragment transmission 4(2)
IP fragment reception 3(2)
ARP request 7(6)
ARP reply 5(5)
ICMP echo reply 4(3)
ICMP port unreachable 2(2)

We asked students to fill out a questionary provided
by us to evaluate the laboratory from a student’s point of
view. A summary of the answers collected from P as-
signees after the first period of the laboratory is shown
in Figure 6. The results show that it took long time for
students to complete the laboratory compared to regular
36 hours: for example, 10 to 15 extra hours needed for
60% of the P assignees. However, we can see that 90%
of the students understood the laboratory and 100% of
them enjoyed it. Almost the same responses have been
obtained about levels of understanding and attractiveness
from other sub-laboratory assignees. In spite of the large
and tough laboratory, three teams out of five were suc-
cessful in the integration of C, N, and P components. We
observed many scenes where shouts for joy arose from
around upon succeeding in the CNP integration. This

is considered to be another proof that CNP laboratory is
successful in giving the students a sense of accomplish-
ment.

Some students in the first period, however, complained
that they did not understand well what other subgroups
were doing. This suggests a need of some devices for
students to be more aware of other subgroups.

From the suggestion as well as our experiences on
the first period of the CNP laboratory, we introduced
progress check sheet, a sheet to record the progress of
each member in a team. Three columns of the sheet list
steps of P, C, and N sub-laboratories in time sequence. A
row of the sheet shows the current progress of the mem-
bers in a team. They put the date when they have finished
a step. All the students in the same team share a sheet
and can see what other subgroups are currently working
on. We expected that by sharing the sheet they will feel a
sense of cooperations, stimulating more active commu-
nications. We also intended by the sheet that students
obtain a cross-cutting view of the Tiny J system.

Students in the second period answered that the
progress check sheet helped them be aware of other sub-
groups and understand what they are doing. They also
answered that they were able to collaborate smoothly
with other subgroups thanks to the check sheet. Proba-
bly due to the boosted collaboration, all of the five teams
were successful in the CNP integration in the second
period, which is one of the distinguished improvements

somewhat difficult

difficult

normal

(70%)

(10%)

(20%)

somewhat easy
easy

(0%)

(0%)

Levels of difficulty

10 to 15 hours

over
15 hours

5 to 10 hours

(60%)

(10%)

(30%)

2 to 5 hours

less than 2 hours
 (0%)

(0%)

Extra hours required
for self-studying

well

a little

very well

(40%) (50%)

(10%)
ordinarily

(0%)

(0%)

Levels of understanding

excellent

good

bad

(60%)

(0%)

(40%)

not so good
(0%)

(0%)

Levels of attractiveness

very little

usual

Figure 6: Summary of the questionary.

from the first period.

5 Conclusions

An integrated laboratory dealing with computer net-
works, compiler design, and computer organization has
been developed. In the laboratory, students understood
the assigned components and their interfaces with other
components. After discussing and adjusting their speci-
fications, they designed and implemented these compo-
nents, and integrated them cooperatively into a system.
The goals of the integrated laboratory have been proven
to be fulfilled from the response of students who per-
formed the laboratory, approving our intention of the lab-
oratory and verifying its effectiveness.

Several improvements have been made to encourage
students’ cooperations. But we are aware of a lack of
testing methodology. Two approaches are considered:
1) giving them a set of test suites; 2) teaching the way
of testing. Both approaches are to be brought into the
laboratory, which belong to future works.

Acknowledgements

The authors are grateful to Prof. Tan Watanabe at UEC,
the original TinyC inventor, who has been supporting our
work with many respects. Mr. Masato Naraoka at UEC

contributed to maintaining laboratory equipments. We
also thank to members of Abe lab. for developing many
peripherals for Tiny J. Special thanks are due to students
who challenged the laboratory with great interests and
contributed to many improvements.

References
[1] R. B. Brown, R. J. Lomax, G. Carichner, and A. J. Drake.

Microprocessor design project in an introductory VLSI
course.IEEE Trans. of Education, 43(3):353–361, 2000.

[2] D. Kassabian and A. Albicki. A protocol test system for
the study of sliding window protocols on networked UNIX
computers.IEEE Trans. Education, 38(4):328–334, 1995.

[3] T. Katsu, D. Oosuga, M. Tsuruta, and K. Abe. Design and
implementation of a 32 bit RISC processor MinIPS.Bull.
of the Univ. of Electro-Comm., 10(2):71–78, 1997.

[4] K. Morita and K. Abe. Implementation of UDP/IP protocol
stack on FPGA and its performance evaluation. InProc.
IPSJ General Conf. Special5, pages 157–158.

[5] The Joint Task Force on Computing Curricula IEEE-
CS and ACM. Computing Curricula - Final Draft.
http://www.computer.org/education/cc2001/final/
index.htm, December 2001.

[6] D. A. Patterson and J. L. Hennessy.Computer Organiza-
tion & Design: The Hardware/Software Interface, Second
Edition. Morgan Kaufmann Pub., 1998.

[7] J. Postel. Echo protocol. RFC 862, May 1983.

[8] T. Watanabe.Composing a compiler. Asakura Pub., 1998.

