
Digital LC-2
From Bits

�
Gates to a Little Computer

Albert Cohen
A3 group, INRIA Rocquencourt

Olivier Temam
LRI, Université Paris-Sud

May 26, 2002

Abstract

This paper describes DigLC2, a gate-level simulator for
the Little Computer 2 architecture (LC-2) [3] which
serves to strengthen the bottom-up approach to teach
computer architecture. DigLC2 is based on Chipmunk’s
digital circuit simulator [1]; the circuit is freely available
on the web and ready to use.

1 Context and Presentation

The principle of our approach is to combine a bottom-up
presentation of computer architecture (from digital gates
to processor and system) with an intuitive graphical gate-
level design tool. This combination enables students to
truly understand the logic behind processor design and
internal processor workings, and simultaneously to gain
confidence in the acquired knowledge thanks to experi-
mental validation of concepts with a gate-level processor
simulator (DigLC2). Based on this solid knowledge, we
believe students are much more likely to quickly grasp
and master new information about the evolution of pro-
cessor design.

DigLC2 [2] is a gate-level simulator for the Little
Computer 2 (LC-2), as described by Patt and Patel in
their introductory textbook on architecture and program-
ming [3]. Unlike the existing LC-2 functional simulator
[4, 5], it provides a detailed description of all processor
components at the gate-level, so that students can them-
selves build a full processor using only elementary gates
(AND, OR, NOT and Tri-State), thereby demystifying
processor architecture.

The DigLC2 simulator started as a support tool for a
course at École Polytechnique (France) [6]. Designed to
cooperate with the LC-2 functional simulator and assem-
bler environment [4, 5], we wanted it robust and modu-
lar for practical lectures, as intuitive as possible to serve
as a basis for student projects, and versatile enough to
explore fundamental architecture and programming con-
cepts. DigLC2 contributed to our teaching experience in

the following ways:

� to understand the detailed sub-cycle behaviour of a
realistic 16-bit processor;

� to experiment custom processor components in the
context of a whole processor;

� to compare multiple data-flow and control models;

� to execute sample LC-2 programs, displaying pro-
cessing stages from instruction-fetch to write-back;

� to play with basic input/output and interrupt mech-
anisms (they were not supported in the functional
simulator [4]).

� to understand simple operating systems concepts;

� to extend the processor with hardware devices and
off-chip controlers;

� to design and implement architecture enhancements
for performance.

We followed the bottom-up approach advocated by
Patt and Patel: students have been directly involved in
the design of each processor component exploring multi-
ple design issues. They achieved a finer understanding of
the data-path and control structures, with a broader view
of processor and system construction. Based on these
fundamental concepts, the course diverted towards high-
performance designs, program optimization techniques,
and the forseable future of micro-architectures.

The students were already familiar with C, object-
oriented and functional programming (OCaml) on one
side, and analog electrical engineering on the other, but
they had no experience in digital systems. Our intent was
neither to bridge the gap between assembly and high-
level languages nor to describe the mapping of ideal tran-
sistors to silicon wafers — both topics being taught in

the following semesters. We focused instead at the in-
termediate levels of the design, demystifying the build-
ing blocks of a microprocessor: from gates to combi-
natorial and sequential logics to data-paths and micro-
programmed control to the instruction set architecture to
assembler programming [6].

2 Technical Overview

The LC-2 system [3, 5] comprises a simple 16-bit mi-
croprocessor and a basic terminal emulation hardware.
The instruction set is load/store1 with 8 registers and
3 operands; it appears as a tradeoff between control-
friendly and education-friendly features. The data-path
is based on a 16-bit bus to connect almost all compo-
nents and to communicate outside of the chip. Control is
microprogrammed (fifty 39-bits wide microinstructions)
and relies on a dedicated microsequencer for fast in-
struction selection and compaction. The LC-2 instruc-
tion set is very sketchy but supports a universal machine
(e.g., no subtract, no OR operator, no shift...), forgetting
about efficiency considerations. In comparison, system
and device interaction is rather realistic and complete
for such an educational architecture: both polling and
interrupt-driven mechanisms are supported, and system
calls (TRAPs) are clearly distinct from subroutine calls
(yet the system does not address memory protection and
address translation). Thanks to the original and efficient
teaching model proposed by Patt and Patel, more and
more introductory architecture courses are being build on
the LC-2; the clean educational design of this processor
is obviously a major incentive to do so.

The DigLC2 simulator is free software (GPL), avail-
able online at
http://www-rocq.inria.fr/˜acohen/teach/diglc2.html.
It is fully reusable, adaptable, and ready to use. Instal-
lation and usage documentation is available. The user
should be familiar with the LC-2 specification, signal
names and processor structures, as defined in Patt and
Patel’s textbook [3] (along with its appendices). DigLC2
still lacks a technical manual, but the circuit is simple
and most of the design is a straightforward implemen-
tation of the LC-2 specification. It runs over DigLog,
Chipmunk’s digital circuit simulator (GPL) [1]. We im-
plemented the complete LC-2 architecture, including I/O
terminal-emulation devices, interrupt vectors and mem-
ory (with customizable latency). Except for the SRAM
memory chips and terminal device, every component of
the LC-2 is built of elementary gates. The data-path and
microsequencer are identical to the LC-2 specification.

1Plus indirect load and store operations — for programming con-
venience — that we personally would not have provided and that we
intentionally avoided in the course and application exercises.

We rewrote the microprogram from scratch — see the
DigLC2 documentation — and applied large-scale tests
on sample codes and student projects. The “boot-time”
memory structure (vector table, operating system, boot
ROM and memory-mapped I/O) is almost identical to
the functional simulator’s model [5], except that the ini-
tial PC is 0x0000 and that some I/O routines have been
optimized.

Concerning I/O operations, the LC-2 description is
not complete and we had to make a few implementa-
tion choices: the interrupt vectors for keyboard input and
CRT output (0x0010 and 0x0011, respectively) and the
detailed implementation of I/O registers (interrupt con-
trol bits, strobe signals, device operation latency).

Figure 1 shows the control panel of the LC-2 simu-
lator. It displays every addressable and internal regis-
ter, the full microinstruction, and many other signals. It
also provides keyboard and screen emulations (standard
DigLog components) for interactive terminal operations.

As one may expect, performance is much lower than
Postiff’s functional simulator: approximately 20 cycles
per second on a ����� MHz pentium III (interactive run,
maximum details displayed): gate-level simulation of big
programs is not realistic. However, we found these per-
formances quite reasonable for the educational purposes
of the LC-2 architecture:

� target codes implement short-lived classroom algo-
rithms, toy programs and simple I/O operations;

� the most tedious part is linked with string process-
ing and printing, e.g., the full CRT synchronization
protocol proposed by Patt and Patel leads to a very
slow implementation; still, choosing pragmatic pa-
rameters (short strings) and optimizing the code of
display-oriented subroutines is usually satisfactory;

� in many cases, the user may even want to watch the
real-time execution of the program, looking for er-
rors in the assembly code, in a processor compo-
nent, or in some custom additional circuit.

Eventually, we found only two architecture faults dur-
ing circuit implementation: the first one is about choos-
ing latches or flipflops and has been (arguably) cor-
rected in recent online errata, the second one is a tricky
page/PC-incrementation bug in conditional branch in-
structions. Considering the overall design, the detailed
implementation choices and our teaching experience,
we believe that the LC-2 architecture is a significant
progress over previous educational systems; but we also
hope that feed-back from professors and students around
the world will be taken into account in future versions of
the Little Computer and contribute to further improve-
ments.

1 2 3 4 5 6 7 8 9 0 - =
Q W E R T Y U I O P []
A S D F G H J K L ; ’
Z X C V B N M , . /

SR2MX

Gnd
DR_2
DR_1
DR_0

Gnd
SR2_2
SR2_1
SR2_0

Gnd
SR1_2
SR1_1
SR1_0

R3_0R3_1R3_2R3_3R3_7R3_6R3_5R3_4R3_8R3_9R3_10R3_11R3_15R3_14R3_13R3_12R2_0R2_1R2_2R2_3R2_7R2_6R2_5R2_4R2_8R2_9R2_10R2_11R2_15R2_14R2_13R2_12R1_0R1_1R1_2R1_3R1_7R1_6R1_5R1_4R1_8R1_9R1_10R1_11R1_15R1_14R1_13R1_12R0_0R0_1R0_2R0_3R0_7R0_6R0_5R0_4R0_8R0_9R0_10R0_11R0_15R0_14R0_13R0_12

R4_12R4_13R4_14R4_15 R4_11R4_10R4_9R4_8 R4_4R4_5R4_6R4_7 R4_3R4_2R4_1R4_0 R5_12R5_13R5_14R5_15 R5_11R5_10R5_9R5_8 R5_4R5_5R5_6R5_7 R5_3R5_2R5_1R5_0 R6_12R6_13R6_14R6_15 R6_11R6_10R6_9R6_8 R6_4R6_5R6_6R6_7 R6_3R6_2R6_1R6_0 R7_12R7_13R7_14R7_15 R7_11R7_10R7_9R7_8 R7_4R7_5R7_6R7_7 R7_3R7_2R7_1R7_0

INT

RD.KBDR

LD.KBDR

LD.KBSR

KBSR_14

KBSR_15

RD.CRTDR

LD.CRTDR

LD.CRTSR

CRTSR_14

CRTSR_15

Reset
CRT.Strobe

CRTOUT_0CRTOUT_1CRTOUT_2CRTOUT_3CRTOUT_4CRTOUT_5CRTOUT_6CRTOUT_7

KBIN_0KBIN_1KBIN_2KBIN_3KBIN_4KBIN_5KBIN_6KBIN_7

KB.StrobePCMX_1

PCMX_0

DRMX_1

DRMX_0

SR1MX_1

SR1MX_0

MARMX_0

MARMX_1

STACKMX_1

STACKMX_0

CCMX R.W

MIO.EN

ALUK_0

ALUK_1

Run

Step

MCR_15

Clock

ResetBENZ

P

N

R

MLCNT_0MLCNT_1MLCNT_2MLCNT_3MDR_3MDR_2MDR_1MDR_0MDR_4MDR_5MDR_6MDR_7MDR_11MDR_10MDR_9MDR_8MDR_12MDR_13MDR_14MDR_15IR_3IR_2IR_1IR_0IR_4IR_5IR_6IR_7IR_11IR_10IR_9IR_8IR_12IR_13IR_14IR_15

PC_15PC_14PC_13PC_12 PC_8PC_9PC_10PC_11 PC_7PC_6PC_5PC_4 PC_0PC_1PC_2PC_3 MAR_15MAR_14MAR_13MAR_12MAR_8MAR_9MAR_10MAR_11MAR_7MAR_6MAR_5MAR_4MAR_0MAR_1MAR_2MAR_3

LD.PC

LD.REG

LD.CC

LD.BEN

LD.IR

LD.MDR

LD.MAR GatePC

GatePC-1

GateMDR

GateALU

GateMARMX

GateINTV

GateCCCOND_0

COND_1

INT.TEST

IRD

J_0

J_1

J_2

J_3

J_4

J_5MPC_5

MPC_4

MPC_3

MPC_2

MPC_1

MPC_0

I/O signals

Input

Output

Register ports

SR2

SR1

DRR7

R3

R6

R2

R5

R1

R4

R0

Register bank

PC

IR

MAR

MDR

Status registers

address
current

Microinstruction

automatic

step by step

Shift+R: reset

memory latency

branch enable
Clock generation

next address

control signals LD.? Gate? ?MX misc

Figure 1: DigLC2 control panel.

3 Student Projects

Three application projects have been proposed based on
this digital simulator.

� Pipelining the LC-2, with a simple hazard detection
and branch prediction mechanism. One student im-
plemented a prototype version of a pipelined LC-
2 (hardwired control, no indirect memory instruc-
tions). As a side-effect, simulator performance was
significantly improved...

� Implementing a DMA controller for video output
and experimenting a few bus protocols. This kind
of extension is greatly simplified by the modular
structuire of DigLC2. For example, every memory
control signal has a LC-2 side and a SRAM-chip
side, and the LC-2 is designed to cope with an arbi-
trary/unknown memory latency.

� Adding an instruction cache and/or a data cache to

the LC-2; trying various associativity and replace-
ment policies.

We believe that many existing student projects could
benefit from DigLC2, focusing on the most interesting
part of the project without the overhead of building a full
processor or the complexity of a real-world processor. It
can also be used to investigate the detailed implementa-
tion of processor performance enhancements — such as
pipelining, superscalar and out-of-order execution — in
the context of interrupts, and to interact with an existing
assembler and legacy source code.

4 Conclusion and Future Work

DigLC2 is an interesting compromise between high-
level structural modeling of digital circuits and expen-
sive hardware test-beds. It is a useful tool for architecture
courses, practical lectures, student projects and tutorials.

DigLC2 is an intuitive and modular implementation of
the complete LC-2 system; it does not intend to be a fully
realistic view of the actual silicon mapping, but provides
a full gate-level simulation. By combining the bottom-
up approach with DigLC2 within the course and classes,
students were able to progressively build their own full
processor, using components they themselves designed
session after session, and then they were able to visu-
alize the execution of simple assembly programs at the
gate-level.

Still, we would like to emphasize on the preliminary
nature of this work. We believe that the tool might be-
come even more beneficial if provided with multiple al-
ternative implementations of each component, variations
on the instruction-set architecture, and performance en-
hancements. We are not acquainted with processor veri-
fication techniques and did not address the testing and/or
formal validation issues. Thanks to the wide distribu-
tion of Patt and Patel’s textbook, we strongly encourage
a community effort to contribute to the DigLC2 project,
as well to the underlying DigLog simulator [1].

References

[1] The Chipmunk system (specifically DigLog, the
digital part of the Log simulator).
Available online at
http://www.cs.berkeley.edu/ l̃azzaro/chipmunk.

[2] A. Cohen. DigLC2: a gate-level simulator for the
little computer 2.
Available online at
http://www-rocq.inria.fr/˜acohen/teach/diglc2.html.

[3] Y. N. Patt and S. J. Patel. Introduction to computing
systems: from bits & gates to C & beyond.
McGraw-Hill, 2001.
http://www.mhhe.com/engcs/compsci/patt.

[4] M. Postiff. LC-2 simulator (and assembler).
Available online at
http://www.mhhe.com/engcs/compsci/
patt/lc2unix.mhtml.

[5] M. Postiff. LC-2 Programmer’s Reference and User
Guide. University of Michigan (EECS 100), 1999.
http://www.mhhe.com/engcs/compsci/
patt/lc2labstud.mhtml.

[6] O. Temam and A. Cohen. Cours d’architecture.
École Polytechnique 3ème année majeure 1,
2001–2002.
http://www.lri.fr/ t̃emam/X/index.html
(in French).

