
ILP in the Undergraduate Curriculum

Daniel Tabak
ECE Dept., George Mason University,

Fairfax, VA 22030-4444
Tel. (703) 993-1598, FAX (703) 993-1601

e-mail: dtabak@osf1.gmu.edu

ABSTRACT

The paper discusses the teaching of instruc-
tion level parallelism (ILP) in undergraduate
electrical engineering (EE) and computer en-
gineering (CpE) curricula. An argument is
made for justifying the teaching of this topic,
usually taught in graduate courses, at the un-
dergraduate level. A detailed account of the
way this topic is actually taught at the
author’s University is given. The paper dis-
cusses the specific ILP subjects, presented to
the students, along with the technical litera-
ture sources used.

1. Introduction.

The study of instruction level parallelism
(ILP) has been relegated primarily to text-
books intended for graduate studies [1]. It is
also the practice in many Universities to teach
this topic at the graduate level in most cases.
At the same time, it should be realized that
practically all modern computers, be they
RISC or CISC, are implementing ILP on a
constantly growing scale. Some of the latest
products, worth mentioning, are Intel Pentium
4, Intel and Hewlett-Packard (HP) IA-64 ar-
chitecture Itanium, AMD Hammer (64-bit
Intel x86, or IA-32, architecture), Sun Mi-
crosystems UltraSPARC, Silicon Graphics
Inc.(SGI) MIPS R10000, and others.

The author’s department of Electrical and
Computer Engineering (ECE) at the George
Mason University (GMU) has two engineer-
ing curricula: electrical engineering (EE) and
computer engineering (CpE), leading to all
three degrees (BS, MS, Ph.D.). The author has
been teaching for many years a senior course
on computer design. This course is required

for the BS degree in CpE, and it is a technical
elective for the BS in EE.

It has been realized by the author, who devel-
oped this course from scratch, that students
graduating with the BS degree and going into
industry (in most cases) or to graduate studies,
should be knowledgeable not only of the basic
engineering principles of computer organiza-
tion and architecture, but of the most recent
design techniques and practices, implemented
in modern processors. For this reason, the
course content has been constantly changed
and revised from year to year (sometime,
from semester to semester), to reflect the per-
petual innovations in computer design.

As ILP began to be one of the main topics of
research and practice of microarchitecture, it
was introduced, in a timely manner, into the
senior course on computer design. Recently,
the subject of ILP also started to appear in
textbooks intended primarily for undergradu-
ate curricula, such as [2], chapter 8 and [3],
chapter 5. The details of the ILP topics, cov-
ered in this course, are described in this paper.
The course program and its literary sources
are presented in the next section. Section 3
lists the examples of actual ILP processors,
presented to the students. Section 4 includes
concluding comments.

2. ILP in the Computer Design Course.

Prior to going into ILP, the students are ex-
posed to a very detailed study of scalar pipe-
lining. The primary textbook of the course is
[1]. It was used in this course since its first
edition in 1989. Chapter 3 in [1] has a very
exhaustive coverage of pipelining. A good
coverage of pipelining can also be found in
[2], chapter 8, and [3], chapters 4 and 5.

After going over the basic principles of pipe-
lining, using the examples in [1], chapter 3,
the students are exposed to what can go
wrong in pipelines; namely, to the possible
pipeline hazards:

• Structural hazards
• Data hazards
• Control hazards

The above hazards, and some of their possible
remedies, are discussed in detail. It is later
pointed out that these hazards are only more
serious in case of ILP.

Subsequently to pipelining, the discussion of
ILP is initiated, using chapter 4 of [1] and
other sources [4-6]. Sources [4,5] were cho-
sen because they constitute extensive surveys
on the subject with relatively large references
lists. Report [6] was included because it con-
tains very useful material on branch predic-
tion, not available in such concentrated form
elsewhere. In addition, material was taken
from [7-9]. These are some of the earliest ILP
publications, containing basic material. Su-
perscalar, superpipelined, and very large in-
struction word (VLIW) operations are de-
fined. However, the course concentrates pri-
marily on superscalar operation, because of its
prevalent implementation in industry. With
the advent of the Intel-HP IA-64 architecture,
more weight to VLIW may be given in the
future.

Initially, problems involved with data de-
pendence in ILP operations are discussed in
detail. The concepts of name dependence, an-
tidependence, output dependence, and control
dependence, are defined, and some examples
are given. The examples are taken both from
[1] and some are supplied by the instructor. In
addition, the following terms, associated with
this topic, are defined and pointed out in the
examples:

• Rear After Write – RAW
• Write After Read – WAR
• Write After Write – WAW

Subsequently, the following methods, ap-
proaches, and special data structures, having
to do with data dependence, are studied in
detail:

• Register renaming
• Speculative execution
• Out-of-order execution
• Scoreboarding
• Reorder buffer (ROB)
• Reservation stations (RS)
• Trace caching

All of the above topics are well covered and
exemplified in chapter 4 of [1]. Other sources,
such as [4,5,7] are also used. It is pointed out
to the students that instead of using an RS in
front of each functional unit (FU), one can use
one central window with more entries, to for-
ward operands to all FUs [7]. Some proces-
sors are indeed implementing this option.

Some topics in chapter 4 of [1], having a
strong software “flavor”, such as loop unroll-
ing, are skipped. It has been the experience of
the author, that engineering majors do not
willingly accept topics involving program-
ming. Had the course been given to computer
science majors, the above topics would also
be included.

Problems due to branches in ILP, particularly
those dealing with the conditional ones, are
handled next. The topics of speculative and
out-of-order execution are raised again. In
addition, the following topics and data struc-
tures are studied:

• Branch prediction (local, global, bi-
modal)

• Branch target buffer (BTB)
• History table (HT)
• Counter structure (Counts)

This material is also covered in chapter 4 of
[1]. In addition, references [4-7] are used. Of
particular importance on this topic is the re-
port [6].

The topic of data prediction is not covered in
the undergraduate curriculum, since it belongs
in the realm of basic research, as opposed to
current industrial practice. It is relegated to a
subsequent graduate course in computer ar-
chitecture, along with other more advanced
topics (such as explicitly parallel instruction
computing - EPIC, for instance).

3. Examples of ILP Systems

Examples of actual processors, both of the
RISC and CISC type, implementing ILP, are
presented to the students. Special data struc-
tures and methods, discussed in the previous
section, are pointed out to the students, as
they are encountered in the processor exam-
ples. Some of the examples are brought up
during the discussion of various topics in sec-
tion 2. Reference [1] contains a number of
examples. Reference [4] contains examples of
SGI MIPS R10000, Compaq (Digital) Alpha
21164 (actually used in the primary comput-
ing system on GMU campus), and AMD K5.
A number of ILP examples (including the
R10000 and Alpha 21164) can be found in
[10]. Another source to which students are
directed is the Internet (websites such as
www.intel.com, developer.intel.com,
www.extremetech.com and others).

The main ILP implementation example, illus-
trated in detail in this course, is the Intel-HP
IA-64 architecture with its first product, the
Itanium. Most of this material comes from the
Intel and HP websites on the Internet.

In conjunction with the study of the IA-64
architecture, the students are familiarized with
the concept of predication, along with illus-
trative examples of its implementation. The
concepts of EPIC [11,12] are briefly covered.
The details of EPIC are relegated to a subse-
quent graduate course on computer architec-
ture. In the Itanium example, ILP features,
discussed in general earlier, such as register
renaming, scoreboarding, branch prediction,
and multiple FUs, are pointed out to the stu-
dents.

The Intel IA-32 architecture products are also
included in the examples, particularly the lat-
est Pentium 4. Also here as for the Itanium,
the ILP features such as out-of-order execu-
tion, trace caching, branch prediction, and
multiple FUs, are stressed. The multiple reg-
ister files (128 registers) in both Itanium and
the Pentium 4 are pointed out to the students.
In the Pentium 4, those are of course rename
registers along with the old x86 architecture 8
“general purpose” registers (not quite “gen-
eral”, because of their special tasks).

Other examples, such as the Alpha architec-
ture processors (actually used on the GMU
campus), the Sun UltraSPARC, and the SGI
MIPS R10000, are also covered.

4. Concluding comments

Because of the prevalence of ILP implemen-
tation in industrial products, it is obvious that
the topic should be included in undergraduate
curricula, preparing engineers and computer
specialist for the information technology in-
dustry. A sample of a possible undergraduate
coverage of ILP, as practiced in a senior EE
and CpE course at GMU, has been presented.
This program has been constantly revised and
modified in the past few years, to follow up
the developments of the state of the art and
engineering practice. This development and
constant revision of the course is intended to
continue.

REFERENCES

1. J.L.Hennessy, D.A.Patterson, Com-
puter Architecture: A Quantitative
Approach, 2nd ed., M.Kaufmann, San
Francisco, CA, 1996.

2. C.Hamacher, Z.Vranesic, S.Zaky,
Computer Organization, 5th ed.,
McGraw Hill, NY, 2002.

3. J.P.Hayes, Computer Architecture
and Organization, 3rd ed., McGraw
Hill, NY, 1998.

4. J.E.Smith, G.S.Sohi, The Microar-
chitecture of Superscalar Processors,
Proc.IEEE, vol.83, no.12, pp.1609-
1624, Dec.1995.

5. A.Moshovos, G.S.Sohi, Microarchi-
tecture Innovations, Proc.IEEE,
vol.89, no.11, pp.1560-1575,
Nov.2001.

6. S.McFarling, Combining Branch Pre-
dictors, WRL Technical Note, TN-36,
June 1993.

7. M.Johnson, Superscalar Design,
Prentice Hall, Englewood Cliffs, NJ,
1990.

8. N.P.Jouppi, D.W.Wall, Available In-
struction-Level Parallelism for Super-
scalar and Superpipelined Machines,
In Proc. ASPLOS III, pp.272-282,
Boston, MA, April 1989.

9. N.P.Jouppi, The Nonuniform Distri-
bution of Instruction-Level and Ma-
chine Parallelism and its Effect on
Performance, IEEE Trans. on Com-
puters, vol.38, no.12, pp.1645-1658,
Dec.1989.

10. D.Tabak, RISC Systems and Applica-
tions, RSP, UK and Wiley, NY, 1996.

11. M.S.Schlansker, B.R.Rau, EPIC: Ex-
plicitly Parallel Instruction Comput-
ing, IEEE Spectrum, vol.33, no.2,
pp.37-45, Feb.2000.

12. M.S.Schlansker, B.R.Rau, EPIC: An
Architecture for Instruction-Level
Parallel Processors, HP Laboratories
Report, HPL-1999-111, Feb.2000.

