
Using Custom Hardware and Simulation to Support Computer Systems
Teaching

Murray Pearson, Dean Armstrong and Tony McGregor
Department of Computer Science

University of Waikato
Hamilton

New Zealand�
mpearson,daa1,tonym � @cs.waikato.nz

Abstract

Teaching computer systems, including computer ar-
chitecture, assembly language programming and operat-
ing systems implementation, is a challenging occupation.
At the University of Waikato we require all computer sci-
ence and information systems students study this mate-
rial at second year. The challenges of teaching difficult
material to a wide range of students have driven us to
find ways of making the material more accessible. The
corner-stone of our strategy for delivering this material
is the design and implementation of a custom CPU that
meets the needs of teaching. In addition to the custom
CPU we have developed several simulators that allow
specific topics to be studied in detail.

This paper describes our motivation for devloping a
custom CPU and supporting tools. We present our CPU
and the teaching board and describe the implementation
of the CPU in an FPGA. The simulators that that have
been developed to support the teaching of the course are
then described.

The paper concludes with a description of the current
status of the project.

1 Introduction

Teaching computer systems is a challenging but vi-
tal part of the computer science curriculum. In 1997
the Department of Computer Science at the University
of Waikato decided that computer systems was important
to all computer science and information science students
and made its computer systems course compulsory for
all second year students. Like most computer systems
courses Waikato’s uses assembly language programming
as a vehicle to understanding the inter-relationships and
interactions between the different components of a com-
puter system. The brief of the course is quite differ-

ent to an introductory computer architecture course, even
though it contains many of the same components. The
difference lies in the audience and motivation. Our
course is intended to be useful to all computer profes-
sionals, not just those who specialise in computer archi-
tecture. Our use of assembly language programming is
an example of the impact of this difference. Very few of
the students will continue to program in assembly lan-
guage after the course, however, we believe that it is im-
portant that they have an understanding of computer op-
eration at this level of abstraction. While we want to
teach a coherent and realistic architecture we have no
fundamental interest in details such as delay slots, ad-
dressing modes and word alignments. These are impor-
tant topics for a specialist, but do not significantly add
to the understanding of the operation of a computer sys-
tem as a whole, which is the goal of our course. Assem-
bly language is essential to this goal but many students
find assembly language programming difficult and this
detracts from the main thrust of the course, which is not
to teach assembly language per say.

We wish to focus on the role of the machine and the
interactions between the hardware and software compo-
nents including compilers, libraries and the operating
system, rather than spending a lot of time describing a
partticular manufactures performance oriented features.
This has led us to develop our own instruction set archi-
tecture called WRAMP. As described later the course has
a practical component; practical exercises reinforce the
content of the lecture material. To support the practi-
cal component of the course using the WRAMP instruc-
tion set has required the development of a platform to
allow students to assemble and execute WRAMP pro-
grams. The two choices considered were the develop-
ment a WRAMP simulator or a custom hardware plat-
form.

Using a simulator is easier and cheaper however we
believe that the lack of real hardware distorts the learning

environment by adding an extra, unnecessary, abstraction
when many students are struggling to come to grips with
the essential content of the course. A simulator it is itself
a program running on a computer. This makes it difficult
for students to readily identify the target system and they
tend to confuse the role of components of the system.
When this happens there is a risk that students will focus
on the most obvious difference between practical work in
this area and others: the programming language. When
real hardware is used, the real focus is more likely to be
on the target system.

For this reason, we believe that students should have
the benefit of real hardware when they first learning as-
sembly language programming. Until recently this would
have excluded a custom CPU design, however it has been
made possible by advances in reconfigurable logic. We
have used FPGA technology to develop a single board
computer (called REX) with with our own custom de-
signed CPU and IO devices.

Once the students have developed a clear mental
model of the components of a computer system, simu-
lation can be used to enhance their understanding of the
more complex topics in the course. To this end we have
developed simulators for use in the course, two of which
are presented here. The first of these, called RTLsim, is
used to simulate a simple non-pipelined MIPS proces-
sor to demonstrate how instructions can be fetched from
memory and executed. The second of the simulators is
a multi-tasking simulator that introduces students to the
ideas behind task swapping in a multitasking kernel.

The next section gives an outline of our computer sys-
tems course. Section 3 then describes, in more detail, the
motivation for developing a processor and board to sup-
port the teaching this course. Sections 4 and 5 describe
the design of the CPU and board. Section 6 then describe
the simulators that that are used in the course followed
by Section 7 which briefly describes the exercises carried
out by students on the course.

A brief description is then given of how we intend to
use the board in the third and fourth year computer archi-
tecture courses.

2 Course Outline

When the Department decided to make the second
year computer systems course compulsory, its curricu-
lum committee established a set of key topics that should
be covered by the course. These included: data repre-
sentation, machine architecture (including assembly lan-
guage programming), memory and IO, operating systems
and data communications.

Figure 1 shows the order of the topics that make up
the course and the relative levels of abstraction used to
describe them. The main content of the course can be

broken into two parts. The first part illustrates what hap-
pens to a high level program when it is compiled and ex-
ecuted on a computer system. This serves two purposes.
First, it demonstrates some of the major issues which de-
termine the performance of a computer system. Second,
it shows the likely consequences of writing a particular
construct in a high level programming language in terms
of speed and size of the code generated.

The aim of the second part of the course is to pro-
duce an understanding of operating system principles and
components, their role in supporting the user, and in the
execution of programs written in high level languages
such as C (the starting point of the course). The focus is
on achieving an understanding with the operating system
and the implications of hardware and software choices,
rather than an ability to write a new one.

There is a strong theme of interactions and relation-
ships between the components of a computer system. To
support this we base the whole course around a single
processor architecture so that the students could more
easily see the way the individual components of the sys-
tem contribute to the complete computer system.

3 Background

Because the goal of the course is to explain the role
and interaction of the components of a computer system,
not to teach assembly language programming for its own
sake, there are two main requirements for a architecture:

1. a simple, easy to learn instruction set

2. an architecture that can easily demonstrate the rela-
tionship between high and low level languages, and
user and kernel space.

These goals are at odds with most modern CPU ar-
chitectures which have been optimised to maximise per-
formance and not simplicity. To help achieve high perfor-
mance modern CPUs contain many performance oriented
techniques including the use of reorder buffers, regis-
ter renaming and reservation stations[6]. Because of the
complexity of these architectures it would not be possible
to fully describe the structure and functionality of one of
them in an introductory course.

While most architectures are optimised for perfor-
mance some (such as the 8-bit processors -e.g. the Mo-
torola HC11) are designed to be very cheap and simple.
However, this very simplicity often raises the complexity
required to program the CPU. For example, performing
16-bit indexed address access on an 8-bit processor that
only has an 8-bit ALU requires a series of instructions to
support the 16 bit addition rather than the single instruc-
tion available on larger word sized machine. Because of
the way CPUs developed through the late ’80s and early
’90s, processors with a large enough word size to make

Introduction

Compilation

Assembly
Language

Programming

Machine
Architecture

Input
Output

Operating
Systems
libraries

file system
memory

processes

Data
Comms

C

OS

ASM

RTL

Gate

A
bs

tr
ac

tio
n

 L
ev

el

Time

Part 1 Part 2

Figure 1. Topics Covered in the Course

those aspects of programming easy have other complex-
ities, such as many addressing modes, that are not avail-
able across all instructions or complex interrupt process-
ing. Although many modern CPUs are simpler, because
of the influence of the RISC philosophy, they have other
disadvantages, including branch and load delays as de-
scribed below.

In the past, we have used the MIPS R3000 family as a
compromise between the needs of our course and avail-
able CPU designs [4]. The MIPS CPUs have a relatively
simple programmer’s abstraction. The teaching process
is also supported by a number of very popular text books
including those written by Hennessey and Patterson [3]
[2] and Goodman and Millar [1]. For this reason our
computer systems course has been based around this pro-
cessor for the last six years. While we have found this
processor reasonably well suited to our needs, we have
identified a number of aspects of the architecture that
many students find difficult to understand and which are
not central to our teaching goals. These include:

� the presence of load delay slots which mean that the
instruction directly after a load instruction cannot
use the result of the load as it isn’t available yet.

� the presence of branch delay slots which mean that
the instruction directly after a branch instruction is
always executed regardless of whether the branch is
taken or not.

� the use of an intelligent assembler which is capa-
ble of reordering instructions and breaking some as-
sembler instructions in two so that they can all be
encoded using a single 32-bit word.

� the requirement that all memory accesses to word
values are word aligned.

� the parameter passing conventions that are designed

to minimise the number of stack manipulations in a
MIPS program.

While we do not believe that the complexities de-
scribed above are insurmountable, they do detract from
the goal of the course, that is to give a complete cover-
age of the computer systems area at an introductory level
without being distracted by the complexities associated
with describing a particular manufacturers quirks. This
is in keeping with the introductory level and broad audi-
ence that this course is intended for. Other courses at the
University are intended for students who will specialise
in computer architecture, and these do cover commercial
architectures, including exposure to many of these issues.

We have been unable to find a suitable commercial
CPU architecture to support the teaching of our computer
systems course so we developed our own.

Before discussing the architecture of the CPU we have
designed we consider the question of whether to use a
real CPU or a simulator. Most courses that teach com-
puter architecture or assembly language teaching make
use of CPU simulators. Using a simulated system offers
two main advantages. Firstly, it is possible to develop
a simulator for any CPU. This allows a CPU that is tai-
lored to the goals of the course to be used rather than be-
ing limited to those that are available commercially. The
second advantage of using a simulator is that simulators
normally offer better debugging facilities and visualisa-
tions of a program. These can be used to help reinforce
important concepts.

As noted in Section 1, using a simulator also intro-
duces difficulties for students. It is more likely that stu-
dents will confuse the boundries between the host sys-
tem and the simulated system. Our experience suggests
there is a tendency for students to focus on the program-
ming language when a course introduces a new language,
rather than conceptual material in the course. The use of
real hardware makes the distinctions between the target

system and the development tools concrete. The work
presented in this paper largely removes the disadvantages
of using a real CPU and enables both a simpler working
model and a CPU designed to meet the needs of teaching.
This includes good debugging facilites such as the ability
to single step and observe register and memory values as
the system executes.

4 Processor Design

In designing the processor a great deal of care has
been taken to keep the design as simple and regular as
possible while still being able support the complete range
of practical experiences we wish the students to be ex-
posed to. These experiences start with the writing of
simple assembly language programs and build up to the
development of a very simple multi-tasking kernel.

The resulting CPU design uses a 32 bit word, and is
based around a register-register load-store architecture,
very similar to the MIPS and DLX [5] processors. Most
computational instructions have a three operand format,
where the target and first source are general purpose reg-
isters, and the second source is either a register or an im-
mediate value. Regularity of the instruction set was a key
factor in maintaining the simplicity. Immediate flavours
of all computational instructions are provided, as well as
unsigned versions of all arithmetic instructions.

Care was taken to keep the correspondence between
assembly language instructions and actual machine in-
structions as a one-to-one relationship. To this end a ma-
jor feature of this CPU is the reduction of the address
width to 20 bits, and the number of registers to 16. This
allows an address, along with two register identifiers and
an opcode to fit into a single instruction word, removing
the need for assembler translation when a program label
is referenced.

The other main differences from MIPS and DLX are
the removal of the branch and load delay slots, and the
fact that the CPU is 32 bit word addressable rather than
byte addressable. Making the machine word addressable
only, greatly simplifies the operation of the CPU, and al-
lows us to present students with an easily understandable
model of it. Another advantage of a word addressable
machine is that it removes the possibility of word access
alignment problems which new students frequently en-
counter on a byte addressable machine.

The CPU only supports three instruction formats as
shown in Figure 2. It can also be seen from this figure
that the instructions have been encoded to allow for easy
manual disassembly from a hexadecimal number, with
all fields aligned on 4 bit boundaries.

While the CPU has been made as simple as possible
for the tasks we require it does include external and soft-
ware interrupts and has supervisor and user modes with
protection. These mechanisms are accessed through a

I-Type instruction

OPcode Rd Rs Func Immediate

R-Type instruction
OPcode Rd Rs Func 000000000000 Rt

J-Type instruction
OPcode Rd Rs Address

OPCode 4 bit operation code
Rd 4 bit destination register specifier
Rs 4 bit source register specifier
Rt 4 bit source register specifier
Func 4 bit function specifier
Immediate 16 bit immediate field
Address 20 bit address field

Figure 2. Instruction encoding formats

M
em

or
y

In
te

rf
ac

e

Te
m

p

PC

IR
 Control

A
LU

R
eg

is
te

r
Fi

le

Figure 3. Processor Block Diagram

special register file, similar to the MIPS’ coprocessor 0.
This means that these concepts need not be discussed for
students to begin programming in assembler, and when
desired, they can be introduced by describing the special
register file, and the two instructions needed to access its
contents.

The data-path of the processor is based around a three-
bus structure (as shown in Figure 3) and instructions take
multiple clock cycles to execute. As can be seen from
Figure 3 the CPU’s data-path is very simple making it
possible to completely explain the operation of the data-
path to second year students. In particular it is possible
to explain in detail how machine code instructions stored
in memory can be fetched, decoded, and executed on the
data-path.

The CPU has been represented in VHDL so that it can
be targeted to a reconfigurable logic device. The CPU
design when synthesised consumes a large portion of a
200 thousand gate Xilinx Spartan II FPGA device.

Figure 4. The Teaching Kit

5 Board Design

Figure 4 shows the REX board designed to support the
CPU described in the previous section. As can be seen
from the picture we have been careful to layout the board
so that the main components that make up a computer
system can be clearly identified. The main data-paths that
connect these components are also visible on the board.

Reconfigurable logic is used wherever possible on the
board to allow it to be as flexible as possible. In addi-
tion to making the design of our own CPU and IO de-
vices possible, this allows the architecture of these com-
ponents that students are presented with to be fine tuned
as the course develops. As explained later, it also allows
the board to be used for multiple teaching functions, in-
cluding FPGA and CPU design.

While it would have been possible to place most or
all of the reconfigurable designs into a single chip the
decision was made to use a separate chip for each IO de-
vice and the CPU, making it possible for the students to
physically identify each of these devices on the board.
The choice to use multiple RAM and ROM chips to pro-
vide the 32 bits of data rather than employing multiple
accesses to a single chip was also made with the inten-
tion of clarifying the operation for the students. Effort
was made, however to keep the number of non-essential
support components to a minimum.

The boards are intended to be connected to a work-
station where students can write and assemble programs,

which can then be loaded and run on the board. Because
we wanted to build a laboratory for a large class it was
important to make reconfiguration easy. In particular we
designed the board to support remote reconfiguration of
all programmable devices and the stored bootstrap pro-
gram code. Scripts have been developed that enable all of
the REX boards in a laboratory environment to be com-
pletely reconfigured from a single command. Cost has
also been kept to a reasonable level.

Although there are a number of features that support
teaching, one that had a large impact on both the board
and CPU design is support for cycle-by-cycle stepping of
the processor with an LCD display to indicate bus con-
tents, and LEDs to show device selection and exceptions.
We believe this feature will be a major asset for students
struggling with the many new abstractions and concepts
presented by the course.

6 Simulators

In the course we use a number of simulators to re-
inforce some of the more complex conceptual material.
The first simulator (RTLsim) has been developed to rein-
force the ideas associated with the execution of machine
code instructions on a data-path. The second simulator is
a multi-tasking simulator that introduces students to the
ideas behind task swapping in a multitasking kernel.

Figure 5. Screendump showing RTLsim in operation

6.1 RTLsim

In the first part of the course the students learn the re-
lationships between a program written in a high level lan-
guage such as “C” and its representation in assembler and
machine code. Following on from this we show the stu-
dents how a machine code instructions can be executed
on a simple processor data-path. In previous years a sim-
ulator called RTLsim which simulates the data-path of a
simple non-pipelined MIPS like processor has been used
to support the teaching of this component of the course.
Currently we are in the process of developing a WRAMP
version of the simulator. The rest of this section describes
the MIPS version of RTLsim.

RTLsim is written in C for a UNIX system running
X-windows. When the simulator is run the student (user)
acts as the control unit for the data path by selecting the
control signals that will be active in each control step.

Figure 5 shows the main window for the simulator
that comprises of two main components, a visual repre-
sentation of the data-path and a control signals window.
The data-path is made up of a 32-register register file,
ALU, Memory interface and a number of other registers
to store values such as the program counter and the cur-
rent instruction being executed. Three internal buses are
used to connect to connect these components together.
This combination of components and buses is sufficient
to fetch and execute most of the instructions in the MIPS
R3000 instruction set. The control signals section of at
the left hand end the main window is used by the student
to set the values of control signals that are going to be ac-

tive in the current control step. For example consider the
execution of the MIPS instruction add $3, $4, $5
that adds the contents of register 4 to register 5 and store
the result into register 3. Assuming the instruction has
been fetched into the instruction register during earlier
control steps then the settings shown in the controls sig-
nals window of 5 would cause the necessary actions to
occur to execute this instruction. As the student sets the
control signals for a control step they are given visual
feedback on the data-path of what will occur when the
control step is executed. For example if the PCout sig-
nal is selected the colours of the PC register and the B
Bus would change to show that the PC register is going
to output a value onto the Bbus. If two components try
to output to the same bus at the same time the bus would
turn red to indicate an illegal operation.

From the main window, other windows may be
opened that show the contents of memory and the regis-
ter file. In the case of the memory window it is possibly
to preload memory image from an file in s-record format
before starting a simulation. This is the same file format
used to upload programs to the MIPS board. This enables
the students to upload and execute the same program on
both a MIPS board and RTLsim, allowing the executions
to be compared.

The simulator can also record a trace of the operations
that are performed in each control step. This trace can be
used by the student to playback the operations in the sim-
ulator or used as input to an automated marking system.

Before RTLsim was introduced to the course the stu-
dents where given a paper-based exercise where they had

Figure 6. Multi-tasking simulator

to define the sequence of control steps necessary to ex-
ecute a set of MIPS instructions they were given. If the
students had not grasped the main concepts they com-
pleted the entire exercise incorrectly and were not given
any feedback until the assignments were marked and re-
turned to them several weeks later. However with the
introduction of RTLsim the students are given immedi-
ate feedback at several levels. Firstly as the students set
the control signals they are given visual feedback on the
data-path. Once they believe they have the necessary sig-
nals to execute the control step they can try it and ob-
serve the outcome in the registers and memory. If the
outcome is incorrect the simulator provides undo opera-
tions so they can try again. Lastly, an automated marking
system is used. If the exercise is not completed correctly
the marking system generates a set of comments that tells
the students where they went wrong so they can try again.

6.2 The Multi-tasking Simulator

One of the assignments undertaken by students in the
second year course using the boards is the development
of a very simple multi-tasking kernel. The kernel does
not include memory management, task creation or termi-
nation but it does share the CPU between three tasks, in-
cluding the saving and restoring of state and changing of
stacks between tasks. The tasks are designed to use dif-
ferent parts of the hardware. One reads the switches and
writes the value read to the seven segment display, an-
other reads characters from the secondary terminal and
writes the uppercase values to the terminal. The third
task displays the time on the primary serial port. Students
have already written these tasks in a single task environ-
ment, in earlier assignments.

Although the multi-tasking kernel does not require

very many lines of code, there are conceptual and coding
barriers to its implementation. We address these issues
in classes but have found it useful to re-enforce the ideas
using a multi-tasking simulator, before students attempt
their own implementation. The simulator is written in C
for X-windows and creates a number of windows. An ex-
ample of the windows is shown in figure 6. Each task has
two windows associated with it, the first is the stack and
the second is the saved state of the task (its process de-
scriptor). An example for one task is shown in the right
most two windows in figure 6. When the students use
the simulator there are three tasks; two have been omit-
ted here to save space. The link field is used to form a
linked list of tasks waiting for the CPU or waiting on a
semaphore for an event.

Moving to the left in figure 6 the middle window
shows the CPU registers. The simulated machine has
only two general purpose registers, a stack pointer, a
program counter, a status register and a saved program
counter which shows the value of the program counter
as it was at the last interrupt. The status register is di-
vided into the interrupt status (masked or enabled), the
interrupt status before the last interrupt (software inter-
rupts are taken even if interrupts are masked), the type
of interrupt (e.g. timer interrupt) and whether there is an
interrupt pending (when interrupts are disabled).

The window second to the left shows the values of
some shared memory variables. These include the head
of the CPU wait queue, the number of interrupts left in
this time slice, the job currently using the CPU the out-
put of two of the tasks (answer and two sum), and
semaphores that hold task 3 until these two tasks are
completed.

The left hand window, which gives a trace of the in-

structions that have been executed. The simulator exe-
cutes pseudo-code which has been designed to be close
enough to WRAMP assembly code that it is easy to imag-
ine the assembly code that matches a pseudo-code in-
struction, but without some of the confusing detail of
assembly code. The number at the left of the log win-
dow indicates the sequence number of the instructions
that have been executed. The letter/number code next
to the sequence number is the address of the instruction.
The letter in the address indicates what part of the code
(A = task A, F = first level interrupt handler, W = wait, S
= signal, etc.) the instruction belongs to.

As each step of the simulation is executed the values
that change are hilighted in red in the appropriate win-
dow. Students are able to change the values at any time
to alter the course of the simulation. The assignment en-
courages them to do this, including altering the time-slice
length.

Readers interested in obtaining the simulator should
contact the author at tonym@cs.waikato.ac.nz.

7 Assignments

The assignments that make up the practical compo-
nent of the course are shown in Table 7. Of particular
note is the implementation of a multitasking kernel by
the students. Given that most students are not computer
technology students and that most successfully complete
this exercise we belief this is a major indication of the
success of the course.

No. Name
1 Introduction to Unix
2 Data Representation
3 Introduction to REX
4 C and WRAMP assembly
5 RTL Design Exercise
6 Parallel and Serial IO
7 Interrupts
8 Multitasking Kernel Simulator
9 Multitasking Kernel Coding

10 Error Detection

Table 1. Assignments

8 Use of the Board by 3rd and 4th year Stu-
dents

We are currently teaching students in a third year com-
puter architecture course about design using VHDL. By
the end of the course the students will be able to de-
sign the main components (ALU, registers, finite state
machines, etc) that make up a CPU. In future years we
plan to use the REX boards to support the teaching of
this course.

In our fourth year computer architecture course, stu-
dents design and implement their own CPU. Last year
the students used a prototype version of the REX board
to implement their CPUs. With the introduction of the
new board and the experience gained using the board in
the second and third year courses, we hope to extend the
complexity of the project undertaken in this course.

9 Conclusions

This paper described the range of hardware and soft-
ware tools that have been developed to support the teach-
ing of the introductory Computer Systems course at the
University of Waikato.

There is much merit in the design of custom CPU and
IO devices for teaching purposes. Current reconfigurable
hardware devices have made it possible to build a single
board computer, with a custom CPU and IO devices, to
support the teaching of computer systems courses. Us-
ing this approach we have removed some of the ‘sharp
edges’ of assembly language programming, like branch
delay slots and complex CPU status control, that add
complexity to introductory teaching but do not add sig-
nificant value.

An additional advantage is that the board will provide
a consistent teaching platform across a range of courses.
We expect that this will considerably enhance the stu-
dents learning experience.

We have just installed 25 REX boards in one of the
Departments Computer Labs. Supporting tools such as
a monitor program for the board, a C compiler, an as-
sembler and linker are now largely complete. Over the
past couple of weeks students have been using the REX
boards to complete their assignments. All of the feed-
back we have had from the students todate has been very
positive and encouraging.

References

[1] J. Goodman and K. Millar. A Programmer’s View of Com-
puter Architecture with Assembly Language examples from
the MIPS RISC Architecture. Oxford Press, 1992.

[2] J. Hennessy and D. A. Patterson. Computer Architec-
ture: A Quantitative Approach, Second Edition. Morgan-
Kaufman, 1995.

[3] D. A. Patterson and J. Hennessy. Computer Organisation
and Design: The Hardware/Software interface. Morgan-
Kaufman, 1994.

[4] M. Pearson, A. McGregor, and G. Holmes. Teaching com-
puter systems to majors: A MIPS based approach. IEEE
Computer Society Computer Architecture Technical Com-
mittee News Letter, pages 22–24, Feb. 1999.

[5] P. M. Sailer and D. R. Kaeli. The DLX Instruction Set
Architecture Handbook. Morgan-Kaufmann, 1996.

[6] R. M. Tomasulo. An efficient algorithm for exploiting mul-
tiple arithmetic units. In IBM Journal of Research and De-
velopment, volume 11, pages 25–33. 1967.

