
Read,Use,Simulate,Experiment and Build : An Integrated
Approachfor TeachingComputer Ar chitecture

IoannisPapaefstathiouandChristosP. Sotiriou

Departmentof ComputerScience,
Universityof Crete,

P.O. Box 1385,Heraklion,Crete,GR 71110,Greece.�
ygp,sotiriou � @ics.forth.gr

Abstract

In thispaperwepresentanintegratedapproachfor teach-
ing undergraduatesComputerArchitecture. Our ap-
proachconsistsof five steps:“read”, which corresponds
to studying the textbook theory, “use”, which corre-
spondsto usinga simulatorwith appropriategraphical
featuresto visualisetheapplicationof the theory, “sim-
ulate”,which correspondsto developinganarchitectural
simulation,“experiment”,whichcorrespondsto modify-
ing thearchitecturalsimulationandobservingtheimpact
that changesmake to performance,andfinally “build”,
which correspondsto developinga low-level hardware
modelin astandardHardwareDescriptionLanguage.In
our experience,goingdown to the gate-level is of great
importance,as studentsoften find difficult to visualise
how differentarchitecturalapproachesaffect the actual
hardware(bothdatapathandcontrol). By following this
five-stepapproachin our teachingweobservedasignifi-
cantincreasein bothstudentperformanceandinterestin
ComputerArchitectureandhardwaredesign.

1 Intr oduction

The subjectof ComputerArchitectureis widely recog-
nisedasasignificantandessentialpartof theundergrad-
uatesyllabusof universitydegreesrelatedto computeror
hardwaredesign.Oneof themainproblemswith teach-
ing ComputerArchitecture,is that studentsshouldnot
only understandthe textbook theory, but more impor-
tantly its applicationin realsystemsandthe impactthat
differentarchitecturalapproacheshave on the complex-
ity andtheperformanceof a system.

Thus,to make theteachingprocessmoreeffectivewe
have chosento usean educationalapproachwhich we
basedon five steps: Read,Use, Simulate,Experiment
and Build. In this paperwe describethesefive teach-

ing stepsandfocuson the oneswe believe areyet un-
common,howeverhave beenvery effective in our expe-
rience.

2 “Read”: TextbookTheory

Our ComputerArchitecture teachingis basedon the
Hennessyand PattersonComputer Architecture text-
book, “Computer Architecture: A Quantitative Ap-
proach”[1], currentlyrecognisedasthe mostextensive
and completereferenceon the subject. Our courseis
tought in the last yearof the ComputerScienceunder-
graduatedegree,i.e. year4, andrunsfor adurationof 14
weeks.As our teachingphilosophyrelieson combining
theorywith practice,we prefer to give studentspracti-
cal experiencethana vastamountof theory. Thus,in 14
weekswe cover the first five chaptersof thebook,both
in termsof theoryandpractice.

3 “Use”: HASE Simulator

After the “Read” stage,studentsaregiven simpleexer-
ciseson a graphicalsimulator. Our simulatorof choice
is theHASE[2] environment.HASE(Hierarchicalcom-
puterArchitecturedesignandSimulationEnvironment)
is a graphicaldesign,simulationandvisualisationenvi-
ronmentthatcanbeusedfor bothteachingandresearch.
We usetheDLX HASE modeldevelopedat theUniver-
sity of Edinburgh. HASE allows studentsto visualise
both the overall structureof the DLX architectureand
the executionof instructionsby observingthe step-by-
stepprogressof individualevents.HASEalsoallowsfor
studentsto explore the impactof architecturalparame-
tersto theperformaceof thearchitecture,asstudentscan
changetheseusingonly theGUI environment(Graphical
UserInterface)andthenre-runthesimulation.



Figure1: TheHASEDLX Model

The DLX HASE exercisesrequirestudentsto write
DLX assemblycodeandexecuteit on the HASE envi-
ronment. With the help of the simulationenvironment
studentscanmeasuretheexecutiontime, studytheexe-
cutionof eachinstructionin detail(passingthrougheach
pipelinestage)and the impactof architecturalparame-
ters. Studentsare asked to reasonaboutthe execution
timeof theirprogramandto optimisetheircodebasedon
theirreasoning.They canexperimentwith differentcode
schedulesanddiffrerentparametersandevaluatetheex-
ecutiontime with the aim of finding the bestpossible
cases.

SinceusingHASE aspartof our teaching,ratherthan
the standardpen-and-paperones,we observeda signif-
icant increasein the studentsunderstandingandperfor-
mancein thewrittenexaminations.This is probablydue
to thefactthatby gettinghands-onexperienceof thethe-
ory covered,studentsgaindeeperandmorethoroughun-
derstanding.

4 “Simulate and Experiment”: De-
velopa Simulator

The next stageof the courserequiresfor the students
to implementtheir own architecturalsimulation using
a standardHardware Descriptionlanguage(HDL), i.e.
Verilog in our case.In this stagethe implementationof

thearchitectureis to beat thebehavioural level. Thestu-
dentsareaskedto implementaRISCCPUcalledARCP.
The reasonwe chosean alternative to the DLX archi-
tecturewas to give studentssomethingmore challeng-
ing thansimply re-implementingthe DLX, which they
alreadyare familiar with at this stagefrom the HASE
simulations.

4.1 ARCP - A 2-wayIssueAr chitecture for
Teaching

TheARCParchitectureis basedon theDLX, andhasa
very similar instructionset,however it is slightly more
complicated,being 2-way superscalar. ARCP fetches
two instructionsat the sametime from its instruction
memory, which shouldbe alignedand independentof
eachother for reasonsof simplicity (studentsaregiven
only 6 weeksof termfor completingthewholeproject).

Themaincharacteristicsof theARC architectureare:� 64GeneralPurposeRegisters.� 32-bit addressandword lengths.� byteaddressable,big-endianarchitecture.� supportfor two datatypes:words(32-bits)andbytes(8-bits).� 2-way fetch and execution of independent instructions; the
independenceof instructions must be ensuredby the com-
piler/assemblyprogrammer.� only one control instruction (branchor call instruction) is al-
lowed in an instructionpair and it must be placedin the first
of thetwo instructions.� only onememoryreferenceinstructionis allows in aninstruction
pair andit mustbeplacedin thesecondof thetwo instructions.� any numberof arithmetic/logicaloperationsareallowed.� samememoryusedfor instructionsanddataandself-modifying
codeis notallowed.� memorycanonly beaccessedusingloador storeinstructions.� branchesarenot delayed.� register0 is hardwiredto 0.� thereasno conditioncodes;comparisoninstructionswrite a 1
(for true)or a0 (for false)atadesstinationregister.� conditionalbranchesarePC-relative while unconditionals(call
instructions)may be PC-relative or register-indirect; uncondi-
tionalsstoretheir currentaddressin their destinationregister.

4.1.1 ARCP Instruction formats

Thethreedifferentinstructionformatsandtheformatof
aninstructionpair areshown in Figure2.

4.1.2 ARCP Instructions

All supportedinstructionsalongwith their opcodesand
formatsareshown in Figure3.

Most of these instructionsare straightforward and
found in the majority of RISC style architectures.The



4 MS bits 3 LS opcodebits

opcode 000 001 010 011 100 101 110 111

0000 add addi sub subii mul muli cmgti
R I R I R I I

0001 cmeq cmeqi cmne cmnei cmge cmgei cmlt cmlti
R I R I R I R I

0010 and andi or ori xor xori gcp cmlei
R I R I R I R I

0011 shru shrui shrs shrsi shl shli sethi
R I R I R I L

0100 ldbu ldbs ldw stb stw
I I I I I

0101 breq brne brge brlt callr call
L L L L R L

Figure3: ARCPInstructionsandOpcodes

7

32 32

Arithmetic/Logic or Control Transfer Arithmetic/Logic or Load/Store

Instruction Pair Format:

Single Instruction Formats:

13

19

7

7

7

666

6 6

6

Opcode

Opcode

Opcode

R R R

R R

R

Imm

Imma

b

c

13

19

a

a b

L:

I:

R:

Figure2: ARCPInstructionFormats

only unusualonesarethesybii andgcp instructions.
Thesybii instructioncorrespondsto a subtractimme-
diateinverseoperation,i.e. subtractstheregisteroperand
from the immediate,thusinvertingtheorderof thesub-
traction. Thegcp instructioncorrespondsto a guarded
copy operation. A guardedcopy operatesusing three
registersandcopiesthe sourceregisterinto thedestina-
tion if the third register, the guard,is not equalto zero.
Guardedcopy instructionscanbeusedfor implementing
if-then-elseblocks without branchesand thereforecan
improve the efficiency andperformanceof the pipelin-
ing.

4.2 ARCP Simulation and Evaluation

In the “SimulateandExperiment”phaseof the project
the studentsare asked to build a behavioral simulation
of this CPUandcollecta setof measurementsbasedon
a numberof smallbenchmarkprograms.Someof these
benchmarksareprovided by the lecturers,whereasthe
rest are to be developedby the studentsand are to be
representative of typical applications. In our view, let-
ting thestudentdealwith theproblemof finding thebest
benchmarksfor evaluatingthe performanceof the pro-
cessoris really important,asit makesthemreally think
hardof all the underlyingissuesinvolved. To help stu-
dentsachievethis,ourresearchgrouphasdevelopedsim-

ple compilersandassemblerswhich studentscanuseto
producetheir benchmarks.

The measurementsthatwe areaskingthe studentsto
provide (andwe believe they arethemostimportantfor
suchasimulation)arethefollowing:

� number of useful instructions executed (non
NOOP).

� numberof instructionpairsexecuted.

� averagenumberof usefulinstructions.

� averagenumberof memoryreadsperpair.

� averagenumberof memorywritesperpair; thelast
two areimportantfor understandingthe useof the
memoryhierarchyandthe impactof having differ-
entdataandinstructionmemories.

� numberof takenandnot-takenbranches.

� percentageof usefulinstructionsfor eachof thefol-
lowing groups: add/sub/mul,compare,and/or/xor,
shift, gcp, load/store,branch,subroutine-calland
jump.

Towardsthe endof the coursestudentsare asked to
write a reportwhich describespossibleoptimisationson
theabove architecturebasedon their simulationresults.
They are also asked to run new experimentson their
architectureso as to supporttheir claims for the possi-
ble optimisations.We believe that this ideaof students
proposingpossibleoptimisationsgiven an initial archi-
tectureis acrucialskill thataComputerArchitecturestu-
dentshouldacquire.



5 “Build”: Implementing the
ARCP CPU in an HDL

The last stageof the courseinvolves the development
of the ARCP CPU, using synthesisableand structural
HDL codebasedon a setof pre-implemented“library”
componentswhich we have developedfor this exercise.
The ARCP instructionsethasbeendesignedwith em-
phasison straightforward mappingto a gate-level cir-
cuit description. The studentsare asked to implement
theARCPCPUusingafivestagepipeline,similar to the
DLX pipelineof thetextbook.This is shown in Figure4.

Reg. Write
Memory

Data
ALU

PC+Imm

Instr. Decode

Register Read

Fetch

Figure4: ARCPCPUPipeline

We provide students with the following pre-
implementedlibrary of componentsto use in their
ARCPCPU:

� a 6-portRegisterFile.

� separateData and Instruction Memories with a
bandwidthof 64 bits/clockcycle.

� two 32-bitsALUs.

� any number of multiplexers, flip-flops and de-
coders.

The ARCP CPU control logic is to be implemented
in synthesisableor at least“almost” synthesizableHDL;
for thispurposestudentsareprovidedwith guidelineson
producingsynthesizableVerilog Code.We askstudents
to identify all possibledataandcontrol hazardsand to
try andreducethemusingdataforwarding. Whenever
forwardingcannoteliminateahazard,theircontrollogic
shouldinsertwait states,i.e. “bubbles”in the pipeline.
As studentshave only 3 weeksto implementthis stage
of the course,to save time they are provided with a
schematicof a referencedatapath.Figures5, 7, 6 show
theschematicsfor stages1, 2 andstages3,4and5 of the
ARCPpipelinerespectively.

The ARCP datapathschematicsshown includesome
of the requiredcontrol signalsto give studentsa hint
of how to implementthe control logic for the pipeline
stagesandfor forwardingdata.Duringthepastfew years
of runningthis coursewe have experimentedwith these
schematics,in someyearsshowing someof the control
signalsin theseschematics,whereasin other yearswe
did not. We found that studentstook about50% more
timeto completetheimplementationwhenthey werenot
givenany of thecontrolsignalsin theseschematics.

xfer

wait

+

STAGE-1

pc1

nxtpc1

nxtpc1

wait

irValid2

pc1

pc1

xfer

dstPC

+8

Cache

Instruction

imemA

imemB 32

32

64

64

pc2nxtpc2

irA1

irB1 irB2

irA2

pc1plus8

Figure5: Stage1 of thepipeline

After completingtheir implementationstudentsmust
verify thecorrectnessof their low-level implementation
by using their architecturalsimulatordevelopedin the
“SimulateandExperiment”stagesasa “GoldenModel”
andcomparingtheoperationof thetwo on thesamepro-
gramcode. In this way, studentsacquireanotherneces-
saryskill for hardwaredesign,verificationagainsthigh-
level models.

To make good use of their implementationand to
make themrealizethatdetailedhardwaremodelscanbe
usedwheneverdetailedresultsarerequired,weaskthem
to calculatethespeedupof thisarchitecturecomparedto
a referencenon-pipelinedarchitectureweprovidethem.

Finally, thestudentsareto provideareportonhow dif-
ferentarchitecturalapproachesaffect the hardwareim-
plementation.To helpthemrealisethecomplexity of the
task we suggestthat they alter their implementeddat-
apathso as to implementtheir proposedoptimisations,
which they alreadyimplementedin their architectural
simulation. By doing this, it is easily madeobvious
how complex it canbeto implementa new optimisation
which might take almostno time to incorporatedin the
architecturalsimulation.



STAGE-5STAGE-4STAGE-3

A

ALU

B

ALU

byte
copy

sign-extend
align

1+6

1+6

mdforw3

dstEnabB3, dstRegB3 dstEnabB4, dstRegB4

dstRegB5
dstEnabB5

dstRegA5
dstEnabA5

dstEnabA4, dstRegA4dstEnabA3, dstRegA3

aluBmode3

aluAmode3

mDin4b

aluB4

aluA3

resultA4aluA4

resultA5

resultB5
aluB3

2 LS bits

mDout4b

resultB4

aluAinA3

aluAinB3

mDin3a

aluBinB3

aluBinA3

mDout4aData

Cache
Dout

Din

R W B

Addr

mDin4amDin3b

msigned3
mbyte3
mwrite3
mread3 mread4

mwrite4
mbyte4
msigned4

aluB3
resultB4
resultB5
resultA5
resultA4
aluA3

Figure6: Stages3, 4 and5 of thepipeline

6 Conclusion

In this paperan integratedapproachfor teachingCom-
puter Architecture was presented,which is currently
usedat our University, and hasbeenfound to be very
effective. Its mainadvantagesarethefollowing:

1. It increasestheinterestof thestudentsin Computer
Architectureandhardwarein general.Therewasa
significantincreasein the numberof studentscon-
centratingon Hardwareafter we have adoptedthis
approacheitherby takentheir undergraduatethesis
on a hardwaresubjector enroll on a hardware or
semi-hardwareorientedpostgraduateprogram.

2. It givesthestudenta thoroughlycomprehensionof
themainsubjectsof ComputerArchitecture

3. It enhancestheirperformancein theexamswhichis
probablydueto thefactthatthey geta lot of hands-
on experienceon every aspectof ComputerArchi-
tecture.

4. It provides them with skills that are very useful
whendesigninghardwareandnotonly wheninves-
tigatingthearchitectureof asystem.

aluAinA3

guardA
guardB

guardA

xferMode

guardB

selBinB

test

rAc

rBc

needrBa, needrBb
needrAa, needrAb

selrBa, selrBb
selrAa, selrAb

STAGE-2

mread2
mwrite2
mbyte2

msigned2

dstEnabA2
dstEnabB2

dstEnabA3, dstRegA3
dstEnabA4, dstRegA4
dstEnabB3, dstRegB3
dstEnabB4, dstRegB4

rBb
rBa

rAb
rAa

aluAmode3

selAinB

selAdst

selBdst

rBb

rBa

rAa

rAb

pc1
immA19shifted13
immA13

dstRegA2
dstRegB2

dstEnabB5, dstRegB5
dstEnabA5, dstRegA5

rAa

rAb

rBa

rBb

sign-ext.

align &

align &

sign-ext.

aluAinB2
regAb

aluAinB3

regAa aluAinA2

xferxfer

rfAb

rfAa

pc1

Register

File

pc2

dstPC
regAb

selPCdst

immA19shifted3

dstRegB3

dstRegA3

irB2

irA2

dstEnabA3
dstEnabB3

mread3
mwrite3
mbyte3
msigned3

mdforw3

aluBmode3

Control

PLA

Bypass Logic

& Comparators

wait wait

aluBmode2

aluAmode2

mwrite2
mread3

mdforw2

selBinB, selAinB, xferMode

+

immB13

immB19shifted13
immB13shifted2

aluA3
resultA4
resultA5
resultB5
resultB4
aluB3

mDin3amDin2

aluBinB3

aluBinA3

rfBb

rfBa

aluBinA2

aluBinB2

regBb

regBa

test

selPCdst

opcodeA

opcodeB

irValid2

wait

Figure7: Stage2 of thepipeline

This approachis, we believe, idealfor a coursethatis
takenby studentsthatmight wantto focuson hardware,
or havealreadymadesuchadecisionandthey wouldlike
to get a first ideaof how a systemis initially designed,
thensimulatedandfinally built andtested.Its maindis-
advantageis, we believe, that it relatively increasesthe
work neededfor thecourseandmight not bethatappro-
priatefor caseswherejust an introductionto Computer
Architectureis needed(maybebecausetherearea great
numberof morespecializedhardwaredesigncoursesin
thesyllabus).

References

[1] J. L. HennessyandD. A. Patterson,Computer Ar-
chitecture: A Quantitative Approach. MorganKauf-
mann,1990.

[2] P. S. Coe, F. W. Howell, R. N. Ibbett, and L. M.
Williams, “A HierarchicalComputerArchitecture
DesignandSimulationEnvironment,” ACM Trans-
actions on Modelling and Computer Simulation,
vol. 8, Oct.1998.


