
Readability

	“Programs must be written for people to read, and only incidentally for machines to execute.”—Abelson & Sussman

Guideline: Give a variable the narrowest scope that you can.

Give an example of this principle.
	Outline for Week 9
I.
Readability

II.
Polymorphism

A. Dynamic method invoc.

B. Overloading vs. overriding

III.
Exercise: Singleton

IV.
Exercise: Adapter

Why is this a good principle?

Guideline: Using standard idioms, make code as concise as possible.

Example: In the following statement, b is a boolean variable:

if (b == true)

return true;

else

return false;

This statement is far too verbose. An equivalent and much more readable statement is—

In most cases, this can be made even more readable. How? Use a better name for the variable.
Guideline: Variable names should be neither too short nor too long.

Consider a variable that controls whether a while-loop is exited.

while (variable) {

…

}
What is a good name for this variable? Perhaps, stillSearching.
Which should be shorter, in general? Variable names or names of constants? Variable names; constants are often used far from where they are defined, so more descriptive names are needed.
In general, names that are used less frequently can be longer.
Guideline: Names should be descriptive of the entity they apply to. They should not be vague or overly general.

Give an example of a bad (variable, method, etc.) name you have encountered in code that you were refactoring or interfacing to.
Here are some examples from Expertiza.
Guideline: Names should not be redundant.

Suppose course_controller.rb contains a method called create_course. What should it be?
Suppose it contains a method called create_section. What should it be? Section.new (or Section.create, if it is to be immediately saved to the db).
An excellent discussion of variable naming can be found in Code Complete, by Steve McConnell, on electronic reserve for this course.
Guideline: Factor out duplicated code.

If a program has two places where the same sequence of instructions is being executed, it is almost always beneficial to move the duplicated code into a separate procedure.

Example: Suppose you are developing a class of objects one of whose responsibilities is to parse an input string, such as a complicated mathematical expression.

Part of the process of parsing involves checking that the input is valid. So the class might have a method like this:

public void parse(String expression)

{

...do some parsing...

if(! nextToken.equals("+")) {

//error

System.out.println

("Expected +, but found " + nextToken);

System.exit(1);

}

...do some more parsing...

if(! nextToken.equals("*")) {

//error

System.out.println

("Expected *, but found " + nextToken);

System.exit(1);

}

...

}
How can we clean this code up?

private void handleError(String message) {

System.out.println(message);

System.exit(1);

}
public void parse(String expression)

{

...do some parsing...

if(! nextToken.equals("+"))
 unexpectedToken

("Expected '+', but found " + nextToken);
...do some more parsing...

if(! nextToken.equals("*"))

 unexpectedToken

("Expected '*', but found " + nextToken);

...

}

Besides being more readable, this code has another advantage. What? It is also much easier to change the error handling. For example, if you decide later that your parser needs to throw an exception instead of printing a message and quitting, you only need to change the code in one place, namely inside the body of the unexpectedToken method.

Guideline: A method should do only one thing and do it well.

Here's an example of a method to avoid:

void doThisOrThat(boolean flag) {

if(flag) {

...twenty lines of code to do this...

}

else {

...twenty lines of code to do that...

}

}

How should we change it?
void doThisOrThat(boolean flag) {

if(flag)

doThis();

else

doThat();

}
Inheritance vs. delegation

Delegation—where one object passes a message on to another object—can often achieve the same effect as inheritance. Let’s look at an example.

Consider the java.util.Stack class. How many operations does it have?

Suppose in a program you want a “pure” stack class—one that can only be manipulated via push(…) and pop().

Why would you want such a class, when Java already gives you that and more?

What is the “simplest” way to get a pure Stack class?

Or you could create Stack class “from scratch.” What’s wrong with doing this?

Another option is to create your own Stack class, but have it include a java.util.Stack.

[image: image1.png]MyStack

+push(o:Object)void

+isEmpty(yboolean

What is the name for the approach are we using here?

Here’s what this class might look like.

public class MyStack

{

private java.util.Stack stack;

public MyStack(){stack = new java.util.Stack();}

public void push(Object o) { stack.push(o); }

public Object pop() { return stack.pop(); }

public object peek() { return stack.peek(); }

public boolean isEmpty(){return stack.empty();}

}

Delegation is particularly useful where objects might need to “change state”—think of a student becoming an employee. Both Student and Employee can delegate to Person.
Exercise: Delegation in a sorted list

This exercise is an example of creating a sorted ArrayList of Strings by delegating to Java’s ArrayList class. Every time an element is added to the list, the sort method of Collections is called.

This exercise asks you to fill in the blanks so that the list stays sorted.
Polymorphism

Unbounded vs. subtype polymorphism
In a statically typed o-o language like Java or C++, you can declare a variable in a superclass, then assign a subclass object to that type:

public class Bicycle {

protected int gear;

public void setGear(int nextGear) {

gear = nextGear;

}

}

public class MountainBike extends Bicycle {

protected int seatHeight;

public void setHeight(int newSeatHeight) {

seatHeight = newSeatHeight;

}

}
public class BikeSim {

public static void main() {

...

Bicycle myBike = new MountainBike();

...

myBike.setGear(3);

myBike.setHeight(5);

}

}
Which statement is illegal in the code above? Why?

In most dynamically typed o-o languages, including Ruby, that statement would be legal. In Ruby, if a method is defined on an object, the object can respond to the message.

It doesn’t matter what class the object is declared as … in fact, the object isn’t declared!

This is called unbounded polymorphism—the polymorphism is not limited by the declared class of the object.

In contrast, statically typed o-o languages usually have subtype polymorphism—the compiler checks that the invoked method is defined in the type that the object is declared as.

Unbounded polymorphism is related to duck typing, which was discussed in the Week 3 online lectures [§2.4 of the textbook].
Dynamic method invocation

A call to an inherited method works just as if the inherited method had been defined in the caller’s class.

But suppose the subclass (e.g., MySpiffyLabel) overrides a method of the superclass (e.g., JLabel).
JLabel label = new MySpiffyLabel("A label");

label.paint(g); //for some Graphics object g

MySpiffyLabel
· inherits a paint method from JLabel, and

· implements its own version of paint.

Which of those two implementations of paint will be executed in the second line of above example?

· The paint defined in JLabel?
· The paint defined in MySpiffyLabel?
Dynamic method invocation: To invoke a method on an object, the JRE looks at the class of the receiving object to choose which version to execute.

For example, when asked to execute label.paint(g), the Java environment does not look in the declared class of label (namely, JLabel).

Instead it chooses the paint method in the actual class of the object referred to by label (namely, MySpiffyLabel).
When a method is called on an object of a subclass that overrides a superclass method, the overriding version of the method is always called.

Let us consider a rather tricky, but illustrative, example.

Abstract class Fruit has subclasses Apple, Orange, and Pear.

Since it is an abstract class, its name is shown in italics in the class diagram.

[image: image2.png]——

Fut

[restcom

Aople

Orange

Pear

[rastcom
[raststen

[restcom

[restcom

 Note that Apple has a getStyle() method to return the kind of apple (Delicious, McIntosh, etc.).

Because of subtype polymorphism, it is legal to declare a variable as being of some class and then assign an object of a subclass to it:

Fruit fruit = new Apple("McIntosh");

Suppose that we have several fruits, and want to print out the colors of each. This code will do the trick:

Fruit[] A = new Fruit[3];

A[0] = new Apple("Granny Smith");

A[1] = new Orange();

A[2] = new Pear();

for(int i = 0; i < A.length; i++) {

if(A[i] instanceof Apple)

System.out.println(

((Apple) A[i]).getColor());

else if(A[i] instanceof Orange)

System.out.println(

 ((Orange) A[i]).getColor());

else if(A[i] instanceof Pear)

System.out.println(((Pear) A[i]).getColor());

else

System.out.println(A[i].getColor());
What’s wrong with this?

How can we simplify it?

for (int i = 0; i < A.length; i++)

System.out.println(A[i].getColor()); // or …
 for (Fruit a: A) System.out.println(a.getColor());
What would happen if no getColor method were defined in Fruit?

Overloading vs. overriding

Two methods are overloaded if they are in the same class, but have different parameter lists.

When a method is overridden, one of its subclasses declares a method of the same name, with the same signature.

Consider this example. All of our Fruits inherit an equals method from class Object. Suppose that Fruit declares its own equals method:

Object>>public boolean equals(Object obj)
(1)
Fruit>>public boolean equals(Fruit fruit)
(2)
Has Fruit overridden the equals method?

Which equals method is called in each case below?
Object o = new Object();

Fruit f = new Fruit();

Object of = new Fruit();

f.equals(o);
f.equals(f);
f.equals(of);
What about these calls, using the same variables?

o.equals(o);
o.equals(f);
o.equals(of);
of.equals(o);
of.equals(f);
of.equals(of);

Now, let’s throw overriding into the picture and declare, in class Fruit—

Object>>public boolean equals(Object obj)
(1)
Fruit>>public boolean equals(Fruit fruit)
(2)
Fruit>>public boolean equals(Object obj)

(3)
Which methods are called now?

Object o = new Object();

Fruit f = new Fruit();

Object of = new Fruit();

f.equals(o);
f.equals(f);
f.equals(of);

o.equals(o);
o.equals(f);
o.equals(of);
of.equals(o);
of.equals(f);
of.equals(of);
In summary, the compiler decides which overloaded method to call by looking at the declared type of

· the object being sent the message and

· the declared types of the arguments to the method call.

The particular version of the overloaded method is chosen at runtime by dynamic method invocation using the actual type of the object being sent the message.

The actual classes of the arguments to the method call do not play a role.

This is very different from a language like CLOS, which uses the actual types of the arguments to decide which method to execute.

Exercise: Singleton pattern

In the Week 5 video lecture, we saw the Singleton pattern defined in Ruby.

require 'singleton'
class Registry
 include Singleton
 attr_accessor :val
end
r = Registry.new #throws a NoMethodError
r = Registry.instance
r.val = 5
s = Registry.instance
puts s.val >> 5
s.val = 6
puts r.val >> 6
s.dup >> TypeError: can’t duplicate instance of singleton Registry
The idea is to prevent more than one object of the class from being defined, and to return the single instance by using a class method.

Here is an exercise with another Singleton pattern, except blanks are left in the code. You need to fill in the blanks to get the code to run.

class Balance
 attr_reader __________(1)__________

 def __________(2)__________(balance)

 @balance = balance

 __________(3)__________ = nil

 end

 def __________(4)__________.instance
 @first_instance = __________(5)__________(100)

if @first_instance.nil?

 __________(6)__________

 end

 def withdraw(amount)

 @balance > amount ? (@balance -= amount) :

(puts 'Insufficient balance')

 end

 def deposit(amount)

 @balance += amount

 end

end

class FamilyMember
 def initialize(name)

 @name = name

 @balance = Balance.__________(7)__________

 end

 def withdraw(amount)

 __________(8)__________(amount)

 end

 def deposit(amount)

 __________(9)__________(amount)

 end

 def balance

 __________(10)__________

 end

end

Fill in the blanks in the Singleton class and the FamilyMember class. Note that Singleton is not implemented as a mixin, though it could be.
Exercise: Adapter Pattern

An adapter allows classes to work together that normally could not because of incompatible interfaces.

· It “wraps” its own interface around the interface of a pre-existing class. What does this mean?

· It may also translate data formats from the caller to a form needed by the callee.

One can implement the Adapter Pattern using delegation in Ruby.

Consider the following contrived example.

· We want to put a SquarePeg into a RoundHole by passing it to the hole's peg_fits? method.

· The peg_fits? method checks the radius attribute of the peg, but a SquarePeg does not have a radius.

· Therefore we need to adapt the interface of the SquarePeg to meet the requirements of the RoundHole.

	class SquarePeg

 attr_reader :width

 def initialize(width)

 @width = width

 end

end
	class RoundPeg

 attr_reader :radius

 def initialize(radius)

 @radius = radius

 end

end

class RoundHole

 attr_reader :radius

 def initialize(r)

 @radius = r

 end

 def peg_fits?(peg)

 peg.radius <= radius

 end

end

Here is the Adapter class:

class SquarePegAdapter

 def initialize(square_peg)

 @peg = square_peg

 end

 def radius

 Math.sqrt(((@peg.width/2) ** 2)*2)

 end

end

hole = RoundHole.new(4.0)

4.upto(7) do |i|

 peg = SquarePegAdapter.new(SquarePeg.new(i.to_f))

 if hole.peg_fits?(peg)

 puts "peg #{peg} fits in hole #{hole}"

 else

 puts "peg #{peg} does not fit in hole #{hole}"

 end

end

>>peg #<SquarePegAdapter:0xa038b10> fits in hole #<RoundHole:0xa038bd0>

>>peg #<SquarePegAdapter:0xa038990> fits in hole #<RoundHole:0xa038bd0>

>>peg #<SquarePegAdapter:0xa0388a0> does not fit in hole #<RoundHole:0xa038bd0>

>>peg #<SquarePegAdapter:0xa038720> does not fit in hole #<RoundHole:0xa038bd0>

Here is an exercise on the Adapter pattern. Fill in the blanks.
interface Bird
{
 // birds implement Bird interface that allows
 // them to fly and make sounds adaptee interface
 public void fly();
 public void ______(2)______();
}

class Sparrow implements ___(1)___

{

 // a concrete implementation of bird
 public void ____(4)___()

 {

 System.out.println("Flying");

 }

 public void makeSound()

 {

 System.out.println("Chirp Chirp");

 }

}

interface ToyDuck

{

 // target interface
 // toyducks dont fly they just make
 // squeaking sound
 public void squeak();

}

class PlasticToyDuck implements ToyDuck

{

 public void _____(3)____()

 {

 System.out.println("Squeak");

 }

}

class BirdAdapter implements ToyDuck

{

 // You need to implement the interface your
 // client expects to use.
 Bird bird;

 public BirdAdapter(Bird bird)

 {

 this.bird = bird;

 }

 public void squeak()

 {

 bird.______(5)_______();

 }

}

class Main

{

 public static void main(String args[])

 {

 Sparrow sparrow = new Sparrow();

 ToyDuck toyDuck = new PlasticToyDuck();

 // Wrap a bird in a birdAdapter so that it
 // behaves like toy duck
 ToyDuck birdAdapter = new BirdAdapter(sparrow);

 System.out.println("Sparrow...");

 sparrow.fly();

 sparrow.makeSound();

 System.out.println("ToyDuck...");

 toyDuck.squeak();

 // toy duck behaving like a bird
 System.out.println("BirdAdapter...");

 birdAdapter.squeak();

 }

}

© 2025 Edward F. Gehringer
CSC/ECE 517 Lecture Notes, Spring 2025

Week 9
Object-Oriented Languages and Systems

_1127042676.bin

_1106451447.bin

