
An Active Learning Environment for

Intermediate Computer Architecture Courses

Jayantha Herath, Sarnath Ramnath, Ajantha Herath*, Susantha Herath

St. Cloud State University, St. Cloud, MN 56301

*Marycrest International University, Davenport, IA 52807

herath@stcloudstate.edu http://web.stcloudstate.edu/jherath/CompArch-2

Abstract

Most computer science, information systems and

engineering programs have two or more computer

architecture courses but lack suitable active learning

and design experience in the classroom. Computer

architecture at the intermediate level should focus on

the implementation of basic programming constructs in

different instruction set architectures. To accommodate

such features we developed an undergraduate computer

architecture course with hands-on classroom activities,

laboratories and web based assignments. To assess the

course we distributed the course modules among 200

computer architecture instructors. This paper describes

our experience in developing active learning course

modules.

1. Introduction

During last fifteen years, we have been experimenting

with methods to improve the quality and efficiency of

teaching computer architecture courses for

undergraduate computer science and engineering

students. Our goal has been and continues to be to help

them become good computer scientists in a relatively

short period of time with both theoretical understanding

and practical skills so that they can enter and make an

effective contribution to the profession. Traditionally,

computer architecture subject matter has been presented

to a less than enthusiastic student body in a relatively

passive classroom environment. In general, this chalk-

talk instructional process consists of multiple copying

stages: the instructor first copies notes from a textbook

to his note book, then the instructor copies those notes

onto the blackboard, thereafter the students copy notes

into their note books. Moreover, each instructor

allocates considerable chunk of his/her time to prepare

or update the same course material in each offering. In

addition, there is both local and national need for high-

quality trained labor with the ability to stay current with

the technological advances in the computer architecture

field .

Growth of any undergraduate computer science or

engineering program will largely depend on the strength

of the computer architecture curriculum. To address the

deficiencies in traditional curriculum [4-10] and to

satisfy the current needs, we redesigned our computer

architecture course sequence with fundamentals to

incorporate rapidly changing computer related

technologies so that our graduates will be current with

the technologies before they graduate. It is hypothesized

that the learning rate can be increased if both the

instructor and the student are active at the same time.

Thus the performance of the students can be improved

dramatically by converting the traditional passive

classroom into an active hands-on learning

environment. Designing a course with learning-by-

doing modules and making it available for all the



instructors on-line [1] reduces the course preparation

time for instructors, reduces multiple copying steps in

the learning process, strengthen the abilities and

increase the enthusiasm of both traditional

undergraduate students as well as the adult learners.

Goals and Objectives

The main objective of this project was to develop

computer architecture course modules for intermediate

level undergraduate students and the faculty. These

active learning modules are central to achieve the

following goals:

• To provide the students an efficient,

rigorous and engaging learning

environment with necessary tools and

training to become proficient in the

computer architecture subject matter in a

relatively short period of time.

• To provide architectural details necessary

to implement basic programming

constructs learned in CS-1 and CS-2 with

hands-on skills, integration, team-work

and hence to enhance the quality of the

graduates.

• To use performance focused learning at all

levels of curriculum to illustrate the

principles of computer architecture.

• To provide the faculty and students

modifiable on-line courseware with state-

of-the-art hardware and software practice.

Following sections outline the details of course plan,

goals achieved, difficulties encountered, assessment

plan future work and summary.

2. Detailed Course Plan

The course, outlined below, will address the ways of

reducing the deficiencies in the existing curriculum [4-

10]. When developing and delivering the computer

architecture subject matter for computer science majors,

we believe that the prime factor to be focused on in any

step is processor performance in implementing

programming language constructs. Our curriculum

consists of three semester courses to help master the

computer architecture subject matter in a technology

integrated classroom laboratory. First course of this

sequence will cover fundamentals of architectural

design [11-13]. The laboratories for this course consist

of hardware and software simulations of combinational

and sequential digital circuits. This foundation will

help to develop the skills from gate level to register

transfer level component integration in design. The

intermediate level course that we designed introduce

both complex instruction set and reduced instruction set

processor architectures, instruction set manipulations

with I/O, memory, registers, control and procedures [1-

2][14-16] to the students. The laboratories for this

course consist of hardware and software simulations of

programming constructs in CISC and RISC

architectures. After completion of intermediate course

the students will be able to learn architectural details of

any other processor. The third course is focusing on the

advanced concepts in architecture involving

parallel/distributed computations and special purpose

architectures to provide both depth and breadth to the

subject matter. Parallel processing and special purpose

processing concepts in the undergraduate curriculum

has been the focus of several curriculum improvement

efforts for some time [3][17-18]. The students should be

able to understand the importance of parallelism in

enhancing performance and its benefits as an

application programmer, a systems programmer, an



algorithm designer, and a computer architect. A course

sequence with the features outlined above could help

our students develop design skills in several different

architectures before their graduation. The undergraduate

curriculum, graduate programs and industry will

definitely appreciate the graduates with such design

skills.

Topics for Computer Architecture II

At the intermediate level we introduced processor

design and focused on the implementation techniques

of basic programming constructs such as I/O, arithmetic

expressions, memory operations, register operations, if-

else-for-while control and functions in several different

instruction set processor architectures. Two complex

instruction sets and one reduced instruction set

processor architectures were introduced in our course.

Students learned that proper instruction set design,

memory management and I/O management techniques

will also lead to the performance enhancement.

Increasing performance of the processor by reducing the

program execution time is considered at each design

and implementation. Focusing on the importance of

performance when designing the processor helped to

maintain the momentum and enthusiasm in the

classroom. Often the students were excited to observe

the register level manipulations in the processors. They

also enjoyed discovering the processor and controller

designs in an active classroom. Comparing different

architectures including pipeline techniques and

abstracting the essentials of the processor architectures

at this level generated the required enthusiasm to the

learning and teaching. The required textbook for this

course is Paterson and Hennessey [2]. We are looking

for ways to integrate rapid prototyping of the systems to

the course using web based tools.

Hardware/Software Laboratories

To provide architectural concepts with hands-on skills,

integration, team-work and hence to enhance the quality

of the graduates, we added pre-lab, in-lab and post-lab

assignments to complement the classroom activities.

Table 2 summarizes the educational experience gained

from these laboratories.

Table 2. Educational experience

Experience Level Application

Prelab Analysis,
synthesis

Design circuits
and programs to
perform a specific
simple task

Closed
Labs

Application,
analysis,
synthesis,
evaluation

Design,
implement and
test circuits and
programs to
perform a specific
task within a
given period of
time

Open
Labs

Application,
Analysis,
synthesis,
evaluation

Design circuits
and programs to
perform a
difficult task

In-class
activities

Application,
Analysis,
synthesis

Cost reduction,
performance
improvement,
integration

Tests Analysis,
synthesis

Architecture
design related
questions

To reflect student-centered design and analysis

processes, classroom activities were modified to

accommodate skills in performance improvement and

cost reduction when designing processors. In general,

pre laboratory assignments helped the students explore

and create on their own. They synthesized the

classroom instructions with other resources to produce

hardware and software and then to test and to debug. In

the classroom, each student provided with a computer

and tool kit to extend the concepts they learned in the

pre lab assignment. Less challenging design problems



that can be solved within a given period of time were

assigned as in-class closed-laboratory assignments. A

post-lab assignment helped the students to analyze the

use of in-class activities. More challenging and time

consuming problems were assigned as post laboratories.

Students were active in both laboratory and in the

classroom while thinking and experimenting on a

machine with the architectural concepts introduced in

the classroom. After completing each project, students

submitted a report discussing their experience. First,

each student worked alone as the sole developer of the

hardware and software. Towards the end of the semester

two to four students were allowed to work in a team to

design, construct and complete the projects. The group

was responsible for developing definitions and

specification of a larger hardware/software product to

solve a problem as their final project. The course helped

students become proficient in the subject matter in a

relatively short period of time.

3. Goals Achieved

We created the active learning course material that will

enhance students' high level skills: teamwork, analysis,

synthesis, performance comparison and active

participation in the classroom. To reflect the inclusion

of several different instruction set architectures we

created hands-on hardware and software laboratory

assignments. Our computer science students received

the instructions based on the course material developed

in Spring 2002 and Fall 2001.

Our active learning course modules enabled students to

learn architectural concepts more effectively and

efficiently thus providing students an opportunity to

function well in an increasingly competitive technical

society. The classroom activities provided the students

with opportunities for analysis, synthesis, and

verification of correctness in building larger systems all

during traditional class time. Such modifications

increased the enthusiasm in the classroom, addressed

the needs of both traditional undergraduates and adult

students, the needs of the industry and provided

necessary tools and training for the student to become

proficient in the computer architecture subject matter in

a relatively short period of time. To our knowledge, no

other computer architecture course used our approach.

Therefore, our course modules and experimental results

will be very useful for the other computer science and

engineering programs nationally. Table 3 depicts the

Indicators/Measurements of goal attainment of all three

courses.

Table 3. Indicators/Measurements of goal
attainment

Entry level Intermediate level Goal Attainment
Gate level
design and
analysis

Design, analysis
and performance
improvement of
architectural
components,
processors,
controllers

Parallel
processing,
system design,
analysis and
performance
improvements

Exams Exams Exams

Architecture Symposium

A computer architecture symposium [21-22][24] was

organized at the end of the Spring'02 semester to

stimulate our undergraduate and graduate students,

computer science and engineering faculty in tri-state

and the local industry. We invited five excellent

speakers from MIT, University of Minnesota, IBM T.J.

Watson center and Oracle to deliver lectures based on

their work. The symposium was well attended by the

students, faculty and industry. Spring'02 semester

started with introduction seven trillion FLOPS machine,

then the students learned about 35 trillion FLOPS

machine. At the end of the semester in the symposium

students learned about the 185 trillion FLOPS machine



under development at IBM. This conference also helped

our efforts to develop a core curriculum for Computer

Science that presents an integrated view of hardware

and software to the undergraduate students.

Difficulties

Incorporating several architectures into one course

seemed overloading the students and faculty at the

beginning. However, making our course modules

available for the students at the beginning of the

semester via web helped to eliminate this difficulty.

Selecting a series of projects that increases enthusiasm

in a diverse body of students was also a difficulty we

encountered. Observing, helping and verifying the

correctness of weekly work focusing on the analysis

and synthesis of components was a time-consuming

task. Trained student assistants helped in scheduling the

laboratories and reduced the burden. However,

attracting suitable student assistants and paying them

sufficiently to keep them was also another difficulty we

faced. Identifying suitable modern educational circuit

boards for our experiments was another difficulty we

faced.

St. Cloud State University, with six colleges, is the

second largest university in Minnesota. The university

enrollment is approximately 15,000 students drawn

from MN, rest of the USA and foreign countries. The

computer science department, among the 10

departments of College of Science and Engineering, is

one of the two CSAB accredited departments in MN.

The department consists of 180 undergraduate major

students, 30 graduate students and 10 full time faculty

members. We have two departmental laboratories with

50 PCs for introductory programming classes,

architecture and operating systems. Most of the

graduates enter industry or graduate school after

graduation. Computer science department offered the

computer architecture I course twice during the

academic year 2002/03 for about ninety students.

Computer architecture II course is offered twice a year

during the academic year 2002/03 for about sixty

students. Computer architecture III course is offered

once during the academic year 2002/03 for about forty

students. We graduated 25 students this year.

4. Course Assessment

The course material developed was evaluated by

soliciting the criticism from the faculty and students.

Student learning was evaluated using many different

ways. The background knowledge and preconception

checks were performed in the form of a simple

questionnaire/worksheet that the students will fill in

prior to working on the lab assignments. The students

were asked to explain the concepts they have learned

so that the instructor can measure student learning.

Faculty and teaching assistants regularly observed the

team work. Recording experiences from laboratory

assignments was an essential part of the student work.

Student groups submitted weekly project reports.

Group-work evaluations were also used to assess the

course. In the larger lab projects, students worked

together in groups. Each member turned in an

evaluation of his/her own learning experiences gained

by being part of a team. To reinforce the learning, a test

was scheduled after the completion of each module.

Excellent students performed well in all levels and had

complete understanding of the subject matter. Very

good students were strong in many areas but weak in

some. Average students showed weaknesses in some

levels. Poor students could not perform well in many

areas. Classroom opinion polls and course-related self

confidence surveys were also performed to receive the

feedback. In the future, comments from the industrial

advisory committee and accreditation board member's



site visit and reviews from other instructors will be

used to evaluate the project performance. Within our

large university system we will have opportunities to

test our designs which could possibly extend to other

faculty and students. We are currently in contact with

many computer architecture instructors to find ways to

improve the courses we teach.

Dissemination of Course Modules Among Instructors

To disseminate the findings of this project, laboratory

manuals, course notes and other related information,

the web is heavily used. Before the start of Spring'02

semester, we contacted approximately 600 computer

science departments using our distribution list and

informed the availability of our course modules for their

classroom use and review with no charge. More than

200 computer architecture instructors requested the

course modules. We distributed our lecture notes among

them via e-mail. A better version of our course material

is now available to others for classroom use [19-20]. It

is important to note that we have successfully

completed the introduction to computer architecture

project earlier and distributed the course material to

more than 200 instructors. We will continue assessing

the course material through faculty and student

feedback for next few semesters. We will continue to

share the experience gained from this experiment with

the rest of the computer architecture community.

Progress of this project will be reported to the MnSCU

Center for Teaching and Learning.

5. Summary and Future Work

Traditionally, computer architecture courses are

presented, with complexity and confusion, to a less than

enthusiastic student body and often delivered in a

relatively passive classroom environment. In general,

learning takes place if both the instructor and the

student are active at the same time. To promote this in

the classroom and to overcome the above mentioned

deficiency, we developed an intermediate computer

architecture course with hands-on classroom activities,

laboratories and web based tools and distributed among

many computer architecture instructors. Other

deficiencies encountered in the traditional learning

environment such as instructor's preparation time and

multiple copying stages involved in the learning process

were also addressed. Availability of properly designed

and developed on-line course materials, with a series of

hands-on laboratories as well as classroom activities

will definitely reduce both instructors' preparation time

and multiple copying stages, and increase student

learning rate. Such on-line courses could help both

traditional students and adult learners to explore the

computer architecture area while developing their

design and analysis skills. Modifiability and flexibility

of course material at the instructor's end will contribute

very much to the faculty development. Often, the

students are confused because of not having a well-

defined focus in the classroom activities. This computer

architecture course is designed to complement the

activities performed in CS-1, CS-2 and computer

architecture-1 courses. The subject matter provides the

gateway for advanced studies in computer architecture

and other areas. The course helped to understand the

implementation details of basic programming constructs

in CISC and RISC architectures. Performance issue is

considered in all alternative designs. This courseware

helped students to be active in the classroom and

increased the enthusiasm in learning computer

architectures. Hardware description programming

experience allows description of the structure,

specification using a familiar programming language

and simulation before being manufactured. As a result,

students as designers can quickly compare alternatives



for high performance and test for correctness. We are

planning to use a industry-standard hardware

description programming language [23] in both first and

second level courses. Developing a clustered computing

environment will be useful for the laboratories in the

third course of the sequence. Educational circuit boards

with several processors that communicate with each

other through dedicated channels will be a good

alternative for the advanced course. Virtual

environments with variety of visualization systems are

matured enough to aid students' understanding of

miniaturized complex processor architecture. Through

such platforms students will learn to appreciate the

instruction set architecture. In the future revisions we

will explore the feasibility of incorporating such virtual

environments in the computer architecture classroom

[7][8] and then improving upon them in successive

iterations.

Acknowledgments

This project has been supported by the MnSCU Center

for Teaching and Learning through the Bush/MnSCU

Learning by Doing Program.

6. References

1. A Web-Based Computer Architecture Course
Database, Edward F. Gehringer
http://www.csc.ncsu.edu/eos/users/e/efg/archdb/FI

E/2000CACDPaper.pdf
2. Computer Organization and Design:

Hardware/Software Interface, Second Edition, John
L. Hennessy and David A. Patterson, 1997
http://www.mkp.com

3. Computer Architecture: A Quantitative approach,
Third Edition, John L. Hennessy and David A.
Patterson, 2002http://www.mkp.com

4. The Undergraduate Curriculum in Computer
Architecture, Alan Clements,
http://www.computer.org/micro/mi2000/m3toc.pdf

5. Teaching Design in a Computer Architecture
Course, Daniel C. Hyde,
http://www.computer.org/micro/mi2000/m3toc.pdf

6. Rapid Prototyping Using Field-Programmable
Logic Devices, James O. Hamblen,
http://www.computer.org/micro/mi2000/m3toc.pdf

7. PUNCH: Web Portal for Running Tools Nirav H.
Kapadia, Renato J. Figueiredo, and José A.B.
Fortes,
http://www.computer.org/micro/mi2000/m3toc.pdf

8. Building Real Computer Systems Augustus K. Uht,
Jien-Chung Lo, Ying Sun, James C. Daly, and
James Kowalski,
http://www.computer.org/micro/mi2000/m3toc.pdf

9. HASE DLX Simulation Model Roland N. Ibbett,
http://www.computer.org/micro/mi2000/m3toc.pdf

10. An Integrated Environment for Teaching
Computer Architecture Jovan Djordjevic,
Aleksandar Milenkovic, and Nenad Grbanovic,
http://www.computer.org/micro/mi2000/m3toc.pdf

11. Digital Design, 3/e2002Morris Mano,
http://prenhall.com

12. Digital Design: Principles and Practices, Updated
Edition, 3/e 2001John Wakerly,
http://prenhall.com

13. Digital Design Essentials and Xilinx 2.1 Package,
1/e 2002Richard Sandige,http://prenhall.com

14. Computer Systems Organization and Architecture
John Carpinelli (2001),http://awl.com

15. COMPUTER ORGANIZATION, Fifth EditionV.
Carl Hamacher, Zvonko Vranesic, Safwat Zakay,
http://mhhe.com

16. Computer Systems Design and Architecture, 1/e
1997Vincent Heuring , Harry Jordan,
http://prenhall.com

17. Parallel Computer Architecture: A
Hardware/Software Approach David Culler and
J.P. Singh with Anoop Gupta, August 1998
http://www.mkp.com

18. Readings in Computer Architecture, Mark D. Hill,
Norman P. Jouppi, and Gurindar S. Sohi,
September 1999,http://www.mkp.com

19. Computer Architecture I Preliminary version
http://web.stcloudstate.edu/jherath/CompArch-1

20. Computer Architecture II Preliminary version
http://web.stcloudstate.edu/jherath/CompArch-2

21. Hardware/Software Interfacing for High
Performance Symposium -02
http://web.stcloudstate.edu/jherath/Conference.htm

22. The RAW Microprocessor, M.B. Taylor etal,
MICRO 2002March
http://dlib2.computer.org/mi/books/mi2002/pdf/m2
025.pdf

23. VHDL Primer, A, 3/e1999Jayaram Bhasker,
http://prenhall.com

24. VLSI Digital Signal Processing Systems: Design
and Implementation, K. K. Parhi, 1999,
http://wiley.com


